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Abstract 18 
Since 1980, the Arctic surface has warmed four times faster than the global mean. Enhanced 19 
Arctic warming relative to the global average warming is referred to as Arctic Amplification 20 
(AA). While AA is a robust feature in climate change simulations, models rarely reproduce the 21 
observed magnitude of AA, leading to concerns that models may not accurately capture the 22 
response of the Arctic to greenhouse gas emissions. Here, we use CMIP6 data to train a machine 23 
learning algorithm to quantify the influence of internal variability in surface air temperature 24 
trends over both the Arctic and global domains. Application of this machine learning algorithm 25 
to observations reveals that internal variability increases the pace of warming in the Arctic but 26 
slows global warming in recent decades, inflating AA since 1980 by 38% relative to the 27 
externally forced AA. Accounting for the role of internal variability reconciles the discrepancy 28 
between simulated and observed AA. 29 

Plain Language Summary 30 
The Arctic has been warming four times as quickly as the global mean since 1980. This so-called 31 
Arctic Amplification (AA) has unprecedented impacts on Arctic environments and livelihoods. 32 
AA is robustly simulated by climate models, but simulations rarely reproduce the observed levels 33 
of AA for 1980-2022. This may be due to a model misrepresentation of the Arctic's sensitivity to 34 
increasing greenhouse gases. Another possibility is that the large, observed value of AA is 35 
inflated by natural fluctuations in the climate system. Here, we use machine learning to quantify 36 
the contribution of natural fluctuations to observed AA. We show that natural fluctuations have 37 
inflated AA by 38%, and thus reconcile model-observation differences and suggest that the 38 
observed large AA over 1980 to present would not persist to the future. 39 

1. Introduction 40 
Manabe and Wetherald (1975) first found that the “warming in higher latitudes is 41 

magnified two to three times the overall amount” in response to the CO2 increase. This 42 
phenomenon was later termed as Arctic Amplification (AA), and has been consistently seen in 43 
both model simulations and observations (e.g., Rantanen et al., 2022). From 1980 to 2022 44 
observed surface temperatures in the Arctic (defined here as the region poleward of 70°N) have 45 
warmed about four times faster than the global mean (Rantanen et al., 2022; Chylek et al., 2022). 46 
Climate models reliably simulate an amplified Arctic warming, but the magnitude of simulated 47 
AA is consistently lower than in observations (e.g., England et al., 2021; Hahn et al., 2021; 48 
Holland and Landrum, 2021). Many physical processes have been proposed to explain the 49 
observed and simulated AA, including both local feedbacks (Manabe and Wetherald, 1975; 50 
Holland & Bitz, 2003; Goose et al., 2018; Zhang et al., 2018; Zhang et al., 2020; Feldl et al., 51 
2020; Hahn et al., 2021; England et al., 2021; Zhang et al., 2021) and remote teleconnections 52 
(Baxter et al., 2019), yet the relative contribution of each of these processes is not well known 53 
(Previdi et al., 2021). Differences between the observed and simulated AA suggests that current 54 
climate models may not correctly capture the response of the Arctic and/or global climate to 55 
external forcings (Rantanen et al., 2022; Chylek et al., 2022).  56 

The observed and simulated AA differences might also be partly caused by natural, 57 
internal climate variability (Rantanen et al., 2022; Chylek et al., 2022), given that certain 58 
components of the Arctic (e.g., sea ice) exhibit substantial decadal variations due to internal 59 
climate variability (Kay et al., 2011; Stroeve et al., 2012; Swart et al., 2015; Ding et al., 2019; 60 
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Olonscheck et al., 2019; Topál et al., 2020; Deser et al., 2020; Wu et al., 2021; Bonan et al., 61 
2021). Arctic sea ice cover trends are tightly coupled to surface temperature, due to strong 62 
impacts on albedo and surface heat fluxes (Serreze and Barry 2011; IPCC Chapter 3; Feldl et al., 63 
2020; Deng and Dai., 2022). Due to this coupling, the large internal variability in sea ice likely 64 
manifests as changes in Arctic surface temperature. Decadal atmospheric and oceanic internal 65 
variability may also contribute to recent Arctic warming (Proshutinsky et al., 2015; Kim and 66 
Kim, 2017). Internal variability has also been implicated in the recent slowdown of global 67 
warming in the early 21st century (Kosaka and Xie, 2013; Huber & Knutti, 2014; Guan et al 68 
2015). However, it is still an open question whether the large differences in AA between model 69 
simulations and observations are mainly caused by climate model deficiencies, internal 70 
variability, or both (Rantanen et al., 2022; Chylek et al., 2022). 71 

When comparing the model simulations with observations, it is important to account for 72 
the effects of internal variability (Deser et al., 2020). In single-model large ensembles, the same 73 
model is run with small perturbations in the initial conditions leading to unique realizations of 74 
internal variability in each ensemble member. The externally forced signal can be estimated 75 
using the ensemble mean and the internal variability associated with each ensemble member can 76 
be obtained as the deviations from this mean (Kay et al., 2015). However, this technique cannot 77 
be applied to observations because there is only one observational record. To disentangle the 78 
effects of external forcing and internal variability on observed changes in climate, previous work 79 
has used various spatiotemporal analysis methods (e.g., Smoliak et al., 2010; Wallace et al., 80 
2012; Deser et al., 2014; Smoliak et al., 2015; Deser et al., 2016; Gong et al., 2019; Guo et al., 81 
2019; Wills et al., 2020; Räisänen, 2020; Po-Chedley et al., 2021; Po-Chedley et al., 2022). Here, 82 
we build upon previous methods using a machine learning (ML) approach, which is trained to 83 
separate the contribution of external forcing and internal variability to surface warming using 84 
climate model large ensembles (see table S1 for information about the model large ensembles). 85 
The model-trained ML algorithm is then applied to observations to estimate the relative 86 
influence of external forcing and internal variability on recent (1980-2022) Arctic and global 87 
surface temperature changes. We find that internal variability enhanced Arctic warming but 88 
damped global warming, resulting in amplified AA in the observed record. We show that 89 
accounting for the effects of internal variability on Arctic and global surface warming reconciles 90 
differences between observed and model-simulated AA. 91 

2. Data and Methods 92 
The magnitude of AA depends on the southern boundary used to define the Arctic (Davy 93 

et al., 2018). In this study, AA is defined as the surface air temperature trend for the region 94 
poleward of 70°N divided by the global mean trend from 1980-2022. AA is derived from four 95 
different observational temperature datasets including the Met Office Hadley Centre/Climatic 96 
Research Unit’s global surface temperature dataset version 5 (HadCRUTv5), Berkeley Earth 97 
Land/Ocean Temperature Record (BerkeleyEarth), GISS Surface Temperature Analysis version 98 
4 (GISTv4), and the NOAA Merged Land Ocean Global Surface Temperature Analysis version 5 99 
(NOAAv5) (Hersbach et al., 2020; Morice et al., 2021; Rhode & Hausfather., 2020; Lenssen et 100 
al., 2019; Zhang et al., 2019). Fig. S1 indicates that warming is amplified north of 70oN in all 101 
four observational datasets.  102 

Following recent work showing that ML methods can effectively isolate internally 103 
generated and externally forced trends (Barnes et al., 2019; Gordon and Barnes, 2022; Po-104 
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Chedley et al., 2022; Connolly et al., 2023), we create ML algorithms to isolate these trend 105 
contributions in observed surface air temperature during the 43-year period from 1980-2022 over 106 
both the Arctic and globe. To do this, we create a training dataset based on 10 CMIP6 models, of 107 
which each have at least 10 ensemble members (Table S1). Aside from the CESM2 large 108 
ensemble from the CMIP6 archive, we also include the 50 member CESM2 large ensemble with 109 
updated biomass burning aerosol emissions that better represents the historical radiative forcings 110 
in the high latitude northern hemisphere (referred to here as CESM2_SBMB) (Rodgers et al., 111 
2021; Fasullo et al., 2022). The target data in our training are the externally forced and internally 112 
generated surface air temperature trends averaged over a given region (either Arctic or globe), 113 
which are derived as the mean trend and deviation from the mean in each ensemble. These trends 114 
are calculated using 43-year periods separated by five years spanning 1900-2047 (i.e., 1900-115 
1942, 1905-1947, …, 1980-2022, …, 2005-2047). CMIP6 and CESM2_SBMB historical runs 116 
end in 2014, so we extend these simulations using either SSP3-7.0 or SSP5-8.5 (O’Neill et al, 117 
2016) until 20471 for seven of the models in our training data. The remaining four models only 118 
have sufficient ensemble members until 2014, and thus only periods from 1900-2012 are used to 119 
train our ML algorithm for these models. The ML algorithm is trained using 10 models with 120 
large ensembles but with one model leftout (see more details below). We test the results from 121 
1980-2022 using the leftout model that is one of seven with extensions beyond 2014 (Table S1). 122 
The observationally derived AAs are compared with the seven large ensembles for 1980-2022, 123 
and with all other CMIP6 models with data available over 1980-2022 (OthersAllEM), even 124 
though each of them does not have enough ensemble members to properly derive the externally 125 
forced AA.  126 

The predictor data (i.e., the input used to estimate the targets) are maps of surface air 127 
temperature (SAT) and sea level pressure (SLP) trends. Our ML pipeline is thus designed to 128 
accept 43- year trend maps of both SAT and SLP and returns the components of the trend 129 
averaged over the Arctic or globe due to internal variability and external forcing. All maps of 130 
SAT and SLP trends are regridded to a common 2.5°x2.5° grid. The ML algorithms are trained 131 
for the predictions of the Arctic and global cases separately. For the global case, input data are 132 
global trend maps of SLP and SAT. For the Arctic case, we only use trend maps poleward of 133 
20°N (Wallace et al., 2012; Smoliak et al., 2015). Patterns of surface temperature changes can 134 
impact both regional and global scale warming and can provide information about the relative 135 
role of internal variability (Dong et al., 2019; Dong et al., 2020). Outside the tropics SLP can be 136 
used as a proxy for the atmospheric circulation (Smoliak et al., 2010; Deser et al., 2014) and has 137 
been used to isolate dynamically induced changes in surface temperature in the northern 138 
hemisphere (Wallace et al., 2012; Guan et al., 2015). Further, using more than one geophysical 139 
variable may help in identifying signals of external forcing (Rader et al., 2022).  140 

We use the convolutional neural networks (CNNs) that are trained separately for the 141 
Arctic and global-mean temperature trends (see Text S1). We validate the skill of the CNN using 142 
a leave-one-out cross validation, where the CNN is trained on data from all models except the 143 
model we test on (which is one of seven models covering 1900-2047) (see Text S1). This 144 
prohibits the CNN from learning model specific biases. When applying the CNN to the out-of-145 
sample large ensemble, we also apply it to observed SAT and SLP trend patterns to derive the 146 
externally and internally generated trends. SAT trends are those of the four observational 147 
datasets from 1980-2022. SLP trends are from the ERA5, MERRA-2, and JRA-55 reanalysis 148 

 
1 SSP5-8.5 is used when both are available. 
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datasets over the same time period (see Fig. S2 for a comparison of SLP trends between 149 
reanalyses used and the 20th century reanalysis for 1980-2015, showing a good agreement). 150 
Because we have four SAT datasets and three SLP datasets, in total we have 12 sets of SAT and 151 
SLP trend maps. For each of the seven models that we test on during the cross validation, we get 152 
estimates of internally generated and externally forced trends from each of the 12 observational 153 
SAT and SLP sets, providing 84 estimates of the internally generated and externally forced 154 
trends. The central value is then the mean over all 84 observational predictions and the 155 
uncertainty is quantified by taking into account both observational and ML prediction 156 
uncertainties (Text S2). 157 

3. Arctic Amplification in Observations and CMIP6 158 
Fig. 1A shows the patterns of local amplification over the northern hemisphere high 159 

latitudes from the observational mean and multi-model mean (MMM). Observations show 160 
maximum amplification poleward of 70°N and that large extents of the Arctic Ocean have 161 
warmed at least four times as quickly as the global mean. Local amplification ratios exceed six in 162 
the Barents Sea, consistent with strong reductions in sea ice concentration in the same region 163 
(Screen & Simmons, 2010; Isaksen et al., 2022; Parkinson, 2022). Although the MMM exhibits a 164 
similar pattern of local amplification, it substantially underestimates the magnitude as compared 165 
to observations (Ye & Messori, 2021; Rantanen et al., 2022).  166 

 167 
Fig 1: (A) Local amplification (i.e., local surface air temperature trend divided by global mean 168 
temperature trend) over the northern high latitudes from the average of observational datasets 169 
and the multi-model mean during 1980 to 2022. The Arctic is the region poleward of 70°N 170 
(black circle), and the corresponding Arctic Amplification (AA) (i.e., the Arctic mean 171 
temperature trend divided by global mean trend) is provided at the top of each plot. (B) 172 
Comparisons of AA in observations and CMIP6 models. Observations are shown using vertical 173 
lines, and grey shading shows their range. Histograms show the relative frequency distribution of 174 
AA over 1980-2022 for each model, which is normalized by its number of ensemble members. 175 
The black curve shows a normal distribution fitted to all model AA values. The black horizontal 176 
line shows the range of forced AAs and the vertical tick marks represent the ensemble-mean AA 177 
for each model. The values of AA from each observation and forced AA from each model are 178 
provided in the legend.  179 
 Figure 1B shows the AA from the four observational datasets and seven large ensembles 180 
and OthersAllEM (see section 2) for 1980-2022. While the forced component of AA ranges from 181 
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2.13 to 3.58 across models, individual ensemble members span a much larger range (Fig. S3 182 
shows each large ensembles AA distribution indivisually). Since the forcing is the same for all 183 
members of each model large ensemble, the deviations from the forced AA for a given ensemble 184 
member is entirely due to internal variability (OthersAllEM is an exception for which the 185 
deviations could also be partly due to differences in forced trends). While the magnitude of AA 186 
varies across the observations, all show extreme AA compared to the distribution of model 187 
simulations (Fig. 1B). All observational AA estimates sit outside the range of forced AA 188 
predicted by the large ensembles (i.e., outside the range of the horizontal black bar), and AA 189 
from NOAA Global Temperature v5 (4.57) exceeds AA from all model ensemble members. 190 
Observationally derived AA is weakest in HadCRUTv5 (3.91), which still exceeds 94% of the 191 
simulated AAs in Fig. 1B.  192 

The exceptionally high AA in observations compared to model simulations could be due 193 
to systematic model biases in the representation of internal variability, biases in the simulated 194 
response to external forcing, biases in the prescribed model forcing, or the observed AA being an 195 
extremely unlikely event (Rantanen et al., 2022). Because AA is defined as the trend poleward of 196 
70°N divided by the global mean, biases in either the Arctic or global warming would impact the 197 
comparison of AA. To investigate how well models simulate global and Arctic warming 198 
individually, Fig. 2 shows the distribution of Arctic and global warming in observations and 199 
model simulations (Figs. S4 and S5 show each large ensemble trend distribution individually 200 
over the Arctic and globe, respectively). Simulations of Arctic warming exhibit a very large 201 
range of trends from nearly 0 up to 2 K/decade for 1980-2022. Although a significant amount of 202 
this spread is due to differences between models (e.g., compare forced trends from CanESM5 to 203 
those from all other models), even individual models have Arctic warming trends that vary by 204 
±0.5 K/decade due to internal variability (see, e.g., ACCESS-ESM1-5 in Fig. S4). The observed 205 
Arctic warming ranges from 0.742 to 0.835 K/decade from the four observational datasets, with 206 
a mean of 0.791 K/decade, which are all well within the range of Arctic warming predicted by 207 
models (Fig. 2A). Thus, the observed Arctic warming is not as extreme as AA when compared to 208 
model simulations. 209 

 210 
Fig 2: Surface air temperature trends over 1980-2022 for the (A) Arctic and (B) global mean. 211 
The histograms show the distributions from model simulations, and the vertical lines represent 212 
the observations where grey shading shows their range. The black curve shows a normal 213 
distribution fitted to all the simulated temperature trends. The horizontal black line shows the 214 
range of externally forced trends with ticks showing individual models’ forced trends. The trend 215 
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values from individual observational datasets and forced trend values from individual models are 216 
provided in the legend.  217 

The global warming trend from the four observational datasets ranges from 0.183 to 218 
0.193 K/decade with a mean of 0.189 K/decade, which is on the lower side of the simulated 219 
range of externally forced trends (Fig. 2B). However, some models have ensemble members that 220 
simulate global warming trends below what is observed, suggesting that internal variability may 221 
damp the rate of global warming (Kosaka and Xie, 2013; Watanabe et al., 2014; Zhang et al., 222 
2016; Xie & Kosaka, 2017; Wu et al., 2019). Next, we attempt to partition the observed Arctic 223 
and global warming trends into their externally and internally generated components. 224 

4. Separating Internal Generated and Externally Forced Trends in Observations 225 
The test of the CNN algorithms on each of the seven models for 1980-2022 are shown as 226 

scatter points in Fig. 3, which suggest that when presented with a set of SAT and SLP trend maps 227 
from a model ensemble not used during training, the CNN can reliably separate the internal and 228 
external contributions to the trends averaged over the Arctic and globe. This is despite the wide 229 
range of internally generated and externally forced trends simulated by models (see Fig. 2). The 230 
skill of the CNN results from its ability to learn the patterns (in SAT and SLP) that correspond 231 
with the internally generated and external forced trends in both the Arctic and global domains. 232 
The CNN also generalizes well to simulations with forced trends far from the MMM (e.g., red 233 
dots showing results for CanESM5 in Fig. 3B, E). Although the CNN predicts the internal and 234 
external trends separately, their sum accurately reproduces the total trend (see Fig. 3C and 3F). 235 
This conservation of the total trend is not explicitly targeted during training but arises from 236 
learning this closure in the training data. 237 

 238 
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 239 
Fig 3: (A-C) Arctic and (D-F) global surface air temperature trends predicted from the CNN (x-240 
axis) versus corresponding actual trends (y-axis) over 1980-2022. The root mean squared error 241 
(RMSE) and correlation coefficient (r) are shown at the top of each plot. (A, D) shows results for 242 
internally generated trends, (B, E) shows the externally forced trends, and (C, F) shows the sum 243 
of the internally generated and externally forced trends. The vertical lines show the mean 244 
observational estimate for each temperature record, and the grey shading shows the ± 2σ 245 
uncertainty of mean prediction. The mean (x̄) and its standard deviation (σ) based on 246 
observations are provided in the bottom right of each plot. The black diagonal line in (A-F) is the 247 
1:1 line.  248 

Having shown that the CNNs can reliably predict the internal and external trends in 249 
models, we apply the CNNs to observations from 1980-2022 using the four SAT datasets and 250 
three SLP datasets. The mean results for each SAT dataset are shown by the vertical lines in Fig. 251 
3 with the 2σ confidence interval (Text S2) for the mean of all observational datasets. Predictions 252 
based on observational datasets indicate that internal variability has enhanced Arctic surface 253 
warming over 1980-2022 by 0.145 K/decade (Fig. 3A). The CNN predicts that the externally 254 
generated Arctic surface temperature trend is 0.619 K/decade. This suggests that internal 255 
variability has accelerated the pace of Arctic warming by ~23% relative to the forced trend. 256 
Using all ensembles from the 7 models for all 43-year periods separated by 5-year increment 257 
over 1900-2047/2012, the 2σ spread of Arctic internal variability is ±0.324 K/decade. Many 258 
studies have shown that surface temperature trends in the Arctic are strongly coupled to sea ice 259 
trends, and that recent declines in sea ice cover have been enhanced by multidecadal variability 260 
(Serreze et al., 2009; Screen and Simmons, 2010; Kay et al., 2011; Ding et al., 2019; Deng and 261 
Dai, 2022). Our results agree with previous studies showing that internal variability is an 262 
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important contribution to recent trends in Arctic climate change (Ding et al., 2019; Bonan et al., 263 
2019; Chylek et al., 2022). 264 

Application of the CNN to the global case suggests that internal variability dampens the 265 
observed temperature trend, which is also consistent with previous studies (Kosaka and Xie, 266 
2013; Xie and Kosaka, 2017; Tokarska et al., 2020; Po-Chedley et al., 2022). All observational 267 
estimates show that internal variability reduces global surface warming over 1980-2022, with a 268 
central estimate of -0.024 K/decade (Fig. 3D). The global CNN predicts the externally generated 269 
trend to be 0.207 K/decade. This suggests that internal variability has damped the global 270 
warming by ~12% relative to the forced trend since 1980. Although this internal variability is 271 
substantial, the 2σ spread of internal variability from all large ensembles over the 1900-272 
2047/2012 period is ±0.051 K/decade.  273 

5. Implications for Arctic Amplification and Discussions 274 
Internal variability can impact AA through its effect on Arctic warming, global warming, 275 

or both. ML algorithms applied here can partition the contribution of externally forced and 276 
internally generated trends both over the Arctic and over the globe. Application of these 277 
algorithms to observations suggests that internal variability has enhanced Arctic surface warming 278 
(+0.145 K/decade) while simultaneously dampening global mean surface warming (-0.024 279 
K/decade) over 1980-2022 (Figs. 3A&D). Because AA is the surface temperature trend in the 280 
Arctic divided by the global mean trend, the opposing role of internal variability in the Arctic 281 
and global average inflates observed AA. Figure 4 is the same as Fig. 1B but with AA estimates 282 
after we first subtract the contribution of internal variability derived form ML algoriths from 283 
both the Arctic and global mean trends and then recalculate their ratio. This was done for both 284 
observations and each ensemble member of the seven large ensembles (Fig. S6 shows each large 285 
ensembles distribution of AA after removing internal variability indivisually). Upon removing 286 
the estimated effect of internal variability from the Arctic and global mean surface air 287 
temperature trend, AA from climate model simulations and observational datasets exhibit 288 
excellent agreement (c.f, Fig. 4 to Fig. 1B).  289 

 290 

 291 
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  292 
Fig. 4: Same as Fig. 1 (B) but showing the AA estimates after subtracting the contributions of 293 
internal variability, as derived from the ML algorithms, from Arctic and global warming. This 294 
was done for both observations and each ensemble member of the seven large ensembles. The 295 
vertical blue dashed lines show the 2s range of the estimated forced AA based on observations. 296 
 After subtracting the internally generated trend from the mean observational trend over 297 
the Arctic (0.791 K/decade) and globe (0.189 K/decade), the externally generated trend is 298 
estimated as 0.646 K/decade and 0.213 K/decade, respectively, meaning that the externally 299 
forced AA is 3.03. A similar result is obtained by using the externally forced Arctic to global 300 
warming trends directly estimated by the CNN, which are 0.619 K/decade and 0.207 K/decade 301 
(Figs. 3B&E), and the resulting externally forced AA is 2.99. Our results shown here suggest 302 
that internal variability plays a substantial role in inflating recent AA and increased the 1980-303 
2022 AA by 38%. Key to this result, is recognizing that internal variability has enhanced Arctic 304 
warming while simultaneously damping global warming. Vertical blue dashed lines show the 2σ 305 
spread of externally forced AA based on observations (see Text S2). Figure 4 shows that the 306 
estimates of observed, externally forced AA is still within the range of forced AA based on model 307 
simulations even when this uncertainty is included. Although here we present results using a definition 308 
of the Arctic as poleward of 70°N, repeating the analysis by defining the Arctic as poleward of 60°N 309 
produces similar results (see Fig. S7). This study uses CNNs (Text S1 and Fig. S8) instead of linear 310 
pattern matching algorithms, e.g., Partial Least Squares regression (PLS) (Po-Chedley et al., 311 
2022), because CNNs better minimize the MSE, but results are similar using either CNNs or PLS 312 
methods (see Fig. S9 and S10). The mean AA ratio after removing internal variability 313 
contributions to observed trends based on PLS regression and the CNN is 2.98 and 3.03, 314 
respectively.  315 

 Although we stress internal variability’s role in inflating recent AA, these results do not 316 
discount the possible influence of forcing on the simulated-versus-observed differences in AA. 317 
Systematic biases in the forcing prescription can have a significant impact on simulated AA 318 
during 1980-2022. For example, changes in the amount of biomass burning prescribed in 319 
CESM2_SBMB compared to CESM2 lead to decreased surface warming in the Northern 320 
Hemisphere high latitudes and thus a smaller AA ratio in CESM2_SBMB (Fig. 1B). Because AA 321 
is defined as the ratio of the total Arctic and global warming, a forcing bias in either region will 322 
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impact the magnitude of AA even if internally generated trends match observations. Given that 323 
the externally forced and internally generated trends estimated from observations are within the 324 
bounds of the simulated externally forced and internally generated trends in the large ensembles, 325 
a pertinent question is why don’t more models simulate the observed levels of AA? Crucial to 326 
reproducing the observed AA is simulating internal variability that enhances Arctic warming 327 
while simultaneously dampening global warming. The fact that model simulations generally do 328 
not reproduce the observed levels of AA may suggest that while models during the 1980-2022 329 
period can simulate the observed amplitude of internal variability in the Arctic and over the 330 
globe separately, they struggle to simulate the combined manifestation of internal variability that 331 
enhances Arctic warming while suppressing global warming (Rosenblum & Eisenman, 2017; 332 
Rantanen et al., 2022). Our machine learning schemes work well partly because they are trained 333 
separately for the Arctic and global-mean temperature trends. Our results show that considering 334 
internal variability can reconcile the discrepancy between observed and simulated AA but also 335 
calls for the need to better understand this unusual manifestation of internal variability.  336 
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