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Key Points: 

● A method for evaluation of climate models over the PNW using a combination of global 

and regional metrics has been developed. 

● This allows for a reduced envelope of ESMs for impact applications without significantly 

affecting the future trend projections. 
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Abstract  

The rapid expansion of Earth system model (ESM) data available from the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) necessitates new methods to evaluate the performance 

and suitability of ESMs used for hydroclimate applications as these extremely large data 

volumes complicate stakeholder efforts to use new ESM outputs in updated climate vulnerability 

and impact assessments. We develop an analysis framework to inform ESM sub-selection based 

on process-oriented considerations and demonstrate its performance for a regional application in 

the US Pacific Northwest. First, a suite of global and regional metrics is calculated, using 

multiple historical observation datasets to assess ESM performance. These metrics are then used 

to rank CMIP6 models, and a culled ensemble of models is selected using a trend-related 

diagnostics approach. This culling strategy does not dramatically change climate scenario trend 

projections in this region, despite retaining only 20% of the CMIP6 ESMs in the final model 

ensemble. The reliability of the culled trend projection envelope and model response similarity is 

also assessed using a perfect model framework. The absolute difference in temperature trend 

projections is reduced relative to the full ensemble compared to the model for each SSP scenario, 

while precipitation trend errors are largely unaffected. In addition, we find that the spread of the 

culled ensemble temperature and precipitation trends includes the trend of the “truth” model ~83-

92% of the time. This analysis demonstrates a reliable method to reduce ESM ensemble size that 

can ease use of ESMs for creating and understanding climate vulnerability and impact 

assessments. 

 

 

 



Plain Language Summary 

This study provides an updated and rigorously tested method for evaluating the performance of 

climate models for applications relevant to water managers and other stakeholders. Using 

traditional metrics of climate model performance, both regional and global, as well as newly 

developed metrics based on processes important for the simulation of precipitation, we have 

created a generalizable, systematic, and succinct method for reducing the number of models to be 

considered for climate change impact applications. By reducing the number of relevant models to 

around 20% of the total models and not having a significant impact on future temperature and 

precipitation trend projections in doing so, we strongly reduce the computational effort needed to 

gain a realistic simulation of the future climate for a given regional impact. This method is tested 

with a variety of statistical tests and found to be reliable for our application over the Pacific 

Northwest United States. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction  

Understanding future changes in regional hydroclimates is a key priority for water 

security and resource climate change impact analyses. For example, increasing air temperatures 

are driving changes in the accumulation of snowpack, shifts in the timing of snowmelt runoff and 

in the fraction of precipitation falling as snow (Serreze et al., 1999; Barnett et al., 2008; 

Easterling et al., 2017; Mote et al., 2018; Musselman et al., 2021). Annual precipitation has 

decreased over much of the Western U.S. (Prein et al., 2017; Henn et al., 2018), yet there is 

substantial variability both regionally and seasonally in future projections of precipitation, 

including the frequency and magnitude of heavy precipitation events (e.g., Easterling et al., 

2017; Lopez-Cantu et al., 2020; Kim et al., 2020). In order for water managers to incorporate 

changes in risk over time, reliable future projections of precipitation and air temperature that can 

be developed with minimal cost to the partner organizations are needed.  

Earth system models (ESMs) are a valuable tool for creating future projections of the 

large-scale climate processes that in part govern precipitation and temperature patterns. The 

Coupled Model Intercomparison Project phase 6 (CMIP6; Eyring et al., 2016) provides ESM 

projection output from more than 70 models 

(https://pcmdi.llnl.gov/CMIP6/ArchiveStatistics/esgf_data_holdings/), including some models 

with many projection ensemble members. This historically large data volume presents a 

challenge for intended users who apply ESM projections in climate vulnerability assessments, 

which tend to involve bias correction and spatial downscaling as well as impact models such as 

hydrologic and water management systems models (e.g. Brekke et al., 2008, 2009; Mote et al., 

2011; Rupp et al., 2013; Clark et al., 2016; Newman et al., 2022). This results in a chain of 

models and simulations (X ESMs * Y downscaling methods * Z impact models), and 

https://pcmdi.llnl.gov/CMIP6/ArchiveStatistics/esgf_data_holdings/


subsequently it is challenging to apply to more than a subset of CMIP6 models. Thus water 

managers and other users are almost universally required to select a subset of ESMs for their 

analyses -- in some cases moderately (e.g. Brekke et al., 2008), and in other cases severely, as 

when just a few models are chosen for a storylines, scenario narrative approach (e.g. Basharin et 

al., 2015; Najafi et al., 2011), or “four corners” style approach wherein only a few models 

projecting the most extreme precipitation and temperature change are chosen (e.g. Hosseinizadeh 

et al., 2015).  

Ideally, evaluations of the reliability (i.e., the ability of an ESM to credibly represent the 

observed historical climate, e.g. Giorgi, 2020) of ESMs for climate impact applications would 

focus on assessing confidence in the ESM change signals of user defined key hydroclimatic 

variables across global to regional scales (Doblas-Reyes et al., 2021; Goldenson et al., 2023). In 

practice this is very challenging and a variety of methods and tools have been developed. Most 

simply, one can assume all ESMs are equally plausible (e.g. Meehl et al., 2007). In this case, one 

could pick an arbitrary number of ESMs based on the multi-model mean (e.g. Pierce et al., 

2009), the full ensemble response (e.g., Sanderson et al., 2017), or pick ESMs that span the 

vulnerability range of the application (e.g. Weaver et al., 2017). Beyond equal plausibility, 

methods have generally focused on variables and metrics related to the specific region, such as 

regional interannual variability, regional trends and seasonality, or daily extremes (Mote and 

Salathe, 2010; Rupp et al., 2013; Sanderson et al., 2017; McSweeney et al., 2015).  

Global-scale metrics have primarily been included via global trends or regional 

teleconnection metrics or specific oscillation indices. For example, the El Nino-Southern 

Oscillation (ENSO) sea surface temperature (SST) pattern via the Nino3 (or Nino3.4), North 

Pacific Index, North Atlantic Oscillation, and their corresponding regional precipitation and 



temperature correlations are included to represent global scale processes (Brekke et al., 2008; 

Pierce et al., 2009; Rupp et al., 2013; Snover et al., 2013). Model response or genealogical (e.g., 

code) similarity has also been used to evaluate or select ESMs (Masson and Knutti, 2011; Knutti 

et al., 2013; Sanderson et al., 2017; Brunner et al., 2020). Other novel approaches using the 

concepts of emergent constraints over the globe or a region, or global trend constraints have been 

used to assess ESMs and develop relationships to scale (or constrain) responses for particular 

variables or regions (Hausfather et al., 2020; Simpson et al., 2021; Lyu et al., 2021; Tokarska et 

al., 2020; Ribes et al., 2022). However, focusing on global evaluation only for regional water 

security impact studies may be problematic as ESM performance and subsequent hydrologic 

response varies across regions (Melsen et al., 2018; Asenjan et al., 2023), thus the emphasis on 

regional metrics in regional studies. 

There has also been a concerted effort to increase understanding, reproducibility, and 

access to ESM evaluation tools and results (Phillips et al., 2014; Righi et al., 2020; Maloney et 

al., 2019; Eyring et al., 2020; Parding et al., 2020; Schlund et al., 2023; Merrifield et al., 2023). 

These tools allow users to develop their own evaluations with varying levels of complexity 

moving from direct manipulation of ESM data (e.g., Schlund et al., 2023) to pre-processed CMIP 

diagnostics (Phillps et al., 2014) to web-based user platforms with simpler evaluations and 

accessible documentation focused on climate services (Parding et al., 2020), to more advanced 

offline multi-metric, flexible tools such as ClimSIPS (Merrifield et al., 2023) that require a 

relatively higher level of ESM familiarity by the user. 

Here we report our work to synthesize key aspects of the aforementioned research 

through combining global evaluation (e.g., global temperature trends), physically based 

teleconnection metrics, and regional metrics to explore the effects of ESM evaluation, selection 



via culling, and the resulting impacts on the range of future projections for the Northwestern 

United States and SW Canada domain (the Pacific Northwest or PNW). We include temporal 

split-sample evaluation where possible as a form of cross-validation, which is a critical tool for 

model prediction skill evaluation (e.g. Klemes, 1986; Wilks, 2019) that may provide a test of 

trend fidelity. We also explore perfect model comparisons for ESM evaluation, response 

similarity, and projection reliability (Sanderson et al., 2017; Liang et al., 2020). The core aim of 

this work is to increase confidence in ESM model selection and the consequent projections for 

water-resource applications by producing an integrated assessment of ESMs and incorporating 

different tests and metrics focused on model trends and processes. This evaluation methodology 

was co-designed with the US Army Corps of Engineers (USACE) Climate Preparedness and 

Resilience Program and is available in an open-source code base.  

 

2. Data  

2.1 CMIP6 models 

Total monthly precipitation, monthly average temperature, and monthly average tropical 

sea surface temperature data from 63 CMIP6 models from the Earth System Grid Federation 

(ESGF, Cinquini et al., 2014) archive are evaluated here. This collection is intended to be as 

comprehensive as possible while acknowledging that differences in data availability exist 

between modeling centers. Occasionally, spatiotemporal inconsistencies between ensemble 

members for a given model were found that limited the ability to include those members, 

including differing grid definitions, inconsistent temporal coverage, and missing data. Table A1 

summarizes specifications for the models included in this analysis. 

2.2 Verification Datasets 



We used a collection of gridded observations and reanalysis data as the basis of our 

evaluation. Capturing observational uncertainty is an important aspect of ESM verification; 

observations may be sparse for many regions and time periods, and even where adequate 

coverage exists, the observational uncertainty can be considerable (Rupp et al., 2013; Henn et al., 

2018). To address this, six different sources of verification data are considered here in order to 

assess CMIP6 model performance. Three of these verification datasets have global coverage, 

while the other three include data only over the contiguous United States (CONUS). Each of 

these verification datasets is compared to the observation ensemble mean in an effort to assess 

observational agreement. 

Gridded monthly observational and reanalysis precipitation and 2-meter air temperature 

datasets are considered to facilitate grid-to-grid comparisons with the ESMs. The European 

Centre for Medium-Range Weather Forecasting (ECMWF) Reanalysis Version 5 (ERA5), 

provides output from 1950 to the present at 0.25°x0.25° resolution (Hersbach et al., 2020). Two 

global observation-based gridded interpolation products are used as well. The Climatic Research 

Unit (CRU) gridded time series data includes all land areas except Antarctica at 0.5°x0.5° 

resolution from 1901 to 2021 (Harris, I. et al., 2020) while the University of Delaware (UDel) 

provides global monthly terrestrial time series of temperature and precipitation over land at 

0.5°x0.5° resolution from 1901 to 2017 (Willmott and Matsuura, 2001). Due to the extensive 

temporal coverage of the CRU and UDel datasets, these sources are sufficient for the verification 

of global annual trends of temperature and precipitation. ERA5, CRU, and UDel act as sources 

of verification for the global metrics in this study. 

The following three verification sources provide data only over CONUS and are used for 

the evaluation of CMIP6 models over the northwestern US. The Livneh et al. (2015) 



hydrometeorological dataset provides daily maximum and minimum temperature, and daily 

precipitation at 1/16°x1/16° resolution from 1950-2011. Here, the daily average temperature is 

derived from the average of daily maximum and minimum temperatures, then these are 

temporally aggregated to provide monthly values. Oregon State University’s Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) Climate Group hosts monthly precipitation 

and temperature data at 4km x 4km resolution from 1981 to present (Daly et al., 2008). The 

Gridded Meteorological Ensemble Tool (GMET) is the final source of evaluation data applied in 

this analysis (Newman et al., 2015). The GMET dataset used here is conceptually similar to 

PRISM (in using terrain features to aid interpolation) but provides an ensemble in contrast to the 

deterministic datasets of Livneh or PRISM. These daily, 1/16°x1/16° data are aggregated to 

monthly means or totals, then the ensemble mean is taken prior to application as an evaluation 

data source. The temporal coverage of this dataset is 1970-2021. For all metrics, all data sources 

and ESM data are interpolated to a common 1°x1° grid and ocean points are masked so that all 

data sources are consistent. The Nino3.4 index is taken from the NOAA Physical Science 

Laboratory dataset using the HadISST1 historical reconstruction of SST (Rayner et al., 2003), 

while the ENSO Longitude Index (ELI, ° longitude, Patricola et al., 2020), discussed in Section 

3, is taken from the National Energy Research Scientific Computing Center archive, computed 

from the ERSSTv5 reconstruction of historical SST (Huang et al., 2017). Table 1 summarizes 

and describes the verification datasets used in this analysis. 

 

Table 1: List of verification datasets used in this analysis and their properties. Note that ERSST 

is used only for calculation of ELI, and HadISST is used only for calculation of the Nino3.4 

index. 



Dataset Spatial 
Coverage 

Resolution  
(Lon x Lat) 

Temporal 
Coverage 

Reference 

Climatic Research Unit (CRU) gridded time series Global (land 

only) 
0.5° x 0.5° 1901 - 2021 

(monthly) 
Harris, I. et al., 2020 

University of Delaware (UDel) terrestrial air temperature 
and precipitation gridded monthly time series 

Global (land 
only) 

0.5° x 0.5° 1900 - 2017 
(monthly) 

Willmott and 
Matsuura, 2001 

ECMWF Reanalysis version 5 (ERA5) Global 0.25° x 0.25° 1959 - present 

(daily) 
Hersbach et al., 2020 

Parameter-elevation Regression Independent Slopes Model 

(PRISM) 
CONUS 0.04° x 0.04° 1981 - 2021 

(daily) 
Daly et al., 2008 

Gridded Meteorological Ensemble Tool (GMET) CONUS 0.0625° x 

0.0625° 
1970 - 2021 

(daily) 
Newman et al., 2015 

(updated version) 

Livneh near-surface gridded meteorological and derived 

hydrometeorological data (Livneh) 
CONUS (land 

only) 
0.0625° x 

0.0625° 
1915 - 2013 

(daily) 
Livneh et al., 2015 

Extended Reconstructed Sea Surface Temperature (ERSST) Global (ocean 

only) 
2° x 2° 1854 - present 

(monthly) 
Huang et al., 2017 

Hadley Centre Sea Ice and Sea Surface Temperature 

(HadISST) 
Global (ocean 

only) 
1° x 1° 1870 - present 

(monthly) 
Rayner et al., 2003 

 

3. Methods 

3.1 Model evaluation metrics 

Table 2 lists the evaluation metrics considered in this analysis. Twenty-two of the twenty-

eight metrics are drawn from the metrics used by Rupp et al. (2013) (R13). All of these metrics 

are categorized as “Highest” or “Higher” confidence in R13 except the linear trends of 

precipitation and temperature, which are included due to the importance of these quantities to 

users projecting future impacts of climate change and the risks associated with those projections. 

The use of such trends is challenging due to the influence of unforced low frequency climate 

variability on trends in multi-decadal to century-scale projections, but the lengthening 

observational record is helping to enable this strategy. Throughout this paper, temperature and 

precipitation trends are calculated using the least-squares method to find the linear regression of 



region-averaged annual mean temperature or annual total precipitation for each model ensemble 

member, verified against CRU and UDel for the historical period, 1901-2014. 

 

 

Table 2: List of metrics used in this analysis. For Trend-T and Trend-P, only CRU and UDel are 

used for verification over the period 1901-2014 to match the CMIP6 temporal coverage. For all 

other metrics, the full extent of the given verification data is used. Application domain refers to 

the spatial extent of the metric calculation, either global (G) or regional (R). 

Metric Application 
Domain 

Description 

Mean-T G, R Mean annual temperature across temporal extent of data 

Mean-P G, R Mean annual precipitation across temporal extent of data 

SeasAmp-T R Seasonal amplitude of temperature as the average difference between the hottest and coldest month 

of each year in a given dataset 

SeasAmp-P R Seasonal amplitude of precipitation as the average difference between the driest and wettest month 

of each year in a given dataset 

Trend-T G, R Linear trend of annual average temperature over the period 1901-2014 

Trend-P G, R Linear trend of annual total precipitation over the period 1901-2014 

DJF ELI Median G Median DJF value of ENSO Longitude Index 

DJF ELI LevStat G Levene's statistic computed from comparison of DJF ELI time series against ERSSTv5 

Nino3.4-pr r G, R Spatial correlation between temporal correlation maps of Nino3.4 index and precipitation 

ELI-pr r G, R Spatial correlation between temporal correlation maps of ELI and precipitation 

Nino3.4-T r G, R Spatial correlation between temporal correlation maps of DJF Nino3.4 index and temperature 

ELI-T r G, R Spatial correlation between temporal correlation maps of DJF ELI and temperature 



SpaceCorr 
MMM-T 

G, R Spatial correlation of mean seasonal temperature maps 

SpaceCorr 
MMM-P 

G, R Spatial correlation of mean seasonal precipitation maps 

SpaceSD MMM-
T 

G, R Spatial standard deviation of mean seasonal temperature maps (Normalized by mean of verification 
data standard deviation) 

SpaceSD MMM-
P 

G, R Spatial standard deviation of mean seasonal precipitation maps (Normalized by mean of verification 
data standard deviation) 

 

In addition to those metrics, we included 6 new metrics meant to probe different aspects 

of the models’ representation of ENSO which is crucial for accurately simulating PNW (and 

global) seasonal precipitation and temperature (e.g. Tziperman et al., 1998; Schonher and 

Nicholson, 1989; Hoell et al., 2016). Using the Niño3.4 index time series averaged over DJF of 

each simulated year, a temporal correlation map is computed between grid cell’s DJF 

temperature and precipitation for each model ensemble member and verification dataset. Then, 

the spatial correlation between each of these temporal correlation maps is computed. The process 

is then repeated, instead using the ELI DJF time series to produce the temporal correlation maps. 

The ELI is included here due to its demonstrated skill in capturing ENSO diversity (Patricola et 

al., 2020), an important nuance for PNW hydrometeorological impacts. Representations of 

ENSO variability using both the canonical Nino3.4 index and the newly developed ELI are both 

included in this analysis due to the differing process representation necessary to capture both. 

While Nino3.4 simply captures the average SST in a static box in the eastern Pacific, the ELI 

gives the average longitude of deep convection-permitting (>28°C) SSTs in the Pacific.  

ENSO diversity is defined here as the representation of El Niño events with sea surface 

temperature anomalies centered on the central Pacific (CP El Niños) and those with SST 

anomalies centered on the eastern Pacific (EP El Niños). In general, CP El Niños have a smaller 

impact on PNW precipitation and temperature than do EP El Niños (Patricola et al., 2020). Two 

more ELI-based metrics are included to more directly assess how well ENSO is represented in 



each model. The DJF average ELI for each year is used for these two metrics. For one of these 

metrics, the distribution of DJF ELI for each model ensemble member is compared to the 

distribution from observations by using Levene’s test to determine the likelihood that that 

modeled distribution is drawn from the same distribution as observed. The other metric is simply 

the median value of the DJF ELI time series. We find that all CMIP6 models share an eastward 

bias in ELI, meaning ENSO diversity is skewed toward EP El Niños in the CMIP6 ESMs. 

The 20 global and 22 regional R13 metrics are combined with the 6 global and 4 regional 

additional ENSO metrics to form the 52 metric combined suite used in this evaluation. Once 

these metrics are computed, they are combined using the relative error formulas as in R13, 

recreated here, slightly modified in order to clearly denote the comparisons between each 

ensemble member. For many of the metrics, the mean of the verification data metric can be 

directly compared to each ensemble member of a given model. However, for the ENSO 

teleconnection spatial correlation metrics (Nino3.4-pr r, Nino3.4-T r, ELI-pr r, and ELI-T r), the 

seasonal spatial correlation metrics (SpaceCorr MMM-pr, SpaceCorr MMM-T), and the seasonal 

spatial standard deviation metrics (SpaceSD MMM-pr, SpaceSD-MMM-T), each model and 

ensemble member must be compared to each verification dataset, in turn, to avoid washing out 

the spatial variability by taking the mean of the verification data prior to those comparisons and 

potentially favoring models with a larger number of ensemble members (or a number similar to 

the number of verification datasets).  

The error for i metric, j model, and k ensemble member for all metrics except those 

specified in the previous paragraph is given by Eq. 1a: 

𝐸𝑖,𝑗,𝑘 = |𝑥𝑖 − 𝑦𝑖,𝑗,𝑘|   (1a) 



where xi is the mean observed metric value and y is the model metric value. For the metrics 

specified in the previous paragraphs, Eq. 1a for each l verification dataset takes on the form: 

𝐸𝑖,𝑗,𝑘 =
1

𝐿
∑ |1 − 𝑦𝑖,𝑗,𝑘,𝑙|
𝐿
𝑙=1   (1b) 

for L verification datasets. In the case of the spatial correlation metrics, y is first computed 

against each verification dataset independently, while for the spatial standard deviation metrics, y 

is normalized by the standard deviation of each verification dataset, in turn. The relative error for 

each metric, model, and ensemble member is then: 

𝐸𝑖,𝑗,𝑘
∗ =

𝐸𝑖,𝑗,𝑘−𝑚𝑖𝑛⁡(𝐸𝑖,𝑗,𝑘)

(𝐸𝑖,𝑗,𝑘)⁡−𝑚𝑖𝑛⁡(𝐸𝑖,𝑗,𝑘)
 (2) 

with minima and maxima determined independently for each metric across all models and 

ensemble members. The total relative error for a given model is then computed as the sum of the 

ensemble mean relative error: 

𝐸𝑗
𝑡𝑜𝑡 = ∑

1

𝐾
∑ 𝐸𝑖,𝑗,𝑘

∗𝐾
𝑘=1

𝑀
𝑖=1   (3) 

for K ensemble members and M metrics. This summed relative error is then normalized to give 

the normalized error score, which ranges from 0 to 1: 

𝐸𝑗
𝑛𝑜𝑟𝑚 =

𝐸𝑗
𝑡𝑜𝑡−𝑚𝑖𝑛⁡(𝐸𝑗

𝑡𝑜𝑡)

𝑚𝑎𝑥⁡(𝐸𝑗
𝑡𝑜𝑡−(𝐸𝑗

𝑡𝑜𝑡)⁡)
 (4) 

A comparable spread of ensemble members for each model can be computed by summing the 

relative error from Eq. 2 over all metrics and applying the same normalization as in Eq. 4. Note 

that this allows for individual ensemble members to acquire normalized error scores less than 0 

or greater than 1, as this distribution is normalized by the ensemble mean summed relative error 

values. This framework is designed to be flexible and allow a regional evaluation to be 

performed for any region on the globe, or even for component-based metric definitions (if some 



form of dimension reduction is used). For this paper application, the evaluation focuses on a 

climate change projection application in the US PNW. The domain over which the regional 

metrics are computed and the culling based on regional trends is applied and shown in Fig. 1. 

While the PNW is evaluated here, the core methodology of this evaluation could be used for any 

region. Error scores are calculated from both PNW regional metrics and global metrics in the 

final evaluation. This is done to ensure that ESMs selected for regional performance have also 

met a minimum threshold of performance at the global scale, and it is recommended to include 

global metrics for any regional analysis to ensure that physical processes are being correctly 

represented at multiple spatial scales. 

 

 

Figure 1: The PNW domain (red box) used for the computation of regional metrics and for the 

culling criteria based on historical temperature and precipitation trends. 

 

In addition, we perform split-sample and perfect model evaluations of the ESM and 

projection data to increase our confidence in our model selection and culled projections. In the 

split-sample analysis, the PNW regional analysis and the global analysis is repeated using only 



the period 1901-1950, with 1950-2014 serving as the period over which the trend envelope of the 

culled ensemble is verified. Each of these periods (50 and 65 years respectively) is long enough 

to ameliorate to some extent the influence of unforced variability, though more so for global than 

regional metrics. For the perfect model framework (e.g., Sanderson et al., 2017, Liang et al., 

2020; Anderson 1996), each CMIP6 model, in turn, serves as the verification dataset. In this 

case, individual ensemble members of that model take the role of an individual observational 

dataset. The perfect model experiment allows a check on whether our evaluation framework is 

shown to have skill in selecting a subset of the ESMs that reliably predicts the trends that the 

“perfect model” expresses in the SSP scenarios, and assesses ESM response similarity. It is 

predicated on the idea that in all the models, the metrics relate similarly to the model’s climate 

sensitivity. 

3.2 Culling Method 

 We consider the case of model culling, or binary weighting, because one of our aims is to 

provide an objective framework for reducing the number of ESMs considered for a given 

regional hydrometeorological application, and the many nuances of model weighting are beyond 

the scope of this analysis. To evaluate the impacts of culling methods, we analyze projected 

future temperature and precipitation trends, which are crucial to hydrometeorological 

applications and an appropriate use for ESMs. Fig. 2 shows the projected trends over the years 

2015-2100 (1901-2014 for the historical trends) in the PNW, and for global land gridpoints for 

all CMIP6 models included in this study for the historical, SSP2-4.5, SSP3-7.0, and SSP5-8.5 

runs. There is a wide spread in the projected trends, especially for precipitation, due not only to 

the uncertainty across the SSPs, but also the model spread within each SSP. Culling therefore 



runs the risk of misrepresenting the uncertainty of possible futures, particularly extremes, thus 

any criteria applied should represent this uncertainty in a scientifically defensible way. 

 

 

Figure 2: Global (left) and PNW (right) temperature and precipitation trend projection envelopes 

for historical and SSP CMIP6 runs (each denoted by a plotting point) over land gridpoints within 

the respective domains. Each point in this figure represents the ensemble mean projection for a 

given CMIP6 model. The multi-model mean trends are highlighted by dashed lines extending to 

the respective axis for clarity. Error bars represent ±1 standard deviation of the multi-model 

ensemble about the multi-model mean. The historical trends are calculated over the period 1901-

2014, while the SSP trends are calculated over the period 2015-2100. CRU and UDel 

observations are included as cyan points coinciding with the historical CMIP6 envelope. Note 

that the range of the x-axes differ. 

 

Due to the importance of accurate trend representation for ESM future climate 

applications, regional precipitation and temperature trends during the historical runs of the 

CMIP6 models are used to develop a novel criterion for reducing ESM ensemble size. Once 



model rankings are computed, the CMIP6 model average trends are computed as a function of 

the model ensemble size. That is, beginning with the best performing ESM, models are added to 

the average trend calculation in order of their ranking until all CMIP6 models are included in the 

ensemble. For each ESM added to the ensemble, the precipitation and temperature trend error is 

calculated as the absolute difference between the verification dataset mean trend and the ESM 

ensemble trend, normalized by the standard deviation of those error values. These normalized 

errors are then added together to determine the total historical trend error as a function of 

ensemble size. The optimal ensemble size is determined by the minimum of this total historical 

trend error, with an additional requirement that the culled envelope exceed 10% of the total 

ensemble size due to the higher volatility of trend projections for envelopes smaller than this 

threshold. 

4. Results 

Here we present each component of our evaluation in order of their complexity, moving 

from individual metric plots through our full perfect model projection reliability evaluation. 

First, the results of the metric suite as applied globally and to the PNW region (Fig. 1) are shown 

alongside the performance of each verification dataset with respect to the observational mean in 

order to demonstrate the variety of responses seen in the CMIP6 ensemble and the model 

uncertainty as compared to the observational uncertainty. Next, this metric suite performance is 

aggregated as described in Section 3, using the relative error methodology of R13 (Section 4.1). 

The CMIP6 model ensemble is then culled based on the historical precipitation and temperature 

trends, and the effect of this culling on the projection envelope of future trends is evaluated 

(Section 4.2). This same methodology is then applied using only the period 1901-1950, using 

1950-2014 for verification, in order to demonstrate the efficacy of this method in retaining 



important features of the projection envelope using a fraction of the CMIP6 models (Section 

4.3). Finally, a perfect model framework is applied to assess the reliability of this method in 

choosing models with projected trends similar to the “perfect” model, as well as assessing the 

similarity of response for each model as compared to each other model in the CMIP6 ensemble 

(Section 4.4). 

 

Figure 3: Box plots representing the 25th and 75th percentile of ensemble mean PNW metric 

performance for all CMIP6 models considered. The median of CMIP6 performance for each 

metric is shown by the horizontal orange line. The lower (upper) whiskers correspond to metric 



values representing the 25th (75th) percentile minus (plus) 1.5x the interquartile range, with red 

points demarcating outlier model ensemble mean values that fall beyond this range. The cyan 

points represent the six verification datasets (two for the precipitation and temperature trends, as 

discussed in Section 2.2), while the black points represent each model’s ensemble mean metric 

performance. The “target” value representing the observational mean or perfect correlation is 

shown as a cyan line. 

 



Figure 4: As with Figure 3, but for global metrics. Verification datasets here include only CRU, 

UDel, and ERA5 due to the global coverage of these data. Global trends, like regional trends, are 

verified only against CRU and UDel, as discussed in Section 2.2. ELI is computed from 

ERSSTv5 and Nino3.4 is computed from HadISST1, as discussed in Section 2.2. 

 

 

4.1 Global and Regional Metric Performance 

 The distribution of ensemble average performance for each model for the period 1900-

2014 over the PNW is shown in Fig. 3. Also shown in cyan is the performance of each 

verification dataset relative to the ensemble mean of these datasets, represented by the horizontal 

cyan line. It is clear from Fig. 3 that the spread of the verification datasets is generally smaller 

than the spread of the model performance. As expected, models tend to perform better for 

temperature metrics compared to precipitation metrics. The annual mean temperature and linear 

trend of temperature lie quite close to the observed distribution, but the models tend to 

overestimate the mean annual precipitation while underestimating the linear trend of 

precipitation. Fig. 4 shows the performance of CMIP6 ESMs over the globally applied metric 

suite. Due to the wide variance of the seasonal cycles of precipitation and temperature at 

different locations across the globe, these metrics are not included in the global metric suite. The 

global metric box plots show once again that CMIP6 models generally capture temperature 

metrics much better than precipitation metrics. On a global scale, the mean annual temperature 

tends to be underestimated, while the mean annual precipitation is slightly overestimated by the 

ensemble mean. On the other hand, modeled precipitation trend uncertainty is much closer to the 

observational uncertainty than for the global temperature trend, with a slight bias toward more 

warming than the observational mean. 



The newly developed ENSO teleconnection metrics demonstrate that many models are 

flawed in their representation of ENSO. Only a few models at the tail of the distribution in the 

PNW lie within the range of verification spread for temperature, while none do for precipitation, 

with some even showing negative spatial correlation values compared with the observed 

teleconnection pattern, while the verification datasets are very consistent with each other (Fig. 3). 

Globally, despite strong agreement between the verification data, no ESMs approach this 

performance for either temperature or precipitation (Fig. 4). Finally, normalized error scores for 

the combined global+PNW metric suite are shown in Fig. 5 for each model, with the ensemble 

spread represented by the colored points above and below each model’s ensemble average error 

score. 

 



Figure 5: Model rankings based on the normalized error score of the 52 combined global and 

PNW metrics. The ensemble mean value for each model is shown as a bold black point, while 

multicolored points represent each ensemble member from that model. 

 

 

4.2. Future projections from a culled ensemble 

The historical trends over the PNW as a function of ensemble size are shown in Fig. 6, 

with the optimal ensemble size highlighted. Note that as the ensemble size grows, the ensemble 

average trend becomes less and less sensitive to the inclusion of additional models. Because not 

all modeling centers include every SSP in their model runs (see Table A1), the optimal envelope 

size is determined three more times using historical data only from models that include SSP2-

4.5, SSP3-7.0, and SSP5-8.5 runs, respectively. These are shown alongside the full historical 

ensemble in Fig. 6. In each case, an optimal envelope of similar size (12-14 selected models out 

of 44-63 total models) is found. While this figure shows that even the best performing models 

show considerable differences in trend projections, and the combined precipitation/temperature 

trend error shows considerable variation, it also shows that for this application, a smaller number 

of high performing models reproduces observed trends more accurately than the full CMIP6 

suite, particularly for precipitation trends. 

 



 

Figure 6: Historical PNW precipitation (blue, left y-axis) and temperature (red, right y-axis) 

trends as a function of CMIP6 ESM ensemble size. In black is the combined error (axis not 

shown), minimized to find the optimal envelope size. The solid vertical black line marks the 

minimum size for the optimal envelope, defined at 10% of the total ensemble. The leftmost 

points include only the top performing models based on the normalized error scores shown in 

Fig. 5. The mean of the verification dataset trends are shown as horizontal dashed lines. The 

black vertical dashed line represents the optimal envelope size determined by minimizing the 

difference between the ensemble average trend and the observational average trend. The top left 

plot uses all models in the historical ensemble, while the other three include only models that 

provided data for the respective SSP run shown. 

 

 

The effect of this culling criterion on the precipitation and temperature trend projections 

for the PNW as applied to the PNW+global ESM metric performance ranking is shown in Fig. 7. 



In each SSP, the ESMs with the most extreme trend projections tend to be culled, especially in 

SSP5-8.5, where the culled ensemble precipitation trend is reduced substantially. While the 

culled ensemble mean temperature trend is barely affected compared to the full ensemble for any 

scenario, the standard deviation of the culled ensemble temperature trend projections is reduced 

in each scenario. For the precipitation trends, differing behavior is seen in the culled ensemble 

depending on the scenario considered, with a slight increase in the culled ensemble mean 

projection in SSP2-4.5 and SSP3-7.0, and a decrease in the culled ensemble mean projection in 

SSP5-8.5. This method as applied here tends to selectively cull ESMs with the most extreme 

wetting trends, especially in SSP5-8.5, while retaining several ESMs with the least extreme 

wetting trends or drying trends. Such an asymmetry is not seen for the temperature trends, where 

the culling method tends to remove models with the coolest warming trends and the hottest 

warming trends. This result demonstrates that the culling method does not greatly affect the 

features of the central tendency of the distribution of projected trends, especially for temperature, 

in turn giving confidence to decision-makers that the center of mass of projected trends is well 

represented in the culled ensemble, despite the culled ensemble being composed of only 12-13 

ESMs. Thus using the culled ensemble for hydrological impact studies would greatly reduce the 

sample size and remove outlier models without greatly affecting the central tendency of the 

trends from the full CMIP6 ensemble. Whether the reproduction of the central tendency is 

enough for a given  impact application would have to be assessed on a case-by-case basis. 

 



 

Figure 7: Projected precipitation vs temperature linear trends over the PNW for SSP2-4.5 (top), 

SSP3-7.0 (middle), and SSP5-8.5 (bottom) for the full model ensemble (black) and the culled 

model ensemble (red), which includes only the top performing models (based on the combined 

global-PNW normalized error scores) selected by the optimal envelope size criteria. Trends are 

computed over the period 2014 - 2100. 



 

4.3. Split Sample Analysis of Culling Methodology 

 Because SSP projections of future trends cannot be directly verified, a split sample 

method is used here, separating the historical period into a “training” period (1901-1950) and 

“verification” period (1950-2014). In this case, the ESM evaluation is performed using the same 

PNW+global metric suite, but using only the CRU and UDel datasets for the error calculations, 

as these are the only verification datasets with the required temporal coverage for this analysis. 

This method allows determination of the fidelity of the culled ensemble trend “predictions”. As 

done with the full historical period, the culling effect on ensemble mean trends as a function of 

culled sample size is computed, with the optimal ensemble size being 14 in this case as well (Fig. 

8). The effect of the selection method on the “projected” trends during the verification period as 

compared to the full ensemble is shown in Fig. 9. While it is found that the culled sample results 

in a slight deterioration of the ensemble mean temperature and precipitation trends as compared 

to the observed CRU and UDel trends over this period, likely due at least in part to the very 

small observed trends, we do find that this method again captures the center of mass of the full 

ensemble, and in this case retains some extreme behavior as well, particularly for precipitation. 

Given the uncertainty in the observations of even the direction of precipitation trends during this 

period, it should not be surprising that the model uncertainty in precipitation trend projections is 

quite wide. The mean of the projected precipitation trend is increased to 0.82 cm/century from 

0.53 cm/century using the full ensemble, while the standard deviation of the culled distribution is 

reduced by only 13%. The mean of the projected temperature trend is more strongly affected 

with the culled ensemble mean being ~2.2 °C/century and the full ensemble mean being ~2.0 

°C/century, with a 34% reduced standard deviation as well. Still, we do find that even with a 

limited subset of the ESMs (n=14), this method gives similar precipitation trend predictions 



using only ~20% of the model ensemble, while retaining representation of the center of mass of 

temperature trends, albeit with a bias toward models with stronger warming than observed. In 

addition, 12 of the 14 ESMs selected by the 1901-1950 PNW+global metric evaluation are found 

in the 1901-2014 PNW+global culled ensemble. These model selection criteria are therefore 

found to be relatively insensitive to the time period considered, even though several verification 

datasets are based only on the last few decades of data. 

 

 

Figure 8: As with Fig. 6, but with the global+PNW metrics applied only over the period 1901-

1950. 

 



 

Figure 9: As with Fig. 7, but for the split sample analysis as applied to the combined 

PNW+global metric suite and culled using the PNW precipitation and temperature trend criteria 

over the period 1901-1950. 

 

4.4 Perfect model evaluation 

The metric suite evaluation is then applied in a perfect model scenario, wherein each 

model, in turn, is considered to be truth, with each ensemble member of a given true model being 

treated as an individual observational dataset (e.g. Liang et al., 2020; Suarez-Gutierrez et al., 

2021; Lenderink et al., 2023). This framework allows, in an overarching sense, a test of the 

metric suite’s ability to select for models with realistic representation of processes important to 

temperature and precipitation trends by allowing the “verification” of trends in SSP runs of the 

truth model. In addition, this analysis acts as a test of the similarity between the perfect model 

and all other models, selectively choosing for models with PNW+global metric performance 

similar to the other models in the CMIP6 ensemble. For each perfect model, the ensemble 



members of that model act as though they were each a different dataset representing 

observations. Normalized relative error calculations for the other 62 models are then computed 

by comparing the perfect model’s ensemble members to the ensemble members of each of the 

other models, in turn. This outputs a model ranking based on the ensemble mean relative error 

score for each other model in the CMIP6 suite, ultimately resulting in 63 different sets of model 

rankings of the other 62 models.  

The distribution of these rankings, organized by the mean ranking for a given model 

compared to every perfect model, is shown in Fig. 10. For each perfect model, the mean absolute 

error between the projected trends for the three SSP runs in the perfect model and those in each 

evaluated model is computed. The distribution of these mean absolute errors for all perfect 

models in each SSP is shown in Fig. 11. Also shown in Fig. 11 is the mean absolute error 

distribution between the culled ensembles and the perfect model, using the optimal envelope size 

computed for the PNW comparison to observations. This figure demonstrates a tendency for the 

culling method to select for models that better match the projected temperature trend of the 

perfect model while maintaining a similar spread of projections as the full ensemble. For the 

precipitation trends, the absolute errors in the distribution of culled ensembles are largely 

unaffected. From these data, the containing ratio is calculated: that is, the ratio of the perfect 

models that lie within the spread of the respective culled ensemble. This is a measure of the 

reliability of this method to select for a culled envelope which includes the “truth” in its 

projection spread. For SSP2-4.5, this ratio is 0.84 for temperature trends and 0.87 for 

precipitation trends. For SSP3-7.0, the ratio is 0.90 for temperature trends and 0.86 for 

precipitation trends. Finally, for SSP5-8.5, the ratio becomes 0.83 for temperature trends and 

0.92 for precipitation trends. These ratios indicate skill of this method at selecting an appropriate 



subset of models that include the “truth” in its projection envelope. Along with the reduction in 

temperature trend error and the spread of the culled ensemble seen in Fig. 11, this method is 

shown to have skill in selecting for models with projected trends that match the projections of the 

perfect model. 

 

 

Figure 10: Distribution of rankings given to each model by evaluation against all other models. 

The models are organized by the mean of the ranking given from the evaluation against all other 

models (green triangle). The 25th and 75th percentiles are shown by the boxes, while the 

whiskers represent those percentiles ± 1.5x the interquartile range. The median value is shown by 

the orange bar. Red dots represent rankings outside the 25th and 75th percentiles ± 1.5x the 

interquartile range. For each model on the x-axis, the distribution shown consists of 62 data 

points, representing the ranking of that model as compared to every other “perfect” model. 

 



 

Figure 11: Distribution of mean absolute errors in projected temperature trends (y-axis) and 

precipitation trends (x-axis). Each data point in a given distribution represents the mean absolute 

error of the projected trends of all models with respect to a given perfect model ensemble 

average. The dotted lines represent the full model ensemble, while the solid lines represent the 

culled ensemble. 

 

5. Summary 

A modified version of the R13 higher confidence metric suite is used as a base to develop 

a flexible framework for ESM evaluation that was co-designed with the USACE Climate 

Resilience and Preparedness Program, other users, and initial input from the community 

(Newman et al., 2022). We incorporate several new ENSO metrics using the canonical Nino3.4 

index as well as the newly developed ELI, which represents processes relating to ENSO diversity 

and important to CONUS teleconnections differently than Nino3.4 index. This framework can be 



easily modified to be applied to any region of interest across the globe. We develop a new, 

potentially useful criteria for model culling based on applying thresholds of historical 

precipitation and temperature trend errors to pre-ranked model scenarios. When this method is 

applied to the PNW CONUS using a joint PNW+global metric suite, it is found that the culled 

ensemble retains the mean and standard deviation of the full CMIP6 ensemble despite being 

composed of only ~20% of the total number of CMIP6 models. We applied the method to the 

PNW over the period 1901-1950, using 1950-2014 for verification. The culled ensemble exhibits 

a stronger warming trend than both the full ensemble and the verification datasets, while the 

precipitation trends of the culled ensemble are very similar to the full ensemble. The split sample 

analysis evaluation contained 12 of the 14 models found in the culled ensemble as applied to the 

full historical period, demonstrating insensitivity of the culled ensemble to the historical time 

period chosen, in turn giving confidence in our metric suites’ insensitivity to internal variability. 

We also applied our evaluation method within a perfect model scenario experiment, 

treating each CMIP6 model in turn as the verification dataset. This provides another way to 

verify the SSP projections and thereby assess the metric suite’s skill in selecting for models that 

represent processes similarly to the verification, and whether that skill is reflected in climate 

change projections. In this case, the culling method tends to reduce the error in projected 

temperature trends for all SSP runs, while having less effect on the projected precipitation trends. 

However, as in other applications, the distribution of the projected trends is maintained with a 

much smaller envelope of models considered. This perfect model evaluation can be used to 

inform certain impact applications as to the uniqueness of a given model response, and should be 

used jointly with the model rankings as compared to observations depending on the desired 

hydrometeorological impact application as model response and genealogical similarity is 



generally recognized as an important criteria (Knutti et al., 2013; Merrifield et al., 2023). 

Comparing the ranking distributions of Fig. 10 with the rankings determined from evaluation 

with respect to observations shown in Fig. 5 yields some interesting information. For instance, 

CNRM-CM6-1-HR tends to rank poorly in the perfect model evaluation, despite being near the 

center of the rankings in Fig. 5. This indicates that despite being generally dissimilar to other 

models, it still ranks relatively highly as compared to observations, suggesting more value for 

impact applications than would be expected based on its observational ranking as it is most 

dissimilar from the other ESMs. On the other hand, E3SM-2-0 is ranked almost exactly the same 

as CNRM-CM6-1-HR in the observational comparison, despite being the most similar to the 

other models in the CMIP6 ensemble, suggesting it is providing less unique information. These 

examples serve to demonstrate that, for a given application, users should consider using the 

information contained in Fig. 5 and Fig. 10 jointly depending on the range of model response in 

which they may be interested and how they may want to incorporate model response into their 

selections. Future studies could further explore model uniqueness impacts on projection 

selection. 

 

6. Discussion 

Similar to the ESM evaluation tools available, our method and code is easily extensible to 

include other observational datasets and metrics. For example, oceanic heat content (OHC) 

datasets from both observations and for CMIP6 models are becoming available (e.g. Lyu et al., 

2021). We did not include OHC here as the Lyu et al. (2021) open-source dataset only included 

28 of the CMIP6 models. However, of the 12 models with either excessively high or low OHC 

trends as defined by +/- 1 std deviation of observed OHC trend uncertainty, only five would be 



retained in our analysis depending on user decisions related to model representativeness (e.g., 

CESM2 and CESM2-WACCM are retained in our rankings).  

By definition our culling method removes poor performing (outlier) ESMs, which can be 

seen by cross-referencing Figures 5 and 6. Further, examination of the precipitation and 

temperature trends across SSPs (Fig. 7) highlights that our method removes many (but not all) of 

the outlier models for end of century change signal, tends to preserve many models in the ‘center 

of mass’ of the CMIP6 full model ensemble and retains similar spread characteristics to the full 

ensemble, which may also be expected (e.g., Sanderson et al., 2017). This is a positive 

characteristic as noted above, retaining the mean projection and spread with a fraction of the 

models implies a potentially significant cost savings for impact projection generation. However, 

some of the most extreme projections are removed, which may be detrimental to particular types 

of risk assessments, such as full system stress tests designed to identify potential futures with 

vulnerabilities (Brown et al., 2012; Steinschneider et al., 2015). Therefore we again stress that 

users of this method be mindful of their specific application needs and how that meshes with the 

assumptions and behavior of this (and any) evaluation methodology, so they may supplement or 

modify their workflows appropriately. For example, one could use the culled ensemble and then 

re-introduce particular outlier projections to fit any known or explore unknown specific 

installation vulnerabilities. 

Another metric, or culling decision, could be the equilibrium climate sensitivity (ECS). 

There has been much discussion that ESMs with ECS values above roughly 4.5 °C are too 

sensitive to climate forcings and many ESMs may be overestimating the recent observed 

warming since 1980 (e.g. Nijsse et al., 2020; Zelinka et al., 2020; Meehl et al., 2020; Tokarska et 

al., 2020, Scafetta, 2022). However, it is unclear if high ECS should be a disqualifying 



characteristic for regional applications. Exclusion or inclusion of high ECS models is particularly 

complicated for water security applications. Asenjan et al. (2023) found that including high ECS 

models for hydrologic change studies significantly changed the projections in only some of the 

regions they examined. Here, six of our top twenty models are from only two distinct modeling 

systems (CESM/E3SM and CNRM-CM6/ESM2) (Fig. 5) that have an ECS greater than 4.5 °C, 

(CESM2, CESM2-WACCM, E3SM-1-1-ECA, CNRM-ESM2-1, CNRM-CM6-1). We include 

observed global temperature trends as a metric where the high ECS models do relatively poorly 

(not shown), but they generally perform well for regional metrics across the PNW, highlighting 

the complexities of regional evaluations using ESMs. Note that model response, using perfect 

model or other response similarity metrics (e.g. Sanderson et al., 2017) and genealogical 

similarity could further reduce the hot models retained as a second culling step as needed. 

Daily metrics could be included if found to be necessary for a specific application. 

However, in this study we did not include daily metrics for two primary reasons. The first is 

pragmatic; we desire to be as inclusive as possible in the number of CMIP6 models and 

ensemble members in our evaluation, and many modeling groups provide daily data for only a 

few simulations. Second, very few if any water security climate change impact assessments use 

ESM output directly, the ESM data are statistically bias corrected and downscaled, or 

dynamically downscaled (and often then statistically bias corrected) because of the substantial 

errors in ESM data from this perspective. Additional inclusion of non-trend metrics also does not 

test ESM change projection fidelity, and it is unclear if there would be any added discriminatory 

power to identify additional poor performing models. For example, Wehner et al. (2020) and 

Wehner (2020) evaluated CMIP5 and 6 models for historical and future changes of daily 

precipitation and temperature extremes and found no significant differences between the two 



generations of models, which could indicate a lack of discriminatory power. It would be 

worthwhile to investigate the additional information content of daily data, including changes in 

daily fields, above the metric set used here in future work. Finally, this ESM evaluation effort is 

part of a broader multi-project effort to provide quantitative guidance on the fidelity of core 

aspects of the climate impacts modeling chain (ESM, downscaling, hydrology) for water 

resource applications. The common objective is to co-develop verification-oriented strategies 

and approaches for designing or selecting models and methods based on their ability to robustly 

and reliably project future change -- which remains a challenge for the community. This builds 

off of initial efforts in the community to quantify the breadth of uncertainty in this impact 

modeling chain (e.g. Gutmann et al., 2012, 2014, 2022; Mendoza et al., 2015; Mizukami et al., 

2016; Clark et al., 2016; Kao et al., 2022). Our co-designed evaluations also build on our well-

developed researcher-agency-user relationships and falls within the broader literature finally 

recognizing the need for more ‘fit-for-purpose’ evaluations of ESMs, among other modeling 

systems (e.g. Parker, 2020; Briley et al., 2020; Findlater et al., 2021). Future work will explore 

the interplay between selection of ESMs, downscaling schemes, and hydrology models and 

assess subsequent projection spread and fidelity. 
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Appendix 

Table A1: CMIP6 models included in this study, with numbers of ensemble members for each 

run considered, resolution, and development center. 

Model 

Number of 

Historical 
Ensemble 

Members 

Number of 

SSP2-4.5 
Ensemble 

Members 

Number of 

SSP3-7.0 
Ensemble 

Members 

Number of 

SSP5-8.5 
Ensemble 

Members 

Atmospheric 
Resolution (Lon 

x Lat) Center 

ACCESS-

CM2 10 5 5 5 1.88 x 1.25 
Commonweath Scientific and Industrial 

Research Organization, Australia 

ACCESS-
ESM1-5 40 40 40 40 1.88 x 1.25 

Commonweath Scientific and Industrial 
Research Organization, Australia 
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AWI-CM-1-
1-MR 5 1 5 1 0.94 x 0.93 

Alfred Wegener Institute for Polar and 
Marine Research, Germany 

AWI-ESM-1-

1-LR 1 - - - 1.88 x 1.85 
Alfred Wegener Institute for Polar and 

Marine Research, Germany 

BCC-CSM2-

MR 3 1 1 1 1.12 x 1.11 
Beijing Climate Center, China Meteorological 

Administration 

BCC-ESM1 3 - 3 - 2.81 x 2.77 
Beijing Climate Center, China Meteorological 

Administration 

CAMS-

CSM1-0 3 2 2 2 1.12 x 1.11 Chinese Academy of Meteorological Sciences 

CAS-ESM2-

0 4 2 2 2 1.41 x 1.42 
LASG, Institute of Atmospheric Physics, 

Chinese Academy of Sciences 

CESM2 11 6 8 5 1.25 x 0.94 
Community Earth System Model 

Contributors 

CESM2-FV2 3 - - - 2.5 x 1.89 
Community Earth System Model 

Contributors 

CESM2-

WACCM 3 5 1 5 1.25 x 0.94 
Community Earth System Model 

Contributors 

CESM2-

WACCM-
FV2 3 - - - 2.5 x 1.89 

Community Earth System Model 
Contributors 

CMCC-CM2-
HR4 1 - - - 1.25 x 0.94 

Centro euro-Mediterraneo sui Cambiamenti 
Climatici, Italy 

CMCC-CM2-
SR5 11 1 1 1 1.25 x 0.94 

Centro euro-Mediterraneo sui Cambiamenti 
Climatici, Italy 

CMCC-
ESM2 1 1 1 1 1.25 x 0.94 

Centro euro-Mediterraneo sui Cambiamenti 
Climatici, Italy 

CNRM-

CM6-1 29 10 6 6 1.41 x 1.39 
National Centre of Meteorological Research, 

France 

CNRM-
CM6-1-HR 1 1 1 1 0.5 x 0.5 

National Centre of Meteorological Research, 
France 

CNRM-
ESM2-1 11 10 5 5 1.41 x 1.39 

National Centre of Meteorological Research, 
France 

CanESM5 65 50 50 50 2.81 x 2.77 
Canadian Centre for Climate Modeling and 

Analysis 

CanESM5-1 72 - - - 2.81 x 2.77 
Canadian Centre for Climate Modeling and 

Analysis 

CanESM5-

CanOE 3 3 3 3 2.81 x 2.77 
Canadian Centre for Climate Modeling and 

Analysis 

E3SM-1-0 5 - - 5 1.0 x 1.0 Department of Energy, USA 



E3SM-1-1-
ECA 1 - - 1 1.0 x 1.0 Department of Energy, USA 

E3SM-2-0 5 - - - 1.0 x 1.0 Department of Energy, USA 

EC-Earth3 22 69 57 58 0.7 x 0.7 EC-EARTH Consortium 

EC-Earth3-

AerChem 3 - 1 - 0.7 x 0.7 EC-EARTH Consortium 

EC-Earth3-

CC 10 9 - 1 0.7 x 0.7 EC-EARTH Consortium 

EC-Earth3-
Veg 8 7 6 8 0.7 x 0.7 EC-EARTH Consortium 

EC-Earth3-
Veg-LR 3 3 3 3 1.12 x 1.11 EC-EARTH Consortium 

FGOALS-f3-
L 3 1 1 1 1.25 x 1.0 

LASG, Institute of Atmospheric Physics, 
Chinese Academy of Sciences 

FGOALS-g3 6 4 5 4 2.0 x 5.18 
LASG, Institute of Atmospheric Physics, 

Chinese Academy of Sciences 

FIO-ESM-2-

0 3 3 - 3 1.25 x 0.94 
The First Institute of Oceanography, SOA, 

China 

GFDL-CM4 1 1 - 1 1.25 x 1.0 
NOAA Geophysical Fluid Dynamics 

Laboratory, USA 

GFDL-ESM4 3 3 1 1 1.25 x 1.0 
NOAA Geophysical Fluid Dynamics 

Laboratory, USA 

GISS-E2-1-G 47 36 27 15 2.5 x 2.0 
NASA Goddard Institute for Space Studies, 

USA 

GISS-E2-1-

G-CC 1 1 - - 2.5 x 2.0 
NASA Goddard Institute for Space Studies, 

USA 

GISS-E2-1-H 25 10 6 10 2.5 x 2.0 
NASA Goddard Institute for Space Studies, 

USA 

GISS-E2-2-G 11 5 5 5 2.5 x 2.0 
NASA Goddard Institute for Space Studies, 

USA 

GISS-E2-2-H 5 - - - 2.5 x 2.0 
NASA Goddard Institute for Space Studies, 

USA 

GISS-E3-G 1 - - - 1.25 x 1.0 
NASA Goddard Institute for Space Studies, 

USA 

HadGEM3-
GC31-LL 5 5 - 4 1.88 x 1.25 Met Office Hadley Center, UK 

HadGEM3-

GC31-MM 4 - - 4 0.83 x 0.56 Met Office Hadley Center, UK 

IITM-ESM 1 1 1 1 1.88 x 1.89 Indian Institute of Tropical Meteorology 

INM-CM4-8 1 1 1 1 2.0 x 1.5 Institute for Numerical Mathematics, Russia 

INM-CM5-0 10 1 5 1 2.0 x 1.5 Institute for Numerical Mathematics, Russia 



IPSL-

CM5A2-
INCA 1 - 1 - 3.75 x 1.89 Institut Pierre Simon Laplace, France 

IPSL-CM6A-
LR 33 11 11 7 2.5 x 1.27 Institut Pierre Simon Laplace, France 

IPSL-CM6A-

LR-INCA 1 - - - 2.5 x 1.27 Institut Pierre Simon Laplace, France 

KACE-1-0-G 3 3 3 3 1.88 x 1.25 
National Institute of Meteorological Sciences, 

Korea Meteorological Administration 

MCM-UA-1-

0 1 1 1 1 3.75 x 2.22 University of Arizona, USA 

MIROC-

ES2L 31 30 10 10 2.81 x 2.77 

Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean 

Research Institute (The University of Tokyo), 
and National Institute for Environmental 

Studies 

MIROC6 50 50 50 50 1.41 x 1.39 

Atmosphere and Ocean Research Institute 

(The University of Tokyo), National Institute 

for Environmental Studies, and Japan Agency 
for Marine-Earth Science and Technology 

MPI-ESM-1-

2-HAM 3 - 3 - 1.88 x 1.85 
Max Planck Institute for Meteorology, 

Germany 

MPI-ESM1-

2-HR 10 2 10 2 0.94 x 0.93 
Max Planck Institute for Meteorology, 

Germany 

MPI-ESM1-

2-LR 31 30 30 30 1.88 x 1.85 
Max Planck Institute for Meteorology, 

Germany 

MRI-ESM2-0 12 10 5 6 1.12 x 1.11 Meteorological Research Institute, Japan 

NESM3 5 2 - 2 1.88 x 1.85 
Nanjing University of Information Science 

and Technology, China 

NorESM2-
LM 3 13 1 1 2.5 x 1.89 Norweigian Climate Center, Norway 

NorESM2-
MM 3 2 1 1 1.25 x 0.94 Norweigian Climate Center, Norway 

SAM0-

UNICON 1 - - - 1.25 x 0.94 Seoul National University, Korea 

TaiESM1 2 1 1 1 1.25 x 0.94 
Research Center for Environmental Changes, 

Academia Sinica, Taiwan 

UKESM1-0-
LL 19 17 16 5 1.88 x 1.25 

National Environmental Research Council, 
Met Office Hadley Center, UK 

UKESM1-1-
LL 1 - 1 - 1.88 x 1.25 

National Environmental Research Council, 
Met Office Hadley Center, UK 

 


