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Abstract

The COVID-19 pandemic perturbed air pollutant emissions as cities shutdown worldwide. Peroxyacyl nitrates (PANs) are im-

portant tracers of photochemistry that are formed through the oxidation of non-methane volatile organic compounds (NMVOCs)

in the presence of nitrogen oxide radicals (NOx = NO + NO2). We use satellite measurements of free tropospheric PANs from

the S-NPP Cross-Track Infrared Sounder (CrIS) over eight of the world’s megacities: Mexico City, Beijing, Los Angeles, Tokyo,

São Paulo, Delhi, Lagos, and Karachi. We quantify the seasonal cycle of PANs over these megacities and find seasonal maxima

in PANs correspond to seasonal peaks in local photochemistry. CrIS is used to explore changes in PANs in response to the

COVID-19 lockdowns. Statistically significant changes to PANs occurred over two megacities: Los Angeles (PAN decreased)

and Beijing (PAN increased). Our analysis suggests that large perturbations in NOx may not result in significant declines in

NOx export potential of megacities.
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Key Points: 9 

• There are pronounced seasonal cycles of PANs over each megacity that align with 10 
seasonal maximums in photochemistry.  11 

• Observed free tropospheric mixing ratios of PANs during COVID-19 were significantly 12 
different over two out of eight surveyed megacities. 13 

• Sensitivity of free tropospheric PANs to the abundance of precursors is seasonally 14 
dependent in some locations.  15 
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Abstract 16 
The COVID-19 pandemic perturbed air pollutant emissions as cities shutdown worldwide. Peroxyacyl 17 
nitrates (PANs) are important tracers of photochemistry that are formed through the oxidation of non-18 
methane volatile organic compounds (NMVOCs) in the presence of nitrogen oxide radicals (NOx = NO + 19 
NO2). We use satellite measurements of free tropospheric PANs from the S-NPP Cross-Track Infrared 20 
Sounder (CrIS) over eight of the world’s megacities: Mexico City, Beijing, Los Angeles, Tokyo, São 21 
Paulo, Delhi, Lagos, and Karachi. We quantify the seasonal cycle of PANs over these megacities and find 22 
seasonal maxima in PANs correspond to seasonal peaks in local photochemistry. CrIS is used to explore 23 
changes in PANs in response to the COVID-19 lockdowns. Statistically significant changes to PANs 24 
occurred over two megacities: Los Angeles (PAN decreased) and Beijing (PAN increased). Our analysis 25 
suggests that large perturbations in NOx may not result in significant declines in NOx export potential of 26 
megacities.  27 
Plain Language Summary 28 
The COVID-19 pandemic led to the lockdown of urban centers worldwide, drastically perturbing the 29 
concentrations of global air pollutants. Peroxyacyl nitrates (PANs) are important photochemical 30 
pollutants formed from reactions between NOx and volatile organic compounds (VOCs), which were 31 
substantially reduced during the pandemic. We use satellite measurements of PANs from the Suomi-32 
National Polar-orbiting Partnership (S-NPP) Cross-Track Infrared Sounder (CrIS)  in the free troposphere 33 
over and surrounding eight of the world’s megacities: Mexico City, Beijing, Los Angeles, Tokyo, São 34 
Paulo, Delhi, Lagos, and Karachi. Seasonal cycles of PANs are pronounced and the seasonal maxima 35 
correspond to seasonal peaks in local photochemistry. Significant changes to PANs in response to 36 
COVID-19 occurred over two out of the eight cities: Los Angeles (PANs decreased) and Beijing (PANs 37 
increased). Our results indicate that large changes in NOx may not result in equally significant changes to 38 
PANs and the NOx export potential of megacities.  39 

1 Introduction 40 
To slow the spread of the 2019 novel coronavirus (COVID-19), urban centers across the globe 41 

partially shut down for various amounts of time (Chinazzi et al., 2020; WHO, 2020). While the timing 42 
differed for each urban region, a consequence of these bursts of reduced economic activity was a radical 43 
decrease in the emissions of many primary air pollutants. Reductions in global and regional particulate 44 
matter, nitrogen oxides (NOx = NO + NO2), carbon dioxide (CO2), and other trace gasses associated with 45 
the COVID-19 pandemic have been documented (Bauwens et al., 2020; Z. Liu et al., n.d.; Miyazaki, 46 
Bowman, Sekiya, Jiang, et al., 2020; Miyazaki et al., 2021; Odekanle et al., 2022; Sharma et al., 2020; 47 
Shi & Brasseur, 2020; Venter et al., 2020; J. Zhang et al., 2022) Less is understood about changes to 48 
secondary pollutants as they respond non-linearly to changes in  precursor emissions, and their production 49 
and lifetime also depend on environmental conditions (e.g., Stavrakou et al., 2021). For example, both 50 
increases and decreases in surface ozone (O3) have been documented in urban areas during the COVID-51 
19 pandemic despite decreases in precursor emissions (e.g., Le et al., 2020; Miyazaki et al., 2021; Qiu et 52 
al., 2020; Shi & Brasseur, 2020; Sicard et al., 2020). 53 

Peroxyacyl nitrates (PANs) are important photochemically-produced species that are formed 54 
alongside O3 in polluted environments by the oxidation of non-methane volatile organic compounds 55 
(NMVOCs) in the presence of NOx (Fischer et al., 2014; Gaffney et al., 1989; Roberts, 2007; Singh et al., 56 
1986; Singh & Hanst, 1981). PANs are considered to be a sensitive tracer of photochemistry (e.g., 57 
Coggon et al., 2021; Rappenglück et al., 2003). Formation and decomposition of PANs can impact the 58 
production of O3 (e.g. Steiner et al., 2010), the production of PANs acts as an indicator of regional 59 
photochemistry (Sillman & West, 2009), and the concentration of PANs can be used to gauge 60 
effectiveness of O3-control strategies (Gaffney et al., 1989). PANs respond to precursor emissions non-61 
linearly and have been shown to be more sensitive to changes in NMVOCs versus changes in NOx for 62 
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many regions of the global atmosphere (Fischer et al., 2014) and in some urban regions (T. Liu et al., 63 
2022). 64 

The lifetime of PANs against thermal decomposition is strongly dependent on temperature, where 65 
PANs are thermally unstable in the lower troposphere (lifetime on the order of hours at 20°C), but have a 66 
lifetime >1 month at temperatures characteristic of the mid-troposphere (Honrath et al., 1996). When 67 
transported from polluted continental regions to the remote troposphere, PANs serve as the principal 68 
reservoir species for NOx and can contribute to efficient production of downwind O3 in NOx limited 69 
conditions (Fischer et al., 2014; Mena-Carrasco et al., 2009). The distribution of O3 in the remote 70 
atmosphere would be substantially different without PAN chemistry (e.g., Jiang et al., 2016). There have 71 
been major changes in NOx and VOC emissions in urban areas in recent decades, elevating the need for 72 
continued and extended observations of photochemically-relevant species in urban regions. In situ 73 
measurements of PANs have been collected for select urban areas for select seasons (Gaffney et al., 1989; 74 
Qiu et al., 2019; G. Zhang et al., 2015a), though observations are generally sparse.  75 

Here we present new satellite observations of PANs over eight megacities. We utilize 76 
measurements from the Suomi-National Polar-orbiting Partnership (S-NPP) Cross-Track Infrared 77 
Sounder (CrIS) and other complimentary satellite and reanalysis datasets to document  the seasonal cycles 78 
of PANs over select megacities and the response of PANs to COVID-19 induced reductions of precursor 79 
concentrations in these locations. 80 
 81 

2 Materials and Methods 82 

2.1 CrIS Observations 83 
We use observations of free tropospheric PANs and CO from the CrIS instrument, a nadir 84 

viewing Fourier transform spectroradiometer currently flying on the S-NPP satellite. The datasets used 85 
here were produced under the NASA Tropospheric Ozone and Precursors from Earth System Sounding 86 
(TROPESS) project (Bowman, 2021c, 2021k, 2021o, 2021a, 2021e, 2021i, 2021l, 2021p, 2021d, 2021j, 87 
2021b, 2021f, 2021c; Shogrin, 2023). Information on the CrIS PANs retrieval algorithm and validation 88 
against aircraft observations can be found in Payne et al. (2022). The validation efforts for the CrIS PANs 89 
product suggest a single sounding uncertainty of around 0.08 ppbv that reduces with averaging to an 90 
approximate floor of 0.05 ppbv and demonstrates the ability of CrIS to capture variation in the 91 
“background” PANs over remote regions (Payne et al., 2022). The CrIS CO algorithm is described in Fu 92 
et al. (2016) and validation is presented in Worden et al. (2022). A single sounding uncertainty for CrIS 93 
CO retrievals is on the order of 6-10% (Worden et al., 2022) and this is expected to reduce with 94 
averaging. Our analysis uses the column average PANs volume mixing ratio (VMR) between 825 and 95 
215 hPa. CrIS PANs retrievals have peak sensitivity in the free troposphere (~680 hPa) and the sensitivity 96 
decreases rapidly near the surface. At most, CrIS PANs retrievals have 1 degree of freedom for signal 97 
(DOF), meaning this product does not include information about the vertical distribution of PANs in the 98 
atmosphere. The spectral feature utilized by CrIS for retrieval of PANs is centered at 790 cm-1. This 99 
infrared spectral feature appears in the spectra of all PANs at essentially the same frequency, so CrIS 100 
measurements include all PAN species (i.e., they include propionyl peroxy nitrate (PPN; 101 
CH3CH2C(O)OONO2), methacryloyl peroxy nitrate (MPAN; CH2C(CH3)C(O)OONO2), etc.) in addition 102 
to peroxyacetyl nitrate (PAN; CH3C(O)O2NO2). We also use a tropospheric average of CrIS CO between 103 
825 hPa and 215 hPa. Our analysis focuses on CrIS PANs over and around 9 megacities utilizing CrIS 104 
CO to contextualize seasonal enhancements in PANs.  105 
 106 

PAN observations from nadir-viewing satellites include those from the Tropospheric Emission 107 
Spectrometer (TES) (Payne et al., 2014) as well as meteorological sounders namely the Infrared 108 
Atmospheric Sounding Interferometer (IASI) (Franco et al., 2018) and CrIS (Payne et al., 2022). Studies 109 
observing PAN from space thus far have focused on PAN enhancements associated with fires (Alvarado 110 
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et al., 2011; Clarisse et al., 2011; Juncosa Calahorrano et al., 2021) and the global distribution of PAN 111 
and its role in the long range transport of O3 (Fischer et al., 2018; Jiang et al., 2016; Payne et al., 2017; 112 
Zhu et al., 2015; 2017). Although TES had provided a set of special observations over select megacities 113 
(Cady-Pereira et al., 2017; Shogrin et al., 2023), the spatial and temporal coverage of this dataset is 114 
somewhat limited. Here, we utilize the more comprehensive spatial and temporal coverage of CrIS to 115 
explore the spatiotemporal distribution of PANs over and around megacities.  116 

 117 
2.2 Ozone Monitoring Instrument (OMI) Observations  118 
 119 
We use Level 3 NO2 tropospheric column measurements from NASA Aura-OMI to identify 120 

months with anomalously low NO2 columns associated with COVID in 2020. We use the Quality 121 
Assurance for Essential Climate Variables (QA4ECV) NO2 Level 3 product described in Boersma et al. 122 
(2018) as this is the most recently updated data product. OMI NO2 L3 monthly mean data used in this 123 
study is provided on a global 0.125° x 0.125° grid and can be found on the TEMIS database (Boersma et 124 
al., 2017b). 125 
 126 
 We use Level 3 (L3) HCHO tropospheric column measurements, also from OMI, to contextualize 127 
changes in monthly VOC concentrations in megacities during the period of anomalously low tropospheric 128 
NO2. Space-based observations of HCHO are used as an indicator of VOC emissions (De Smedt et al., 129 
2008; Shen et al., 2019). HCHO is also processed using the QA4ECV algorithm consistently with the NO2 130 
data used in this study. HCHO L3 monthly mean data is also provided on a global 0.125° x 0.125° grid 131 
and can also be found on the TEMIS database (De Smedt et al., 2017).  132 
 133 

2.3 Chemical Reanalysis Product 134 
 135 

We use NOx emission reanalysis data to also place changes to PANs in the context of NOx emission flux 136 
reductions in megacities associated with COVID-19. NOx emissions are from an assimilation of multi-137 
species satellite observations (O3, CO, NO2, HNO3, and SO2) in the Tropospheric Chemistry Reanalysis 138 
version 2 (TCR-2) framework (Miyazaki et al., 2020;  https://doi.org/10.25966/9qgv-fe81). NOx 139 
emissions are constrained by tropospheric column NO2 retrievals from the QA4ECV version 1.1 Level 2 140 
products from OMI and Global Ozone Monitoring Experiment 2 (GOME-2) (Boersma et al., 2017a, 141 
2017b). A priori emissions are from HTAP version 2 for 2010 (Janssens-Maenhout et al., 2015), Global 142 
Fire Emissions Database (GFED) version 4 (Randerson et al., 2018), and the Global Emissions Inventory 143 
Activity (GEIA) (Graedel et al., 1993). The reanalysis fields have been evaluated against independent 144 
observations on regional and global scales (Miyazaki et al., 2020). NOx emissions for 2020 used in our 145 
analysis are estimated using business as usual (BAU) emissions added to the estimated COVID-19 146 
emissions anomaly described in Miyazaki et al. (2021). While the observed NO2 concentrations are 147 
affected by meteorological concentrations, their effect is already taken into account when estimating the 148 
NOx emissions (Miyazaki et al., 2017; 2020) 149 
 150 

 151 
 152 
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 153 

3 Results and discussion 154 

 3.1 Seasonal Cycles of PANs, CO, and HCHO in megacities 155 

 156 
 157 
Figure 1. Top: Map shows mean detected CrIS PANs for the entire study period. The scale to the right of 158 
the map ranks the cities using the mean PANs. Dot sizing is indicative of abundance of mean PANs. 159 
Seasonal cycles of CrIS PANs [ppbv] (color denoted in color bar, dashed denotes median values), CrIS 160 
tropospheric CO [ppbv] (dark grey), and OMI HCHO tropospheric column average [x1016 molecules cm-2] 161 
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(lighter grey) for eight megacities. Note: scales vary for each plot. Monthly means include data from 162 
January 2016 to May 2021. 163 

 164 
Figure 1 displays the mean seasonal cycles for CrIS PANs, CrIS CO, and OMI HCHO for eight 165 

different global megacities from 2016-2021. Figure 1 helps identify periods in the annual cycle with 166 
production of PANs and values of PANs above a threshold where CrIS is able to provide quantitative 167 
information. For most cities, NO2 changes from COVID-19 coincide with periods where PANs are above 168 
the CrIS detection limit (Section 2.1) and conditions support photochemical production.   169 

All but two selected megacities experience a springtime maxima in PANs. The seasonal 170 
springtime maximum in PANs is attributed to an increase in photochemical activity at a time when PANs 171 
have a relatively long lifetime against thermal decomposition (Brice et al., 1988; Fischer et al., 2014; 172 
Penkett & Brice, 1986). Seasonal maxima occur in March, April, and/or May for northern hemisphere 173 
megacities (Mexico City, Los Angeles (LA), Tokyo, Delhi, and Lagos), and in September for São Paulo 174 
(23.56°S), the beginning of austral spring. Over Lagos (6.52°N) PANs begin increasing towards the end 175 
of the calendar year and maximize in March or April. In addition to a springtime maxima, PANs over 176 
Beijing (39.92°N) and Karachi (24.86°N) remain elevated through the summer (April-September). 177 
Though it has a springtime maxima, Delhi (28.71°N) has a comparably wide seasonal cycle in PANs. 178 
Mexico City, LA, and Tokyo also show an additional period of elevated PANs later in the year.  179 

PANs over each megacity reflect a combination of sources and meteorological conditions, but the 180 
extent of the published literature on air pollutants in each megacity differs widely. Here we focus our 181 
discussion on LA, Beijing, and to a more limited extent, Tokyo, Delhi, and Lagos.  182 

There is a longstanding effort to attribute and control O3 and other photochemical pollutants in 183 
LA (Langford et al., 2010; Nussbaumer & Cohen, 2020; Pollack et al., 2013; Warneke et al., 2013). CrIS 184 
data indicate that the seasonal cycle in PANs over LA is distinct from both HCHO and surface O3 (not 185 
shown); tropospheric column HCHO and surface O3 have broad maxima extending from April through 186 
October and June through October, respectively. Increasing temperatures during the summer decrease the 187 
lifetime of PANs due to thermal decomposition and decrease the ratio of free tropospheric PANs to 188 
surface O3. The secondary and tertiary peaks in monthly mean PANs over LA in July and September are 189 
driven by wildfire smoke transported into the LA Basin in 2018 and 2020, respectively (Liang et al., 190 
2021). Wildfire impacts in September 2020 also drive the peak in September CO; note the difference 191 
between the mean and median as these peaks are not evident in the median (dashed) CO and PANs for 192 
these months.   193 

Information on PANs within and around Beijing is growing rapidly (e.g., Z. Liu et al., 2010; B. 194 
Zhang et al., 2017, 2019). In Beijing, surface O3 and tropospheric column HCHO have seasonal maxima 195 
in summer months (JJA), corresponding to the seasonal maximum in CrIS PANs (Figure 1) and recorded 196 
surface observations of PAN and PPN (B. Zhang et al., 2017; G. Zhang et al., 2015b). Ground-level PAN 197 
is also elevated during winter haze events in Beijing (Li et al., 2021; Qiu et al., 2019; B. Zhang et al., 198 
2019; G. Zhang et al., 2020). CrIS observes elevated CO over Beijing in March and April, consistent with 199 
a seasonal peak in local fire activity in northeast China (Feng et al., 2015; L. Wang et al., 2020; Yin et al., 200 
2019; Zhao et al., 2022).  201 

Tokyo has a seasonal spring maximum in photochemical species from both local and distant (i.e., 202 
China and Korea) sources of precursors (Lee et al., 2021; Yoshitomi et al., 2011). Delhi has a humid 203 
subtropical/semi-arid climate and air pollution is strongly influenced by the Indian monsoon (Gurjar et al., 204 
2016). The monsoon season lasts from July-September and the dry season is considered to be September-205 
June. CrIS observes elevated PANs over Delhi from April to October; on average PANs remain elevated 206 
through the monsoon season. Crop residue burning in April-May and October-November can deteriorate 207 
air quality in the Delhi metropolitan area (Saxena et al., 2021). These periods correspond with periods of 208 
elevated PANs and tropospheric column HCHO. Lagos surface O3 increases seasonally during the dry 209 
season (Abdul Raheem et al., 2009). This is consistent with CrIS observations of PANs and CO, which 210 
increase and decrease with the respective dry and wet seasons.   211 
 212 
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 3.2 2020 NO2 Anomalies 213 
 214 

 215 
Figure 2. OMI NO2 tropospheric column monthly means for 9 megacities. The area used for each city is 216 
the same area around the urban area of each city used for CrIS selection and this information is provided 217 
in Table 1. 2020 is shown in purple. The mean of 2016-2019 is shown in bold black. Months with 218 
substantial NO2 declines in 2020 have been highlighted in purple shading and these time frames are used 219 
in the subsequent analysis presented in Figure 3.  220 
 221 
Major changes in NOx emissions and tropospheric NO2 column abundances have been documented 222 
worldwide for different periods of the COVID-19 pandemic (Bauwens et al., 2020; Berman & Ebisu, 223 
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2020; J. Zhang et al., 2022). For the analysis presented here, we identify periods where 1) the monthly 224 
mean NO2 column during 2020 was at least 15% below the corresponding monthly mean for 2016-2019 225 
(black line in Figure 2), and 2) the monthly mean PANs mixing ratio are at least 0.05 ppbv (Figure 1). We 226 
only consider times in the seasonal cycle where mixing ratios of PANs are at least 0.05 ppbv because this 227 
corresponds with the uncertainty discussed in Section 2.1 and Payne et al. (2022). The months that meet 228 
these criteria are highlighted by the light purple shading in Figure 2. The 2020 monthly mean NO2 229 
column density associated with these shaded periods is at least 15% less than the mean of the 230 
corresponding months for the period 2016-2019. Periods of lower observed NO2 often do not exactly 231 
coincide with the COVID-19 government-enforced lockdowns, as reduced traffic was often observed 232 
prior to government-imposed stay-at-home orders.  233 
 234 
Table 1. Changes to Chemical Species during Respective Time Periods.  235 
 236 

City Monthly 
mean time 
period 

NO2 
change 
(%)   

NOx 
change 
(%) 

HCHO 
change 
(%) 

PANs 
change 
(%) 

P-value 

Mexico 
City 

February-
May 

-22% -14% 5.6% 1.8% 0.45 

Beijing January -35% -19% 59% 80% 0.03 
Beijing July-

September 
-40% -16% -7.6% -1.9% 0.31 

Tokyo March-
April 

-40% -23% -26% 6.9% 0.11 

Tokyo June-July -40% -15% -43% -0.9% 0.44 
Los 
Angeles 

March-
August 

-36% -17% -10% -11% 0.06 

São Paulo April-
August 

-35% -11% -1.7% 3.7% 0.33 

Delhi March-June -48% -28% -9.6% -20% 0.33 
Lagos April-June -35% -16% -0.08% 11% 0.33 
Karachi March-June -52% -5% 3.6% 12% 0.14 

 237 
Table 1. Periods of significant NO2  decline based on tropospheric column OMI NO2 monthly means 238 
shown in Figure 2. Percent change represents the change in 2020 values relative to the mean of 2016-239 
2019 for the respective time periods. Percent change in PANs were calculated using daily means during 240 
the months of NO2 anomaly. P-values are from Mann-Whitney u test. A negative percent change signifies 241 
a decline in 2020 relative to the same months in prior years; likewise, positive percent changes signify an 242 
increase.  243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 
 251 
 252 
 253 
 254 
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 3.3 Impacts of COVID-19 NOx reductions on PANs over megacities  255 

 256 
 257 
Figure 3. Bar charts comparing monthly means for specified months of OMI NO2 tropospheric columns 258 
[x1016 molecules cm-2], NOx emissions from the Tropospheric Chemical Reanalysis [x10-10 Tg yr-1], CrIS 259 
free troposphere PANs [ppbv], and OMI HCHO tropospheric columns [x1016 molecules cm-2] for each 260 
megacity. Means of monthly means for specified periods in 2020 (shown in Figure 2 and listed in Table 261 
1) are plotted in the lighter colors and means of 2016-2019 are plotted in the darker colors. We performed 262 
a Mann-Whitney u-test to test the significance of changes to PANs during the respective time periods of 263 
COVID-19 NO2 perturbations listed in Table 1; 2020 was compared to the same time period from 2016-264 
2019. We set our alpha at 0.1, so p values < 0.1 are considered significant and receive more discussion.  265 
 266 
 267 

Figure 3 shows that while there were large decreases in NO2 declines at some point in 2020, this 268 
did not yield a similarly large change in free tropospheric PANs for each region. Most megacities 269 
surveyed did not experience significant change in PANs at the 90% confidence level, except for LA, 270 
which experienced a significant decline, and Beijing in winter, which experienced a significant increase. 271 
We expect that PANs (and the sensitivity of CrIS) would also respond to other environmental factors 272 
including temperature; we analyze two possible environmental indicators: 2 meter air temperature and 273 
500 hPa air temperature changes between the two respective periods over each of the megacities using 274 
MERRA-2 Reanalysis monthly mean product (Global Modeling and Assimilation Office (GMAO), 2015; 275 
DOI:10.5067/AP1B0BA5PD2K). We find no significant change in mean temperature at either pressure 276 
level between 2020 and corresponding months during the prior 4 years. Thus temperature was likely not a 277 
significant factor driving anomalies in PANs during the extended periods of NOx perturbations 278 
highlighted in Figure 2. PANs have been used to gauge effectiveness of O3-control strategies (e.g., 279 
Gaffney et al., 1989). The tropospheric column ratios of HCHO to NO2  have been used as a qualitative 280 
indicator of NOx sensitive versus NOx saturated (VOC-limited) regimes (e.g., Jin et al., 2017; Martin et 281 
al., 2004; Souri et al., 2023). Threshold values vary by location (Souri et al., 2020), but higher (lower) 282 
ratios indicate NOx-sensitive (saturated) conditions. Reductions in NOx during the pandemic were 283 
substantial enough to shift the photochemical regime in some areas, i.e., from NOx-saturated to a 284 
transition zone or from a transition zone to NOx-sensitive conditions (Peralta et al., 2021). The SI contains 285 
a version of Table 1 that also includes tropospheric column HCHO:NO2 ratios over each city. We did not 286 
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identify a consistent relationship between this ratio and the sensitivity of PAN to COVID induced-287 
changes to NOx. 288 

PANs decreased significantly over LA during COVID-19 NOx emission reductions, and this 289 
coincided with decreases in surface O3 (Connerton et al., 2020; Schroeder et al., 2022). The underlying 290 
photochemical environment of LA has been transitioning from a VOC-limited regime to a NOx-limited 291 
regime (Lee et al., 2021; Schroeder et al., 2022); spring 2020 was the first NOx-limited year (Schroeder et 292 
al., 2022). PAN abundances at the ground have decreased much more rapidly than O3 in response to 293 
emission controls in the LA Basin (Pollack et al., 2013). The CrIS data suggest that PAN would continue 294 
to respond to NOx emission reductions in this city.  295 

PANs did not show marked changes over Mexico City, São Paulo or Tokyo despite major NOx 296 
perturbations. O3 over Tokyo also did not significantly change with COVID-19 lockdown measures; this 297 
has been attributed to a shift in the underlying photochemical regime from VOC-limited towards the 298 
transition zone where O3 production is expected to be equally sensitive to changes in both NOx and VOCs 299 
(Damiani et al., 2022; Ito et al., 2021; Q. Wang & Li, 2021). O3 in Mexico City was also statistically 300 
indistinguishable during periods of substantial precursor reduction in 2020 from that of other years 301 
(Peralta et al., 2021). São Paulo experienced an increase in O3 in April and May, but largely in areas most 302 
seriously impacted by vehicle emissions (Alvim et al., 2023). 303 

The largest and only significant increase in free tropospheric PANs on a monthly mean scale in 304 
our analysis occurred over Beijing in January (80%, p = 0.03), coincident with the lowest average HCHO: 305 
NO2 ratio of all cities included here. Qiu et al. (2020) reported a threefold increase in ground-level PAN 306 
in urban Beijing during this first lockdown period, connected to enhanced local photochemistry and 307 
abnormal meteorological conditions, including anomalous wind convergence under higher temperatures. 308 
We find a similar change in free tropospheric PANs over Beijing, where mean CrIS PANs are 2.4 times 309 
higher during the same lockdown period. Beijing had a second period of NO2 decline in July and August 310 
2020, which was associated with an insignificant change in PANs (-1.96%, p = 0.31). Stavrakou et al. 311 
(2021) also investigated the impact of COVID-19 on PAN over China.  312 
 313 

5 Conclusions 314 
We use CrIS data from 2016-2021 to identify the seasonality of PANs over 8 megacities, and identify 315 
time periods with elevated PANs. This is the first detailed analysis of satellite observations of PANs over 316 
multiple megacities. We use this to inform our analysis in diagnosing the impact of NO2 declines related 317 
to the COVID-19 pandemic on PANs in these locations.  318 
 319 
 320 

1. There are pronounced seasonal cycles in PANs over each megacity. Monthly mean PANs peak in 321 
the spring or summer (Beijing and Karachi), aligning with respective seasonal maximums in 322 
photochemical activity. Wildfire smoke can occasionally enhance monthly mean PANs.  323 
 324 
 325 

2. Despite large changes in tropospheric NO2 columns associated with the COVID-19 pandemic, we 326 
only identify two megacities over which PANs changed significantly: Beijing and LA. The 327 
relative response of PANs in these locations was smaller than the changes in NO2. The response 328 
of PANs to a major change in precursor emissions is highly non-linear.  329 
 330 
 331 

3. Sensitivity of free tropospheric PANs to the abundance of precursors appears to be seasonally 332 
dependent in Beijing and Tokyo. PANs over Beijing and Tokyo are likely more sensitive to NOx 333 
reductions in winter and spring respectively.  334 
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 335 
 336 

4. Based on this survey of megacities, relatively large perturbations in NOx may not result in 337 
significant declines in NOx export potential of megacities in all seasons. Thus satellite 338 
observations of PANs may be an additional useful diagnostic in predicting the complex response 339 
of O3 to NOx reductions in downwind regions. Next steps should focus on identifying the 340 
response of PAN downwind of megacities to COVID-19 NOx reductions.  341 
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Key Points: 9 

• There are pronounced seasonal cycles of PANs over each megacity that align with 10 
seasonal maximums in photochemistry.  11 

• Observed free tropospheric mixing ratios of PANs during COVID-19 were significantly 12 
different over two out of eight surveyed megacities. 13 

• Sensitivity of free tropospheric PANs to the abundance of precursors is seasonally 14 
dependent in some locations.  15 
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Abstract 16 
The COVID-19 pandemic perturbed air pollutant emissions as cities shutdown worldwide. Peroxyacyl 17 
nitrates (PANs) are important tracers of photochemistry that are formed through the oxidation of non-18 
methane volatile organic compounds (NMVOCs) in the presence of nitrogen oxide radicals (NOx = NO + 19 
NO2). We use satellite measurements of free tropospheric PANs from the S-NPP Cross-Track Infrared 20 
Sounder (CrIS) over eight of the world’s megacities: Mexico City, Beijing, Los Angeles, Tokyo, São 21 
Paulo, Delhi, Lagos, and Karachi. We quantify the seasonal cycle of PANs over these megacities and find 22 
seasonal maxima in PANs correspond to seasonal peaks in local photochemistry. CrIS is used to explore 23 
changes in PANs in response to the COVID-19 lockdowns. Statistically significant changes to PANs 24 
occurred over two megacities: Los Angeles (PAN decreased) and Beijing (PAN increased). Our analysis 25 
suggests that large perturbations in NOx may not result in significant declines in NOx export potential of 26 
megacities.  27 
Plain Language Summary 28 
The COVID-19 pandemic led to the lockdown of urban centers worldwide, drastically perturbing the 29 
concentrations of global air pollutants. Peroxyacyl nitrates (PANs) are important photochemical 30 
pollutants formed from reactions between NOx and volatile organic compounds (VOCs), which were 31 
substantially reduced during the pandemic. We use satellite measurements of PANs from the Suomi-32 
National Polar-orbiting Partnership (S-NPP) Cross-Track Infrared Sounder (CrIS)  in the free troposphere 33 
over and surrounding eight of the world’s megacities: Mexico City, Beijing, Los Angeles, Tokyo, São 34 
Paulo, Delhi, Lagos, and Karachi. Seasonal cycles of PANs are pronounced and the seasonal maxima 35 
correspond to seasonal peaks in local photochemistry. Significant changes to PANs in response to 36 
COVID-19 occurred over two out of the eight cities: Los Angeles (PANs decreased) and Beijing (PANs 37 
increased). Our results indicate that large changes in NOx may not result in equally significant changes to 38 
PANs and the NOx export potential of megacities.  39 

1 Introduction 40 
To slow the spread of the 2019 novel coronavirus (COVID-19), urban centers across the globe 41 

partially shut down for various amounts of time (Chinazzi et al., 2020; WHO, 2020). While the timing 42 
differed for each urban region, a consequence of these bursts of reduced economic activity was a radical 43 
decrease in the emissions of many primary air pollutants. Reductions in global and regional particulate 44 
matter, nitrogen oxides (NOx = NO + NO2), carbon dioxide (CO2), and other trace gasses associated with 45 
the COVID-19 pandemic have been documented (Bauwens et al., 2020; Z. Liu et al., n.d.; Miyazaki, 46 
Bowman, Sekiya, Jiang, et al., 2020; Miyazaki et al., 2021; Odekanle et al., 2022; Sharma et al., 2020; 47 
Shi & Brasseur, 2020; Venter et al., 2020; J. Zhang et al., 2022) Less is understood about changes to 48 
secondary pollutants as they respond non-linearly to changes in  precursor emissions, and their production 49 
and lifetime also depend on environmental conditions (e.g., Stavrakou et al., 2021). For example, both 50 
increases and decreases in surface ozone (O3) have been documented in urban areas during the COVID-51 
19 pandemic despite decreases in precursor emissions (e.g., Le et al., 2020; Miyazaki et al., 2021; Qiu et 52 
al., 2020; Shi & Brasseur, 2020; Sicard et al., 2020). 53 

Peroxyacyl nitrates (PANs) are important photochemically-produced species that are formed 54 
alongside O3 in polluted environments by the oxidation of non-methane volatile organic compounds 55 
(NMVOCs) in the presence of NOx (Fischer et al., 2014; Gaffney et al., 1989; Roberts, 2007; Singh et al., 56 
1986; Singh & Hanst, 1981). PANs are considered to be a sensitive tracer of photochemistry (e.g., 57 
Coggon et al., 2021; Rappenglück et al., 2003). Formation and decomposition of PANs can impact the 58 
production of O3 (e.g. Steiner et al., 2010), the production of PANs acts as an indicator of regional 59 
photochemistry (Sillman & West, 2009), and the concentration of PANs can be used to gauge 60 
effectiveness of O3-control strategies (Gaffney et al., 1989). PANs respond to precursor emissions non-61 
linearly and have been shown to be more sensitive to changes in NMVOCs versus changes in NOx for 62 
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many regions of the global atmosphere (Fischer et al., 2014) and in some urban regions (T. Liu et al., 63 
2022). 64 

The lifetime of PANs against thermal decomposition is strongly dependent on temperature, where 65 
PANs are thermally unstable in the lower troposphere (lifetime on the order of hours at 20°C), but have a 66 
lifetime >1 month at temperatures characteristic of the mid-troposphere (Honrath et al., 1996). When 67 
transported from polluted continental regions to the remote troposphere, PANs serve as the principal 68 
reservoir species for NOx and can contribute to efficient production of downwind O3 in NOx limited 69 
conditions (Fischer et al., 2014; Mena-Carrasco et al., 2009). The distribution of O3 in the remote 70 
atmosphere would be substantially different without PAN chemistry (e.g., Jiang et al., 2016). There have 71 
been major changes in NOx and VOC emissions in urban areas in recent decades, elevating the need for 72 
continued and extended observations of photochemically-relevant species in urban regions. In situ 73 
measurements of PANs have been collected for select urban areas for select seasons (Gaffney et al., 1989; 74 
Qiu et al., 2019; G. Zhang et al., 2015a), though observations are generally sparse.  75 

Here we present new satellite observations of PANs over eight megacities. We utilize 76 
measurements from the Suomi-National Polar-orbiting Partnership (S-NPP) Cross-Track Infrared 77 
Sounder (CrIS) and other complimentary satellite and reanalysis datasets to document  the seasonal cycles 78 
of PANs over select megacities and the response of PANs to COVID-19 induced reductions of precursor 79 
concentrations in these locations. 80 
 81 

2 Materials and Methods 82 

2.1 CrIS Observations 83 
We use observations of free tropospheric PANs and CO from the CrIS instrument, a nadir 84 

viewing Fourier transform spectroradiometer currently flying on the S-NPP satellite. The datasets used 85 
here were produced under the NASA Tropospheric Ozone and Precursors from Earth System Sounding 86 
(TROPESS) project (Bowman, 2021c, 2021k, 2021o, 2021a, 2021e, 2021i, 2021l, 2021p, 2021d, 2021j, 87 
2021b, 2021f, 2021c; Shogrin, 2023). Information on the CrIS PANs retrieval algorithm and validation 88 
against aircraft observations can be found in Payne et al. (2022). The validation efforts for the CrIS PANs 89 
product suggest a single sounding uncertainty of around 0.08 ppbv that reduces with averaging to an 90 
approximate floor of 0.05 ppbv and demonstrates the ability of CrIS to capture variation in the 91 
“background” PANs over remote regions (Payne et al., 2022). The CrIS CO algorithm is described in Fu 92 
et al. (2016) and validation is presented in Worden et al. (2022). A single sounding uncertainty for CrIS 93 
CO retrievals is on the order of 6-10% (Worden et al., 2022) and this is expected to reduce with 94 
averaging. Our analysis uses the column average PANs volume mixing ratio (VMR) between 825 and 95 
215 hPa. CrIS PANs retrievals have peak sensitivity in the free troposphere (~680 hPa) and the sensitivity 96 
decreases rapidly near the surface. At most, CrIS PANs retrievals have 1 degree of freedom for signal 97 
(DOF), meaning this product does not include information about the vertical distribution of PANs in the 98 
atmosphere. The spectral feature utilized by CrIS for retrieval of PANs is centered at 790 cm-1. This 99 
infrared spectral feature appears in the spectra of all PANs at essentially the same frequency, so CrIS 100 
measurements include all PAN species (i.e., they include propionyl peroxy nitrate (PPN; 101 
CH3CH2C(O)OONO2), methacryloyl peroxy nitrate (MPAN; CH2C(CH3)C(O)OONO2), etc.) in addition 102 
to peroxyacetyl nitrate (PAN; CH3C(O)O2NO2). We also use a tropospheric average of CrIS CO between 103 
825 hPa and 215 hPa. Our analysis focuses on CrIS PANs over and around 9 megacities utilizing CrIS 104 
CO to contextualize seasonal enhancements in PANs.  105 
 106 

PAN observations from nadir-viewing satellites include those from the Tropospheric Emission 107 
Spectrometer (TES) (Payne et al., 2014) as well as meteorological sounders namely the Infrared 108 
Atmospheric Sounding Interferometer (IASI) (Franco et al., 2018) and CrIS (Payne et al., 2022). Studies 109 
observing PAN from space thus far have focused on PAN enhancements associated with fires (Alvarado 110 
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et al., 2011; Clarisse et al., 2011; Juncosa Calahorrano et al., 2021) and the global distribution of PAN 111 
and its role in the long range transport of O3 (Fischer et al., 2018; Jiang et al., 2016; Payne et al., 2017; 112 
Zhu et al., 2015; 2017). Although TES had provided a set of special observations over select megacities 113 
(Cady-Pereira et al., 2017; Shogrin et al., 2023), the spatial and temporal coverage of this dataset is 114 
somewhat limited. Here, we utilize the more comprehensive spatial and temporal coverage of CrIS to 115 
explore the spatiotemporal distribution of PANs over and around megacities.  116 

 117 
2.2 Ozone Monitoring Instrument (OMI) Observations  118 
 119 
We use Level 3 NO2 tropospheric column measurements from NASA Aura-OMI to identify 120 

months with anomalously low NO2 columns associated with COVID in 2020. We use the Quality 121 
Assurance for Essential Climate Variables (QA4ECV) NO2 Level 3 product described in Boersma et al. 122 
(2018) as this is the most recently updated data product. OMI NO2 L3 monthly mean data used in this 123 
study is provided on a global 0.125° x 0.125° grid and can be found on the TEMIS database (Boersma et 124 
al., 2017b). 125 
 126 
 We use Level 3 (L3) HCHO tropospheric column measurements, also from OMI, to contextualize 127 
changes in monthly VOC concentrations in megacities during the period of anomalously low tropospheric 128 
NO2. Space-based observations of HCHO are used as an indicator of VOC emissions (De Smedt et al., 129 
2008; Shen et al., 2019). HCHO is also processed using the QA4ECV algorithm consistently with the NO2 130 
data used in this study. HCHO L3 monthly mean data is also provided on a global 0.125° x 0.125° grid 131 
and can also be found on the TEMIS database (De Smedt et al., 2017).  132 
 133 

2.3 Chemical Reanalysis Product 134 
 135 

We use NOx emission reanalysis data to also place changes to PANs in the context of NOx emission flux 136 
reductions in megacities associated with COVID-19. NOx emissions are from an assimilation of multi-137 
species satellite observations (O3, CO, NO2, HNO3, and SO2) in the Tropospheric Chemistry Reanalysis 138 
version 2 (TCR-2) framework (Miyazaki et al., 2020;  https://doi.org/10.25966/9qgv-fe81). NOx 139 
emissions are constrained by tropospheric column NO2 retrievals from the QA4ECV version 1.1 Level 2 140 
products from OMI and Global Ozone Monitoring Experiment 2 (GOME-2) (Boersma et al., 2017a, 141 
2017b). A priori emissions are from HTAP version 2 for 2010 (Janssens-Maenhout et al., 2015), Global 142 
Fire Emissions Database (GFED) version 4 (Randerson et al., 2018), and the Global Emissions Inventory 143 
Activity (GEIA) (Graedel et al., 1993). The reanalysis fields have been evaluated against independent 144 
observations on regional and global scales (Miyazaki et al., 2020). NOx emissions for 2020 used in our 145 
analysis are estimated using business as usual (BAU) emissions added to the estimated COVID-19 146 
emissions anomaly described in Miyazaki et al. (2021). While the observed NO2 concentrations are 147 
affected by meteorological concentrations, their effect is already taken into account when estimating the 148 
NOx emissions (Miyazaki et al., 2017; 2020) 149 
 150 

 151 
 152 
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 153 

3 Results and discussion 154 

 3.1 Seasonal Cycles of PANs, CO, and HCHO in megacities 155 

 156 
 157 
Figure 1. Top: Map shows mean detected CrIS PANs for the entire study period. The scale to the right of 158 
the map ranks the cities using the mean PANs. Dot sizing is indicative of abundance of mean PANs. 159 
Seasonal cycles of CrIS PANs [ppbv] (color denoted in color bar, dashed denotes median values), CrIS 160 
tropospheric CO [ppbv] (dark grey), and OMI HCHO tropospheric column average [x1016 molecules cm-2] 161 
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(lighter grey) for eight megacities. Note: scales vary for each plot. Monthly means include data from 162 
January 2016 to May 2021. 163 

 164 
Figure 1 displays the mean seasonal cycles for CrIS PANs, CrIS CO, and OMI HCHO for eight 165 

different global megacities from 2016-2021. Figure 1 helps identify periods in the annual cycle with 166 
production of PANs and values of PANs above a threshold where CrIS is able to provide quantitative 167 
information. For most cities, NO2 changes from COVID-19 coincide with periods where PANs are above 168 
the CrIS detection limit (Section 2.1) and conditions support photochemical production.   169 

All but two selected megacities experience a springtime maxima in PANs. The seasonal 170 
springtime maximum in PANs is attributed to an increase in photochemical activity at a time when PANs 171 
have a relatively long lifetime against thermal decomposition (Brice et al., 1988; Fischer et al., 2014; 172 
Penkett & Brice, 1986). Seasonal maxima occur in March, April, and/or May for northern hemisphere 173 
megacities (Mexico City, Los Angeles (LA), Tokyo, Delhi, and Lagos), and in September for São Paulo 174 
(23.56°S), the beginning of austral spring. Over Lagos (6.52°N) PANs begin increasing towards the end 175 
of the calendar year and maximize in March or April. In addition to a springtime maxima, PANs over 176 
Beijing (39.92°N) and Karachi (24.86°N) remain elevated through the summer (April-September). 177 
Though it has a springtime maxima, Delhi (28.71°N) has a comparably wide seasonal cycle in PANs. 178 
Mexico City, LA, and Tokyo also show an additional period of elevated PANs later in the year.  179 

PANs over each megacity reflect a combination of sources and meteorological conditions, but the 180 
extent of the published literature on air pollutants in each megacity differs widely. Here we focus our 181 
discussion on LA, Beijing, and to a more limited extent, Tokyo, Delhi, and Lagos.  182 

There is a longstanding effort to attribute and control O3 and other photochemical pollutants in 183 
LA (Langford et al., 2010; Nussbaumer & Cohen, 2020; Pollack et al., 2013; Warneke et al., 2013). CrIS 184 
data indicate that the seasonal cycle in PANs over LA is distinct from both HCHO and surface O3 (not 185 
shown); tropospheric column HCHO and surface O3 have broad maxima extending from April through 186 
October and June through October, respectively. Increasing temperatures during the summer decrease the 187 
lifetime of PANs due to thermal decomposition and decrease the ratio of free tropospheric PANs to 188 
surface O3. The secondary and tertiary peaks in monthly mean PANs over LA in July and September are 189 
driven by wildfire smoke transported into the LA Basin in 2018 and 2020, respectively (Liang et al., 190 
2021). Wildfire impacts in September 2020 also drive the peak in September CO; note the difference 191 
between the mean and median as these peaks are not evident in the median (dashed) CO and PANs for 192 
these months.   193 

Information on PANs within and around Beijing is growing rapidly (e.g., Z. Liu et al., 2010; B. 194 
Zhang et al., 2017, 2019). In Beijing, surface O3 and tropospheric column HCHO have seasonal maxima 195 
in summer months (JJA), corresponding to the seasonal maximum in CrIS PANs (Figure 1) and recorded 196 
surface observations of PAN and PPN (B. Zhang et al., 2017; G. Zhang et al., 2015b). Ground-level PAN 197 
is also elevated during winter haze events in Beijing (Li et al., 2021; Qiu et al., 2019; B. Zhang et al., 198 
2019; G. Zhang et al., 2020). CrIS observes elevated CO over Beijing in March and April, consistent with 199 
a seasonal peak in local fire activity in northeast China (Feng et al., 2015; L. Wang et al., 2020; Yin et al., 200 
2019; Zhao et al., 2022).  201 

Tokyo has a seasonal spring maximum in photochemical species from both local and distant (i.e., 202 
China and Korea) sources of precursors (Lee et al., 2021; Yoshitomi et al., 2011). Delhi has a humid 203 
subtropical/semi-arid climate and air pollution is strongly influenced by the Indian monsoon (Gurjar et al., 204 
2016). The monsoon season lasts from July-September and the dry season is considered to be September-205 
June. CrIS observes elevated PANs over Delhi from April to October; on average PANs remain elevated 206 
through the monsoon season. Crop residue burning in April-May and October-November can deteriorate 207 
air quality in the Delhi metropolitan area (Saxena et al., 2021). These periods correspond with periods of 208 
elevated PANs and tropospheric column HCHO. Lagos surface O3 increases seasonally during the dry 209 
season (Abdul Raheem et al., 2009). This is consistent with CrIS observations of PANs and CO, which 210 
increase and decrease with the respective dry and wet seasons.   211 
 212 
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 3.2 2020 NO2 Anomalies 213 
 214 

 215 
Figure 2. OMI NO2 tropospheric column monthly means for 9 megacities. The area used for each city is 216 
the same area around the urban area of each city used for CrIS selection and this information is provided 217 
in Table 1. 2020 is shown in purple. The mean of 2016-2019 is shown in bold black. Months with 218 
substantial NO2 declines in 2020 have been highlighted in purple shading and these time frames are used 219 
in the subsequent analysis presented in Figure 3.  220 
 221 
Major changes in NOx emissions and tropospheric NO2 column abundances have been documented 222 
worldwide for different periods of the COVID-19 pandemic (Bauwens et al., 2020; Berman & Ebisu, 223 



manuscript submitted to Geophysical Research Letters 

 

2020; J. Zhang et al., 2022). For the analysis presented here, we identify periods where 1) the monthly 224 
mean NO2 column during 2020 was at least 15% below the corresponding monthly mean for 2016-2019 225 
(black line in Figure 2), and 2) the monthly mean PANs mixing ratio are at least 0.05 ppbv (Figure 1). We 226 
only consider times in the seasonal cycle where mixing ratios of PANs are at least 0.05 ppbv because this 227 
corresponds with the uncertainty discussed in Section 2.1 and Payne et al. (2022). The months that meet 228 
these criteria are highlighted by the light purple shading in Figure 2. The 2020 monthly mean NO2 229 
column density associated with these shaded periods is at least 15% less than the mean of the 230 
corresponding months for the period 2016-2019. Periods of lower observed NO2 often do not exactly 231 
coincide with the COVID-19 government-enforced lockdowns, as reduced traffic was often observed 232 
prior to government-imposed stay-at-home orders.  233 
 234 
Table 1. Changes to Chemical Species during Respective Time Periods.  235 
 236 

City Monthly 
mean time 
period 

NO2 
change 
(%)   

NOx 
change 
(%) 

HCHO 
change 
(%) 

PANs 
change 
(%) 

P-value 

Mexico 
City 

February-
May 

-22% -14% 5.6% 1.8% 0.45 

Beijing January -35% -19% 59% 80% 0.03 
Beijing July-

September 
-40% -16% -7.6% -1.9% 0.31 

Tokyo March-
April 

-40% -23% -26% 6.9% 0.11 

Tokyo June-July -40% -15% -43% -0.9% 0.44 
Los 
Angeles 

March-
August 

-36% -17% -10% -11% 0.06 

São Paulo April-
August 

-35% -11% -1.7% 3.7% 0.33 

Delhi March-June -48% -28% -9.6% -20% 0.33 
Lagos April-June -35% -16% -0.08% 11% 0.33 
Karachi March-June -52% -5% 3.6% 12% 0.14 

 237 
Table 1. Periods of significant NO2  decline based on tropospheric column OMI NO2 monthly means 238 
shown in Figure 2. Percent change represents the change in 2020 values relative to the mean of 2016-239 
2019 for the respective time periods. Percent change in PANs were calculated using daily means during 240 
the months of NO2 anomaly. P-values are from Mann-Whitney u test. A negative percent change signifies 241 
a decline in 2020 relative to the same months in prior years; likewise, positive percent changes signify an 242 
increase.  243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 
 251 
 252 
 253 
 254 
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 3.3 Impacts of COVID-19 NOx reductions on PANs over megacities  255 

 256 
 257 
Figure 3. Bar charts comparing monthly means for specified months of OMI NO2 tropospheric columns 258 
[x1016 molecules cm-2], NOx emissions from the Tropospheric Chemical Reanalysis [x10-10 Tg yr-1], CrIS 259 
free troposphere PANs [ppbv], and OMI HCHO tropospheric columns [x1016 molecules cm-2] for each 260 
megacity. Means of monthly means for specified periods in 2020 (shown in Figure 2 and listed in Table 261 
1) are plotted in the lighter colors and means of 2016-2019 are plotted in the darker colors. We performed 262 
a Mann-Whitney u-test to test the significance of changes to PANs during the respective time periods of 263 
COVID-19 NO2 perturbations listed in Table 1; 2020 was compared to the same time period from 2016-264 
2019. We set our alpha at 0.1, so p values < 0.1 are considered significant and receive more discussion.  265 
 266 
 267 

Figure 3 shows that while there were large decreases in NO2 declines at some point in 2020, this 268 
did not yield a similarly large change in free tropospheric PANs for each region. Most megacities 269 
surveyed did not experience significant change in PANs at the 90% confidence level, except for LA, 270 
which experienced a significant decline, and Beijing in winter, which experienced a significant increase. 271 
We expect that PANs (and the sensitivity of CrIS) would also respond to other environmental factors 272 
including temperature; we analyze two possible environmental indicators: 2 meter air temperature and 273 
500 hPa air temperature changes between the two respective periods over each of the megacities using 274 
MERRA-2 Reanalysis monthly mean product (Global Modeling and Assimilation Office (GMAO), 2015; 275 
DOI:10.5067/AP1B0BA5PD2K). We find no significant change in mean temperature at either pressure 276 
level between 2020 and corresponding months during the prior 4 years. Thus temperature was likely not a 277 
significant factor driving anomalies in PANs during the extended periods of NOx perturbations 278 
highlighted in Figure 2. PANs have been used to gauge effectiveness of O3-control strategies (e.g., 279 
Gaffney et al., 1989). The tropospheric column ratios of HCHO to NO2  have been used as a qualitative 280 
indicator of NOx sensitive versus NOx saturated (VOC-limited) regimes (e.g., Jin et al., 2017; Martin et 281 
al., 2004; Souri et al., 2023). Threshold values vary by location (Souri et al., 2020), but higher (lower) 282 
ratios indicate NOx-sensitive (saturated) conditions. Reductions in NOx during the pandemic were 283 
substantial enough to shift the photochemical regime in some areas, i.e., from NOx-saturated to a 284 
transition zone or from a transition zone to NOx-sensitive conditions (Peralta et al., 2021). The SI contains 285 
a version of Table 1 that also includes tropospheric column HCHO:NO2 ratios over each city. We did not 286 
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identify a consistent relationship between this ratio and the sensitivity of PAN to COVID induced-287 
changes to NOx. 288 

PANs decreased significantly over LA during COVID-19 NOx emission reductions, and this 289 
coincided with decreases in surface O3 (Connerton et al., 2020; Schroeder et al., 2022). The underlying 290 
photochemical environment of LA has been transitioning from a VOC-limited regime to a NOx-limited 291 
regime (Lee et al., 2021; Schroeder et al., 2022); spring 2020 was the first NOx-limited year (Schroeder et 292 
al., 2022). PAN abundances at the ground have decreased much more rapidly than O3 in response to 293 
emission controls in the LA Basin (Pollack et al., 2013). The CrIS data suggest that PAN would continue 294 
to respond to NOx emission reductions in this city.  295 

PANs did not show marked changes over Mexico City, São Paulo or Tokyo despite major NOx 296 
perturbations. O3 over Tokyo also did not significantly change with COVID-19 lockdown measures; this 297 
has been attributed to a shift in the underlying photochemical regime from VOC-limited towards the 298 
transition zone where O3 production is expected to be equally sensitive to changes in both NOx and VOCs 299 
(Damiani et al., 2022; Ito et al., 2021; Q. Wang & Li, 2021). O3 in Mexico City was also statistically 300 
indistinguishable during periods of substantial precursor reduction in 2020 from that of other years 301 
(Peralta et al., 2021). São Paulo experienced an increase in O3 in April and May, but largely in areas most 302 
seriously impacted by vehicle emissions (Alvim et al., 2023). 303 

The largest and only significant increase in free tropospheric PANs on a monthly mean scale in 304 
our analysis occurred over Beijing in January (80%, p = 0.03), coincident with the lowest average HCHO: 305 
NO2 ratio of all cities included here. Qiu et al. (2020) reported a threefold increase in ground-level PAN 306 
in urban Beijing during this first lockdown period, connected to enhanced local photochemistry and 307 
abnormal meteorological conditions, including anomalous wind convergence under higher temperatures. 308 
We find a similar change in free tropospheric PANs over Beijing, where mean CrIS PANs are 2.4 times 309 
higher during the same lockdown period. Beijing had a second period of NO2 decline in July and August 310 
2020, which was associated with an insignificant change in PANs (-1.96%, p = 0.31). Stavrakou et al. 311 
(2021) also investigated the impact of COVID-19 on PAN over China.  312 
 313 

5 Conclusions 314 
We use CrIS data from 2016-2021 to identify the seasonality of PANs over 8 megacities, and identify 315 
time periods with elevated PANs. This is the first detailed analysis of satellite observations of PANs over 316 
multiple megacities. We use this to inform our analysis in diagnosing the impact of NO2 declines related 317 
to the COVID-19 pandemic on PANs in these locations.  318 
 319 
 320 

1. There are pronounced seasonal cycles in PANs over each megacity. Monthly mean PANs peak in 321 
the spring or summer (Beijing and Karachi), aligning with respective seasonal maximums in 322 
photochemical activity. Wildfire smoke can occasionally enhance monthly mean PANs.  323 
 324 
 325 

2. Despite large changes in tropospheric NO2 columns associated with the COVID-19 pandemic, we 326 
only identify two megacities over which PANs changed significantly: Beijing and LA. The 327 
relative response of PANs in these locations was smaller than the changes in NO2. The response 328 
of PANs to a major change in precursor emissions is highly non-linear.  329 
 330 
 331 

3. Sensitivity of free tropospheric PANs to the abundance of precursors appears to be seasonally 332 
dependent in Beijing and Tokyo. PANs over Beijing and Tokyo are likely more sensitive to NOx 333 
reductions in winter and spring respectively.  334 
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 335 
 336 

4. Based on this survey of megacities, relatively large perturbations in NOx may not result in 337 
significant declines in NOx export potential of megacities in all seasons. Thus satellite 338 
observations of PANs may be an additional useful diagnostic in predicting the complex response 339 
of O3 to NOx reductions in downwind regions. Next steps should focus on identifying the 340 
response of PAN downwind of megacities to COVID-19 NOx reductions.  341 
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