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Abstract

Streambed grain sizes and hydro-biogeochemistry (HBGC) control river functions. However, measuring their quantities, dis-

tributions, and uncertainties is challenging due to the diversity and heterogeneity of natural streams. This work presents a

photo-driven, artificial intelligence (AI)-enabled, and theory-based workflow for extracting the quantities, distributions, and

uncertainties of streambed grain sizes and HBGC parameters from photos. Specifically, we first trained You Only Look Once

(YOLO), an object detection AI, using 11,977 grain labels from 36 photos collected from 9 different stream environments. We

demonstrated its accuracy with a coefficient of determination of 0.98, a Nash–Sutcliffe efficiency of 0.98, and a mean absolute

relative error of 6.65% in predicting the median grain size of 20 testing photos. The AI is then used to extract the grain size

distributions and determine their characteristic grain sizes, including the 5th, 50th, and 84th percentiles, for 1,999 photos taken

at 66 sites. With these percentiles, the quantities, distributions, and uncertainties of HBGC parameters are further derived using

existing empirical formulas and our new uncertainty equations. From the data, the median grain size and HBGC parameters,

including Manning’s coefficient, Darcy-Weisbach friction factor, interstitial velocity magnitude, and nitrate uptake velocity, are

found to follow log-normal, normal, positively skewed, near log-normal, and negatively skewed distributions, respectively. Their

most likely values are 6.63 cm, 0.0339 s·m-1/3, 0.18, 0.07 m/day, and 1.2 m/day, respectively. While their average uncertainty is

7.33%, 1.85%, 15.65%, 24.06%, and 13.88%, respectively. Major uncertainty sources in grain sizes and their subsequent impact

on HBGC are further studied.
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Key Points:13

• Stream sediments bigger than 0.45 mm can be detected from smartphone photos14

by YOLO with a Nash–Sutcliffe efficiency of 0.98.15

• Quantities, distributions, and uncertainties of streambed hydro-biogeochemistry16

can be determined from photos.17

• We have identified sources of uncertainty in grain size measurements and proposed18

approaches to reduce this uncertainty.19

Corresponding author: Yunxiang Chen, yunxiang.chen@pnnl.gov

–1–



manuscript submitted to Water Resources Research

Abstract20

Streambed grain sizes and hydro-biogeochemistry (HBGC) control river functions. How-21

ever, measuring their quantities, distributions, and uncertainties is challenging due to22

the diversity and heterogeneity of natural streams. This work presents a photo-driven,23

artificial intelligence (AI)-enabled, and theory-based workflow for extracting the quan-24

tities, distributions, and uncertainties of streambed grain sizes and HBGC parameters25

from photos. Specifically, we first trained You Only Look Once (YOLO), an object de-26

tection AI, using 11,977 grain labels from 36 photos collected from 9 different stream en-27

vironments. We demonstrated its accuracy with a coefficient of determination of 0.98,28

a Nash–Sutcliffe efficiency of 0.98, and a mean absolute relative error of 6.65% in pre-29

dicting the median grain size of 20 testing photos. The AI is then used to extract the30

grain size distributions and determine their characteristic grain sizes, including the 5th,31

50th, and 84th percentiles, for 1,999 photos taken at 66 sites. With these percentiles, the32

quantities, distributions, and uncertainties of HBGC parameters are further derived us-33

ing existing empirical formulas and our new uncertainty equations. From the data, the34

median grain size and HBGC parameters, including Manning’s coefficient, Darcy-Weisbach35

friction factor, interstitial velocity magnitude, and nitrate uptake velocity, are found to36

follow log-normal, normal, positively skewed, near log-normal, and negatively skewed dis-37

tributions, respectively. Their most likely values are 6.63 cm, 0.0339 s·m−1/3, 0.18, 0.0738

m/day, and 1.2 m/day, respectively. While their average uncertainty is 7.33%, 1.85%,39

15.65%, 24.06%, and 13.88%, respectively. Major uncertainty sources in grain sizes and40

their subsequent impact on HBGC are further studied.41

Plain Language Summary42

Streambed grain sizes control river hydro-biogeochemical function by modulating43

the resistance, speed of water exchange, and nutrient transport at water-sediment inter-44

face. Consequently, quantifying grain sizes and size-dependent hydro-biogeochemical pa-45

rameters is critical for predicting river’s function. In natural streams, measuring these46

sizes and parameters, however, is challenging because grain sizes vary from millimeters47

to a few meters, change from small creeks to big streams, and could be concealed by com-48

plex non-grain materials such as water, ice, mud, and grasses. All these factors make size49

measurements a time-consuming and high-uncertain task. We address these challenges50

by demonstrating a workflow that combines a computer vision artificial intelligence (AI),51
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smartphone photos, and new uncertainty quantification theories. The AI performs well52

across various sizes, locations, and stream environments as indicated by an accuracy met-53

ric of 0.98. We apply the AI to extract the grain sizes and their characteristic percentiles54

for 1,999 photos. These characteristic grain sizes are then input into existing and our55

new theories to derive the quantities, distributions, and uncertainties of hydro-biogeochemical56

parameters. The high accuracy of the AI and the success of extracting grain sizes and57

hydro-biogeochemical parameters demonstrate the potential to advance river science with58

computer vision AI and mobile devices.59
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1 Introduction60

Streambed grain size is a crucial factor controlling streambed hydro-biogeochemistry61

(HBGC). In hydrology, hydraulics, and geomorphology, streambed flow resistance, which62

is parameterized by the Manning coefficient or Darcy–Weisbach friction factor, is directly63

linked to characteristic grain sizes such as the median, 84th, and 90th percentiles of grain64

size distributions (Strickler, 1923; S. Lang et al., 2004; Chaudhry, 2008; Ferguson, 2010,65

2007; Rickenmann & Recking, 2011; Powell, 2014; Ferguson, 2022). In stream-groundwater66

interactions, the speed of water exchange through the porous sediment interface, quan-67

tified as streambed interstitial velocity, is controlled by pressure variation and subsur-68

face permeability, both of which depend on characteristic grain sizes of streambeds (Kenney69

et al., 1984; Shepherd, 1989; Elliott & Brooks, 1997; Y. Chen et al., 2021). In biogeo-70

chemistry, grain sizes exert direct control over turbulent mass transfer that determines71

the upper limit of the total nitrate uptake velocity from streams by benthic algae, mi-72

crobes, and turbulence (O’Connor & Hondzo, 2008; Mulholland et al., 2009; Grant et73

al., 2018). Despite the importance, measuring streambed grain sizes and size-dependent74

HBGC is challenging due to the multiscale and heterogeneous nature of grain size, the75

diversity of stream environments, and consequently the high labor costs associated with76

grain size quantification and HBGC estimation.77

Over the past seven decades, large efforts have been made to address the aforemen-78

tioned challenges. These efforts can be categorized into traditional sieve methods, grid-79

or area-based sediment counting or weighting methods (Wolman, 1954; Leopold, 1970;80

Kellerhals & Bray, 1971; Anastasi, 1984; Fehr, 1987; Fripp & Diplas, 1993), manual photo81

sieving method (Adams, 1979; Ibbeken & Schleyer, 1986), automated or semi-automated82

photo sieving methods (Butler et al., 2001; Graham et al., 2005; Detert & Weitbrecht,83

2012; Purinton & Bookhagen, 2019), image texture statistics methods (Carbonneau et84

al., 2004; Rubin, 2004; Verdú et al., 2005; Carbonneau et al., 2005a, 2005b; Buscombe85

& Masselink, 2009; Buscombe et al., 2010; Buscombe & Rubin, 2012; Buscombe, 2013;86

Black et al., 2014), machine learning (ML) methods (Z. Chen et al., 2020; Soloy et al.,87

2020; N. Lang et al., 2021; Ermilov et al., 2022), point cloud methods (Vázquez-Tarŕıo88

et al., 2017; Steer et al., 2022), and ML-based in-direct grain size regression methods (Gomez-89

Velez et al., 2015; Ren et al., 2020; Abeshu et al., 2022). The sieve method is the old-90

est and most reliable approach for fine sediment characterization, however, it is not fea-91

sible for field sampling of coarse sediments due to the requirement to transport a large92
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number of rocks to the laboratory for drying, sieving, and weighing (Leopold, 1970). Al-93

though the grid and area based methods avoid the need to move heavy rocks, they suf-94

fer from poor reproducibility along with significant time and labor costs, due to the ne-95

cessity of manually measuring and recording grain sizes in the field (Wohl et al., 1996;96

Bunte & Abt, 2001).97

The manual photo-sieve approach was therefore developed in the late 1970s to cir-98

cumvent the need for direct measurements of grains in the field, however, it remains time-99

consuming as it involves manual identification and digitization of grains from images (Graham100

et al., 2005). Consequently, automated and semi-automated techniques were developed.101

These approaches are based on a series of image processing algorithms such as convert-102

ing colored images to grayscale, applying simple or double thresholds, edge detection,103

bottom-hat transformation, and finally using watershed segmentation or k-means clus-104

tering to generate individual grains (Graham et al., 2005; Detert & Weitbrecht, 2012;105

Purinton & Bookhagen, 2019). These methods significantly reduce the time required to106

generate reliable grain size distributions, but usually need considerable time to adjust107

key parameters used in the image processing techniques (Graham et al., 2005; Purinton108

& Bookhagen, 2019). Instead of directly detecting individual grains, statistical methods109

approximate key grain size metrics, such as the median size, by relating grain sizes to110

characteristic quantities of image texture derived from auto-correlation (Rubin, 2004),111

one-dimensional (1D) and two-dimensional (2D) semi-variance (Carbonneau et al., 2004;112

Verdú et al., 2005), co-occurrence matrix-derived entropy (Carbonneau et al., 2005b),113

spectrum decomposition (Buscombe et al., 2010), wavelets (Buscombe & Rubin, 2012;114

Buscombe, 2013), and their combinations (Buscombe & Masselink, 2009; Black et al.,115

2014). Among these methods, the spectrum decomposition and the global wavelet ap-116

proaches are especially important because they provide good estimates for the median117

size (with root-mean-square relative errors of 9.5% to 16%) and the full grain size dis-118

tribution without the need for calibration (Buscombe et al., 2010; Buscombe, 2013). De-119

spite these successes, it is worth noting that mean sizes obtained from statistical meth-120

ods are conceptually similar but different from the sizes obtained from sieve or photo-121

sieve approaches.122

In addition to image processing and statistical methods, machine learning meth-123

ods implicitly learn the relationship between input images and desired targets using data124

and neural networks. Examples include learning median size and grain size distribution125
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(N. Lang et al., 2021), individual grains (Soloy et al., 2020; Z. Chen et al., 2020), and126

clustered grains (Ermilov et al., 2022) using convolutional neural networks (CNNs), Mask127

regional CNN (R-CNN) (He et al., 2017), and atrous separable convolution (L.-C. Chen128

et al., 2018), respectively. The Mask R-CNN is the most similar to the traditional sieve129

and photo-sieve methods, however, its accuracy, which stands at approximately a 50%130

detection rate in predicting overlapping rocks, needs further improvement before being131

deployed for practical applications (Soloy et al., 2020). All of the image-based methods132

mentioned above use images as input, therefore, the grain sizes are three dimensional (3D)-133

sediment projected 2D sizes. The point-cloud based grain size characterization is more134

similar to actual 3D grain sizes (Steer et al., 2022), but obtaining accurate 3D point cloud135

poses a larger challenge than grain size quantification. There also exist ML-based in-direct136

methods to estimate grain sizes by learning the relationship between median grain size137

and large-scale geomorphological and hydrological attributes such as elevation, slope, depth,138

velocity, etc. (Gomez-Velez et al., 2015; Ren et al., 2020; Abeshu et al., 2022). These es-139

timates, however, are not actual measurements and require careful validation against di-140

rect measurements before their use in large-scale models.141

In summary, past efforts have tackled challenges related to accuracy, reproducibil-142

ity, cost, multi scales, and heterogeneity. These methods are expected to yield satisfac-143

tory results when applied to streambeds primarily composed of granular sediments, such144

as sand, cobble, gravel, and boulders (Buscombe, 2013). However, they may encounter145

challenges in stream riparian zones where non-granular materials like grass, mud, ice,146

wood, and both static and flowing water overlie granular sediments. New methods that147

can detect sediments hidden beneath these non-granular and non-sediment objects are148

needed. Another aspect that is not well resolved by previous efforts is photo resolution149

estimation. Though photo resolution can be manually measured from reference scales,150

this process is usually time-consuming when dealing with a large number of images. There-151

fore, there is a need for fully automated photo resolution estimation method.152

Our first goal is to address these needs by developing two ML models, one for grain153

detection and one for scale detection, using the You Only Look Once (YOLO) version154

5 framework (Redmon et al., 2016) with 11,977 and 121 labels of grains and reference155

scales. The YOLO framework is selected because it is a general, real-time, object detec-156

tion algorithm (Redmon et al., 2016) with the capability to detect hidden grains cov-157

ered by non-sediment objects with much higher detection rate, compared to regional CNN158
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approach (He et al., 2017; Soloy et al., 2020). Our second goal is to estimate streambed159

hydro-biogeochemical parameters based on YOLO-derived characteristic grain sizes and160

empirical equations for Manning coefficient (Rickenmann & Recking, 2011), Darcy–Weisbach161

friction factor (Ferguson, 2007, 2022), streambed interstitial velocity magnitude (Kenney162

et al., 1984; Y. Chen et al., 2021), and nitrate uptake velocity (Grant et al., 2018). Our163

third goal is to quantify uncertainties in both characteristic grain sizes and their prop-164

agation to the estimated HBGC parameters as well as the dominant sources of uncer-165

tainties in grain sizes and HBGC.166

To achieve these goals, the paper is organized as follows: Section 2 introduces the167

study site, photo collection and grouping, training label generation, YOLO framework168

setup, as well as the equations used for HBGC and uncertainty calculation; Section 3 eval-169

uates the YOLO model accuracy and reports the distributions and uncertainties of grain170

sizes and HBGC parameters; a thorough discussion covering the accuracy of grain sizes171

and HBGC, their major sources of uncertainty, the effects of photo number and prob-172

ability threshold on model accuracy, potential automated photo resolution estimation173

strategy, as well as the limitations and future directions, is included in Section 4; the ma-174

jor results and implications are summarized in Section 5.175

2 Methods176

2.1 Photo acquisition and grouping177

We obtained 2,121 photos from 75 sites at the Yakima River Basin (YRB) and the178

Columbia River section near the Port of Benton (Figure 1d) during 2021 – 2023. In 2021,179

we collected 383 photos from 47 sites; in 2022, we obtained 1,688 photos across 41 sites;180

in 2023, we took 50 photos from 3 sites near the Boat Ramp (BR) of the Leslie Groves181

Park. 6 camera types were used, including Samsung’s SM-T500 tablet and Apple’s iPhone182

7, 12, 13, 13 Pro Max, and 14 Pro.183

From these photos, we selected 61 photos as our training (36), validation (5), and184

testing (20) datasets. These datasets are mutually exclusive and labeled as 0, 1, and 2,185

respectively, for convenience (Figure 1a). To study the effects of the number of photos186

on model accuracy, we further divided the 36 training photos into three mutually inclu-187

sive groups, each having 11, 21, and 36 photos, respectively. For convenience, models trained188

with these groups are termed as model M0a, M0b, and M0c, respectively. In addition,189
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we trained a fourth model for scaling, termed as model Msc, to convert pixel size to real-190

world size using 50 photos (23 photos are from the 2,121 photos).191

The 4 trained AI models were applied to predict both individual grains and ref-192

erence scales for 2,143 photos. These photos were divided into 7 groups, labeled as 3 to193

9, and each had 144, 1855, 24, 20, 21, 21, and 58 photos, respectively. Their roles are194

described as follows: the photos in group 3 and 4 are used to predict grain sizes of pho-195

tos obtained in 2021 and 2022 (Figure 1b); the 20 photos in group 6 (same photos as group196

2 in Figure 1a) are used to the test the accuracy of model M0a – M0c for predicting grain197

sizes; the photos in groups 5 (from iPhone 12), 7 (iPhone 13), 8 (iPhone 14 Pro), and198

9 (Figure 1c) are used to evaluate the sensitivity of grain sizes and scaling to camera types199

and height as well as the accuracy of model Msc in predicting scales, respectively. The200

number of photos taken at each site is visualized in Figure 1d for reference. Details of201

site coordinates, grain sizes, and photo number can be found from our accompanying data202

package (Y. Chen et al., 2023).203

2.2 Label generation204

We manually generated labels (see label definition in Section 2.3) for both the grain205

detection AI models (M0a - M0c) and the scale detection AI model (Msc). For the grain206

detection models, we manually generated 16,951 labels from 61 photos, resulting in an207

average of 278 labels per photo (with a minimum of 19 and a maximum of 3,315). Out208

of these labels, 5,272 were used for training M0a, 10,154 for M0b, and 11,977 for M0c,209

respectively. For the scale detection model, we generated 121 labels from 50 photos rep-210

resenting 10 types of scales. These photos represent diverse flow, vegetation, and geo-211

logical conditions in natural streams. 9 photos for the grain detection models and 6 pho-212

tos for the scale detection model are illustrated in Figure 2 to visualize the environmen-213

tal conditions and manually-generated labels (green dots bounded boxes). Photos a to214

i represent the following 9 conditions: dry bed, dry bed with high grain size ratio, dry215

bed with grass, dry bed with mud, partial-dry partial-wet mud, dry bed with ice, sub-216

merged bed with static water, submerged bed with flowing water and waves, hybrid rock/water/grass217

bed. Photos j to o represent 10 reference scales with known sizes, including, yellow tape218

1, yellow tape 2, blue cap, green cap, tape measure, yellow paper board, quadrat net,219

color tapes, full quadrat, and white paper board. Their sizes are 7.05 cm × 1.7 cm, 7.1220

cm × 2 cm, 3.7 cm, 2.5 cm, readable from tape measure, 11 cm × 11 cm, 20 cm × 20221
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cm, 2.54 cm in width, 80 cm × 80 cm, and 30.48 cm × 22.86 cm, respectively. The rest222

52 photos for grain detection AI models and 44 photos for scale detection AI model and223

their labels can be found in the accompanying data package (Y. Chen et al., 2023).224

2.3 YOLO framework225

You Only Look Once (YOLO) is an object detection AI algorithm that is widely226

used for computer vision tasks (Redmon et al., 2016). In this study, the fifth major up-227

dated version was used and called YOLOv5. The Python implementation of YOLOv5228

algorithm was open-sourced in 2020 by Ultralytics on GitHub (Ultralytics, 2020). YOLOv5229

is a state-of-the-art real-time object detection system that is faster and more accurate230

than its predecessors.231

A brief sketch of the YOLOv5 network flowchart is shown in Figure 3, which is sum-232

marized from GitHub (Ultralytics, 2020). Generally, it is constructed by a series of con-233

volutional layers (Conv in Figure 3) (W. Zhang et al., 1990), modified bottleneck cross234

stage partial network layers (C3 in Figure 3) (Wang et al., 2020), a spatial pyramid pooling-235

fast layer (SPPF in Figure 3) (He et al., 2014), concatenate layers (Concat in Figure 3),236

and up-sampling layers. The fractional numbers, such as 1/2, 1/4, 1/8 and so on, in Fig-237

ure 3 represent the relative image resolutions to the input image. For the convolutional238

layers in Figure 3, Chi, Cho, k, and s stand for input image’s number of channels, out-239

put image’s number of channels, kernel size, and stride size, respectively. For the C3 layer,240

it reduces the number of convolutional layers from 4 to 3 in bottleneck cross stage par-241

tial network, which is originally connected to the output of bottleneck block (Wang et242

al., 2020). The value n in Figure 3 stands for the number of bottleneck blocks in C3 layer.243

The spatial pyramid pooling-fast layer is a modified spatial pyramid pooling layer specif-244

ically designed for YOLOv5 with higher computational efficiency (Ultralytics, 2020). It245

concatenates several MaxPool layers (PyTorch, 2022) with different sizes for resolving246

the difficulties of detecting objects with various sizes.247

The final outputs of YOLO, also called as labels, are the centroid (x and y in Fig-248

ure 3), width (w in Figure 3), height (h in Figure 3), and class (c in Figure 3) of the an-249

chor box and the probability of the detected object in each class. The centroid and sizes250

of the anchor box are all normalized by the dimension of the original input image. In251

this study, we have 10 classes for reference scales (Section 2.2) and only one class for grain.252
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The network input is the image and the outputs are the corresponding labels. To avoid253

over-fitting, 5 labeled images were used for validation. During training, the optimizer254

does not consider the loss between the prediction of the validation images and true la-255

bels. The loss for the validation images is only used as a training termination criterion.256

With the predicted width and height of individual grains, we define the diagonal length257

of the grain, i.e., Dp =
√
w2 + h2, as the final grain size in pixel length, which can be258

converted to real size (D) by multiplying it with the estimated photo resolution.259

2.4 Streambed hydro-biogeochemistry estimation equations260

With given water depth (H) and flow velocity (U) as well as the photo-derived char-261

acteristic grain sizes, e.g., 5th (D5), 50th (D50), and 84th (D84) percentiles of grain size262

distributions, key streambed hydro-biogeochemical parameters, including Manning’s co-263

efficient (n), Darcy–Weisbach friction factor (f), shear velocity (uτ ), streambed inter-264

stitial velocity magnitude (σw), and streambed nitrate uptake velocity (uf ) can be es-265

timated by Equations 1 (Rickenmann & Recking, 2011), 2 (Ferguson, 2007, 2022), 3 (Y. Chen266

et al., 2021; Kenney et al., 1984), and 4 (Grant et al., 2018), respectively. The water depth267

is a reach average depth, which was estimated using a wading-based depth transect pro-268

cedure. The details of such a procedure can be found in the field protocol described in269

our data package published in US DOE’s Environmental System Science Data Infras-270

tructure for a Virtual Ecosystem (ESS-DIVE) (Delgado et al., 2023). The velocity is the271

average velocity for August between February 1979 and December 2020, which was com-272

puted by Kaufman et al. (2023) from the National Oceanic and Atmospheric Adminis-273

tration’s National Water Model version 2.1 (NOAA, 2023).274

n =
D

1/6
84

20.4
(1)275

276 √
8

f
=

U

uτ
=

c1c2H/D84√
c21 + c22(H/D84)5/3

(2)277

278

σw = c3
gkI
ν

U2

gD50
(
H

D50
)c4 , kI = c5D

2
5 (3)279

280

uf = kmϕ, km = 0.17uτSc
−2/3, Sc =

ν

Dm
, ϕ = c6[NO−

3 ]
c7

(4)281

The constants used in the above equations are: c1 = 6.5, c2 = 2.5 (Ferguson, 2022);282

c3 = 0.88 (range 0.62 – 1.11), c4 = -0.66 (Y. Chen et al., 2021); c5 = 1×10−9 (Kenney283

et al., 1984); c6 = 0.0032, c7 = -0.49 (Grant et al., 2018); gravity acceleration g = 9.81284

m/s2, water viscosity ν = 1 × 10−6 m2/s, nitrate molecular diffusion in water Dm =285
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1.7×10−9 m2/s (Picioreanu et al., 1997). Non-constant parameters include subsurface286

intrinsic permeability kI (m2), hydrogeology-biochemistry interaction efficiency ϕ, Schmidt287

number Sc, and stream nitrate concentration [NO−
3 ] (mol/m3, equivalent to 62 mg/L).288

Our field survey in 2021 shows that the nitrate concentration in YRB varies between 0.0005289

and 0.1 with a mean of 0.008 mol/m3 (Grieger et al., 2022). In 2022, stream nitrate con-290

centrations are not available for all locations where depth were measured, therefore, we291

select three values, 0.0001, 0.01, and 1 mol/m3, to represent the typical magnitudes re-292

ported at the YRB and in the literature (Mulholland et al., 2008; Grant et al., 2018; X. Zhang293

et al., 2021; Sadayappan et al., 2022).294

2.5 Uncertainty quantification for grain sizes and hydro-biogeochemistry295

Uncertainties occur in grain detection, scaling, and the propagation from grain sizes296

to hydro-biogeochemical parameter estimations. For any given photo, the real grain size297

Dx (x = 5, 50, and 84) are calculated by Dx = DxpSC with the Dxp and SC denot-298

ing the grain size measured by pixel number and the photo resolution measured by real299

size per pixel. The Dxp is determined by YOLO and its uncertainty rxp, quantified by300

the average absolute relative error of testing photos, can be directly estimated by com-301

paring the YOLO-predicted and manually measured grain sizes. For photo-resolution302

uncertainty, we manually draw two straight lines for all photos following the scales show-303

ing in Figure 2 and then calculate the relative error (rSC) between the photo resolution304

calculated from the two lines. With the estimation of pixel-based grain size uncertainty305

and scale uncertainty, the real-world grain size uncertainty and its propagation to HBGC306

parameters can be estimated by Equations 5 – 9 based on the law of propagation of un-307

certainty (Ku, 1966). The detailed mathematical derivation of these equations can be308

found in Appendix. The rH is the mean absolute relative difference between the mea-309

sured water depth (H) and its time-average value over the observation period (around310

1 month in August 2022). The uncertainty measurement for flow velocity (rU ) and stream311

nitrate concentration (rN ) are not available for the study sites. However, existing liter-312

ature report that velocity measurement uncertainty by Acoustic Doppler current pro-313

filers (ADCPs) could range 1% to 25% depending on the distance away from the AD-314

CPs (Mueller et al., 2007) and stream nitrate concentration uncertainty is 12% on av-315

erage across 7 watersheds in US (Jiang et al., 2014). Therefore, we choose 10% as a rough316
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estimation of the typical measurement uncertainty for stream velocity and nitrate con-317

centration in this work.318

rx =
√
rxp2 + rSC

2, x = 5, 50, 84 (5)319

320

rn = r84/6 (6)321

322

rf = 2{1− 5

6
[1 +

c21
c22

(
H

D84
)−5/3]−1}

√
r2H + r284 (7)323

324

rw =
√
4r2U + (1− c4)2r250 + c24r

2
H (8)325

326

ruf =
√

r2U + r2f/4 + c27r
2
N (9)327

3 Results328

3.1 YOLO performance329

We evaluate the performance of YOLO through four metrics: the mean average pre-330

cision (mAP) of the YOLO training, the accuracy of grain size distribution, median grain331

sizes, and their relative error (Figure 4). The mAP@50 and mAP@50-95 are two typ-332

ical metrics used to quantify the accuracy of object detection AI algorithm. The sym-333

bol @50 means the prediction is correct if the intersection over union (IoU) larger than334

50%. The IoU stands for the relative overlapping area between the predicted object bound-335

ing box and the ground truth object bounding box. Similarly, the symbol @50-95 means336

the prediction is correct if the IoU larger than 50% to 95% with 5% increase interval.337

Additional 5 photos with 954 labeled grains are used as validation data set. The accu-338

racy of the prediction on the 5 validation photos are not seen by the optimizer, and it339

is only used to track the model accuracy during training and helps on determination of340

the best model, as shown in Figure 4(a). The weighted mAP (10% of mAP@50 and 90%341

of mAP@50-95) is used as final accuracy metric, and it reaches the maximum at 968 steps342

(Figure 4a: vertical dashed line). The corresponding mAP@50 and mAP@50-95 at this343

step is 0.64 and 0.34, respectively (Figure 4a: horizontal dashed lines). After 968 train-344

ing steps, both mAP@50 and mAP@50-95 decrease, with no indication that the accu-345

racy can increase within 20,000 training steps. Therefore, the trained model, which is346

used for all the results in the study, is the model stored at 968 training steps. For Mi-347

crosoft Common Objects in Context (COCO) dataset, a commonly used benchmark dataset348

for object detection AI, typical values for mAP@50 and mAP@50-95 fall in the range349

–12–



manuscript submitted to Water Resources Research

0.46 – 0.73 and 0.28 – 0.56, respectively (Ultralytics, 2020). In our case, the shape, sizes,350

color, transparency, lighting, and environmental conditions are more complex than those351

photos used in COCO (Figure 2), however, the model still achieves 0.64 and 0.34 val-352

ues for mAP@50 and mAP@50-95 on the validation photos, respectively (Figure 4a). This353

means the YOLO training achieved a good performance.354

To illustrate the model’s capability in extracting grain size distributions (GSDs),355

Figure 4b shows a comparison of the area-weighted GSD between the model prediction356

(blue line) and manual labels (red line). The cumulative probability in calculated by Pi =357 ∑
Ai(D ≤ Di)/

∑
Ai with Ai and Di denoting the area and size of each grain. The358

minimum difference between the two lines demonstrates that the area-weighted GSD is359

accurately reproduced by the trained model. Similar comparisons for the remaining 19360

photos used for testing are not included here for simplicity, however, can be found in Fig-361

ure 12. These comparisons demonstrate that the GSDs can be well reproduced by YOLO362

algorithms for most (18 of 20) photos.363

Based on the GSD curves, the median grain size D50, defined as the grain size cor-364

responding to 50% finer grain sizes, can be calculated from the GSDs of the 20 testing365

photos. Figure 4c shows a one-to-one plot between the predicted D50 and manually es-366

timated D50. The result shows that YOLO predicts D50 with an accuracy of 0.98, 0.98,367

-0.037 cm, and 0.91 cm in terms of R-squared, Nash–Sutcliffe efficiency (NSE), mean er-368

ror, and root-mean-square between the prediction and manual measurements. To fur-369

ther examine such accuracy, Figure 4d shows the relative error between the predicted370

D50 and manually estimated D50. The result shows 90% (18 dots) of the data points371

demonstrate a relative error less than 10% and 10% (2 dots) show a relative error larger372

than 20%. On average, the mean absolute relative error is 6.65% for the 20 testing pho-373

tos. The result also shows the relative error does not correlate with the grain size, which374

suggests the accuracy of YOLO is stable for both small and large grains.375

3.2 Characteristic grain size distributions376

With the confirmed high accuracy of the YOLO model, we apply the model to ex-377

tract the grain size distributions (GSDs) from 1,999 photos (66 sites) in groups 3 and378

4, and then calculate the characteristic grain sizes, e.g., D5, D50, and D84, from the GSDs.379

As valid water depth measurements are available at only 41 sites, Figure 5 shows only380
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the results of characteristic grain sizes from 1,745 photos obtained at the 41 sites to make381

a consistent evaluation for HBGC parameters in Section 3.3. In general, the three grain382

size distributions follow log-normal distributions (black solid lines in Figure 5a-c are fit-383

ted Gaussian distributions) with the log2-transformed mean of 4.15, 6.05, 6.75 and stan-384

dard deviation of 0.86, 0.87, and 0.81 for D5, D50, and D84, respectively. This means385

the most likely sizes of D5, D50, and D84 are around 1.78 cm, 6.63 cm, and 10.76 cm,386

respectively. As D5, D50, and D84 represent different importance of grain sizes in con-387

trolling HBGC, Figure 5d further shows the relationship between D5 and D50 and that388

between D84 and D50. The result shows that D5 and D84 increase linearly with D50,389

although there are some large residuals.390

3.3 Streambed hydro-biogeochemistry distributions391

With the photo-derived characteristic grain sizes (D5, D50, and D84), measured392

water depth, extracted velocity, and assumed typical stream nitrate concentration (see393

details in Section 2.4), the HBGC parameters can be estimated using Equations 1 - 4.394

To mitigate the uncertainty resulting from an insufficient number of photos, we show re-395

sults only from sites with more than 3 photos. Consequently, we are showing the results396

from 1,737 photos at 37 sites (refer to site locations in Figure 6b).397

Overall, HBGC parameters demonstrate different distribution patterns compared398

to grain sizes. Specifically, the Manning coefficient follows a normal distribution (black399

line in Figure 6a) with a mean and standard deviation of 0.0339 and 0.0031 s·m−1/3, re-400

spectively. The log10-transformed friction factor, log10(f), shows a positively skewed dis-401

tribution (Figure 6c) with its skewness (defined as the adjusted Fisher-Pearson skewness402

coefficient), mean, median, mode, and standard deviation of 0.43, -0.54, -0.58, -0.75, and403

0.37, respectively. This suggests the friction factor has the most likely value of 0.18 (=10−0.75),404

which falls in the range of 0.13 – 0.32 calculated from high-resolution computational fluid405

dynamics simulations for natural gravel bed rivers with median grain size of 6 cm (Y. Chen406

et al., 2019). The log10-transformed streambed interstitial velocity magnitude, log10(σw),407

follows a near-Gaussian distribution (Figure 6e) with skewness, mean, median, mode,408

and standard deviation of -0.03, -1.07, -1.08, -1.15, and 0.52, respectively. This suggests409

the streambed interstitial velocity magnitude has a high likelihood at the scale of 0.07410

(=10−1.15) m/day for the study region, which is close to the value (0.11 m/day) estimated411

by a temperature-based data assimilation approach applied at the Hanford reach of the412
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Columbia River (K. Chen et al., 2023). The distribution of the nitrate uptake velocity413

is more complex. Firstly, the distribution is strongly affected by the concentration of stream414

nitrate. It may decrease 3 orders of magnitude if the nitrate concentration increases from415

1e-4 mmol/L (=0.0062 mg/L) (Figure 6g blue histogram) to 1 mmol/L (=62 mg/L) (Fig-416

ure 6g gold histogram). The median and mean values of stream nitrate concentration417

were reported at the order of 1e-2 mmol/L (=0.62 mg/L) over 72 agriculture and urban418

sites in US (Grant et al., 2018). The mean nitrate concentration in the YRB was also419

reported at a similar magnitude of 0.008 mmol/L (Grieger et al., 2022). Therefore, it420

is reasonable to use 0.01 mmol/L as the most likely magnitude of nitrate concentration421

in US. Using such a concentration, the nitrate uptake velocity varies between 0.23 and422

5.6 m/day and shows a negatively skewed distribution with the skewness, mean, median,423

mode, and standard deviation of -0.23, 0.013, 0.036, 0.075, and 0.22, respectively (Fig-424

ure 6g gold histogram). This means the nitrate uptake velocity has a high chance to be425

1.2 (=100.075) m/day with a US median or mean nitrate conditions. This value is in the426

range between measured median (0.6 m/day) and mean (2.5 m/day) uptake velocity across427

the US (Grant et al., 2018).428

The left panels of Figure 6 illustrate the overall distributions of HBGC parame-429

ters but not their spatial variations. To visualize the spatial variations, the right pan-430

els show the spatial distributions of site average HBGC parameters. The number of pho-431

tos at each site can be found on Figure 1d. Figure 6b shows that the site average Man-432

ning coefficient mostly clusters at red (0.035 - 0.0375 s·m−1/3) and light red (0.0325 -433

0.035 s·m−1/3), which means the site average Manning coefficient has a low spatial het-434

erogeneity. Such a behavior can also be observed in Figure 8a where the site average value435

(black line) of Manning coefficient shows small variation across the sites. In contrast, the436

site-average friction factor exhibits greater heterogeneity, as indicated by the diverse range437

of colors in Figure 6d. The highest log10-transformed friction factor values (0 – 0.25) oc-438

cur at site S37, S39, and W10, followed by 8 sites (W20, S04, S03, S42, S10, S53, S56N,439

and S48R) in the group -0.25 – 0. The lowest values (yellow dots at group -1 – -0.75)440

occur at S02, T02, T03, and S23, and the rest of the data points share similar colors. This441

behavior can also be observed in Figure 8b (see black line). Different from the friction442

factor, the log10-transformed interstitial velocity magnitude has maximum values at sites443

S04, S58, S18R, T05P, S50P, and S56N (Figures 6f dark red and 8c black line), followed444

by the value group -0.75 – -0.25 (red) at 5 sites (S48R, S10, S01, W10, and S31). The445
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lowest interstitial velocity occurs at the sites S42 and S43 with a value of around -2 (Fig-446

ures 6f yellow and 8c black line). Compared to the friction factor and interstitial veloc-447

ity, the uptake velocity distribution demonstrates obvious hot spot at site S04 (dark red)448

and cold spots (yellow) at sites T02, S41R, S42, and S43 with a value of 2.8 m/day and449

a range of 0.3 – 0.5 m/day, respectively. Interestingly, the cold spots are all within or450

downstream of the Yakama Indian Reservation region. It is also interesting to mention451

that the hot (S04) and cold (S42 and S43) spots in nitrate uptake velocity are also the452

hot and cold spots in the interstitial velocity. This suggests the hot/cold spots in den-453

itrification are likely affected by the water exchange between stream and groundwater454

in the YRB. This is consistent with the work of Son et al. (2022) that shows hyporheic455

exchange flux is the most important factor controlling nitrate removal based on data from456

basin-scale numerical simulations and random forest relative importance analyses.457

3.4 Uncertainty in characteristic grain sizes458

With the uncertainty quantification equations introduced in Section 2.5, the un-459

certainty or variability associated with manually-measured photo resolution, YOLO-derived460

grain sizes, and water depth observations can be estimated for each photo. Figure 7a shows461

the manually-measured photo resolution (blue cross) and the relative error rSC (yellow462

line) associated with each resolution. The results shows that around 90% of the photos463

have a resolution of around 0.1 mm/pixel (corresponding to 1/4 of the quadrat in Fig-464

ure 2n, o), and 10% of the photos have a resolution between 0.2 and 0.7 mm/pixel (cor-465

responding to the full quadrat in Figure 2n, o). The relative error for these scales, how-466

ever, are mostly in the range -10% – 10% and have an overall mean and mean absolute467

error of 0.13% and 2.3%, respectively. This means the photo resolution estimation has468

no systematic bias and the manual measurement uncertainty is low enough for further469

grain size quantification.470

With the photo resolution uncertainty (rSC), the uncertainty in D50, D84, and D5471

can be calculated by Equation 5 with the YOLO-associated grain size uncertainty r50p472

(=6.65%), r84p (=10.65%), and r5p (=11.88%) directly estimated from the average ab-473

solute relative error of testing photos as discussed in Section 3.1. Figures 7b,c,d show474

the combined effects of photo resolution uncertainty and YOLO accuracy uncertainty475

for D50, D84, and D5, respectively. The result shows the uncertainty of D50 varies be-476

tween 6.65% and 13.53% with a mean value of 7.33%. For D84 uncertainty, its minimum,477
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maximum, and mean are 10.65%, 15.88%, and 11.11%, respectively. For D5 uncertainty,478

these values are 11.88%, 16.73%, and 12.30%, respectively.479

The water depth is estimated every 1 minute during July 28 and August 31 2022480

(see details in data package (Delgado et al., 2023)). With these data, the depth (H) is481

calculated as the time averaged depth over the whole measurement period. The uncer-482

tainty or variability (rH) of such a depth is calculated as the average absolute relative483

difference between the actual depth and the calculated mean depth. Figure 7e shows the484

variations of the mean depth and its variability at each site. The result shows the depth485

varies between 0.14 m and 2.11 m, with a mean of 0.45 m across all the sites. Highest486

depth occurs at sites T02 and T03 while depth less than 0.25 m are found at 9 sites (S63,487

S53, S04, S37, S39, S03, W10, W20, and S42). The depth variability varies between 0.66%488

and 30.2% with a mean 6.6%. High depth uncertainty is observed at sites S56N, S24,489

and S18R.490

3.5 Uncertainty in hydro-biogeochemistry491

With the quantification of uncertainties for grain sizes, depth, and assumed typ-492

ical measurement uncertainty in velocity and nitrate concentration (see details in Sec-493

tion 2.5), Figure 8 shows all calculated values (blue cross dots), site-average values (black494

lines), and estimated uncertainty (yellow lines) for Manning’s n, friction factor f , streambed495

interstitial velocity magnitude σw, and streambed nitrate uptake velocity uf . It is ob-496

served that the Manning coefficient varies in a range 0.0245 – 0.0455 s·m−1/3 with low497

uncertainty range of 1.78% – 2.61% (Figure 8a). The friction factor, by contrast, spans498

over 2 order of magnitude (0.04 – 9) and its uncertainty has minimum, maximum, and499

average of 3.63%, 58.36%, and 15.65%, respectively. The highest uncertainty occurs at500

site S56N (Figure 8b yellow line). The interstitial velocity magnitude spans even larger501

ranges from 0.0038 to 2.31 m/day. However, its uncertainty range is lower than the fric-502

tion factor, which has minimum, maximum, and average of 22.84%, 32.11%, and 24.06%,503

respectively. The highest uncertainty is observed at site S56N (Figure 8c yellow line).504

The nitrate uptake velocity shows a lower variation range between 0.23 and 5.6 m/day.505

The highest uptake velocity occurs at site S04 while the lowest values occur at sites S42506

and S43 (Figure 8d black line). The highest uncertainty occurs at site 56N (Figure 8d507

yellow line), which is similar to those observed for friction factor and interstitial veloc-508

ity magnitude. Overall, the uptake velocity uncertainty is estimated as 11.28%, 31.23%,509
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and 13.88% in terms of the minimum, maximum, and average value. It is worth noting510

that the results for uptake velocity are based on US mean nitrate concentration (0.01511

mmol/L). Therefore, the uptake velocity variation range will change with nitrate con-512

centration at other sites, however, its uncertainty may be similar if the depth and grain513

size conditions are similar.514

4 Discussion515

4.1 Accuracy of grain sizes and hydro-biogeochemistry parameters516

To apply the present approach to other rivers, it is important to evaluate the ac-517

curacy of the YOLO-derived grain sizes and grain size-based HBGC estimations. As percentile-518

based grain sizes are derived from the grain size distribution (GSD) curve, the accuracy519

of GSD determines the accuracy of characteristic grain sizes, e.g., D50, D84, and D5. As520

demonstrated in Figure 4b and Figure 12, the pre-trained YOLO can reproduce the GSDs521

with high accuracy for 90% (18 out of 20) of the testing photos that represent 9 differ-522

ent streamed conditions. Under these diverse conditions, the median grain sizes calcu-523

lated from these GSDs demonstrate relative errors less than 10% (Figure 4d). These re-524

sults indicate that GSDs and subsequently derived characteristic grain sizes are accu-525

rate, at least, for the majority (90%) of the photos. Even though two (10%) testing pho-526

tos (Figure 12(f,r)) show larger error in GSD, the overall accuracy of all the testing pho-527

tos, as indicated by an R2 value of 0.98, an NSE value of 0.98, and a mean absolute rel-528

ative error of 6.65%, is still suitable for practical applications. A closer examination of529

the two photos (Figure 12(f,r)) with higher error shows that the error is likely caused530

by the unclear boundaries between the largest grains and ambient smaller sediments, due531

to light reflection and flocculation on wet grain surface and water surface. Future work532

may be needed to address these challenges to further improve grain size accuracy.533

With the YOLO-derived characteristic grain sizes, using the equations introduced534

in Section 2.4 to estimate the streambed HBGC parameters will undoubtedly bring er-535

rors, partially from the limitation of the equations themselves, and partially from the536

propagation of uncertainties in input parameters. Though it is challenging to measure537

HBGC at all study sites, we are able to identify measured or calibrated data for HBGC538

from existing literature, and can evaluate the accuracy of the photo-driven, AI-enabled,539

and theory-based estimations for HBGC. Firstly, the well-calibrated Manning’s coeffi-540
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cients from a two-dimensional hydraulic model for the Columbia River vary between 0.027541

– 0.038 s/m1/3 (Niehus et al., 2014), which is close to the range calculated from all pho-542

tos (Figure 6a: 0.0245 – 0.0455 s/m1/3) and site average value (Figure 6b: 0.0281 – 0.0373543

s/m1/3). Secondly, the flow resistance from 2,890 field measurements vary between 0.02544

and 200 for rivers with H/D84 < 200 (Rickenmann & Recking, 2011), which covers the545

range derived from all photos (Figure 6c: 0.04 – 9) and site-average values (Figure 6d:546

0.06 – 1.5). Meanwhile, the maximum likelihood of friction factor occurs at 0.18 (=10−0.75)547

(Figure 6c), which falls in the range of 0.13 – 0.32 computed from high-resolution com-548

putational fluid dynamics simulations for natural gravel bed rivers with a median grain549

size of 6 cm (Y. Chen et al., 2019), a value very close to the most likely median size (6.63550

cm) observed in our study area (Section 3.2). Regarding the interstitial velocity, direct551

field measurements are rare. However, by using a temperature-based data assimilation552

approach, K. Chen et al. (2023) were able to estimate the time series of vertical hydro-553

logical exchange flux at the Hanford Reach of the Columbia River. Using their data (Fig-554

ure S5a in K. Chen et al. (2023)), the interstitial velocity magnitude is estimated as 0.11555

m/day by calculating the ratio of the standard deviation of estimated hydrological ex-556

change flux time series to the subsurface porosity (0.43) reported in their work. As demon-557

strated in Section 3.3, the most likely value of interstitial velocity is around 0.07 m/day558

(Figure 6e). This suggests most of the estimated interstitial velocity magnitude falls in559

the observation range. For the streambed nitrate uptake velocity, if the stream nitrate560

concentration is at the US mean or median level, i.e., 0.01 mmol/L (Grant et al., 2018),561

the estimated uptake velocity is most likely at the scale of 1.2 m/day, which is between562

the median (0.6 m/day) and mean (2.5 m/day) uptake velocity measured at 72 sites in563

US (Grant et al., 2018). The above comparisons, therefore, suggest that photos can be564

used to make reasonable estimates of HBGC parameters, using AI and empirical equa-565

tions.566

4.2 Major sources of uncertainty567

Though Section 4.1 demonstrates the accuracy of estimating grain sizes and HBGC,568

it is still important to quantify potential uncertainties in these estimations. This is nec-569

essary to reduce measurement uncertainties in field work and evaluate their impacts on570

large-scale watershed models. With the use of explicit mathematical formulas, the un-571

certainties in grain sizes and HBGC can be mathematically accurately derived as shown572
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in Equations 5 - 9. From these equations, we can see that the uncertainty of YOLO model573

(rxp) and photo resolution (rSC) are propagated to the characteristic grain sizes (rx).574

As demonstrated in Section 3.4, the overall uncertainty for YOLO model is 6.65%, 10.65%,575

and 11.88% in predicting D50, D84, and D5 pixel sizes, while that for photo resolution576

is 2.32%. Therefore, the average compounding uncertainty (based on Equation 5) in D50,577

D84, and D5 are 7.33%, 11.11%, and 12.30%, respectively. Such grain size uncertainties578

are further propagated to Manning coefficient through rn = r84/6, which results in low579

uncertainty (mean value 1.85%) in estimating Manning coefficient. The uncertainty in580

friction factor is more complex because it depends on not only input parameter uncer-581

tainty (depth uncertainty rH and grain size uncertainty r84), but also the ratio of wa-582

ter depth to grain size. Despite such complexity, its uncertainty should vary between 1/3583

to 2 times of the compounding uncertainty of water depth and D84 (rHD84
) because the584

depth/grain size dependent term reduces to 1/3 and 2 for very deep (H ≫ D84) and585

shallow water (H ≪ D84). As the average uncertainty in depth and D84 are 6.6% (Sec-586

tion 3.4) and 11.11%, respectively, their compounding uncertainty is 12.92% (=
√

r2H + r284.587

Therefore, the overall uncertainty of friction factor should vary between 4.31% and 25.85%,588

which agrees with the average friction factor uncertainty of 15.65% as mentioned in Sec-589

tion 3.5. The uncertainty in interstitial velocity magnitude is simpler because it only de-590

pends on the uncertainties of three input parameters: velocity, grain size, and depth. In591

this work, as the velocity uncertainty is not available, we assume an uncertainty level592

of 10% based on previous work on velocity measurements with ADCPs (Mueller et al.,593

2007). As the overall uncertainty in grain size D50 and depth are 7.33% and 6.6%, the594

overall compounding uncertainty from the three input parameters is around 23.81% (com-595

puted from Equation 8) which is close to the average uncertainty (24.06%) calculated596

from Figure 8c (see Section 3.5).597

The uncertainty in nitrate uptake velocity is much more complex because it depends598

on the uncertainty in velocity, nitrate, and the friction factor that further depends on599

the values and uncertainties in depth and grain sizes. Such complexity can be verified600

by Figure 8d where large changes in uptake velocity uncertainty (yellow line) are observed.601

As the mean uncertainty in friction factor can be estimated by rmf = c0
√
r2H + r284 with602

c0 in the range 1/3 – 2, the mean uncertainty in uptake velocity (rmuf ) can be estimated603

by Equation 10. As the measured nitrate uptake uncertainty is not available, a 10% un-604

certainty is assumed based on previous work on nitrate measurement uncertainty (Jiang605
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et al., 2014). With the overall uncertainty for velocity (10%), depth (6.6%), pixel D84606

(10.65%), photo resolution (2.32%), and nitrate (10%), the overall uptake velocity un-607

certainty should fall in the range of rmd
uf and rms

uf with rmd
uf and rms

uf representing the mean608

characteristic uncertainty in deep and shallow rivers. Here the two terms are calculated609

by rmd
uf = rmuf (c0 = 1/3) and rms

uf = rmuf (c0 = 2) and their values are 11.34% and610

16.92%, respectively. As mentioned in Section 3.5, the average uncertainty in uptake ve-611

locity calculated from Figure 8d (yellow line) is 13.88%, which falls in the range of char-612

acteristic uncertainty. Therefore, the Equation 10 can be used as a fast estimate of the613

uncertainty in uptake velocity if the uncertainty of 5 inputs are available.614

Equation 10 also suggests that the final uncertainty depends on whether the con-615

stant c0 leans to the upper bound (2) or the lower bound (1/3), which is mainly deter-616

mined by the ratio of water depth to grain size D84. In shallow water (c0 = 2) condi-617

tion, the dominant sources of uncertainties will be velocity, depth, and YOLO-accuracy618

for D84 because c20/4 = 1 and c27 ≈ 0.24. In deep water (c0 = 1/3), the main sources619

will be velocity and nitrate concentration because c20/4 ≈ 0.03. Another important as-620

pect of such an equation is that the uncertainties in velocity, depth, and nitrate concen-621

tration represent clear physical meaning, while the uncertainties in pixel D84 and photo622

resolution are instead associated with AI model and photo induced uncertainties. With623

further improvements of AI training and photo resolution estimation, these nonphysi-624

cal uncertainties can likely be reduced to a negligible level (see details in Sections 4.3 -625

4.5), and Equation 10 can be reduced to Equation 11 that represents physics-driven un-626

certainty for uptake velocity. Furthermore, in very dynamic unsteady processes, the un-627

certainty terms, rU , rH , and rN , more represent the deviation of the actual physical pro-628

cesses away from their time average values, therefore, the compounding uncertainty in629

Equation 11 can be treated as a metric to quantify the magnitude of the dynamics in630

nitrate uptake processes.631

rmuf =

√
r2U +

c20
4
(r2H + r284p + r2SC) + c27r

2
N (10)632

633

rmp
uf =

√
r2U +

c20
4
r2H + c27r

2
N (11)634
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4.3 Effects of photo number635

To minimize non-physical uncertainties from the AI model, one way is to increase636

the number of training photos and labels. Figure 9 shows the effects of photo number637

on AI-training convergence and accuracy in predicting grain size distribution and char-638

acteristic size such as D50. Here the M0a, M0b, and M0c represent three models trained639

with 11 (5,272 labels), 21 (10,154 labels), and 36 (11,977 labels) photos (see photo lo-640

cations in Figure 1a and label preparation in Section 2.2). The results show that increas-641

ing the number of photos improves the accuracy of the YOLO model, with mAP@50 in-642

creasing from 0.54 to 0.64 and mAP@50-95 increasing from 0.28 to 0.34.643

Though the model metrics are improved, their accuracy improvements in predict-644

ing grain size distributions and D50 depend on the complexity of the streambed. For the645

dry bed with large grain size ratio (Figure 9b), all three models provide accurate pre-646

diction of the GSD though the M0c model (blue line) performs better in capturing smaller647

grains (<50% percentage finer) and M0a model (black line) performs better in captur-648

ing larger grains (>50% percentage finer) when compared to manual measurements (dashed649

red line). For submerged bed with static water (Figure 9c), the M0c model outperforms650

M0a and M0b for most of the sizes (<80% percentage finer).651

A systematic evaluation of the model accuracy is illustrated in Figure 9d-e in terms652

of the 1:1 plot between the model-predicted and measured D50 as well as the relative653

error of predicted D50. The result shows that the M0c model outperforms M0a and M0b654

in terms of higher R2 (0.98 vs 0.92) and closer alignment with the 1:1 line for all the points655

(Figure 9d). The closer alignment of model M0c can also be verified in Figure 9e where656

we can observe 18 points (black circle dots) in the range ± 10% for M0c while those for657

M0a and M0b are 13 points despite including the points outside but close to the range.658

The mean absolute relative error for M0a, M0b, and M0c, with values of 11.88%, 11.20%,659

and 6.65%, also point to the much better performance in M0c.660

With available manual labels, it is straightforward to evaluate the model’s accu-661

racy. However, it is impractical to manually draw grain sizes for all 1,999 photos used662

in groups 3 and 4 for prediction purpose (see Section 2.1). Nevertheless, we can evalu-663

ate the differences in predicted D50 between the higher accuracy model M0c and the lower664

quality models as shown in Figure 9f. Statistically, the bias and root-mean-square be-665

tween M0a and M0c are -0.26 and 2.85 cm; and that between M0b and M0c are -1.22666
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and 3.14 cm, respectively. As the most likely D50 is 6.63 cm (obtained from M0c model;667

Section 3.2) and 47% (821 out of 1743 points) of the grain sizes are less than such a value,668

the uncertainty induced by lower quality models is likely important. Therefore, it is crit-669

ical to train the YOLO with sufficient data in order to avoid systematic impacts on grain670

size quantification and subsequent HBGC estimation. In the context of grain size pre-671

diction, the number of sufficient data may be determined by checking if the mean ab-672

solute relative error between the model prediction and testing labels becomes smaller or673

comparable to typical uncertainties in field observations or other manual approaches.674

4.4 Effects of YOLO probability threshold675

Another factor that affects the YOLO accuracy is the selection of the probability676

threshold built in YOLO. A probability threshold is required because the YOLO uses677

a probability, in the range 0 – 1, to determine whether an object (grain, grass, water,678

etc.) in a photo is the target object (e.g., grain in this work). Under-estimation (small679

value) of the threshold will select too many objects that are not the target, but over-estimation680

(high value) will ignore objects that are desired. To identify a proper way of selecting681

the threshold, Figure 10 shows the variation of R2, mean error (ME), mean absolute er-682

ror (MAE), and the average detected grain number per photo between the prediction683

(from model M0c) and manual labels, with respect to probability threshold. The best684

probability threshold should maximize R2, minimize ME and MAE, and identify the num-685

ber of grain sizes closest to manual measurements. Following these rules, 0.35 is selected686

as the final probability threshold because R2 reaches maximum (Figure 10a), ME is near-687

est 0, MAE is at its minimum (Figure 10b), and the number of grains per photo is clos-688

est to the manually measured number (Figure 10c). Grains with a YOLO probability689

less than 0.35 are excluded from the grain size quantification. It is worth mentioning that690

selecting the probability threshold is a well constrained problem because simultaneously691

minimizing the ME and identifying the closest number of grains will likely lead to a unique692

value.693

4.5 Estimation of photo resolution694

How to properly estimate the photo resolution affects not only the accuracy of grain695

sizes, HBGC parameters, and their compounding uncertainties, but also the efficiency696

of data collection and post-processing. In general, photo resolution could be estimated697
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manually or automatically. The manual approach is easy for field implementation, but698

prone to human error and high data processing costs. In this work, we brought full quadrats699

and white boards with known sizes into the field, placed them on top of the grains, took700

photos, manually measured the pixel length of the known scales, and finally obtained the701

photo resolution, represented by millimeter per pixel (Figure 11a). The manual scale mea-702

surement process for 2,121 photos involves 8 person and costs around 200 hours of hu-703

man labor. Large errors occur due to the unevenness of the quadrats/boards, inaccu-704

rate recording of the pixel coordinates from the computer screen, and matching the co-705

ordinates to incorrect photo names. To mitigate such errors and reduce costs, an auto-706

mated scaling approach is desired. Figure 11 illustrates how an automated scaling could707

be implemented and whether such approaches could be comparable to the manual ap-708

proach in terms of the resolution and minimum detectable sizes.709

It is observed from Figure 11a that the photo resolution clusters at two ranges, i.e.,710

0.066 – 0.15 and 0.3 – 0.7 mm/pixel (see scale for each photo on Figure 7a and discus-711

sion in Section 3.4) and the detectable minimum grain sizes from all photos in groups712

3 and 4 vary between 0.82 mm and 21 mm. The typical reference scales for the higher713

(red star) and lower (blue diamond) photo resolution are visualized in Appendix Fig-714

ure 13(a,b), respectively. From these figures, we can see that the pixel lengths of the quadrat715

(white pipes) and strings (red lines) are skewed, which brings errors to resolution esti-716

mation and difficulties in manual measurements.717

To expedite the photo resolution estimation, a potential way is to train a scale AI718

model, e.g., model Msc (see details in Sections 2.1 – 2.2), and then use it to measure the719

pixel sizes of the reference scales automatically. The trained Msc model can detect 10720

different scales as mentioned in Section 2.2. However, the accuracy is low for all non-circular721

shaped reference scales because the YOLO can only use horizontally-placed rectangu-722

lar boxes (see green line bounding boxes in Appendix Figure 13a,b) to capture the ref-723

erence scales which could be non-horizontally placed and non-rectangular shape. Inter-724

estingly, all the scales with circular shape (e.g., green and blue caps) are accurately de-725

tected by the trained scale model at both submerged and dry conditions (Figure 13c,d).726

For those photos in group 9 (used for scale AI validation) with green/blue caps, we man-727

ually measured the photo resolution and then compared their values with those predicted728

by the scale AI model as shown in Figure 11b. The result verifies the visual observation729

in Figure 13c,d and provides an accuracy estimation of such an automated approach. For730
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the blue caps (3.7 cm diameter): the mean error (ME), mean absolute error (MAE), mean731

absolute relative error (MARE), minimum relative error, and maximum relative error732

are 0.0039 mm, 0.0065 mm, 3.2%, -5.3%, and 7.5%, respectively. For the green caps (2.5733

cm diameter), their values are -0.0006 mm, 0.002 mm, 1.1%, -2.1%, and 1.4%, respec-734

tively. Note that the photo resolution uncertainty from manual estimation varies between735

±10% and has an overall MARE of 2.32%. This means the cap-based automated scal-736

ing approach has a better overall accuracy and a much smaller uncertainty range than737

the manual approach. Meanwhile, the automated scaling can provide photo resolution738

of 0.12 – 0.35 mm/pixel, which is also better than the range obtained in the manual ap-739

proach. Overall, the cap-based automated scaling approach is an efficient alternative to740

the manual approach in terms of accuracy and resolution.741

Both the manual and automated approaches mentioned above are limited for lo-742

cations we have site accessibility and working permits where we are able to deploy ref-743

erence scales and use hand-held cameras. These limitations restrict the spatial scale we744

can observe. Overcoming such limitations necessitates the use of fast remote sensing tech-745

niques, such as drones, and requires an approach to reliably estimate the photo resolu-746

tion captured by the drone cameras. Here we show that the photo resolution can be es-747

timated based on camera height and camera-specific resolution-height relationships. Fig-748

ure 11c shows the variation of photo resolution (from manual measurements) with re-749

spect to height for 3 smartphones, i.e., iPhone 12, 13, and 14 Pro (see photo taken lo-750

cations in Section 2.1). These relationships provide an additional way to estimate photo751

resolution for both hand-held and unmanned devices if height information is available.752

4.6 Limitations753

Despite the promise of the proposed approach, limitations exist in photo collection,754

training data preparation, and HBGC empirical formulas. First of all, by using hand-755

held devices (e.g., smartphones, tablets, and cameras), the maximum spatial scale and756

the highest photo resolution are limited. In this work, the actual photo area is limited757

to be 2.81 m2 (minimum 0.03 and mean 0.26 m2; see details in data package (Y. Chen758

et al., 2023)). Such a limitation is mainly caused by how high a user can hold a cam-759

era. Also, the highest photo resolution is 0.05 mm/pixel and the minimum detectable760

grain size by YOLO is 0.45 mm. This means that sediments smaller than medium (0.25761

– 0.5 mm) or coarse (0.5 – 1 mm) sands may not be reliably detected. Due to these lim-762
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itations, a much large number of photos are required in order to fully characterize the763

stream grain sizes and HBGC at watershed scales. The second limitation is the high la-764

bor costs required to prepare the training data. Due to the diversity of natural streams,765

a large number of labels with high quality are needed for reliable prediction of grain sizes766

(see effects of insufficient training data in Section 4.3). In this work, we spent around767

200 hours to label around 17,000 grains to represent most of the stream conditions. De-768

spite such effort, the trained AI still has 20% – 25% relative error for 2 photos (Figure769

4d; Figure 9e; Figure 12(f,r)). More data and improved YOLO algorithms may be needed770

to better capture very large grains at the boundary of the photos.771

Additionally, there are limitations in the empirical formulas for HBGC estimations.772

Due to the low uncertainty and good agreement with calibrated values (Sections 4.1 –773

4.2), the Equations 1 and 6 are likely reliable for estimating Manning coefficient and its774

uncertainty. For friction factor, though it demonstrates large variations and uncertainty775

(Sections 3.3 – 3.5), the accuracy of Equation 2 has been comprehensively studied and776

was recognized as the second best formula for resistance estimation with depth and grain777

size as inputs (Powell, 2014). The Equation 3 for estimating streambed interstitial ve-778

locity magnitude is derived from 17 high-resolution CFD simulations driven by structure-779

from-motion reconstructed streambeds (Y. Chen et al., 2019, 2021). Though it success-780

fully estimates the most likely magnitude of interstitial velocity (Section 4.1), further sim-781

ulations or experiments with more streambed conditions may be needed to further eval-782

uate its applicability for diverse streambed conditions, especially the relationship between783

subsurface permeability and the 5th percentile grain size distribution. For uptake veloc-784

ity, the hydrogeology-biochemistry interaction efficiency term (ϕ in Equation 4) is fit-785

ted based on field measured data and thus its applicability in diverse streambed condi-786

tions also requires further evaluation.787

4.7 Future directions788

As discussed in Section 4.6, the scale and resolution are limited by hand-held ap-789

proaches. A natural solution is to replace hand-held devices with drones. By using drones790

it is possible to increase the number of photos and videos with much higher temporal791

resolution (e.g., 4K and 5.4K videos) and also increase spatial scales. This is primarily792

due to their high speed (e.g., Skydio 2 and DJI could fly upto 15 – 27 m/s). With avail-793

able high-resolution streambed data from drones and hand-held devices, an important794
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future direction is to directly integrate photo-derived high-resolution streambed data with795

pore-resolved surface-subsurface coupled models and use the simulated pressure, exchange796

velocity, and turbulence data to improve the empirical formulas for HBGC estimations.797

With both the improved formulas and high-resolution data, a further step is to integrate798

the photo-derived streambed grain sizes and HBGC parameters into watershed-scale mod-799

els aimed at predicting hydro-biogeochemical dynamics.800

5 Conclusions801

This work presents a workflow to extract the quantities, distributions, and uncer-802

tainties of streambed grain sizes and hydro-biogeochemistry from photos using YOLO803

and empirical formulas. The YOLO, an object detection AI model, is firstly trained with804

11,977 grain labels from 36 photos representing 9 stream environments, and demonstrates805

an accuracy of 0.98, 0.98, and 6.65% in terms of the coefficient of determination, the Nash–Sutcliffe806

efficiency, and mean absolute relative error in predicting the median grain size D50. The807

model is then used to predict the grain size distributions (GSDs) for 1,999 photos col-808

lected at 66 sites in the Yakima River Basin. Three characteristic grain sizes, including809

the 5th, 50th, and 84th percentiles of GSDs, are subsequently calculated and used to es-810

timate key hydro-biogeochemical parameters, including Manning coefficient, Darcy-Weisbach811

friction factor, interstitial velocity magnitude, and nitrate uptake velocity.812

From the data, the characteristic grain sizes, Manning coefficient, friction factor,813

interstitial velocity magnitude, and uptake velocity are found to follow log-normal, nor-814

mal, positively skewed, near log-normal, and negatively skewed distributions, respectively.815

Their most likely values, i.e., the mode of the distributions, are 6.63 cm (for D50), 0.0339816

s·m−1/3, 0.18, 0.07 m/day, and 1.2 m/day, respectively. And their average uncertainty817

or variability are reported as 7.33% (for D50), 1.85%, 15.65%, 24.06%, and 13.88%, re-818

spectively. The major sources of uncertainties in grain sizes and hydro-biogeochemical819

parameters are also identified. Specifically, the accuracy of YOLO is the main factor con-820

trolling grain size uncertainty. Both YOLO accuracy and stream depth control friction821

factor uncertainty. The interstitial velocity magnitude uncertainty is determined by both822

velocity uncertainty and YOLO accuracy. For the uptake velocity uncertainty, it is con-823

trolled by uncertainties in velocity, depth, and YOLO accuracy in shallow streams, while824

controlled by velocity and nitrate concentration uncertainties in deep rivers.825
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Further analyses of the effects of training data size on YOLO accuracy show that826

training data with an insufficient number of photos and stream environment types can827

cause considerable errors in extracting grain size distributions and the statistics of char-828

acteristic grain sizes. The selection of a proper class probability threshold is important829

for avoiding missing or incorrectly selecting individual grains as desired. The photo res-830

olution analyses demonstrate that the integration of circular caps with an AI model can831

provide an automated scaling approach better than the manual approach in terms of the832

accuracy and resolution. We also identified the limitations in photo resolution and spa-833

tial scale using hand-held cameras, the high labor costs in training data preparation, and834

the necessity to further improve the empirical formulas for hydro-biogeochemistry esti-835

mations. These limitations may be addressed in future research by integrating drone-836

derived high-resolution streambed data with pore-scale models, and incorporating photo-837

derived grain sizes and hydro-biogeochemistry parameters to watershed-scale models.838
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Appendix848

Derivations of uncertainty propagation equations849

As mentioned in Section 2.5, uncertainties occur in YOLO-predicted pixel grain850

sizes (Dxp), photo scale measurement (SC), and measurements for water depth (H), ve-851

locity (U), and nitrate concentration ([NO−
3 ]). These uncertainties can further propa-852

gate to real grain sizes (Dx) and HBGC parameters such as Manning coefficient (n), fric-853

tion factor (f), interstitial velocity magnitude (σw), and nitrate uptake velocity (uf ).854

All these uncertainty can be quantified by the ratio of the absolute uncertainty of these855

quantities to their representative values, for example, manually measured grain sizes and856

scales, spatial and/or temporal average of depth and velocity, and direct measurement857

of nitrate concentrations. If denoting the input parameters and subsequently derived grain858

sizes/HBGC parameters as xi (i = 1,2,...) and yj (j = 1,2,...), then the absolute uncer-859

tainty can be quantified by δxi and δyj and the relative uncertainty can be calculated860

as rxi = |δxi|/xi and ryj = |δyj |/yj , respectively. Statistically, such relative uncer-861

tainty can be mean absolute relative error (MARE), root-mean-square of the relative er-862

ror (RMSRE), and the standard deviation of the relative error (STDRE). Here we choose863

MARE as the reporting metric, however, it can be easily replaced by RMSRE and STDRE.864

In general, the target yj is a function of the input parameters xi, which has the form of865

yj = Fj(x1, ..., xi, ..., xn). Based on the multi-variable chain rule and the error propa-866

gation law (Ku, 1966), the uncertainty of yj can be computed through Equation 12.867

r2yj
=

(δyj)
2

y2j
= y−2

j

[ n∑
i=1

(
∂Fj

∂xi
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2 +
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∂xk
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]
(12)868

The last term in Equation 12 represents the correlation among input variable uncertainty869

and could be assumed as 0 if the uncertainty of input variables are independent to each870

other. With such an assumption, Equation 12 can be rewritten as Equation 13.871

ryj
=

√√√√y−2
j

n∑
i=1

(
∂Fj

∂xi
)2(δxi)2 =

√√√√ n∑
i=1

(
∂Fj

∂xi
)2
(δxi)2

x2
i

x2
i

y2j
=

√√√√ n∑
i=1

(∂Fj

∂xi

xi

yj

)2

r2xi
=

√√√√ n∑
i=1

s2xi
r2xi

(13)872

where
∂Fj

∂xi

xi

yj
is the uncertainty propagation scale of yj to input xi, and is denoted by873

sxi
for convenience. With such a general form of uncertainty propagation equation, we874

apply it for real grain size Dx and the four HBGC parameters in Equations 1 – 4.875

For Dx, it depends on two independent variables Dxp and SC. Its uncertainty prop-876

agation scales are both 1 for Dxp and SC, which results in Equation 5. For Manning co-877
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efficient, it depends on only one variable and its propagation scale is 1/6. For friction878

factor, if denoting H/D84 by HD84, then Equation 2 becomes a single variable function879

of HD84. Its uncertainty can be calculated by rf = |sHD84
|rHD84

with |sHD84
| represented880

by Equation 14.881

|sHD84
| = | ∂f

∂HD84

HD84

f
| =

6c21 + c22H
5/3
D84

3c21 + 3c22H
5/3
D84

= 2− 5

3

c22H
5/3
D84

c21 + c22H
5/3
D84

= 2− 5

3

1

c21/c
2
2H

−5/3
D84 + 1

= 2
{
1− 5

6

[
1 +

c21
c22

H
−5/3
D84

]−1
}
= 2

{
1− 5

6

[
1 +

c21
c22

(
H

D84
)−5/3

]−1
}

(14)

882

For the uncertainty term rHD84
, because HD84 = H/D84, its uncertainty propagation883

scales for H and D84 are both 1, therefore, rHD84
=

√
r2H + r284. Such an equation to-884

gether with Equation 14 leads to Equation 7.885

For interstitial velocity magnitude (Equation 3), both D5 and D50 are used as in-886

puts. However, these two variables are not independent. To avoid using both sizes as in-887

puts, we use a simplified D5 relationship, D5 = 0.23D50 (fitted from data; see Section888

3.2 and Figure 5d), to replace the YOLO-derived D5 for uncertainty quantification pur-889

pose. With such an simplification, Equation 3 is converted to Equation 15.890

σw =
0.232c3c5

2ν
U2D1−c4

50 Hc4 (15)891

The uncertainty propagation scales of Equation 15 with respect to inputs U , D50, and892

H were computed as 2, (1-c4), and c4, respectively. Combining these scales and the un-893

certainty of input parameters will lead to Equation 8.894

For nitrate uptake velocity, we rewrite Equation 4 in the form of Equation 16 to895

utilizing the uncertainty equation for friction factor. If we assume no correlation among896

the three inputs, then the uncertainty propagation scales of uf with respect to U , f , and897

[NO−
3 ] are 1, 1/2, and c7, respectively. Combining these scales and the uncertainty of898

input parameters leads to Equation 9.899

uf =
0.17Sc−2/3c6√

8
Uf1/2[NO−

3 ]
c7

(16)900
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Grain size distribution of 20 test photos901
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Figure captions1143

Figure 1. The locations, site-average median grain sizes, and labels of photos used for AI

training/validation/testing (a), prediction (b), scaling sensitivity and accuracy purposes (c), as

well as the number of photos at each site (d). The site locations of group 1 (green circles) are

invisible due to too close to group 0 and 2. Their locations are described with a character ”V”

following the site names in (a).

Figure 2. The labels of individual grains (a – i) and scales (j – o) in representative river

corridor environments.

Figure 3. The sketch of the YOLO version 5 network. Modified from Ultralytics (2020).

Figure 4. The convergence history of YOLO training (a) and the accuracy of YOLO pre-

dicted grain size distribution (b), median grain size D50 (c) as well as the relative error of D50

prediction (d). NSE in (a) is Nash–Sutcliffe efficiency.

Figure 5. The probability density distributions of D50 (a), D5 (b), D84 (c), and the relation-

ship between D5/D84 and D50 (d).

Figure 6. The probability density distribution of Manning coefficient (a), Darcy-weisbach

friction factor (b), fluctuation magnitude of vertical exchange flux (c), and total nitrate uptake

velocity attributed to microbes and turbulence mass transfer (d).
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Figure 7. The in-site variations (blue cross dots), site average values (horizontal black lines),

and estimated relative variations (yellow dot lines) of photo resolution (a), log2-transformed D50

(b), log2-transformed D84 (c), log2-transformed D5 (d), and water depth (e) for 32 sites. The

site name is reordered in an alphabetical order for convenience. The nearest region to the right of

site name represents the data within the site. The site-average value in (b), (c), and (d) are first

averaged over the actual data and then log2-transformed.

Figure 8. The in-site variations (blue cross dots), site average values (horizontal black

lines), and estimated relative variations (red dot lines) for Manning’s coefficient (a), log10-

transformed friction factor (b), log10-transformed streambed interstitial velocity magnitude

(c), and streambed nitrate uptake velocity (d). The site-average value in (b) and (c) are first

averaged over the actual data and then log10-transformed.

Figure 9. The effects on training photo number on YOLO precision (a), individual grain size

distributions (b,c), median grain size (d) and relative error (e) of testing photos, as well as the

prediction of median grain size of prediction photos (f). M0a, M0b, and M0c represent models

trained with 11, 21, and 36 photos.

Figure 10. The effects of probability threshold on model performance metrics R2 (a), mean

and mean absolute error (b), and the average number of grains detected by the model (c.)

Figure 11. The values of photo resolution and associated detected minimum grain sizes using

square quadrats and manual measurements of resolution (a), the comparison of automatically

predicted photo resolution to the manually measured values using circular caps (b), and the

relationship between photo resolution and camera height (c).

Figure 12. The comparison of grain size distribution between YOLO (M0c) prediction and

manual measurements for 20 testing photos.

Figure 13. The typical scales and YOLO (Msc) predicted scales for the full quadrat (a), 1/4

of the quadart (b), green and blue caps in flowing water (c), and blue cap in dry bed (d).
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Abstract20

Streambed grain sizes and hydro-biogeochemistry (HBGC) control river functions. How-21

ever, measuring their quantities, distributions, and uncertainties is challenging due to22

the diversity and heterogeneity of natural streams. This work presents a photo-driven,23

artificial intelligence (AI)-enabled, and theory-based workflow for extracting the quan-24

tities, distributions, and uncertainties of streambed grain sizes and HBGC parameters25

from photos. Specifically, we first trained You Only Look Once (YOLO), an object de-26

tection AI, using 11,977 grain labels from 36 photos collected from 9 different stream en-27

vironments. We demonstrated its accuracy with a coefficient of determination of 0.98,28

a Nash–Sutcliffe efficiency of 0.98, and a mean absolute relative error of 6.65% in pre-29

dicting the median grain size of 20 testing photos. The AI is then used to extract the30

grain size distributions and determine their characteristic grain sizes, including the 5th,31

50th, and 84th percentiles, for 1,999 photos taken at 66 sites. With these percentiles, the32

quantities, distributions, and uncertainties of HBGC parameters are further derived us-33

ing existing empirical formulas and our new uncertainty equations. From the data, the34

median grain size and HBGC parameters, including Manning’s coefficient, Darcy-Weisbach35

friction factor, interstitial velocity magnitude, and nitrate uptake velocity, are found to36

follow log-normal, normal, positively skewed, near log-normal, and negatively skewed dis-37

tributions, respectively. Their most likely values are 6.63 cm, 0.0339 s·m−1/3, 0.18, 0.0738

m/day, and 1.2 m/day, respectively. While their average uncertainty is 7.33%, 1.85%,39

15.65%, 24.06%, and 13.88%, respectively. Major uncertainty sources in grain sizes and40

their subsequent impact on HBGC are further studied.41

Plain Language Summary42

Streambed grain sizes control river hydro-biogeochemical function by modulating43

the resistance, speed of water exchange, and nutrient transport at water-sediment inter-44

face. Consequently, quantifying grain sizes and size-dependent hydro-biogeochemical pa-45

rameters is critical for predicting river’s function. In natural streams, measuring these46

sizes and parameters, however, is challenging because grain sizes vary from millimeters47

to a few meters, change from small creeks to big streams, and could be concealed by com-48

plex non-grain materials such as water, ice, mud, and grasses. All these factors make size49

measurements a time-consuming and high-uncertain task. We address these challenges50

by demonstrating a workflow that combines a computer vision artificial intelligence (AI),51
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smartphone photos, and new uncertainty quantification theories. The AI performs well52

across various sizes, locations, and stream environments as indicated by an accuracy met-53

ric of 0.98. We apply the AI to extract the grain sizes and their characteristic percentiles54

for 1,999 photos. These characteristic grain sizes are then input into existing and our55

new theories to derive the quantities, distributions, and uncertainties of hydro-biogeochemical56

parameters. The high accuracy of the AI and the success of extracting grain sizes and57

hydro-biogeochemical parameters demonstrate the potential to advance river science with58

computer vision AI and mobile devices.59
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1 Introduction60

Streambed grain size is a crucial factor controlling streambed hydro-biogeochemistry61

(HBGC). In hydrology, hydraulics, and geomorphology, streambed flow resistance, which62

is parameterized by the Manning coefficient or Darcy–Weisbach friction factor, is directly63

linked to characteristic grain sizes such as the median, 84th, and 90th percentiles of grain64

size distributions (Strickler, 1923; S. Lang et al., 2004; Chaudhry, 2008; Ferguson, 2010,65

2007; Rickenmann & Recking, 2011; Powell, 2014; Ferguson, 2022). In stream-groundwater66

interactions, the speed of water exchange through the porous sediment interface, quan-67

tified as streambed interstitial velocity, is controlled by pressure variation and subsur-68

face permeability, both of which depend on characteristic grain sizes of streambeds (Kenney69

et al., 1984; Shepherd, 1989; Elliott & Brooks, 1997; Y. Chen et al., 2021). In biogeo-70

chemistry, grain sizes exert direct control over turbulent mass transfer that determines71

the upper limit of the total nitrate uptake velocity from streams by benthic algae, mi-72

crobes, and turbulence (O’Connor & Hondzo, 2008; Mulholland et al., 2009; Grant et73

al., 2018). Despite the importance, measuring streambed grain sizes and size-dependent74

HBGC is challenging due to the multiscale and heterogeneous nature of grain size, the75

diversity of stream environments, and consequently the high labor costs associated with76

grain size quantification and HBGC estimation.77

Over the past seven decades, large efforts have been made to address the aforemen-78

tioned challenges. These efforts can be categorized into traditional sieve methods, grid-79

or area-based sediment counting or weighting methods (Wolman, 1954; Leopold, 1970;80

Kellerhals & Bray, 1971; Anastasi, 1984; Fehr, 1987; Fripp & Diplas, 1993), manual photo81

sieving method (Adams, 1979; Ibbeken & Schleyer, 1986), automated or semi-automated82

photo sieving methods (Butler et al., 2001; Graham et al., 2005; Detert & Weitbrecht,83

2012; Purinton & Bookhagen, 2019), image texture statistics methods (Carbonneau et84

al., 2004; Rubin, 2004; Verdú et al., 2005; Carbonneau et al., 2005a, 2005b; Buscombe85

& Masselink, 2009; Buscombe et al., 2010; Buscombe & Rubin, 2012; Buscombe, 2013;86

Black et al., 2014), machine learning (ML) methods (Z. Chen et al., 2020; Soloy et al.,87

2020; N. Lang et al., 2021; Ermilov et al., 2022), point cloud methods (Vázquez-Tarŕıo88

et al., 2017; Steer et al., 2022), and ML-based in-direct grain size regression methods (Gomez-89

Velez et al., 2015; Ren et al., 2020; Abeshu et al., 2022). The sieve method is the old-90

est and most reliable approach for fine sediment characterization, however, it is not fea-91

sible for field sampling of coarse sediments due to the requirement to transport a large92
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number of rocks to the laboratory for drying, sieving, and weighing (Leopold, 1970). Al-93

though the grid and area based methods avoid the need to move heavy rocks, they suf-94

fer from poor reproducibility along with significant time and labor costs, due to the ne-95

cessity of manually measuring and recording grain sizes in the field (Wohl et al., 1996;96

Bunte & Abt, 2001).97

The manual photo-sieve approach was therefore developed in the late 1970s to cir-98

cumvent the need for direct measurements of grains in the field, however, it remains time-99

consuming as it involves manual identification and digitization of grains from images (Graham100

et al., 2005). Consequently, automated and semi-automated techniques were developed.101

These approaches are based on a series of image processing algorithms such as convert-102

ing colored images to grayscale, applying simple or double thresholds, edge detection,103

bottom-hat transformation, and finally using watershed segmentation or k-means clus-104

tering to generate individual grains (Graham et al., 2005; Detert & Weitbrecht, 2012;105

Purinton & Bookhagen, 2019). These methods significantly reduce the time required to106

generate reliable grain size distributions, but usually need considerable time to adjust107

key parameters used in the image processing techniques (Graham et al., 2005; Purinton108

& Bookhagen, 2019). Instead of directly detecting individual grains, statistical methods109

approximate key grain size metrics, such as the median size, by relating grain sizes to110

characteristic quantities of image texture derived from auto-correlation (Rubin, 2004),111

one-dimensional (1D) and two-dimensional (2D) semi-variance (Carbonneau et al., 2004;112

Verdú et al., 2005), co-occurrence matrix-derived entropy (Carbonneau et al., 2005b),113

spectrum decomposition (Buscombe et al., 2010), wavelets (Buscombe & Rubin, 2012;114

Buscombe, 2013), and their combinations (Buscombe & Masselink, 2009; Black et al.,115

2014). Among these methods, the spectrum decomposition and the global wavelet ap-116

proaches are especially important because they provide good estimates for the median117

size (with root-mean-square relative errors of 9.5% to 16%) and the full grain size dis-118

tribution without the need for calibration (Buscombe et al., 2010; Buscombe, 2013). De-119

spite these successes, it is worth noting that mean sizes obtained from statistical meth-120

ods are conceptually similar but different from the sizes obtained from sieve or photo-121

sieve approaches.122

In addition to image processing and statistical methods, machine learning meth-123

ods implicitly learn the relationship between input images and desired targets using data124

and neural networks. Examples include learning median size and grain size distribution125
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(N. Lang et al., 2021), individual grains (Soloy et al., 2020; Z. Chen et al., 2020), and126

clustered grains (Ermilov et al., 2022) using convolutional neural networks (CNNs), Mask127

regional CNN (R-CNN) (He et al., 2017), and atrous separable convolution (L.-C. Chen128

et al., 2018), respectively. The Mask R-CNN is the most similar to the traditional sieve129

and photo-sieve methods, however, its accuracy, which stands at approximately a 50%130

detection rate in predicting overlapping rocks, needs further improvement before being131

deployed for practical applications (Soloy et al., 2020). All of the image-based methods132

mentioned above use images as input, therefore, the grain sizes are three dimensional (3D)-133

sediment projected 2D sizes. The point-cloud based grain size characterization is more134

similar to actual 3D grain sizes (Steer et al., 2022), but obtaining accurate 3D point cloud135

poses a larger challenge than grain size quantification. There also exist ML-based in-direct136

methods to estimate grain sizes by learning the relationship between median grain size137

and large-scale geomorphological and hydrological attributes such as elevation, slope, depth,138

velocity, etc. (Gomez-Velez et al., 2015; Ren et al., 2020; Abeshu et al., 2022). These es-139

timates, however, are not actual measurements and require careful validation against di-140

rect measurements before their use in large-scale models.141

In summary, past efforts have tackled challenges related to accuracy, reproducibil-142

ity, cost, multi scales, and heterogeneity. These methods are expected to yield satisfac-143

tory results when applied to streambeds primarily composed of granular sediments, such144

as sand, cobble, gravel, and boulders (Buscombe, 2013). However, they may encounter145

challenges in stream riparian zones where non-granular materials like grass, mud, ice,146

wood, and both static and flowing water overlie granular sediments. New methods that147

can detect sediments hidden beneath these non-granular and non-sediment objects are148

needed. Another aspect that is not well resolved by previous efforts is photo resolution149

estimation. Though photo resolution can be manually measured from reference scales,150

this process is usually time-consuming when dealing with a large number of images. There-151

fore, there is a need for fully automated photo resolution estimation method.152

Our first goal is to address these needs by developing two ML models, one for grain153

detection and one for scale detection, using the You Only Look Once (YOLO) version154

5 framework (Redmon et al., 2016) with 11,977 and 121 labels of grains and reference155

scales. The YOLO framework is selected because it is a general, real-time, object detec-156

tion algorithm (Redmon et al., 2016) with the capability to detect hidden grains cov-157

ered by non-sediment objects with much higher detection rate, compared to regional CNN158
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approach (He et al., 2017; Soloy et al., 2020). Our second goal is to estimate streambed159

hydro-biogeochemical parameters based on YOLO-derived characteristic grain sizes and160

empirical equations for Manning coefficient (Rickenmann & Recking, 2011), Darcy–Weisbach161

friction factor (Ferguson, 2007, 2022), streambed interstitial velocity magnitude (Kenney162

et al., 1984; Y. Chen et al., 2021), and nitrate uptake velocity (Grant et al., 2018). Our163

third goal is to quantify uncertainties in both characteristic grain sizes and their prop-164

agation to the estimated HBGC parameters as well as the dominant sources of uncer-165

tainties in grain sizes and HBGC.166

To achieve these goals, the paper is organized as follows: Section 2 introduces the167

study site, photo collection and grouping, training label generation, YOLO framework168

setup, as well as the equations used for HBGC and uncertainty calculation; Section 3 eval-169

uates the YOLO model accuracy and reports the distributions and uncertainties of grain170

sizes and HBGC parameters; a thorough discussion covering the accuracy of grain sizes171

and HBGC, their major sources of uncertainty, the effects of photo number and prob-172

ability threshold on model accuracy, potential automated photo resolution estimation173

strategy, as well as the limitations and future directions, is included in Section 4; the ma-174

jor results and implications are summarized in Section 5.175

2 Methods176

2.1 Photo acquisition and grouping177

We obtained 2,121 photos from 75 sites at the Yakima River Basin (YRB) and the178

Columbia River section near the Port of Benton (Figure 1d) during 2021 – 2023. In 2021,179

we collected 383 photos from 47 sites; in 2022, we obtained 1,688 photos across 41 sites;180

in 2023, we took 50 photos from 3 sites near the Boat Ramp (BR) of the Leslie Groves181

Park. 6 camera types were used, including Samsung’s SM-T500 tablet and Apple’s iPhone182

7, 12, 13, 13 Pro Max, and 14 Pro.183

From these photos, we selected 61 photos as our training (36), validation (5), and184

testing (20) datasets. These datasets are mutually exclusive and labeled as 0, 1, and 2,185

respectively, for convenience (Figure 1a). To study the effects of the number of photos186

on model accuracy, we further divided the 36 training photos into three mutually inclu-187

sive groups, each having 11, 21, and 36 photos, respectively. For convenience, models trained188

with these groups are termed as model M0a, M0b, and M0c, respectively. In addition,189
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we trained a fourth model for scaling, termed as model Msc, to convert pixel size to real-190

world size using 50 photos (23 photos are from the 2,121 photos).191

The 4 trained AI models were applied to predict both individual grains and ref-192

erence scales for 2,143 photos. These photos were divided into 7 groups, labeled as 3 to193

9, and each had 144, 1855, 24, 20, 21, 21, and 58 photos, respectively. Their roles are194

described as follows: the photos in group 3 and 4 are used to predict grain sizes of pho-195

tos obtained in 2021 and 2022 (Figure 1b); the 20 photos in group 6 (same photos as group196

2 in Figure 1a) are used to the test the accuracy of model M0a – M0c for predicting grain197

sizes; the photos in groups 5 (from iPhone 12), 7 (iPhone 13), 8 (iPhone 14 Pro), and198

9 (Figure 1c) are used to evaluate the sensitivity of grain sizes and scaling to camera types199

and height as well as the accuracy of model Msc in predicting scales, respectively. The200

number of photos taken at each site is visualized in Figure 1d for reference. Details of201

site coordinates, grain sizes, and photo number can be found from our accompanying data202

package (Y. Chen et al., 2023).203

2.2 Label generation204

We manually generated labels (see label definition in Section 2.3) for both the grain205

detection AI models (M0a - M0c) and the scale detection AI model (Msc). For the grain206

detection models, we manually generated 16,951 labels from 61 photos, resulting in an207

average of 278 labels per photo (with a minimum of 19 and a maximum of 3,315). Out208

of these labels, 5,272 were used for training M0a, 10,154 for M0b, and 11,977 for M0c,209

respectively. For the scale detection model, we generated 121 labels from 50 photos rep-210

resenting 10 types of scales. These photos represent diverse flow, vegetation, and geo-211

logical conditions in natural streams. 9 photos for the grain detection models and 6 pho-212

tos for the scale detection model are illustrated in Figure 2 to visualize the environmen-213

tal conditions and manually-generated labels (green dots bounded boxes). Photos a to214

i represent the following 9 conditions: dry bed, dry bed with high grain size ratio, dry215

bed with grass, dry bed with mud, partial-dry partial-wet mud, dry bed with ice, sub-216

merged bed with static water, submerged bed with flowing water and waves, hybrid rock/water/grass217

bed. Photos j to o represent 10 reference scales with known sizes, including, yellow tape218

1, yellow tape 2, blue cap, green cap, tape measure, yellow paper board, quadrat net,219

color tapes, full quadrat, and white paper board. Their sizes are 7.05 cm × 1.7 cm, 7.1220

cm × 2 cm, 3.7 cm, 2.5 cm, readable from tape measure, 11 cm × 11 cm, 20 cm × 20221
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cm, 2.54 cm in width, 80 cm × 80 cm, and 30.48 cm × 22.86 cm, respectively. The rest222

52 photos for grain detection AI models and 44 photos for scale detection AI model and223

their labels can be found in the accompanying data package (Y. Chen et al., 2023).224

2.3 YOLO framework225

You Only Look Once (YOLO) is an object detection AI algorithm that is widely226

used for computer vision tasks (Redmon et al., 2016). In this study, the fifth major up-227

dated version was used and called YOLOv5. The Python implementation of YOLOv5228

algorithm was open-sourced in 2020 by Ultralytics on GitHub (Ultralytics, 2020). YOLOv5229

is a state-of-the-art real-time object detection system that is faster and more accurate230

than its predecessors.231

A brief sketch of the YOLOv5 network flowchart is shown in Figure 3, which is sum-232

marized from GitHub (Ultralytics, 2020). Generally, it is constructed by a series of con-233

volutional layers (Conv in Figure 3) (W. Zhang et al., 1990), modified bottleneck cross234

stage partial network layers (C3 in Figure 3) (Wang et al., 2020), a spatial pyramid pooling-235

fast layer (SPPF in Figure 3) (He et al., 2014), concatenate layers (Concat in Figure 3),236

and up-sampling layers. The fractional numbers, such as 1/2, 1/4, 1/8 and so on, in Fig-237

ure 3 represent the relative image resolutions to the input image. For the convolutional238

layers in Figure 3, Chi, Cho, k, and s stand for input image’s number of channels, out-239

put image’s number of channels, kernel size, and stride size, respectively. For the C3 layer,240

it reduces the number of convolutional layers from 4 to 3 in bottleneck cross stage par-241

tial network, which is originally connected to the output of bottleneck block (Wang et242

al., 2020). The value n in Figure 3 stands for the number of bottleneck blocks in C3 layer.243

The spatial pyramid pooling-fast layer is a modified spatial pyramid pooling layer specif-244

ically designed for YOLOv5 with higher computational efficiency (Ultralytics, 2020). It245

concatenates several MaxPool layers (PyTorch, 2022) with different sizes for resolving246

the difficulties of detecting objects with various sizes.247

The final outputs of YOLO, also called as labels, are the centroid (x and y in Fig-248

ure 3), width (w in Figure 3), height (h in Figure 3), and class (c in Figure 3) of the an-249

chor box and the probability of the detected object in each class. The centroid and sizes250

of the anchor box are all normalized by the dimension of the original input image. In251

this study, we have 10 classes for reference scales (Section 2.2) and only one class for grain.252
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The network input is the image and the outputs are the corresponding labels. To avoid253

over-fitting, 5 labeled images were used for validation. During training, the optimizer254

does not consider the loss between the prediction of the validation images and true la-255

bels. The loss for the validation images is only used as a training termination criterion.256

With the predicted width and height of individual grains, we define the diagonal length257

of the grain, i.e., Dp =
√
w2 + h2, as the final grain size in pixel length, which can be258

converted to real size (D) by multiplying it with the estimated photo resolution.259

2.4 Streambed hydro-biogeochemistry estimation equations260

With given water depth (H) and flow velocity (U) as well as the photo-derived char-261

acteristic grain sizes, e.g., 5th (D5), 50th (D50), and 84th (D84) percentiles of grain size262

distributions, key streambed hydro-biogeochemical parameters, including Manning’s co-263

efficient (n), Darcy–Weisbach friction factor (f), shear velocity (uτ ), streambed inter-264

stitial velocity magnitude (σw), and streambed nitrate uptake velocity (uf ) can be es-265

timated by Equations 1 (Rickenmann & Recking, 2011), 2 (Ferguson, 2007, 2022), 3 (Y. Chen266

et al., 2021; Kenney et al., 1984), and 4 (Grant et al., 2018), respectively. The water depth267

is a reach average depth, which was estimated using a wading-based depth transect pro-268

cedure. The details of such a procedure can be found in the field protocol described in269

our data package published in US DOE’s Environmental System Science Data Infras-270

tructure for a Virtual Ecosystem (ESS-DIVE) (Delgado et al., 2023). The velocity is the271

average velocity for August between February 1979 and December 2020, which was com-272

puted by Kaufman et al. (2023) from the National Oceanic and Atmospheric Adminis-273

tration’s National Water Model version 2.1 (NOAA, 2023).274

n =
D

1/6
84

20.4
(1)275

276 √
8

f
=

U

uτ
=

c1c2H/D84√
c21 + c22(H/D84)5/3

(2)277

278

σw = c3
gkI
ν

U2

gD50
(
H

D50
)c4 , kI = c5D

2
5 (3)279

280

uf = kmϕ, km = 0.17uτSc
−2/3, Sc =

ν

Dm
, ϕ = c6[NO−

3 ]
c7

(4)281

The constants used in the above equations are: c1 = 6.5, c2 = 2.5 (Ferguson, 2022);282

c3 = 0.88 (range 0.62 – 1.11), c4 = -0.66 (Y. Chen et al., 2021); c5 = 1×10−9 (Kenney283

et al., 1984); c6 = 0.0032, c7 = -0.49 (Grant et al., 2018); gravity acceleration g = 9.81284

m/s2, water viscosity ν = 1 × 10−6 m2/s, nitrate molecular diffusion in water Dm =285
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1.7×10−9 m2/s (Picioreanu et al., 1997). Non-constant parameters include subsurface286

intrinsic permeability kI (m2), hydrogeology-biochemistry interaction efficiency ϕ, Schmidt287

number Sc, and stream nitrate concentration [NO−
3 ] (mol/m3, equivalent to 62 mg/L).288

Our field survey in 2021 shows that the nitrate concentration in YRB varies between 0.0005289

and 0.1 with a mean of 0.008 mol/m3 (Grieger et al., 2022). In 2022, stream nitrate con-290

centrations are not available for all locations where depth were measured, therefore, we291

select three values, 0.0001, 0.01, and 1 mol/m3, to represent the typical magnitudes re-292

ported at the YRB and in the literature (Mulholland et al., 2008; Grant et al., 2018; X. Zhang293

et al., 2021; Sadayappan et al., 2022).294

2.5 Uncertainty quantification for grain sizes and hydro-biogeochemistry295

Uncertainties occur in grain detection, scaling, and the propagation from grain sizes296

to hydro-biogeochemical parameter estimations. For any given photo, the real grain size297

Dx (x = 5, 50, and 84) are calculated by Dx = DxpSC with the Dxp and SC denot-298

ing the grain size measured by pixel number and the photo resolution measured by real299

size per pixel. The Dxp is determined by YOLO and its uncertainty rxp, quantified by300

the average absolute relative error of testing photos, can be directly estimated by com-301

paring the YOLO-predicted and manually measured grain sizes. For photo-resolution302

uncertainty, we manually draw two straight lines for all photos following the scales show-303

ing in Figure 2 and then calculate the relative error (rSC) between the photo resolution304

calculated from the two lines. With the estimation of pixel-based grain size uncertainty305

and scale uncertainty, the real-world grain size uncertainty and its propagation to HBGC306

parameters can be estimated by Equations 5 – 9 based on the law of propagation of un-307

certainty (Ku, 1966). The detailed mathematical derivation of these equations can be308

found in Appendix. The rH is the mean absolute relative difference between the mea-309

sured water depth (H) and its time-average value over the observation period (around310

1 month in August 2022). The uncertainty measurement for flow velocity (rU ) and stream311

nitrate concentration (rN ) are not available for the study sites. However, existing liter-312

ature report that velocity measurement uncertainty by Acoustic Doppler current pro-313

filers (ADCPs) could range 1% to 25% depending on the distance away from the AD-314

CPs (Mueller et al., 2007) and stream nitrate concentration uncertainty is 12% on av-315

erage across 7 watersheds in US (Jiang et al., 2014). Therefore, we choose 10% as a rough316
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estimation of the typical measurement uncertainty for stream velocity and nitrate con-317

centration in this work.318

rx =
√
rxp2 + rSC

2, x = 5, 50, 84 (5)319

320

rn = r84/6 (6)321

322

rf = 2{1− 5

6
[1 +

c21
c22

(
H

D84
)−5/3]−1}

√
r2H + r284 (7)323

324

rw =
√
4r2U + (1− c4)2r250 + c24r

2
H (8)325

326

ruf =
√

r2U + r2f/4 + c27r
2
N (9)327

3 Results328

3.1 YOLO performance329

We evaluate the performance of YOLO through four metrics: the mean average pre-330

cision (mAP) of the YOLO training, the accuracy of grain size distribution, median grain331

sizes, and their relative error (Figure 4). The mAP@50 and mAP@50-95 are two typ-332

ical metrics used to quantify the accuracy of object detection AI algorithm. The sym-333

bol @50 means the prediction is correct if the intersection over union (IoU) larger than334

50%. The IoU stands for the relative overlapping area between the predicted object bound-335

ing box and the ground truth object bounding box. Similarly, the symbol @50-95 means336

the prediction is correct if the IoU larger than 50% to 95% with 5% increase interval.337

Additional 5 photos with 954 labeled grains are used as validation data set. The accu-338

racy of the prediction on the 5 validation photos are not seen by the optimizer, and it339

is only used to track the model accuracy during training and helps on determination of340

the best model, as shown in Figure 4(a). The weighted mAP (10% of mAP@50 and 90%341

of mAP@50-95) is used as final accuracy metric, and it reaches the maximum at 968 steps342

(Figure 4a: vertical dashed line). The corresponding mAP@50 and mAP@50-95 at this343

step is 0.64 and 0.34, respectively (Figure 4a: horizontal dashed lines). After 968 train-344

ing steps, both mAP@50 and mAP@50-95 decrease, with no indication that the accu-345

racy can increase within 20,000 training steps. Therefore, the trained model, which is346

used for all the results in the study, is the model stored at 968 training steps. For Mi-347

crosoft Common Objects in Context (COCO) dataset, a commonly used benchmark dataset348

for object detection AI, typical values for mAP@50 and mAP@50-95 fall in the range349
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0.46 – 0.73 and 0.28 – 0.56, respectively (Ultralytics, 2020). In our case, the shape, sizes,350

color, transparency, lighting, and environmental conditions are more complex than those351

photos used in COCO (Figure 2), however, the model still achieves 0.64 and 0.34 val-352

ues for mAP@50 and mAP@50-95 on the validation photos, respectively (Figure 4a). This353

means the YOLO training achieved a good performance.354

To illustrate the model’s capability in extracting grain size distributions (GSDs),355

Figure 4b shows a comparison of the area-weighted GSD between the model prediction356

(blue line) and manual labels (red line). The cumulative probability in calculated by Pi =357 ∑
Ai(D ≤ Di)/

∑
Ai with Ai and Di denoting the area and size of each grain. The358

minimum difference between the two lines demonstrates that the area-weighted GSD is359

accurately reproduced by the trained model. Similar comparisons for the remaining 19360

photos used for testing are not included here for simplicity, however, can be found in Fig-361

ure 12. These comparisons demonstrate that the GSDs can be well reproduced by YOLO362

algorithms for most (18 of 20) photos.363

Based on the GSD curves, the median grain size D50, defined as the grain size cor-364

responding to 50% finer grain sizes, can be calculated from the GSDs of the 20 testing365

photos. Figure 4c shows a one-to-one plot between the predicted D50 and manually es-366

timated D50. The result shows that YOLO predicts D50 with an accuracy of 0.98, 0.98,367

-0.037 cm, and 0.91 cm in terms of R-squared, Nash–Sutcliffe efficiency (NSE), mean er-368

ror, and root-mean-square between the prediction and manual measurements. To fur-369

ther examine such accuracy, Figure 4d shows the relative error between the predicted370

D50 and manually estimated D50. The result shows 90% (18 dots) of the data points371

demonstrate a relative error less than 10% and 10% (2 dots) show a relative error larger372

than 20%. On average, the mean absolute relative error is 6.65% for the 20 testing pho-373

tos. The result also shows the relative error does not correlate with the grain size, which374

suggests the accuracy of YOLO is stable for both small and large grains.375

3.2 Characteristic grain size distributions376

With the confirmed high accuracy of the YOLO model, we apply the model to ex-377

tract the grain size distributions (GSDs) from 1,999 photos (66 sites) in groups 3 and378

4, and then calculate the characteristic grain sizes, e.g., D5, D50, and D84, from the GSDs.379

As valid water depth measurements are available at only 41 sites, Figure 5 shows only380
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the results of characteristic grain sizes from 1,745 photos obtained at the 41 sites to make381

a consistent evaluation for HBGC parameters in Section 3.3. In general, the three grain382

size distributions follow log-normal distributions (black solid lines in Figure 5a-c are fit-383

ted Gaussian distributions) with the log2-transformed mean of 4.15, 6.05, 6.75 and stan-384

dard deviation of 0.86, 0.87, and 0.81 for D5, D50, and D84, respectively. This means385

the most likely sizes of D5, D50, and D84 are around 1.78 cm, 6.63 cm, and 10.76 cm,386

respectively. As D5, D50, and D84 represent different importance of grain sizes in con-387

trolling HBGC, Figure 5d further shows the relationship between D5 and D50 and that388

between D84 and D50. The result shows that D5 and D84 increase linearly with D50,389

although there are some large residuals.390

3.3 Streambed hydro-biogeochemistry distributions391

With the photo-derived characteristic grain sizes (D5, D50, and D84), measured392

water depth, extracted velocity, and assumed typical stream nitrate concentration (see393

details in Section 2.4), the HBGC parameters can be estimated using Equations 1 - 4.394

To mitigate the uncertainty resulting from an insufficient number of photos, we show re-395

sults only from sites with more than 3 photos. Consequently, we are showing the results396

from 1,737 photos at 37 sites (refer to site locations in Figure 6b).397

Overall, HBGC parameters demonstrate different distribution patterns compared398

to grain sizes. Specifically, the Manning coefficient follows a normal distribution (black399

line in Figure 6a) with a mean and standard deviation of 0.0339 and 0.0031 s·m−1/3, re-400

spectively. The log10-transformed friction factor, log10(f), shows a positively skewed dis-401

tribution (Figure 6c) with its skewness (defined as the adjusted Fisher-Pearson skewness402

coefficient), mean, median, mode, and standard deviation of 0.43, -0.54, -0.58, -0.75, and403

0.37, respectively. This suggests the friction factor has the most likely value of 0.18 (=10−0.75),404

which falls in the range of 0.13 – 0.32 calculated from high-resolution computational fluid405

dynamics simulations for natural gravel bed rivers with median grain size of 6 cm (Y. Chen406

et al., 2019). The log10-transformed streambed interstitial velocity magnitude, log10(σw),407

follows a near-Gaussian distribution (Figure 6e) with skewness, mean, median, mode,408

and standard deviation of -0.03, -1.07, -1.08, -1.15, and 0.52, respectively. This suggests409

the streambed interstitial velocity magnitude has a high likelihood at the scale of 0.07410

(=10−1.15) m/day for the study region, which is close to the value (0.11 m/day) estimated411

by a temperature-based data assimilation approach applied at the Hanford reach of the412
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Columbia River (K. Chen et al., 2023). The distribution of the nitrate uptake velocity413

is more complex. Firstly, the distribution is strongly affected by the concentration of stream414

nitrate. It may decrease 3 orders of magnitude if the nitrate concentration increases from415

1e-4 mmol/L (=0.0062 mg/L) (Figure 6g blue histogram) to 1 mmol/L (=62 mg/L) (Fig-416

ure 6g gold histogram). The median and mean values of stream nitrate concentration417

were reported at the order of 1e-2 mmol/L (=0.62 mg/L) over 72 agriculture and urban418

sites in US (Grant et al., 2018). The mean nitrate concentration in the YRB was also419

reported at a similar magnitude of 0.008 mmol/L (Grieger et al., 2022). Therefore, it420

is reasonable to use 0.01 mmol/L as the most likely magnitude of nitrate concentration421

in US. Using such a concentration, the nitrate uptake velocity varies between 0.23 and422

5.6 m/day and shows a negatively skewed distribution with the skewness, mean, median,423

mode, and standard deviation of -0.23, 0.013, 0.036, 0.075, and 0.22, respectively (Fig-424

ure 6g gold histogram). This means the nitrate uptake velocity has a high chance to be425

1.2 (=100.075) m/day with a US median or mean nitrate conditions. This value is in the426

range between measured median (0.6 m/day) and mean (2.5 m/day) uptake velocity across427

the US (Grant et al., 2018).428

The left panels of Figure 6 illustrate the overall distributions of HBGC parame-429

ters but not their spatial variations. To visualize the spatial variations, the right pan-430

els show the spatial distributions of site average HBGC parameters. The number of pho-431

tos at each site can be found on Figure 1d. Figure 6b shows that the site average Man-432

ning coefficient mostly clusters at red (0.035 - 0.0375 s·m−1/3) and light red (0.0325 -433

0.035 s·m−1/3), which means the site average Manning coefficient has a low spatial het-434

erogeneity. Such a behavior can also be observed in Figure 8a where the site average value435

(black line) of Manning coefficient shows small variation across the sites. In contrast, the436

site-average friction factor exhibits greater heterogeneity, as indicated by the diverse range437

of colors in Figure 6d. The highest log10-transformed friction factor values (0 – 0.25) oc-438

cur at site S37, S39, and W10, followed by 8 sites (W20, S04, S03, S42, S10, S53, S56N,439

and S48R) in the group -0.25 – 0. The lowest values (yellow dots at group -1 – -0.75)440

occur at S02, T02, T03, and S23, and the rest of the data points share similar colors. This441

behavior can also be observed in Figure 8b (see black line). Different from the friction442

factor, the log10-transformed interstitial velocity magnitude has maximum values at sites443

S04, S58, S18R, T05P, S50P, and S56N (Figures 6f dark red and 8c black line), followed444

by the value group -0.75 – -0.25 (red) at 5 sites (S48R, S10, S01, W10, and S31). The445

–15–



manuscript submitted to Water Resources Research

lowest interstitial velocity occurs at the sites S42 and S43 with a value of around -2 (Fig-446

ures 6f yellow and 8c black line). Compared to the friction factor and interstitial veloc-447

ity, the uptake velocity distribution demonstrates obvious hot spot at site S04 (dark red)448

and cold spots (yellow) at sites T02, S41R, S42, and S43 with a value of 2.8 m/day and449

a range of 0.3 – 0.5 m/day, respectively. Interestingly, the cold spots are all within or450

downstream of the Yakama Indian Reservation region. It is also interesting to mention451

that the hot (S04) and cold (S42 and S43) spots in nitrate uptake velocity are also the452

hot and cold spots in the interstitial velocity. This suggests the hot/cold spots in den-453

itrification are likely affected by the water exchange between stream and groundwater454

in the YRB. This is consistent with the work of Son et al. (2022) that shows hyporheic455

exchange flux is the most important factor controlling nitrate removal based on data from456

basin-scale numerical simulations and random forest relative importance analyses.457

3.4 Uncertainty in characteristic grain sizes458

With the uncertainty quantification equations introduced in Section 2.5, the un-459

certainty or variability associated with manually-measured photo resolution, YOLO-derived460

grain sizes, and water depth observations can be estimated for each photo. Figure 7a shows461

the manually-measured photo resolution (blue cross) and the relative error rSC (yellow462

line) associated with each resolution. The results shows that around 90% of the photos463

have a resolution of around 0.1 mm/pixel (corresponding to 1/4 of the quadrat in Fig-464

ure 2n, o), and 10% of the photos have a resolution between 0.2 and 0.7 mm/pixel (cor-465

responding to the full quadrat in Figure 2n, o). The relative error for these scales, how-466

ever, are mostly in the range -10% – 10% and have an overall mean and mean absolute467

error of 0.13% and 2.3%, respectively. This means the photo resolution estimation has468

no systematic bias and the manual measurement uncertainty is low enough for further469

grain size quantification.470

With the photo resolution uncertainty (rSC), the uncertainty in D50, D84, and D5471

can be calculated by Equation 5 with the YOLO-associated grain size uncertainty r50p472

(=6.65%), r84p (=10.65%), and r5p (=11.88%) directly estimated from the average ab-473

solute relative error of testing photos as discussed in Section 3.1. Figures 7b,c,d show474

the combined effects of photo resolution uncertainty and YOLO accuracy uncertainty475

for D50, D84, and D5, respectively. The result shows the uncertainty of D50 varies be-476

tween 6.65% and 13.53% with a mean value of 7.33%. For D84 uncertainty, its minimum,477
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maximum, and mean are 10.65%, 15.88%, and 11.11%, respectively. For D5 uncertainty,478

these values are 11.88%, 16.73%, and 12.30%, respectively.479

The water depth is estimated every 1 minute during July 28 and August 31 2022480

(see details in data package (Delgado et al., 2023)). With these data, the depth (H) is481

calculated as the time averaged depth over the whole measurement period. The uncer-482

tainty or variability (rH) of such a depth is calculated as the average absolute relative483

difference between the actual depth and the calculated mean depth. Figure 7e shows the484

variations of the mean depth and its variability at each site. The result shows the depth485

varies between 0.14 m and 2.11 m, with a mean of 0.45 m across all the sites. Highest486

depth occurs at sites T02 and T03 while depth less than 0.25 m are found at 9 sites (S63,487

S53, S04, S37, S39, S03, W10, W20, and S42). The depth variability varies between 0.66%488

and 30.2% with a mean 6.6%. High depth uncertainty is observed at sites S56N, S24,489

and S18R.490

3.5 Uncertainty in hydro-biogeochemistry491

With the quantification of uncertainties for grain sizes, depth, and assumed typ-492

ical measurement uncertainty in velocity and nitrate concentration (see details in Sec-493

tion 2.5), Figure 8 shows all calculated values (blue cross dots), site-average values (black494

lines), and estimated uncertainty (yellow lines) for Manning’s n, friction factor f , streambed495

interstitial velocity magnitude σw, and streambed nitrate uptake velocity uf . It is ob-496

served that the Manning coefficient varies in a range 0.0245 – 0.0455 s·m−1/3 with low497

uncertainty range of 1.78% – 2.61% (Figure 8a). The friction factor, by contrast, spans498

over 2 order of magnitude (0.04 – 9) and its uncertainty has minimum, maximum, and499

average of 3.63%, 58.36%, and 15.65%, respectively. The highest uncertainty occurs at500

site S56N (Figure 8b yellow line). The interstitial velocity magnitude spans even larger501

ranges from 0.0038 to 2.31 m/day. However, its uncertainty range is lower than the fric-502

tion factor, which has minimum, maximum, and average of 22.84%, 32.11%, and 24.06%,503

respectively. The highest uncertainty is observed at site S56N (Figure 8c yellow line).504

The nitrate uptake velocity shows a lower variation range between 0.23 and 5.6 m/day.505

The highest uptake velocity occurs at site S04 while the lowest values occur at sites S42506

and S43 (Figure 8d black line). The highest uncertainty occurs at site 56N (Figure 8d507

yellow line), which is similar to those observed for friction factor and interstitial veloc-508

ity magnitude. Overall, the uptake velocity uncertainty is estimated as 11.28%, 31.23%,509
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and 13.88% in terms of the minimum, maximum, and average value. It is worth noting510

that the results for uptake velocity are based on US mean nitrate concentration (0.01511

mmol/L). Therefore, the uptake velocity variation range will change with nitrate con-512

centration at other sites, however, its uncertainty may be similar if the depth and grain513

size conditions are similar.514

4 Discussion515

4.1 Accuracy of grain sizes and hydro-biogeochemistry parameters516

To apply the present approach to other rivers, it is important to evaluate the ac-517

curacy of the YOLO-derived grain sizes and grain size-based HBGC estimations. As percentile-518

based grain sizes are derived from the grain size distribution (GSD) curve, the accuracy519

of GSD determines the accuracy of characteristic grain sizes, e.g., D50, D84, and D5. As520

demonstrated in Figure 4b and Figure 12, the pre-trained YOLO can reproduce the GSDs521

with high accuracy for 90% (18 out of 20) of the testing photos that represent 9 differ-522

ent streamed conditions. Under these diverse conditions, the median grain sizes calcu-523

lated from these GSDs demonstrate relative errors less than 10% (Figure 4d). These re-524

sults indicate that GSDs and subsequently derived characteristic grain sizes are accu-525

rate, at least, for the majority (90%) of the photos. Even though two (10%) testing pho-526

tos (Figure 12(f,r)) show larger error in GSD, the overall accuracy of all the testing pho-527

tos, as indicated by an R2 value of 0.98, an NSE value of 0.98, and a mean absolute rel-528

ative error of 6.65%, is still suitable for practical applications. A closer examination of529

the two photos (Figure 12(f,r)) with higher error shows that the error is likely caused530

by the unclear boundaries between the largest grains and ambient smaller sediments, due531

to light reflection and flocculation on wet grain surface and water surface. Future work532

may be needed to address these challenges to further improve grain size accuracy.533

With the YOLO-derived characteristic grain sizes, using the equations introduced534

in Section 2.4 to estimate the streambed HBGC parameters will undoubtedly bring er-535

rors, partially from the limitation of the equations themselves, and partially from the536

propagation of uncertainties in input parameters. Though it is challenging to measure537

HBGC at all study sites, we are able to identify measured or calibrated data for HBGC538

from existing literature, and can evaluate the accuracy of the photo-driven, AI-enabled,539

and theory-based estimations for HBGC. Firstly, the well-calibrated Manning’s coeffi-540
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cients from a two-dimensional hydraulic model for the Columbia River vary between 0.027541

– 0.038 s/m1/3 (Niehus et al., 2014), which is close to the range calculated from all pho-542

tos (Figure 6a: 0.0245 – 0.0455 s/m1/3) and site average value (Figure 6b: 0.0281 – 0.0373543

s/m1/3). Secondly, the flow resistance from 2,890 field measurements vary between 0.02544

and 200 for rivers with H/D84 < 200 (Rickenmann & Recking, 2011), which covers the545

range derived from all photos (Figure 6c: 0.04 – 9) and site-average values (Figure 6d:546

0.06 – 1.5). Meanwhile, the maximum likelihood of friction factor occurs at 0.18 (=10−0.75)547

(Figure 6c), which falls in the range of 0.13 – 0.32 computed from high-resolution com-548

putational fluid dynamics simulations for natural gravel bed rivers with a median grain549

size of 6 cm (Y. Chen et al., 2019), a value very close to the most likely median size (6.63550

cm) observed in our study area (Section 3.2). Regarding the interstitial velocity, direct551

field measurements are rare. However, by using a temperature-based data assimilation552

approach, K. Chen et al. (2023) were able to estimate the time series of vertical hydro-553

logical exchange flux at the Hanford Reach of the Columbia River. Using their data (Fig-554

ure S5a in K. Chen et al. (2023)), the interstitial velocity magnitude is estimated as 0.11555

m/day by calculating the ratio of the standard deviation of estimated hydrological ex-556

change flux time series to the subsurface porosity (0.43) reported in their work. As demon-557

strated in Section 3.3, the most likely value of interstitial velocity is around 0.07 m/day558

(Figure 6e). This suggests most of the estimated interstitial velocity magnitude falls in559

the observation range. For the streambed nitrate uptake velocity, if the stream nitrate560

concentration is at the US mean or median level, i.e., 0.01 mmol/L (Grant et al., 2018),561

the estimated uptake velocity is most likely at the scale of 1.2 m/day, which is between562

the median (0.6 m/day) and mean (2.5 m/day) uptake velocity measured at 72 sites in563

US (Grant et al., 2018). The above comparisons, therefore, suggest that photos can be564

used to make reasonable estimates of HBGC parameters, using AI and empirical equa-565

tions.566

4.2 Major sources of uncertainty567

Though Section 4.1 demonstrates the accuracy of estimating grain sizes and HBGC,568

it is still important to quantify potential uncertainties in these estimations. This is nec-569

essary to reduce measurement uncertainties in field work and evaluate their impacts on570

large-scale watershed models. With the use of explicit mathematical formulas, the un-571

certainties in grain sizes and HBGC can be mathematically accurately derived as shown572

–19–



manuscript submitted to Water Resources Research

in Equations 5 - 9. From these equations, we can see that the uncertainty of YOLO model573

(rxp) and photo resolution (rSC) are propagated to the characteristic grain sizes (rx).574

As demonstrated in Section 3.4, the overall uncertainty for YOLO model is 6.65%, 10.65%,575

and 11.88% in predicting D50, D84, and D5 pixel sizes, while that for photo resolution576

is 2.32%. Therefore, the average compounding uncertainty (based on Equation 5) in D50,577

D84, and D5 are 7.33%, 11.11%, and 12.30%, respectively. Such grain size uncertainties578

are further propagated to Manning coefficient through rn = r84/6, which results in low579

uncertainty (mean value 1.85%) in estimating Manning coefficient. The uncertainty in580

friction factor is more complex because it depends on not only input parameter uncer-581

tainty (depth uncertainty rH and grain size uncertainty r84), but also the ratio of wa-582

ter depth to grain size. Despite such complexity, its uncertainty should vary between 1/3583

to 2 times of the compounding uncertainty of water depth and D84 (rHD84
) because the584

depth/grain size dependent term reduces to 1/3 and 2 for very deep (H ≫ D84) and585

shallow water (H ≪ D84). As the average uncertainty in depth and D84 are 6.6% (Sec-586

tion 3.4) and 11.11%, respectively, their compounding uncertainty is 12.92% (=
√

r2H + r284.587

Therefore, the overall uncertainty of friction factor should vary between 4.31% and 25.85%,588

which agrees with the average friction factor uncertainty of 15.65% as mentioned in Sec-589

tion 3.5. The uncertainty in interstitial velocity magnitude is simpler because it only de-590

pends on the uncertainties of three input parameters: velocity, grain size, and depth. In591

this work, as the velocity uncertainty is not available, we assume an uncertainty level592

of 10% based on previous work on velocity measurements with ADCPs (Mueller et al.,593

2007). As the overall uncertainty in grain size D50 and depth are 7.33% and 6.6%, the594

overall compounding uncertainty from the three input parameters is around 23.81% (com-595

puted from Equation 8) which is close to the average uncertainty (24.06%) calculated596

from Figure 8c (see Section 3.5).597

The uncertainty in nitrate uptake velocity is much more complex because it depends598

on the uncertainty in velocity, nitrate, and the friction factor that further depends on599

the values and uncertainties in depth and grain sizes. Such complexity can be verified600

by Figure 8d where large changes in uptake velocity uncertainty (yellow line) are observed.601

As the mean uncertainty in friction factor can be estimated by rmf = c0
√
r2H + r284 with602

c0 in the range 1/3 – 2, the mean uncertainty in uptake velocity (rmuf ) can be estimated603

by Equation 10. As the measured nitrate uptake uncertainty is not available, a 10% un-604

certainty is assumed based on previous work on nitrate measurement uncertainty (Jiang605
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et al., 2014). With the overall uncertainty for velocity (10%), depth (6.6%), pixel D84606

(10.65%), photo resolution (2.32%), and nitrate (10%), the overall uptake velocity un-607

certainty should fall in the range of rmd
uf and rms

uf with rmd
uf and rms

uf representing the mean608

characteristic uncertainty in deep and shallow rivers. Here the two terms are calculated609

by rmd
uf = rmuf (c0 = 1/3) and rms

uf = rmuf (c0 = 2) and their values are 11.34% and610

16.92%, respectively. As mentioned in Section 3.5, the average uncertainty in uptake ve-611

locity calculated from Figure 8d (yellow line) is 13.88%, which falls in the range of char-612

acteristic uncertainty. Therefore, the Equation 10 can be used as a fast estimate of the613

uncertainty in uptake velocity if the uncertainty of 5 inputs are available.614

Equation 10 also suggests that the final uncertainty depends on whether the con-615

stant c0 leans to the upper bound (2) or the lower bound (1/3), which is mainly deter-616

mined by the ratio of water depth to grain size D84. In shallow water (c0 = 2) condi-617

tion, the dominant sources of uncertainties will be velocity, depth, and YOLO-accuracy618

for D84 because c20/4 = 1 and c27 ≈ 0.24. In deep water (c0 = 1/3), the main sources619

will be velocity and nitrate concentration because c20/4 ≈ 0.03. Another important as-620

pect of such an equation is that the uncertainties in velocity, depth, and nitrate concen-621

tration represent clear physical meaning, while the uncertainties in pixel D84 and photo622

resolution are instead associated with AI model and photo induced uncertainties. With623

further improvements of AI training and photo resolution estimation, these nonphysi-624

cal uncertainties can likely be reduced to a negligible level (see details in Sections 4.3 -625

4.5), and Equation 10 can be reduced to Equation 11 that represents physics-driven un-626

certainty for uptake velocity. Furthermore, in very dynamic unsteady processes, the un-627

certainty terms, rU , rH , and rN , more represent the deviation of the actual physical pro-628

cesses away from their time average values, therefore, the compounding uncertainty in629

Equation 11 can be treated as a metric to quantify the magnitude of the dynamics in630

nitrate uptake processes.631

rmuf =

√
r2U +

c20
4
(r2H + r284p + r2SC) + c27r

2
N (10)632

633

rmp
uf =

√
r2U +

c20
4
r2H + c27r

2
N (11)634

–21–



manuscript submitted to Water Resources Research

4.3 Effects of photo number635

To minimize non-physical uncertainties from the AI model, one way is to increase636

the number of training photos and labels. Figure 9 shows the effects of photo number637

on AI-training convergence and accuracy in predicting grain size distribution and char-638

acteristic size such as D50. Here the M0a, M0b, and M0c represent three models trained639

with 11 (5,272 labels), 21 (10,154 labels), and 36 (11,977 labels) photos (see photo lo-640

cations in Figure 1a and label preparation in Section 2.2). The results show that increas-641

ing the number of photos improves the accuracy of the YOLO model, with mAP@50 in-642

creasing from 0.54 to 0.64 and mAP@50-95 increasing from 0.28 to 0.34.643

Though the model metrics are improved, their accuracy improvements in predict-644

ing grain size distributions and D50 depend on the complexity of the streambed. For the645

dry bed with large grain size ratio (Figure 9b), all three models provide accurate pre-646

diction of the GSD though the M0c model (blue line) performs better in capturing smaller647

grains (<50% percentage finer) and M0a model (black line) performs better in captur-648

ing larger grains (>50% percentage finer) when compared to manual measurements (dashed649

red line). For submerged bed with static water (Figure 9c), the M0c model outperforms650

M0a and M0b for most of the sizes (<80% percentage finer).651

A systematic evaluation of the model accuracy is illustrated in Figure 9d-e in terms652

of the 1:1 plot between the model-predicted and measured D50 as well as the relative653

error of predicted D50. The result shows that the M0c model outperforms M0a and M0b654

in terms of higher R2 (0.98 vs 0.92) and closer alignment with the 1:1 line for all the points655

(Figure 9d). The closer alignment of model M0c can also be verified in Figure 9e where656

we can observe 18 points (black circle dots) in the range ± 10% for M0c while those for657

M0a and M0b are 13 points despite including the points outside but close to the range.658

The mean absolute relative error for M0a, M0b, and M0c, with values of 11.88%, 11.20%,659

and 6.65%, also point to the much better performance in M0c.660

With available manual labels, it is straightforward to evaluate the model’s accu-661

racy. However, it is impractical to manually draw grain sizes for all 1,999 photos used662

in groups 3 and 4 for prediction purpose (see Section 2.1). Nevertheless, we can evalu-663

ate the differences in predicted D50 between the higher accuracy model M0c and the lower664

quality models as shown in Figure 9f. Statistically, the bias and root-mean-square be-665

tween M0a and M0c are -0.26 and 2.85 cm; and that between M0b and M0c are -1.22666
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and 3.14 cm, respectively. As the most likely D50 is 6.63 cm (obtained from M0c model;667

Section 3.2) and 47% (821 out of 1743 points) of the grain sizes are less than such a value,668

the uncertainty induced by lower quality models is likely important. Therefore, it is crit-669

ical to train the YOLO with sufficient data in order to avoid systematic impacts on grain670

size quantification and subsequent HBGC estimation. In the context of grain size pre-671

diction, the number of sufficient data may be determined by checking if the mean ab-672

solute relative error between the model prediction and testing labels becomes smaller or673

comparable to typical uncertainties in field observations or other manual approaches.674

4.4 Effects of YOLO probability threshold675

Another factor that affects the YOLO accuracy is the selection of the probability676

threshold built in YOLO. A probability threshold is required because the YOLO uses677

a probability, in the range 0 – 1, to determine whether an object (grain, grass, water,678

etc.) in a photo is the target object (e.g., grain in this work). Under-estimation (small679

value) of the threshold will select too many objects that are not the target, but over-estimation680

(high value) will ignore objects that are desired. To identify a proper way of selecting681

the threshold, Figure 10 shows the variation of R2, mean error (ME), mean absolute er-682

ror (MAE), and the average detected grain number per photo between the prediction683

(from model M0c) and manual labels, with respect to probability threshold. The best684

probability threshold should maximize R2, minimize ME and MAE, and identify the num-685

ber of grain sizes closest to manual measurements. Following these rules, 0.35 is selected686

as the final probability threshold because R2 reaches maximum (Figure 10a), ME is near-687

est 0, MAE is at its minimum (Figure 10b), and the number of grains per photo is clos-688

est to the manually measured number (Figure 10c). Grains with a YOLO probability689

less than 0.35 are excluded from the grain size quantification. It is worth mentioning that690

selecting the probability threshold is a well constrained problem because simultaneously691

minimizing the ME and identifying the closest number of grains will likely lead to a unique692

value.693

4.5 Estimation of photo resolution694

How to properly estimate the photo resolution affects not only the accuracy of grain695

sizes, HBGC parameters, and their compounding uncertainties, but also the efficiency696

of data collection and post-processing. In general, photo resolution could be estimated697
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manually or automatically. The manual approach is easy for field implementation, but698

prone to human error and high data processing costs. In this work, we brought full quadrats699

and white boards with known sizes into the field, placed them on top of the grains, took700

photos, manually measured the pixel length of the known scales, and finally obtained the701

photo resolution, represented by millimeter per pixel (Figure 11a). The manual scale mea-702

surement process for 2,121 photos involves 8 person and costs around 200 hours of hu-703

man labor. Large errors occur due to the unevenness of the quadrats/boards, inaccu-704

rate recording of the pixel coordinates from the computer screen, and matching the co-705

ordinates to incorrect photo names. To mitigate such errors and reduce costs, an auto-706

mated scaling approach is desired. Figure 11 illustrates how an automated scaling could707

be implemented and whether such approaches could be comparable to the manual ap-708

proach in terms of the resolution and minimum detectable sizes.709

It is observed from Figure 11a that the photo resolution clusters at two ranges, i.e.,710

0.066 – 0.15 and 0.3 – 0.7 mm/pixel (see scale for each photo on Figure 7a and discus-711

sion in Section 3.4) and the detectable minimum grain sizes from all photos in groups712

3 and 4 vary between 0.82 mm and 21 mm. The typical reference scales for the higher713

(red star) and lower (blue diamond) photo resolution are visualized in Appendix Fig-714

ure 13(a,b), respectively. From these figures, we can see that the pixel lengths of the quadrat715

(white pipes) and strings (red lines) are skewed, which brings errors to resolution esti-716

mation and difficulties in manual measurements.717

To expedite the photo resolution estimation, a potential way is to train a scale AI718

model, e.g., model Msc (see details in Sections 2.1 – 2.2), and then use it to measure the719

pixel sizes of the reference scales automatically. The trained Msc model can detect 10720

different scales as mentioned in Section 2.2. However, the accuracy is low for all non-circular721

shaped reference scales because the YOLO can only use horizontally-placed rectangu-722

lar boxes (see green line bounding boxes in Appendix Figure 13a,b) to capture the ref-723

erence scales which could be non-horizontally placed and non-rectangular shape. Inter-724

estingly, all the scales with circular shape (e.g., green and blue caps) are accurately de-725

tected by the trained scale model at both submerged and dry conditions (Figure 13c,d).726

For those photos in group 9 (used for scale AI validation) with green/blue caps, we man-727

ually measured the photo resolution and then compared their values with those predicted728

by the scale AI model as shown in Figure 11b. The result verifies the visual observation729

in Figure 13c,d and provides an accuracy estimation of such an automated approach. For730
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the blue caps (3.7 cm diameter): the mean error (ME), mean absolute error (MAE), mean731

absolute relative error (MARE), minimum relative error, and maximum relative error732

are 0.0039 mm, 0.0065 mm, 3.2%, -5.3%, and 7.5%, respectively. For the green caps (2.5733

cm diameter), their values are -0.0006 mm, 0.002 mm, 1.1%, -2.1%, and 1.4%, respec-734

tively. Note that the photo resolution uncertainty from manual estimation varies between735

±10% and has an overall MARE of 2.32%. This means the cap-based automated scal-736

ing approach has a better overall accuracy and a much smaller uncertainty range than737

the manual approach. Meanwhile, the automated scaling can provide photo resolution738

of 0.12 – 0.35 mm/pixel, which is also better than the range obtained in the manual ap-739

proach. Overall, the cap-based automated scaling approach is an efficient alternative to740

the manual approach in terms of accuracy and resolution.741

Both the manual and automated approaches mentioned above are limited for lo-742

cations we have site accessibility and working permits where we are able to deploy ref-743

erence scales and use hand-held cameras. These limitations restrict the spatial scale we744

can observe. Overcoming such limitations necessitates the use of fast remote sensing tech-745

niques, such as drones, and requires an approach to reliably estimate the photo resolu-746

tion captured by the drone cameras. Here we show that the photo resolution can be es-747

timated based on camera height and camera-specific resolution-height relationships. Fig-748

ure 11c shows the variation of photo resolution (from manual measurements) with re-749

spect to height for 3 smartphones, i.e., iPhone 12, 13, and 14 Pro (see photo taken lo-750

cations in Section 2.1). These relationships provide an additional way to estimate photo751

resolution for both hand-held and unmanned devices if height information is available.752

4.6 Limitations753

Despite the promise of the proposed approach, limitations exist in photo collection,754

training data preparation, and HBGC empirical formulas. First of all, by using hand-755

held devices (e.g., smartphones, tablets, and cameras), the maximum spatial scale and756

the highest photo resolution are limited. In this work, the actual photo area is limited757

to be 2.81 m2 (minimum 0.03 and mean 0.26 m2; see details in data package (Y. Chen758

et al., 2023)). Such a limitation is mainly caused by how high a user can hold a cam-759

era. Also, the highest photo resolution is 0.05 mm/pixel and the minimum detectable760

grain size by YOLO is 0.45 mm. This means that sediments smaller than medium (0.25761

– 0.5 mm) or coarse (0.5 – 1 mm) sands may not be reliably detected. Due to these lim-762
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itations, a much large number of photos are required in order to fully characterize the763

stream grain sizes and HBGC at watershed scales. The second limitation is the high la-764

bor costs required to prepare the training data. Due to the diversity of natural streams,765

a large number of labels with high quality are needed for reliable prediction of grain sizes766

(see effects of insufficient training data in Section 4.3). In this work, we spent around767

200 hours to label around 17,000 grains to represent most of the stream conditions. De-768

spite such effort, the trained AI still has 20% – 25% relative error for 2 photos (Figure769

4d; Figure 9e; Figure 12(f,r)). More data and improved YOLO algorithms may be needed770

to better capture very large grains at the boundary of the photos.771

Additionally, there are limitations in the empirical formulas for HBGC estimations.772

Due to the low uncertainty and good agreement with calibrated values (Sections 4.1 –773

4.2), the Equations 1 and 6 are likely reliable for estimating Manning coefficient and its774

uncertainty. For friction factor, though it demonstrates large variations and uncertainty775

(Sections 3.3 – 3.5), the accuracy of Equation 2 has been comprehensively studied and776

was recognized as the second best formula for resistance estimation with depth and grain777

size as inputs (Powell, 2014). The Equation 3 for estimating streambed interstitial ve-778

locity magnitude is derived from 17 high-resolution CFD simulations driven by structure-779

from-motion reconstructed streambeds (Y. Chen et al., 2019, 2021). Though it success-780

fully estimates the most likely magnitude of interstitial velocity (Section 4.1), further sim-781

ulations or experiments with more streambed conditions may be needed to further eval-782

uate its applicability for diverse streambed conditions, especially the relationship between783

subsurface permeability and the 5th percentile grain size distribution. For uptake veloc-784

ity, the hydrogeology-biochemistry interaction efficiency term (ϕ in Equation 4) is fit-785

ted based on field measured data and thus its applicability in diverse streambed condi-786

tions also requires further evaluation.787

4.7 Future directions788

As discussed in Section 4.6, the scale and resolution are limited by hand-held ap-789

proaches. A natural solution is to replace hand-held devices with drones. By using drones790

it is possible to increase the number of photos and videos with much higher temporal791

resolution (e.g., 4K and 5.4K videos) and also increase spatial scales. This is primarily792

due to their high speed (e.g., Skydio 2 and DJI could fly upto 15 – 27 m/s). With avail-793

able high-resolution streambed data from drones and hand-held devices, an important794
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future direction is to directly integrate photo-derived high-resolution streambed data with795

pore-resolved surface-subsurface coupled models and use the simulated pressure, exchange796

velocity, and turbulence data to improve the empirical formulas for HBGC estimations.797

With both the improved formulas and high-resolution data, a further step is to integrate798

the photo-derived streambed grain sizes and HBGC parameters into watershed-scale mod-799

els aimed at predicting hydro-biogeochemical dynamics.800

5 Conclusions801

This work presents a workflow to extract the quantities, distributions, and uncer-802

tainties of streambed grain sizes and hydro-biogeochemistry from photos using YOLO803

and empirical formulas. The YOLO, an object detection AI model, is firstly trained with804

11,977 grain labels from 36 photos representing 9 stream environments, and demonstrates805

an accuracy of 0.98, 0.98, and 6.65% in terms of the coefficient of determination, the Nash–Sutcliffe806

efficiency, and mean absolute relative error in predicting the median grain size D50. The807

model is then used to predict the grain size distributions (GSDs) for 1,999 photos col-808

lected at 66 sites in the Yakima River Basin. Three characteristic grain sizes, including809

the 5th, 50th, and 84th percentiles of GSDs, are subsequently calculated and used to es-810

timate key hydro-biogeochemical parameters, including Manning coefficient, Darcy-Weisbach811

friction factor, interstitial velocity magnitude, and nitrate uptake velocity.812

From the data, the characteristic grain sizes, Manning coefficient, friction factor,813

interstitial velocity magnitude, and uptake velocity are found to follow log-normal, nor-814

mal, positively skewed, near log-normal, and negatively skewed distributions, respectively.815

Their most likely values, i.e., the mode of the distributions, are 6.63 cm (for D50), 0.0339816

s·m−1/3, 0.18, 0.07 m/day, and 1.2 m/day, respectively. And their average uncertainty817

or variability are reported as 7.33% (for D50), 1.85%, 15.65%, 24.06%, and 13.88%, re-818

spectively. The major sources of uncertainties in grain sizes and hydro-biogeochemical819

parameters are also identified. Specifically, the accuracy of YOLO is the main factor con-820

trolling grain size uncertainty. Both YOLO accuracy and stream depth control friction821

factor uncertainty. The interstitial velocity magnitude uncertainty is determined by both822

velocity uncertainty and YOLO accuracy. For the uptake velocity uncertainty, it is con-823

trolled by uncertainties in velocity, depth, and YOLO accuracy in shallow streams, while824

controlled by velocity and nitrate concentration uncertainties in deep rivers.825
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Further analyses of the effects of training data size on YOLO accuracy show that826

training data with an insufficient number of photos and stream environment types can827

cause considerable errors in extracting grain size distributions and the statistics of char-828

acteristic grain sizes. The selection of a proper class probability threshold is important829

for avoiding missing or incorrectly selecting individual grains as desired. The photo res-830

olution analyses demonstrate that the integration of circular caps with an AI model can831

provide an automated scaling approach better than the manual approach in terms of the832

accuracy and resolution. We also identified the limitations in photo resolution and spa-833

tial scale using hand-held cameras, the high labor costs in training data preparation, and834

the necessity to further improve the empirical formulas for hydro-biogeochemistry esti-835

mations. These limitations may be addressed in future research by integrating drone-836

derived high-resolution streambed data with pore-scale models, and incorporating photo-837

derived grain sizes and hydro-biogeochemistry parameters to watershed-scale models.838

Acknowledgments839

This research was supported by the United States Department of Energy (DOE) Office840

of Biological and Environmental Research (BER), Environmental System Science pro-841

gram, through the PNNL River Corridor Science Focus Area (SFA) project (http://www.pnnl.gov/projects/river-842

corridor). PNNL is operated for the DOE by Battelle Memorial Institute under Contract843

No. DE-AC05-76RL01830.844

Data availability845

All data are available at the ESS-DIVE repository with DOI: 10.15485/1999774846

(Y. Chen et al., 2023).847

–28–



manuscript submitted to Water Resources Research

Appendix848

Derivations of uncertainty propagation equations849

As mentioned in Section 2.5, uncertainties occur in YOLO-predicted pixel grain850

sizes (Dxp), photo scale measurement (SC), and measurements for water depth (H), ve-851

locity (U), and nitrate concentration ([NO−
3 ]). These uncertainties can further propa-852

gate to real grain sizes (Dx) and HBGC parameters such as Manning coefficient (n), fric-853

tion factor (f), interstitial velocity magnitude (σw), and nitrate uptake velocity (uf ).854

All these uncertainty can be quantified by the ratio of the absolute uncertainty of these855

quantities to their representative values, for example, manually measured grain sizes and856

scales, spatial and/or temporal average of depth and velocity, and direct measurement857

of nitrate concentrations. If denoting the input parameters and subsequently derived grain858

sizes/HBGC parameters as xi (i = 1,2,...) and yj (j = 1,2,...), then the absolute uncer-859

tainty can be quantified by δxi and δyj and the relative uncertainty can be calculated860

as rxi = |δxi|/xi and ryj = |δyj |/yj , respectively. Statistically, such relative uncer-861

tainty can be mean absolute relative error (MARE), root-mean-square of the relative er-862

ror (RMSRE), and the standard deviation of the relative error (STDRE). Here we choose863

MARE as the reporting metric, however, it can be easily replaced by RMSRE and STDRE.864

In general, the target yj is a function of the input parameters xi, which has the form of865

yj = Fj(x1, ..., xi, ..., xn). Based on the multi-variable chain rule and the error propa-866

gation law (Ku, 1966), the uncertainty of yj can be computed through Equation 12.867

r2yj
=

(δyj)
2

y2j
= y−2

j

[ n∑
i=1

(
∂Fj

∂xi
)2(δxi)

2 +

n∑
i=1

n∑
k=1,k ̸=i

∂Fj

∂xi

∂Fj

∂xk
δxiδxk

]
(12)868

The last term in Equation 12 represents the correlation among input variable uncertainty869

and could be assumed as 0 if the uncertainty of input variables are independent to each870

other. With such an assumption, Equation 12 can be rewritten as Equation 13.871

ryj
=

√√√√y−2
j

n∑
i=1

(
∂Fj

∂xi
)2(δxi)2 =

√√√√ n∑
i=1

(
∂Fj

∂xi
)2
(δxi)2

x2
i

x2
i

y2j
=

√√√√ n∑
i=1

(∂Fj

∂xi

xi

yj

)2

r2xi
=

√√√√ n∑
i=1

s2xi
r2xi

(13)872

where
∂Fj

∂xi

xi

yj
is the uncertainty propagation scale of yj to input xi, and is denoted by873

sxi
for convenience. With such a general form of uncertainty propagation equation, we874

apply it for real grain size Dx and the four HBGC parameters in Equations 1 – 4.875

For Dx, it depends on two independent variables Dxp and SC. Its uncertainty prop-876

agation scales are both 1 for Dxp and SC, which results in Equation 5. For Manning co-877
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efficient, it depends on only one variable and its propagation scale is 1/6. For friction878

factor, if denoting H/D84 by HD84, then Equation 2 becomes a single variable function879

of HD84. Its uncertainty can be calculated by rf = |sHD84
|rHD84

with |sHD84
| represented880

by Equation 14.881

|sHD84
| = | ∂f

∂HD84

HD84

f
| =

6c21 + c22H
5/3
D84

3c21 + 3c22H
5/3
D84

= 2− 5

3

c22H
5/3
D84

c21 + c22H
5/3
D84

= 2− 5

3

1

c21/c
2
2H

−5/3
D84 + 1

= 2
{
1− 5

6

[
1 +

c21
c22

H
−5/3
D84

]−1
}
= 2

{
1− 5

6

[
1 +

c21
c22

(
H

D84
)−5/3

]−1
}

(14)

882

For the uncertainty term rHD84
, because HD84 = H/D84, its uncertainty propagation883

scales for H and D84 are both 1, therefore, rHD84
=

√
r2H + r284. Such an equation to-884

gether with Equation 14 leads to Equation 7.885

For interstitial velocity magnitude (Equation 3), both D5 and D50 are used as in-886

puts. However, these two variables are not independent. To avoid using both sizes as in-887

puts, we use a simplified D5 relationship, D5 = 0.23D50 (fitted from data; see Section888

3.2 and Figure 5d), to replace the YOLO-derived D5 for uncertainty quantification pur-889

pose. With such an simplification, Equation 3 is converted to Equation 15.890

σw =
0.232c3c5

2ν
U2D1−c4

50 Hc4 (15)891

The uncertainty propagation scales of Equation 15 with respect to inputs U , D50, and892

H were computed as 2, (1-c4), and c4, respectively. Combining these scales and the un-893

certainty of input parameters will lead to Equation 8.894

For nitrate uptake velocity, we rewrite Equation 4 in the form of Equation 16 to895

utilizing the uncertainty equation for friction factor. If we assume no correlation among896

the three inputs, then the uncertainty propagation scales of uf with respect to U , f , and897

[NO−
3 ] are 1, 1/2, and c7, respectively. Combining these scales and the uncertainty of898

input parameters leads to Equation 9.899

uf =
0.17Sc−2/3c6√

8
Uf1/2[NO−

3 ]
c7

(16)900
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Grain size distribution of 20 test photos901
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Figure captions1143

Figure 1. The locations, site-average median grain sizes, and labels of photos used for AI

training/validation/testing (a), prediction (b), scaling sensitivity and accuracy purposes (c), as

well as the number of photos at each site (d). The site locations of group 1 (green circles) are

invisible due to too close to group 0 and 2. Their locations are described with a character ”V”

following the site names in (a).

Figure 2. The labels of individual grains (a – i) and scales (j – o) in representative river

corridor environments.

Figure 3. The sketch of the YOLO version 5 network. Modified from Ultralytics (2020).

Figure 4. The convergence history of YOLO training (a) and the accuracy of YOLO pre-

dicted grain size distribution (b), median grain size D50 (c) as well as the relative error of D50

prediction (d). NSE in (a) is Nash–Sutcliffe efficiency.

Figure 5. The probability density distributions of D50 (a), D5 (b), D84 (c), and the relation-

ship between D5/D84 and D50 (d).

Figure 6. The probability density distribution of Manning coefficient (a), Darcy-weisbach

friction factor (b), fluctuation magnitude of vertical exchange flux (c), and total nitrate uptake

velocity attributed to microbes and turbulence mass transfer (d).
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Figure 7. The in-site variations (blue cross dots), site average values (horizontal black lines),

and estimated relative variations (yellow dot lines) of photo resolution (a), log2-transformed D50

(b), log2-transformed D84 (c), log2-transformed D5 (d), and water depth (e) for 32 sites. The

site name is reordered in an alphabetical order for convenience. The nearest region to the right of

site name represents the data within the site. The site-average value in (b), (c), and (d) are first

averaged over the actual data and then log2-transformed.

Figure 8. The in-site variations (blue cross dots), site average values (horizontal black

lines), and estimated relative variations (red dot lines) for Manning’s coefficient (a), log10-

transformed friction factor (b), log10-transformed streambed interstitial velocity magnitude

(c), and streambed nitrate uptake velocity (d). The site-average value in (b) and (c) are first

averaged over the actual data and then log10-transformed.

Figure 9. The effects on training photo number on YOLO precision (a), individual grain size

distributions (b,c), median grain size (d) and relative error (e) of testing photos, as well as the

prediction of median grain size of prediction photos (f). M0a, M0b, and M0c represent models

trained with 11, 21, and 36 photos.

Figure 10. The effects of probability threshold on model performance metrics R2 (a), mean

and mean absolute error (b), and the average number of grains detected by the model (c.)

Figure 11. The values of photo resolution and associated detected minimum grain sizes using

square quadrats and manual measurements of resolution (a), the comparison of automatically

predicted photo resolution to the manually measured values using circular caps (b), and the

relationship between photo resolution and camera height (c).

Figure 12. The comparison of grain size distribution between YOLO (M0c) prediction and

manual measurements for 20 testing photos.

Figure 13. The typical scales and YOLO (Msc) predicted scales for the full quadrat (a), 1/4

of the quadart (b), green and blue caps in flowing water (c), and blue cap in dry bed (d).
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