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Abstract

Functional relationships capture how variables co-vary across specific spatial or temporal

domains. However, these relationships often take complex forms beyond linear, and they may

only hold for sub-sets of the domain. More problematically, it is often a priori unknown how

such sub-domains are defined. Here we present a new method called SONAR (diScovery Of

fuNctionaAl Relationships) that enables the automated discovery of functional relationships in

large datasets. SONAR operates on existing unstructured data and is designed to be an

explorative tool for large datasets where manual search for functional relationships would be

impossible. We test the method on groundwater recharge outputs of several global hydrological

models to explore its usefulness and limitations. Further, we compare SONAR to the established

CART (Classification and Regression Trees) and CIT (Conditional Inference Trees) methods.

SONAR results in smaller trees with functional relationships in the leaf nodes instead of specific

classes or numbers. SONAR provides a robust and automated method for the exploration of

functional relationships.
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Key Points: 10 

• Functional relationships capture how variables co-vary across spatial or temporal 11 

domains. 12 

• Here we present a new method for the automated diScovery Of fuNctionaAl 13 

Relationships (SONAR).  14 

• We test SONAR on model-derived datasets to identify functional relationships of 15 

groundwater recharge simulations from global hydrological models with possible drivers. 16 

• We compare SONAR to two established methods, CART (Classification and Regression 17 

Trees) and CIT (Conditional Inference Trees), and find that SONAR produces smaller 18 

trees and is more robust.  19 
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Abstract 20 

Functional relationships capture how variables co-vary across specific spatial or temporal 21 

domains. However, these relationships often take complex forms beyond linear, and they may 22 

only hold for sub-sets of the domain. More problematically, it is often a priori unknown how 23 

such sub-domains are defined. Here we present a new method called SONAR (diScovery Of 24 

fuNctionaAl Relationships) that enables the automated discovery of functional relationships in 25 

large datasets. SONAR operates on existing unstructured data and is designed to be an 26 

explorative tool for large datasets where manual search for functional relationships would be 27 

impossible. We test the method on groundwater recharge outputs of several global hydrological 28 

models to explore its usefulness and limitations. Further, we compare SONAR to the established 29 

CART (Classification and Regression Trees) and CIT (Conditional Inference Trees) methods. 30 

SONAR results in smaller trees with functional relationships in the leaf nodes instead of specific 31 

classes or numbers. SONAR provides a robust and automated method for the exploration of 32 

functional relationships. 33 

Plain Language Summary 34 

Vastly expanding datasets have the potential for incredible advancements in our understanding of 35 

how different variables co-vary within Earth system dynamics.  However, we lack adequate tools 36 

to identify new relationships within such complex and high-dimensional datasets. Here we 37 

developed a new method called SONAR that can automatically find relationships in large 38 

datasets. We test the method on global simulations of groundwater recharge and find that it 39 

produces smaller and more robust structured representations than existing methods. SONAR is 40 

an exploratory tool that can help researchers discover relationships in complex datasets in the 41 

Earth sciences and beyond. 42 

1 Introduction 43 

Earth system science relies on understanding functional relationships, which can be defined as 44 

the co-variation of variables across space or and time that underpins our theoretical knowledge of 45 

how the Earth works (Gnann et al., 2023a; L'vovich, 1979). For example, we find that 46 

groundwater recharge across water limited domains co-varies with available precipitation 47 

(MacDonald et al., 2021), or that changes in the co-variation of precipitation and runoff can 48 

reflect system changes in response to drought (Peterson et al., 2021). To understand and 49 

anticipate the evolving Earth system (Denissen et al., 2022), we require a quantitative 50 

understanding of this co-variation. Not only is an understanding of such relationships important 51 

for our scientific understanding, it also allows us to build adequate models and evaluate their 52 

consistency with the Earth system dynamics we observe (Eker et al., 2018; Koster & Milly, 53 

1997; Reichstein et al., 2019; Wagener et al., 2022). If finding functional relationships offers 54 

such a high reward, how do we find them beyond manually looking for them – given that we can 55 

rarely identify them through planned experiments at our scales of interest? 56 

The dramatic increase in the size of datasets describing the structure and dynamics of the Earth 57 

system offers huge opportunities for finding new relationships - if we have the tools to identify 58 

them in vast and complex data. We have increasingly large satellite datasets; for example, the 59 

new SWOT mission will send more than 1TB per day back to Earth, and the NASA Earth data 60 

repository is estimated to grow to over 245 PB by 2025 (NASA, 2021). This does not even 61 

include model outputs which add even more to the pile of data we have (e.g. Hoch et al. (2023)).  62 
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It will not be feasible to manually search through such datasets for functional relationships – 63 

unless one makes very strong and thus limiting a priori assumptions about what we expect to 64 

find. On the other hand, we struggle with imbalanced data, i.e. we often have unequal 65 

distributions of relevant classes within the data (Bradter et al., 2022; Chawla et al., 2002; Kaur et 66 

al., 2020), with human interference (Krabbenhoft et al., 2022), and with epistemic uncertainty 67 

(Beven et al., 2018; Beven & Cloke, 2012). For example, Krabbenhoft et al. (2022) show that 68 

global streamflow observations are significantly imbalanced and globally organized more by 69 

national GDP than by hydrological considerations, thus providing limited information in dry 70 

regions. 71 

Earth systems datasets are a mixture of organized sampling (e.g. some remotely sensed 72 

observations) and those that are not sampled in a strategic manner, but are rather samples of 73 

opportunity (e.g. groundwater recharge estimates), thus requiring analysis methods that can work 74 

with all samples. Methods that can work with generic input-output datasets have been called 75 

sampling-free or data-agnostic methods (Pianosi & Wagener, 2018; Sheikholeslami & Razavi, 76 

2020). Further, if methods require no manual parameter tuning, we call them parameter-free 77 

(Saltelli et al., 2021). This is another advantageous feature of a method given that parameter 78 

tuning can be different if very heterogenous and imbalanced datasets are studied. Both properties 79 

would be beneficial for the automated exploration of functional relationships in Earth system 80 

data. 81 

Earth system processes are driven by different factors across space and time scales (Pattee, 82 

1972), vary along gradients (Lesk et al., 2021), and exhibit thresholds (Zehe & Sivapalan, 2009). 83 

Thus, an automated method should also be able to identify and represent relationships in a 84 

hierarchical manner to represent the diversity in subdomains of the data. In the past, tree-like 85 

algorithms such as CART (Classification and Regression Trees) (Breiman et al., 2017) and CIT 86 

(Conditional Inference Trees) (Hothorn et al., 2006) and other similar implementations (Loh, 87 

2014) have been used to find hierarchical structure in Earth system data (e.g., Messager et al. 88 

(2021), Almeida et al. (2017)). While these algorithms have initially been built for classification 89 

and regression, they also provide information about dominant controls. In fact, the point at which 90 

the data are split into subtrees reveals the underlying structure of the data and the dominant 91 

controls that separate sub-domains. However, these data-based strategies can show limited 92 

robustness  and can provide splits at non-physical boundaries rendering their interpretation 93 

difficult (Sarailidis et al., 2023). 94 

Addressing the robustness problem, ensemble methods such as random forest (Breiman, 2001) 95 

can identify dominant controls through factor importance (Antoniadis et al., 2021), while others 96 

have used multivariate adaptive regression splines (MARS) (Friedman, 1991) to find more 97 

complex relationships (e.g., Conoscenti et al. (2015)). However, such approaches can be difficult 98 

to interpret or even visualize. While visual inspection remains powerful in identifying complex 99 

variable interactions – especially if we do not know what kind of interaction we might expect 100 

(Puy et al., 2022; Wagener & Kollat, 2007). Similarly, machine learning has led to approaches 101 

that learn functional relationships (Shrestha et al., 2009), and explainable AI strategies are 102 

advancing rapidly (Jiang et al., 2022). 103 

Here we present an automated method for the diScovery Of fuNctionaAl Relationships 104 

(SONAR) that combines data agnosticism, interpretability, and the identification of hierarchical 105 

controls, in a parameter-free algorithm. What distinguishes SONAR from other existing methods 106 

is that the automatic search yields a tree that separates the search domain in a hierarchical 107 
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manner and uncovers possible functional relationships. To our knowledge, no method exists that 108 

can automatically separate data in a hierarchical manner to show functional relationships. 109 

SONAR is tested here on a large groundwater recharge dataset from eight global hydrological 110 

models. 111 

Groundwater recharge is an example of a hydrological process (see supplement for definition) 112 

which remains highly uncertain on the global scale as hydrological models disagree largely in the 113 

functional relationships they produce (Berghuijs et al., 2022; Reinecke et al., 2021; West et al., 114 

2023). It is unclear why exactly the models disagree and how it relates to differences in 115 

assumptions made about how hydrologic systems work. However, one can clearly trace patterns 116 

of different recharge behavior for different climatic zones across the globe (Fig. S1). Here we 117 

test whether SONAR can be used to analyze synthetic (noise-free) datasets produced by 118 

hydrological models and identify different functional relationships in different sub-domains (e.g. 119 

climatic regions); and how its results compare with established strategies.  120 

2 Materials and Methods 121 

2.1 Automated discovery of functional relationships 122 

SONAR works similarly to other tree-based approaches such as CART (Breiman et al., 2017). 123 

However, SONAR is not built to solve a classification or a regression problem but to find 124 

functional relationships while making no prior assumption about the type of relationship beyond 125 

a choice of correlation metric (that can be varied; in the following we use the spearman rank 126 

correlation). The algorithm works as follows (Fig. 1). It searches recursively for the best possible 127 

split within the dataset. On each split SONAR determines which binary separation of an 128 

explanatory variable (e.g., amount of precipitation above or below a certain threshold) would 129 

increase the correlation between an explanatory variable (e.g., aridity index, or precipitation 130 

amount again) and the variable under investigation (e.g., groundwater recharge). SONAR 131 

searches for possible splits based on equally sized bins to reduce the search space into 132 

manageable pieces. However, the correlations are always calculated on the original data and not 133 

the bins. SONAR tests all possible splits based on different subsets of the bins (Fig. 1) from 134 

small to large values of the explanatory variables (for description of alternatives see 135 

Supplement). SONAR can also handle categorical variables, in which case the split is based on 136 

whether the data belong to a certain category or not. With each split SONAR searches for an 137 

increase in correlation. SONAR produces binary trees and for each split at least one side (the left 138 

or right subtree) needs to increase in correlation otherwise the algorithm stops (Fig. 1). Requiring 139 

an increase for both sides would yield a less robust algorithm given that we want to distinguish 140 

sub-domains in which functional relationships exists from those where this is not the case. To 141 

ensure that SONAR does not select very small subspaces a split requires each subspace to have 142 

at least 500 data points or 5% of the data of the parent node – depending on the dataset used. 143 

This value can be changed and limits the parameter-free property of the approach.  144 

Importantly, each leaf node ends up containing a relationship and not only a particular class 145 

(compared to classification trees) or value (compared to regression trees). Each leaf thus contains 146 

a subset of the original data points for the particular subdomain. SONAR then derives a 147 

functional relationship in the following way: the data in each leaf node are divided into 10 148 

equally-sized bins and a line is added that connects the medians across the bins to describe the 149 

functional relationship.  150 
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 151 
Figure 1. Visual representation of the SONAR algorithm and its major workflow components. Y 152 

denotes the variable we are searching dominant controls for in the set of explanatory variables 153 

Xj. ps is the Spearman Rank correlation and z the highest ps of the node above a split (this can 154 

also be the root node). 155 

2.2 Approaches related to our method: CART and CIT 156 

We compare our approach to two existing methods: CIT (Conditional Inference Trees) (Hothorn 157 

et al., 2006) and CART (Classification and Regression Trees) (Breiman et al., 2017). We 158 

selected these two methods because CART is well established and widely used, while CIT is 159 

conceptually closest to our method as it searches for correlations as well, though without the 160 

explicit search for functional relationships. Ensemble methods such as Random Forest (Breiman, 161 

2001) are  more complex realizations of the single tree methods used here but have the above 162 

discussed problems of interpretability, hence we do not include them here. MARS (Multivariate 163 

Adaptive Regression Splines) (Friedman, 1991) and other regression methods cannot separate 164 

domains in a hierarchical manner.  165 

 166 

Using a greedy approach (A selection of the best possible option at a current state of the 167 

algorithm, thus possibly missing a global optimum), CART searches for an optimal binary split 168 

of a dataset that optimizes an error function such as the Gini index or an entropy measurement. 169 

CART trees tend to overfit and thus must be pruned for most datasets (Esposito et al., 1997). CIT 170 

is similar to CART as it constructs a binary tree and can produce regressions and classifications. 171 

However, to decide on a split CIT tests for a maximum linear independence between covariates 172 

and response variables. CIT stops if the null hypothesis H0 of variable’s independence cannot be 173 

rejected. It selects a subset of the covariate with the highest conditional expectation using a linear 174 

two-sample test. CIT can be computationally expensive and was in the past used, e.g., to 175 
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determine the role of global change in soil functions (Rillig et al., 2019). It was, however, 176 

criticized due to its limited ability for detecting non-linear effects (Wright et al., 2017). 177 

 178 

In both CART and CIT trees, dominant controls are indicated by variables close to the tree's root 179 

node. The earlier a variable is used for a split the more a separation improves the classification or 180 

regression fit. Splits in SONAR provide a similar indication, however, controls also appear in the 181 

leaf nodes. The controls selected in the leaf nodes may be equal to the ones used for a split or be 182 

different. 183 

2.3 Experimental setup 184 

2.3.1 Groundwater recharge data and explanatory variables 185 

We use groundwater recharge (see S1) as an example process to test the algorithms. 186 

Groundwater recharge is poorly understood globally and available data are rather imbalanced 187 

(Gnann et al., 2023a). For these reasons we use data produced by model simulation, rather than 188 

observations. We also use a long-term estimate of recharge given that this is most likely related 189 

to climatic factors which we consider here. Our dataset consists of simulated 30-year annual 190 

averages of groundwater recharge on a 0.5° spatial resolution from an ensemble of eight global 191 

hydrological models (Table S1) (Best et al., 2011; Burek et al., 2020; Gnann et al., 2023a; 192 

Hanasaki et al., 2018; Müller Schmied et al., 2021; Schaphoff et al., 2018; Sutanudjaja et al., 193 

2018; Swenson & Lawrence, 2015; Takata et al., 2003). We investigate functional relationships 194 

within the data to showcase differences between the algorithms. There is no intention here to 195 

evaluate the specific model implementations or performances. For the classification task of 196 

CART, we separate annual groundwater recharge amounts into four classes: very low (0-10 197 

mm/yr), low (10-100 mm/yr), medium (100-500 mm/yr), and high (>500 mm/yr). Using 198 

different separation categories does not change the general conclusions regarding the algorithms 199 

but influences the specific CART trees (see Fig. S13). All models are driven with the same 200 

forcing input (Table S2). Recharge simulations and forcing data are based on the simulation 201 

protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) (Warszawski et 202 

al., 2014). 203 

 204 

In addition, we use a set of explanatory variables that we assume to be potentially relevant in 205 

determining recharge in the eight models (Table S2 and Fig. S5-S9). We use long-term mean 206 

precipitation (P), long-term mean potential evapotranspiration (PET), an aridity index (AI) 207 

defined by PET/P, long-term mean temperature (T), an indicator of cold days per year (DB), and 208 

a land cover data set GlobCover which is closest to the information used in the models (ESA, 209 

2010). In contrast to common forcing, the hydrological models used consider very different 210 

geological information which is therefore hard to consider here.  211 

 212 

Traditionally machine learning methods are evaluated with established datasets like Iris (Unwin 213 

& Kleinman, 2021) or Forest cover type (Jock Blackard, 1998), however they are either too 214 

small to be used with SONAR or are built specifically for a classification problem which cannot 215 

test the usefulness of approach. 216 
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2.4 Evaluation criteria of method attributes 217 

2.4.1 Comparison between SONAR, CART and CIT 218 

The three methods include different information in their leaf nodes and make very different split 219 

decisions (see Section 2.2). To allow a general comparison, we compare the trees visually in 220 

their pathways to derive at certain recharge classes (see 2.3.1). We focus on the dominant 221 

controls (how far up in the tree explanatory variables are mentioned; see also 2.2), their 222 

thresholds (split decisions), and the pathways that lead to certain value ranges. For the widely 223 

used Iris dataset (Unwin & Kleinman, 2021) and a simple CART tree this path representation 224 

shows that petal width is a dominant control (Fig. S14) 225 

 226 

Since no other existing method represents functional relationships in their leaf nodes we use the 227 

derived functional line of SONAR (see 2.1) to calculate ranges of values within the node (i.e., 228 

the range of possible Y for a given range of X) that can be compared to the regression and class 229 

ranges of CART and CIT. 230 

2.4.2 Robustness of SONAR 231 

To test how SONAR reacts to data limitations we create a robustness test. A possible real-world 232 

reason for this absence of data could be a sampling bias (e.g. Krabbenhoft et al. (2022)). Each 233 

experiment removes a certain percentage of data from the original dataset at random. The less a 234 

tree representation changes the more robust the algorithm is. This does not address the 235 

correctness of the tree. We measure the robustness by utilizing the TED (tree-edit-distance) 236 

(Pawlik & Augsten, 2015) defined as the minimum-cost sequence of node edit operations 237 

(delete, insert, rename) that transform one tree into another. We use TED only to compare trees 238 

derived within a method and not for cross-method comparison. In 100 independent experiments, 239 

1 is the baseline experiment with all the available data, we randomly remove X% of the initial 240 

data and compare the resulting tree to the baseline experiment. A method is more robust to 241 

random removal of data if the TED remains small between the baseline and the 99 other 242 

experiments. As a reference we compare the robustness of SONAR with the widely used CART 243 

method. 244 

3 Results 245 

3.1 Automatic detection of relationships in sub-domains using SONAR 246 

Testing SONAR on groundwater recharge datasets from eight global hydrological models yields 247 

eight different trees, two of which are shown in Fig. 2. We show models WaterGAP (Müller 248 

Schmied et al., 2021) and LPJML (Schaphoff et al., 2018) (see also Table S1) as examples, while 249 

all other models can be found in supplement S5. All resulting trees are rather shallow with only 250 

one to four splits. This is a characteristic of SONAR that is amplified by the minimum number of 251 

points requirement (see 2.1; without it the trees grow only marginally bigger, see supplement 252 

S5).  253 

 254 

SONAR finds highly correlated subsets of the data in its leafs with Spearman rank correlations ps 255 

> 0.9 (up to 0.95 for model (a) in Fig. 2a). Separation into different subspaces of the explanatory 256 

variables, by temperature in Fig. 2a and by aridity index in Fig. 2b, together with the different 257 
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functional relationships in the leaf nodes, suggests that the global models WaterGAP and LPJML 258 

differ in the way they represent groundwater recharge processes.  259 

 260 

In Fig. 2a, the dominant control for the tree is the aridity index in all leaves; for the tree in Fig. 261 

2b, it is precipitation. The fact that the same control appears in all leaves within a tree is specific 262 

to these two trees, and different controls will be found across other datasets. Compared to the 263 

initial correlation of 0.89 and 0.77 at the root node (both to precipitation), the correlation 264 

increases for some subdomains but decreases for others. (SONAR only requires an increase in 265 

one subdomain on a split, see 2.1). In our case study, the number of points in the highly 266 

correlated domains is always much smaller than those in the less correlated domains and also 267 

shows higher uncertainty in the functional relationships found (Fig. 2). 268 

 269 

 270 
Figure 2. SONAR tree of models WaterGAP (a) and LPJML (b). n is the number of points at 271 

each node, ps the spearman correlation, the black line is the functional relationship, error bars 272 

indicate the min. and max. value in each bin (here 10 quantiles). The color provides an indication 273 

of the point density of the underlying data as a visual aid (lines and error bars are calculated 274 

based on the underlying scatter of the original data). The darker the color the more points are 275 

inside this area. The root shows the relationship between Precipitation (P) and Recharge (R) 276 

because this shows the highest initial correlation in the data without splits. 277 

 278 

To ensure that SONAR finds reasonable relationships we tested it with the same explanatory 279 

variables and (1) randomly generated recharge, (2) recharge generated based on linear relations 280 

to precipitation that differ for different domains, and (3) recharge generated based on PET (see 281 

supplement). Using these examples, we show that SONAR does not produce any tree from 282 
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randomly generated data and is able to identify the artificial relationships for precipitation and 283 

PET (see supplemental S7). 284 

3.2 SONAR differs from CART and CIT in regression and classification paths 285 

SONAR searches for functional relationships instead of classifications or regressions; 286 

nevertheless, the meanings of the trees are similar enough to CART and CIT to compare the 287 

interpretations and conclusions drawn. In Fig. 3, we represent sub-trees to enable such a 288 

comparison (for a full explanation of the chosen visualization, see supplemental material), 289 

including the results shown in Fig. 2a. For each tree, Fig. 3 only shows the part of the tree that 290 

describes controlling variables on recharge values smaller than 100 mm/yr as an example (see 291 

supplement Fig. S15, S16 for the complete trees). The visualization shows each path that leads to 292 

a recharge value below or equal to 100 mm/yr, from the first split at the root node (left) to the 293 

leaf node (right). A different box indicates a split, while the value and color inside the box 294 

indicate at which point and through which variable the data was split. If a box is bigger, there are 295 

more pathways and leaves following this split in the tree. The leaf shows only a single class for 296 

classification trees (CART), values below the chosen threshold for regressions (CIT), and a 297 

range of values within a functional relationship that produces values below the threshold 298 

(SONAR). 299 

 300 

Equal to Fig. 2a the SONAR tree shows only one split at 26 C° in comparison to CART and CIT, 301 

which show more possible pathways to low recharge values. All three approaches show different 302 

dominant controls and pathways to low recharge values. The encoding of how low recharge 303 

values are reproduced is much more complex in CART and CIT (multiple splits and different 304 

variables that control them) and very short in SONAR. The CART tree suggests that 305 

precipitation is the dominant control (as it shows up earlier in the tree) and that the aridity index 306 

gets more important in certain subdomains. On the other hand, CIT also uses precipitation as the 307 

first split but other explanatory variables for splitting the data further. Overall all three methods 308 

differ substantially in their understanding of the data. 309 
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 310 
Figure 3. Visual representation of tree pathways (see supplement S4 for an extended explanation 311 

and simple example of this visualization method) only for low recharge values of three different 312 

approaches. The SONAR sub-plot shows part of Fig. 2a. For CART and CIT only, the part of the 313 

tree that leads to low values is shown. Gray boxes indicate the values or classes – for CIT and 314 

CART they are also the leaf nodes. All three trees were trained on the same model data and 315 

explanatory variables. The CART and CIT tree were pruned to a depth of 4. 316 

3.3 SONAR is robust to variations in the input dataset 317 

To test the robustness (see 2.4.2) of SONAR we removed a percentage of the original data and 318 

compared it with a baseline experiment. To provide a frame of reference we first conducted the 319 

experiment with the established CART algorithm (Fig. 4a). With an increased loss of 320 

information, the resulting CART trees become increasingly different (higher TED) from the 321 

baseline experiment which includes all data. Notably the mean difference between the models is 322 

relatively stable throughout. In comparison, SONAR is relatively robust as the TED with 10% 323 

loss is 1 magnitude smaller than with CART. Even with 50% of data loss SONAR only reaches a 324 

maximum TED of 5, for some models the tree does not change at all. Importantly, the small TED 325 

is likely highly impacted by the total size of the tree. SONAR leads to smaller trees to begin 326 

with. 327 

 328 
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 329 
Figure 4. Robustness test of CART (a) and SONAR (b). Bars show the distribution of TED over 330 

the 99 independent random experiments as an indicator for robustness (small values equal a 331 

smaller change from the original tree). If the there is no bar shown the TED is 0 and all trees are 332 

equal for that model. 333 

 334 

4 Discussion and method limitations 335 

The application of SONAR to simulated groundwater recharge of global hydrological models 336 

shows differences between models and overall precipitation as a strong control of recharge. Both 337 

of these findings alight with recent analysis of this data (Gnann et al., 2023a; West et al., 2023). 338 

Importantly, SONAR also reveals that precipitation is not always the strongest explanation for 339 

recharge variability (Fig. 1a shows aridity as functional control of recharge) and that 340 

relationships between precipitation and recharge may differ across data subsets (e.g., divided by 341 

climate as in Fig. 1b). As recharge is a complex process which is not only controlled by available 342 

water but also by e.g. soil conditions and energy availability, one should expect different 343 

functional relationships in different domains (e.g. climatic regions). Model developers could use 344 

the identified relationships to evaluate whether their model represents a functional relationship 345 

that is similar to our hydrologic understanding and data of a specific region. 346 

 347 

The analysis reveals that SONAR produces very robust small trees but also differs largely in the 348 

path found towards small recharge values from very established algorithms. Importantly, because 349 

SONAR is so different from other algorithms (a search for functional relationships instead of 350 

regression or classification), a comparative analysis can only provide limited insights into 351 

whether it is more useful than established algorithms. SONAR results might allow for an easier 352 

discussion of their hydrological meaning compared to e.g. CART due to the smaller trees and 353 

relationships instead of discrete classes in its leaves. 354 

 355 

We did not investigate observational data at this stage and we did not extend the analysis to the 356 

temporal domain, but there would not be any fundamental difference in workflow. An important 357 

aspect that needs further consideration is the role of epistemic uncertainty when applying 358 

SONAR to observational data. However, SONAR does not produce any tree from randomly 359 
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generated data (supplement S7) and is able to identify the artificially introduced relationships of 360 

precipitation and PET (supplement S7). Wider analysis to other datasets will be required to 361 

understand what relationships can be identified by SONAR. 362 

 363 

The current implementation of SONAR has multiple limitations as we made specific 364 

methodological choices. Foremost, we could have used another correlation metric (Lee Rodgers 365 

& Nicewander, 1988), e.g., Pearson (Barber et al., 2020) instead of Spearman rank correlation. 366 

Also, metrics that consider a degree of regression fit would be possible. Our current choices are 367 

meant to require minimum assumptions. Furthermore, we chose to introduce a constraint on the 368 

amount of points at which a split is carried out, to prevent the algorithm from creating very small 369 

datasets in which the correlation calculation can become meaningless (see also S6). Selection of 370 

meaningful subset of data is an active field of research thus other approaches in separating the 371 

data at splits in SONAR could be considered (García-Pedrajas, 2011). And finally, the selection 372 

of explanatory variables has an impact on the results for any type of empirical algorithm like the 373 

one we present here, e.g. because variables like precipitation and aridity index are slightly 374 

correlated (Fig. S12). 375 

 376 

5 Conclusions 377 

SONAR describes a new and simple approach to identify functional relationships in complex 378 

datasets, thus giving effective insight into dominant controls within subdomains. The key 379 

advantage of SONAR is the automatic, non-parametrized, representation of functional 380 

relationships of hierarchical domains. It is specifically not built for classification or regression 381 

tasks, but to find possible relationships in large datasets. A comparison to other tree approaches 382 

shows that SONAR produces trees that are shorter and thus likely easier to interpret. 383 

Furthermore, SONAR is very robust and does not require any parameter tuning to work on a 384 

specific dataset. 385 

 386 

Without any prior knowledge, SONAR enables researchers to explore vast datasets of model 387 

simulations and observations to automatically discover exciting new functional relationships. 388 

Especially in the field of hydrology, where controls differ largely across temporal and spatial 389 

domains, we demonstrated that this new method can yield interesting new insights. Eventually 390 

SONAR could also be used for model evaluation by enabling the comparison of functional 391 

relationships identified in the data to those identified in model simulations. 392 
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Key Points: 10 

• Functional relationships capture how variables co-vary across spatial or temporal 11 

domains. 12 

• Here we present a new method for the automated diScovery Of fuNctionaAl 13 

Relationships (SONAR).  14 

• We test SONAR on model-derived datasets to identify functional relationships of 15 

groundwater recharge simulations from global hydrological models with possible drivers. 16 

• We compare SONAR to two established methods, CART (Classification and Regression 17 

Trees) and CIT (Conditional Inference Trees), and find that SONAR produces smaller 18 

trees and is more robust.  19 
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Abstract 20 

Functional relationships capture how variables co-vary across specific spatial or temporal 21 

domains. However, these relationships often take complex forms beyond linear, and they may 22 

only hold for sub-sets of the domain. More problematically, it is often a priori unknown how 23 

such sub-domains are defined. Here we present a new method called SONAR (diScovery Of 24 

fuNctionaAl Relationships) that enables the automated discovery of functional relationships in 25 

large datasets. SONAR operates on existing unstructured data and is designed to be an 26 

explorative tool for large datasets where manual search for functional relationships would be 27 

impossible. We test the method on groundwater recharge outputs of several global hydrological 28 

models to explore its usefulness and limitations. Further, we compare SONAR to the established 29 

CART (Classification and Regression Trees) and CIT (Conditional Inference Trees) methods. 30 

SONAR results in smaller trees with functional relationships in the leaf nodes instead of specific 31 

classes or numbers. SONAR provides a robust and automated method for the exploration of 32 

functional relationships. 33 

Plain Language Summary 34 

Vastly expanding datasets have the potential for incredible advancements in our understanding of 35 

how different variables co-vary within Earth system dynamics.  However, we lack adequate tools 36 

to identify new relationships within such complex and high-dimensional datasets. Here we 37 

developed a new method called SONAR that can automatically find relationships in large 38 

datasets. We test the method on global simulations of groundwater recharge and find that it 39 

produces smaller and more robust structured representations than existing methods. SONAR is 40 

an exploratory tool that can help researchers discover relationships in complex datasets in the 41 

Earth sciences and beyond. 42 

1 Introduction 43 

Earth system science relies on understanding functional relationships, which can be defined as 44 

the co-variation of variables across space or and time that underpins our theoretical knowledge of 45 

how the Earth works (Gnann et al., 2023a; L'vovich, 1979). For example, we find that 46 

groundwater recharge across water limited domains co-varies with available precipitation 47 

(MacDonald et al., 2021), or that changes in the co-variation of precipitation and runoff can 48 

reflect system changes in response to drought (Peterson et al., 2021). To understand and 49 

anticipate the evolving Earth system (Denissen et al., 2022), we require a quantitative 50 

understanding of this co-variation. Not only is an understanding of such relationships important 51 

for our scientific understanding, it also allows us to build adequate models and evaluate their 52 

consistency with the Earth system dynamics we observe (Eker et al., 2018; Koster & Milly, 53 

1997; Reichstein et al., 2019; Wagener et al., 2022). If finding functional relationships offers 54 

such a high reward, how do we find them beyond manually looking for them – given that we can 55 

rarely identify them through planned experiments at our scales of interest? 56 

The dramatic increase in the size of datasets describing the structure and dynamics of the Earth 57 

system offers huge opportunities for finding new relationships - if we have the tools to identify 58 

them in vast and complex data. We have increasingly large satellite datasets; for example, the 59 

new SWOT mission will send more than 1TB per day back to Earth, and the NASA Earth data 60 

repository is estimated to grow to over 245 PB by 2025 (NASA, 2021). This does not even 61 

include model outputs which add even more to the pile of data we have (e.g. Hoch et al. (2023)).  62 
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It will not be feasible to manually search through such datasets for functional relationships – 63 

unless one makes very strong and thus limiting a priori assumptions about what we expect to 64 

find. On the other hand, we struggle with imbalanced data, i.e. we often have unequal 65 

distributions of relevant classes within the data (Bradter et al., 2022; Chawla et al., 2002; Kaur et 66 

al., 2020), with human interference (Krabbenhoft et al., 2022), and with epistemic uncertainty 67 

(Beven et al., 2018; Beven & Cloke, 2012). For example, Krabbenhoft et al. (2022) show that 68 

global streamflow observations are significantly imbalanced and globally organized more by 69 

national GDP than by hydrological considerations, thus providing limited information in dry 70 

regions. 71 

Earth systems datasets are a mixture of organized sampling (e.g. some remotely sensed 72 

observations) and those that are not sampled in a strategic manner, but are rather samples of 73 

opportunity (e.g. groundwater recharge estimates), thus requiring analysis methods that can work 74 

with all samples. Methods that can work with generic input-output datasets have been called 75 

sampling-free or data-agnostic methods (Pianosi & Wagener, 2018; Sheikholeslami & Razavi, 76 

2020). Further, if methods require no manual parameter tuning, we call them parameter-free 77 

(Saltelli et al., 2021). This is another advantageous feature of a method given that parameter 78 

tuning can be different if very heterogenous and imbalanced datasets are studied. Both properties 79 

would be beneficial for the automated exploration of functional relationships in Earth system 80 

data. 81 

Earth system processes are driven by different factors across space and time scales (Pattee, 82 

1972), vary along gradients (Lesk et al., 2021), and exhibit thresholds (Zehe & Sivapalan, 2009). 83 

Thus, an automated method should also be able to identify and represent relationships in a 84 

hierarchical manner to represent the diversity in subdomains of the data. In the past, tree-like 85 

algorithms such as CART (Classification and Regression Trees) (Breiman et al., 2017) and CIT 86 

(Conditional Inference Trees) (Hothorn et al., 2006) and other similar implementations (Loh, 87 

2014) have been used to find hierarchical structure in Earth system data (e.g., Messager et al. 88 

(2021), Almeida et al. (2017)). While these algorithms have initially been built for classification 89 

and regression, they also provide information about dominant controls. In fact, the point at which 90 

the data are split into subtrees reveals the underlying structure of the data and the dominant 91 

controls that separate sub-domains. However, these data-based strategies can show limited 92 

robustness  and can provide splits at non-physical boundaries rendering their interpretation 93 

difficult (Sarailidis et al., 2023). 94 

Addressing the robustness problem, ensemble methods such as random forest (Breiman, 2001) 95 

can identify dominant controls through factor importance (Antoniadis et al., 2021), while others 96 

have used multivariate adaptive regression splines (MARS) (Friedman, 1991) to find more 97 

complex relationships (e.g., Conoscenti et al. (2015)). However, such approaches can be difficult 98 

to interpret or even visualize. While visual inspection remains powerful in identifying complex 99 

variable interactions – especially if we do not know what kind of interaction we might expect 100 

(Puy et al., 2022; Wagener & Kollat, 2007). Similarly, machine learning has led to approaches 101 

that learn functional relationships (Shrestha et al., 2009), and explainable AI strategies are 102 

advancing rapidly (Jiang et al., 2022). 103 

Here we present an automated method for the diScovery Of fuNctionaAl Relationships 104 

(SONAR) that combines data agnosticism, interpretability, and the identification of hierarchical 105 

controls, in a parameter-free algorithm. What distinguishes SONAR from other existing methods 106 

is that the automatic search yields a tree that separates the search domain in a hierarchical 107 
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manner and uncovers possible functional relationships. To our knowledge, no method exists that 108 

can automatically separate data in a hierarchical manner to show functional relationships. 109 

SONAR is tested here on a large groundwater recharge dataset from eight global hydrological 110 

models. 111 

Groundwater recharge is an example of a hydrological process (see supplement for definition) 112 

which remains highly uncertain on the global scale as hydrological models disagree largely in the 113 

functional relationships they produce (Berghuijs et al., 2022; Reinecke et al., 2021; West et al., 114 

2023). It is unclear why exactly the models disagree and how it relates to differences in 115 

assumptions made about how hydrologic systems work. However, one can clearly trace patterns 116 

of different recharge behavior for different climatic zones across the globe (Fig. S1). Here we 117 

test whether SONAR can be used to analyze synthetic (noise-free) datasets produced by 118 

hydrological models and identify different functional relationships in different sub-domains (e.g. 119 

climatic regions); and how its results compare with established strategies.  120 

2 Materials and Methods 121 

2.1 Automated discovery of functional relationships 122 

SONAR works similarly to other tree-based approaches such as CART (Breiman et al., 2017). 123 

However, SONAR is not built to solve a classification or a regression problem but to find 124 

functional relationships while making no prior assumption about the type of relationship beyond 125 

a choice of correlation metric (that can be varied; in the following we use the spearman rank 126 

correlation). The algorithm works as follows (Fig. 1). It searches recursively for the best possible 127 

split within the dataset. On each split SONAR determines which binary separation of an 128 

explanatory variable (e.g., amount of precipitation above or below a certain threshold) would 129 

increase the correlation between an explanatory variable (e.g., aridity index, or precipitation 130 

amount again) and the variable under investigation (e.g., groundwater recharge). SONAR 131 

searches for possible splits based on equally sized bins to reduce the search space into 132 

manageable pieces. However, the correlations are always calculated on the original data and not 133 

the bins. SONAR tests all possible splits based on different subsets of the bins (Fig. 1) from 134 

small to large values of the explanatory variables (for description of alternatives see 135 

Supplement). SONAR can also handle categorical variables, in which case the split is based on 136 

whether the data belong to a certain category or not. With each split SONAR searches for an 137 

increase in correlation. SONAR produces binary trees and for each split at least one side (the left 138 

or right subtree) needs to increase in correlation otherwise the algorithm stops (Fig. 1). Requiring 139 

an increase for both sides would yield a less robust algorithm given that we want to distinguish 140 

sub-domains in which functional relationships exists from those where this is not the case. To 141 

ensure that SONAR does not select very small subspaces a split requires each subspace to have 142 

at least 500 data points or 5% of the data of the parent node – depending on the dataset used. 143 

This value can be changed and limits the parameter-free property of the approach.  144 

Importantly, each leaf node ends up containing a relationship and not only a particular class 145 

(compared to classification trees) or value (compared to regression trees). Each leaf thus contains 146 

a subset of the original data points for the particular subdomain. SONAR then derives a 147 

functional relationship in the following way: the data in each leaf node are divided into 10 148 

equally-sized bins and a line is added that connects the medians across the bins to describe the 149 

functional relationship.  150 
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 151 
Figure 1. Visual representation of the SONAR algorithm and its major workflow components. Y 152 

denotes the variable we are searching dominant controls for in the set of explanatory variables 153 

Xj. ps is the Spearman Rank correlation and z the highest ps of the node above a split (this can 154 

also be the root node). 155 

2.2 Approaches related to our method: CART and CIT 156 

We compare our approach to two existing methods: CIT (Conditional Inference Trees) (Hothorn 157 

et al., 2006) and CART (Classification and Regression Trees) (Breiman et al., 2017). We 158 

selected these two methods because CART is well established and widely used, while CIT is 159 

conceptually closest to our method as it searches for correlations as well, though without the 160 

explicit search for functional relationships. Ensemble methods such as Random Forest (Breiman, 161 

2001) are  more complex realizations of the single tree methods used here but have the above 162 

discussed problems of interpretability, hence we do not include them here. MARS (Multivariate 163 

Adaptive Regression Splines) (Friedman, 1991) and other regression methods cannot separate 164 

domains in a hierarchical manner.  165 

 166 

Using a greedy approach (A selection of the best possible option at a current state of the 167 

algorithm, thus possibly missing a global optimum), CART searches for an optimal binary split 168 

of a dataset that optimizes an error function such as the Gini index or an entropy measurement. 169 

CART trees tend to overfit and thus must be pruned for most datasets (Esposito et al., 1997). CIT 170 

is similar to CART as it constructs a binary tree and can produce regressions and classifications. 171 

However, to decide on a split CIT tests for a maximum linear independence between covariates 172 

and response variables. CIT stops if the null hypothesis H0 of variable’s independence cannot be 173 

rejected. It selects a subset of the covariate with the highest conditional expectation using a linear 174 

two-sample test. CIT can be computationally expensive and was in the past used, e.g., to 175 
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determine the role of global change in soil functions (Rillig et al., 2019). It was, however, 176 

criticized due to its limited ability for detecting non-linear effects (Wright et al., 2017). 177 

 178 

In both CART and CIT trees, dominant controls are indicated by variables close to the tree's root 179 

node. The earlier a variable is used for a split the more a separation improves the classification or 180 

regression fit. Splits in SONAR provide a similar indication, however, controls also appear in the 181 

leaf nodes. The controls selected in the leaf nodes may be equal to the ones used for a split or be 182 

different. 183 

2.3 Experimental setup 184 

2.3.1 Groundwater recharge data and explanatory variables 185 

We use groundwater recharge (see S1) as an example process to test the algorithms. 186 

Groundwater recharge is poorly understood globally and available data are rather imbalanced 187 

(Gnann et al., 2023a). For these reasons we use data produced by model simulation, rather than 188 

observations. We also use a long-term estimate of recharge given that this is most likely related 189 

to climatic factors which we consider here. Our dataset consists of simulated 30-year annual 190 

averages of groundwater recharge on a 0.5° spatial resolution from an ensemble of eight global 191 

hydrological models (Table S1) (Best et al., 2011; Burek et al., 2020; Gnann et al., 2023a; 192 

Hanasaki et al., 2018; Müller Schmied et al., 2021; Schaphoff et al., 2018; Sutanudjaja et al., 193 

2018; Swenson & Lawrence, 2015; Takata et al., 2003). We investigate functional relationships 194 

within the data to showcase differences between the algorithms. There is no intention here to 195 

evaluate the specific model implementations or performances. For the classification task of 196 

CART, we separate annual groundwater recharge amounts into four classes: very low (0-10 197 

mm/yr), low (10-100 mm/yr), medium (100-500 mm/yr), and high (>500 mm/yr). Using 198 

different separation categories does not change the general conclusions regarding the algorithms 199 

but influences the specific CART trees (see Fig. S13). All models are driven with the same 200 

forcing input (Table S2). Recharge simulations and forcing data are based on the simulation 201 

protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) (Warszawski et 202 

al., 2014). 203 

 204 

In addition, we use a set of explanatory variables that we assume to be potentially relevant in 205 

determining recharge in the eight models (Table S2 and Fig. S5-S9). We use long-term mean 206 

precipitation (P), long-term mean potential evapotranspiration (PET), an aridity index (AI) 207 

defined by PET/P, long-term mean temperature (T), an indicator of cold days per year (DB), and 208 

a land cover data set GlobCover which is closest to the information used in the models (ESA, 209 

2010). In contrast to common forcing, the hydrological models used consider very different 210 

geological information which is therefore hard to consider here.  211 

 212 

Traditionally machine learning methods are evaluated with established datasets like Iris (Unwin 213 

& Kleinman, 2021) or Forest cover type (Jock Blackard, 1998), however they are either too 214 

small to be used with SONAR or are built specifically for a classification problem which cannot 215 

test the usefulness of approach. 216 
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2.4 Evaluation criteria of method attributes 217 

2.4.1 Comparison between SONAR, CART and CIT 218 

The three methods include different information in their leaf nodes and make very different split 219 

decisions (see Section 2.2). To allow a general comparison, we compare the trees visually in 220 

their pathways to derive at certain recharge classes (see 2.3.1). We focus on the dominant 221 

controls (how far up in the tree explanatory variables are mentioned; see also 2.2), their 222 

thresholds (split decisions), and the pathways that lead to certain value ranges. For the widely 223 

used Iris dataset (Unwin & Kleinman, 2021) and a simple CART tree this path representation 224 

shows that petal width is a dominant control (Fig. S14) 225 

 226 

Since no other existing method represents functional relationships in their leaf nodes we use the 227 

derived functional line of SONAR (see 2.1) to calculate ranges of values within the node (i.e., 228 

the range of possible Y for a given range of X) that can be compared to the regression and class 229 

ranges of CART and CIT. 230 

2.4.2 Robustness of SONAR 231 

To test how SONAR reacts to data limitations we create a robustness test. A possible real-world 232 

reason for this absence of data could be a sampling bias (e.g. Krabbenhoft et al. (2022)). Each 233 

experiment removes a certain percentage of data from the original dataset at random. The less a 234 

tree representation changes the more robust the algorithm is. This does not address the 235 

correctness of the tree. We measure the robustness by utilizing the TED (tree-edit-distance) 236 

(Pawlik & Augsten, 2015) defined as the minimum-cost sequence of node edit operations 237 

(delete, insert, rename) that transform one tree into another. We use TED only to compare trees 238 

derived within a method and not for cross-method comparison. In 100 independent experiments, 239 

1 is the baseline experiment with all the available data, we randomly remove X% of the initial 240 

data and compare the resulting tree to the baseline experiment. A method is more robust to 241 

random removal of data if the TED remains small between the baseline and the 99 other 242 

experiments. As a reference we compare the robustness of SONAR with the widely used CART 243 

method. 244 

3 Results 245 

3.1 Automatic detection of relationships in sub-domains using SONAR 246 

Testing SONAR on groundwater recharge datasets from eight global hydrological models yields 247 

eight different trees, two of which are shown in Fig. 2. We show models WaterGAP (Müller 248 

Schmied et al., 2021) and LPJML (Schaphoff et al., 2018) (see also Table S1) as examples, while 249 

all other models can be found in supplement S5. All resulting trees are rather shallow with only 250 

one to four splits. This is a characteristic of SONAR that is amplified by the minimum number of 251 

points requirement (see 2.1; without it the trees grow only marginally bigger, see supplement 252 

S5).  253 

 254 

SONAR finds highly correlated subsets of the data in its leafs with Spearman rank correlations ps 255 

> 0.9 (up to 0.95 for model (a) in Fig. 2a). Separation into different subspaces of the explanatory 256 

variables, by temperature in Fig. 2a and by aridity index in Fig. 2b, together with the different 257 
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functional relationships in the leaf nodes, suggests that the global models WaterGAP and LPJML 258 

differ in the way they represent groundwater recharge processes.  259 

 260 

In Fig. 2a, the dominant control for the tree is the aridity index in all leaves; for the tree in Fig. 261 

2b, it is precipitation. The fact that the same control appears in all leaves within a tree is specific 262 

to these two trees, and different controls will be found across other datasets. Compared to the 263 

initial correlation of 0.89 and 0.77 at the root node (both to precipitation), the correlation 264 

increases for some subdomains but decreases for others. (SONAR only requires an increase in 265 

one subdomain on a split, see 2.1). In our case study, the number of points in the highly 266 

correlated domains is always much smaller than those in the less correlated domains and also 267 

shows higher uncertainty in the functional relationships found (Fig. 2). 268 

 269 

 270 
Figure 2. SONAR tree of models WaterGAP (a) and LPJML (b). n is the number of points at 271 

each node, ps the spearman correlation, the black line is the functional relationship, error bars 272 

indicate the min. and max. value in each bin (here 10 quantiles). The color provides an indication 273 

of the point density of the underlying data as a visual aid (lines and error bars are calculated 274 

based on the underlying scatter of the original data). The darker the color the more points are 275 

inside this area. The root shows the relationship between Precipitation (P) and Recharge (R) 276 

because this shows the highest initial correlation in the data without splits. 277 

 278 

To ensure that SONAR finds reasonable relationships we tested it with the same explanatory 279 

variables and (1) randomly generated recharge, (2) recharge generated based on linear relations 280 

to precipitation that differ for different domains, and (3) recharge generated based on PET (see 281 

supplement). Using these examples, we show that SONAR does not produce any tree from 282 
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randomly generated data and is able to identify the artificial relationships for precipitation and 283 

PET (see supplemental S7). 284 

3.2 SONAR differs from CART and CIT in regression and classification paths 285 

SONAR searches for functional relationships instead of classifications or regressions; 286 

nevertheless, the meanings of the trees are similar enough to CART and CIT to compare the 287 

interpretations and conclusions drawn. In Fig. 3, we represent sub-trees to enable such a 288 

comparison (for a full explanation of the chosen visualization, see supplemental material), 289 

including the results shown in Fig. 2a. For each tree, Fig. 3 only shows the part of the tree that 290 

describes controlling variables on recharge values smaller than 100 mm/yr as an example (see 291 

supplement Fig. S15, S16 for the complete trees). The visualization shows each path that leads to 292 

a recharge value below or equal to 100 mm/yr, from the first split at the root node (left) to the 293 

leaf node (right). A different box indicates a split, while the value and color inside the box 294 

indicate at which point and through which variable the data was split. If a box is bigger, there are 295 

more pathways and leaves following this split in the tree. The leaf shows only a single class for 296 

classification trees (CART), values below the chosen threshold for regressions (CIT), and a 297 

range of values within a functional relationship that produces values below the threshold 298 

(SONAR). 299 

 300 

Equal to Fig. 2a the SONAR tree shows only one split at 26 C° in comparison to CART and CIT, 301 

which show more possible pathways to low recharge values. All three approaches show different 302 

dominant controls and pathways to low recharge values. The encoding of how low recharge 303 

values are reproduced is much more complex in CART and CIT (multiple splits and different 304 

variables that control them) and very short in SONAR. The CART tree suggests that 305 

precipitation is the dominant control (as it shows up earlier in the tree) and that the aridity index 306 

gets more important in certain subdomains. On the other hand, CIT also uses precipitation as the 307 

first split but other explanatory variables for splitting the data further. Overall all three methods 308 

differ substantially in their understanding of the data. 309 
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 310 
Figure 3. Visual representation of tree pathways (see supplement S4 for an extended explanation 311 

and simple example of this visualization method) only for low recharge values of three different 312 

approaches. The SONAR sub-plot shows part of Fig. 2a. For CART and CIT only, the part of the 313 

tree that leads to low values is shown. Gray boxes indicate the values or classes – for CIT and 314 

CART they are also the leaf nodes. All three trees were trained on the same model data and 315 

explanatory variables. The CART and CIT tree were pruned to a depth of 4. 316 

3.3 SONAR is robust to variations in the input dataset 317 

To test the robustness (see 2.4.2) of SONAR we removed a percentage of the original data and 318 

compared it with a baseline experiment. To provide a frame of reference we first conducted the 319 

experiment with the established CART algorithm (Fig. 4a). With an increased loss of 320 

information, the resulting CART trees become increasingly different (higher TED) from the 321 

baseline experiment which includes all data. Notably the mean difference between the models is 322 

relatively stable throughout. In comparison, SONAR is relatively robust as the TED with 10% 323 

loss is 1 magnitude smaller than with CART. Even with 50% of data loss SONAR only reaches a 324 

maximum TED of 5, for some models the tree does not change at all. Importantly, the small TED 325 

is likely highly impacted by the total size of the tree. SONAR leads to smaller trees to begin 326 

with. 327 

 328 
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 329 
Figure 4. Robustness test of CART (a) and SONAR (b). Bars show the distribution of TED over 330 

the 99 independent random experiments as an indicator for robustness (small values equal a 331 

smaller change from the original tree). If the there is no bar shown the TED is 0 and all trees are 332 

equal for that model. 333 

 334 

4 Discussion and method limitations 335 

The application of SONAR to simulated groundwater recharge of global hydrological models 336 

shows differences between models and overall precipitation as a strong control of recharge. Both 337 

of these findings alight with recent analysis of this data (Gnann et al., 2023a; West et al., 2023). 338 

Importantly, SONAR also reveals that precipitation is not always the strongest explanation for 339 

recharge variability (Fig. 1a shows aridity as functional control of recharge) and that 340 

relationships between precipitation and recharge may differ across data subsets (e.g., divided by 341 

climate as in Fig. 1b). As recharge is a complex process which is not only controlled by available 342 

water but also by e.g. soil conditions and energy availability, one should expect different 343 

functional relationships in different domains (e.g. climatic regions). Model developers could use 344 

the identified relationships to evaluate whether their model represents a functional relationship 345 

that is similar to our hydrologic understanding and data of a specific region. 346 

 347 

The analysis reveals that SONAR produces very robust small trees but also differs largely in the 348 

path found towards small recharge values from very established algorithms. Importantly, because 349 

SONAR is so different from other algorithms (a search for functional relationships instead of 350 

regression or classification), a comparative analysis can only provide limited insights into 351 

whether it is more useful than established algorithms. SONAR results might allow for an easier 352 

discussion of their hydrological meaning compared to e.g. CART due to the smaller trees and 353 

relationships instead of discrete classes in its leaves. 354 

 355 

We did not investigate observational data at this stage and we did not extend the analysis to the 356 

temporal domain, but there would not be any fundamental difference in workflow. An important 357 

aspect that needs further consideration is the role of epistemic uncertainty when applying 358 

SONAR to observational data. However, SONAR does not produce any tree from randomly 359 



manuscript submitted to WRR 

 

generated data (supplement S7) and is able to identify the artificially introduced relationships of 360 

precipitation and PET (supplement S7). Wider analysis to other datasets will be required to 361 

understand what relationships can be identified by SONAR. 362 

 363 

The current implementation of SONAR has multiple limitations as we made specific 364 

methodological choices. Foremost, we could have used another correlation metric (Lee Rodgers 365 

& Nicewander, 1988), e.g., Pearson (Barber et al., 2020) instead of Spearman rank correlation. 366 

Also, metrics that consider a degree of regression fit would be possible. Our current choices are 367 

meant to require minimum assumptions. Furthermore, we chose to introduce a constraint on the 368 

amount of points at which a split is carried out, to prevent the algorithm from creating very small 369 

datasets in which the correlation calculation can become meaningless (see also S6). Selection of 370 

meaningful subset of data is an active field of research thus other approaches in separating the 371 

data at splits in SONAR could be considered (García-Pedrajas, 2011). And finally, the selection 372 

of explanatory variables has an impact on the results for any type of empirical algorithm like the 373 

one we present here, e.g. because variables like precipitation and aridity index are slightly 374 

correlated (Fig. S12). 375 

 376 

5 Conclusions 377 

SONAR describes a new and simple approach to identify functional relationships in complex 378 

datasets, thus giving effective insight into dominant controls within subdomains. The key 379 

advantage of SONAR is the automatic, non-parametrized, representation of functional 380 

relationships of hierarchical domains. It is specifically not built for classification or regression 381 

tasks, but to find possible relationships in large datasets. A comparison to other tree approaches 382 

shows that SONAR produces trees that are shorter and thus likely easier to interpret. 383 

Furthermore, SONAR is very robust and does not require any parameter tuning to work on a 384 

specific dataset. 385 

 386 

Without any prior knowledge, SONAR enables researchers to explore vast datasets of model 387 

simulations and observations to automatically discover exciting new functional relationships. 388 

Especially in the field of hydrology, where controls differ largely across temporal and spatial 389 

domains, we demonstrated that this new method can yield interesting new insights. Eventually 390 

SONAR could also be used for model evaluation by enabling the comparison of functional 391 

relationships identified in the data to those identified in model simulations. 392 

Acknowledgments 393 

We thank Sebastian Gann for the discussions on functional relationships and valuable comments. 394 

RR and TW were funded by the Alexander von Humboldt Foundation in the framework of the 395 

Alexander von Humboldt Professorship endowed by the German Federal Ministry of Education 396 

and Research. FP was partially funded by the Engineering and Physical Sciences Research 397 

Council (EPSRC) "Living with Environmental Uncertainty" Fellowship (EP/R007330/1). 398 

RR designed and conducted the experiments and wrote the initial draft. TW had the initial idea. 399 

RR, TW and FP designed the method jointly. All authors contributed equally to the final 400 

manuscript. 401 

 402 



manuscript submitted to WRR 

 

Open Research 403 
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Introduction  

This supplemental material includes additional material that explains the process of 
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S1 Groundwater recharge 

Groundwater recharge can be defined as downward flow of water towards the water 

table adding water to an aquifer. This could be through downward percolation of soil 

water excess or through seepage from surface water bodies. The definition however can 

vary largely in its details between research communities and models (see Table S1).  

 

Figure S1 Global groundwater recharge simulated by a global hydrological model on a 

0.5° spatial resolution. Scatter points are colored by two different climatic areas: areas 

where there is more water than potential evapotranspiration (energy-limited) and areas 

where there is more evapotranspiration than water (water-limited). The x and y-axis are 

limited to the majority of points for better readability (precipitation may reach over 8000 

mm/yr and recharge over 4000 mm/yr). 

S2 Strategies for testing subsets of binned data 

The following figures assess how the correlation metric works in determining the first 

split decision. First, for equally-sized bins (as used in the main manuscript) and then for 

equally-spaced bins. The split decision is reached by taking one bin at a time and putting 

it into a virtual “bucket” that is then used to calculate the correlation of the data inside the 

bucket. In the “from=left” approach we start adding bins starting with small values on the 

x-axis and with “from=right” we start adding bin starting from high values. Thus, in the 

end we test different subsets of data. In SONAR both methods are implemented since the 

correlation is calculated both on the data inside the bucket and outside the bucket. 



 

 

3 

 

To show differences the figures are shown for two example models: CLM4.5 and PCR-

GlobWB. The black line indicates how much of the data was used at a particular moment 

to calculate the correlation. The dotted line indicates a possible first split (when the 

correlation was highest.  

Equally-sized bins 

 

Figure S2 Change of correlation between precipitation and recharge calculated by the 

model CLM4.5. by selecting different data subsets for three different variables: 

precipitation, net radiation, and temperature and two different strategies in selecting subsets 

of data. The black line indicates the %of data points used to calculate the correlation at a 

given point. The red line indicates a possible split (point with highest correlation. 
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Figure S3 Change of correlation between precipitation and recharge calculated by the 

model PCR-GlobWB. by selecting different data subsets for three different variables: 

precipitation, net radiation, and temperature and two different strategies in selecting 

subsets of data. The black line indicates the %of data points used to calculate the 

correlation at a given point. The red line indicates a possible split (point with highest 

correlation. 

Equally-spaced bins 

 

Figure S4 Change of correlation between precipitation and recharge calculated by the 

model CLM4.5. by selecting different data subsets for three different variables: 

precipitation, net radiation, and temperature and two different strategies in selecting subsets 
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of data. The black line indicates the %of data points used to calculate the correlation at a 

given point. The red line indicates a possible split (point with highest correlation. 

 

 

 

Figure S5 Change of correlation between precipitation and recharge calculated by the 

model PCR-GlobWB. by selecting different data subsets for three different variables: 

precipitation, net radiation, and temperature and two different strategies in selecting 

subsets of data. The black line indicates the %of data points used to calculate the 

correlation at a given point. The red line indicates a possible split (point with highest 

correlation. 

S3 Explanatory variables used for the evaluation 

The model outputs are based on the ISIMIP (Warszawski et al., 2014) framework and 

were aggregate into yearly means. The data used here is equal to the data available in 

Gnann et al. (2023) and the models used equal to Reinecke et al. (2021). 
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Table S1 List of global hydrological models (GHMs) used in the example analysis. The 

groundwater recharge (GWR) implementation description is adapted from Reinecke et al. 

(2021). 

 

Model Groundwater Recharge implementation Model Reference 

WaterGAP GWR in WaterGAP2 is calculated as being a 
fraction of runoff from land based on soil 
texture, relief, aquifer type, and the existence 
of permafrost or glaciers, taking into account a 
soil-texture dependent maximum daily 
groundwater recharge rate (P. Döll & Fiedler, 
2008). If a grid cell is defined as semiarid or arid 
and has a medium or coarse soil texture, GWR 
will only occur if daily precipitation exceeds a 
critical value (P. Döll & Fiedler, 2008); otherwise, 
the water runs off. Runoff from 
land that does not contribute to GWR is 
transferred to surface water bodies as fast 
surface runoff. WaterGAP further computes 
focused recharge beneath surface water bodies 
in semiarid and arid grid cells, which is not 
considered in this study. 

(Müller Schmied et al., 
2021) 

PCR-
GlobWB 

PCR-GLOBWB (PCRaster Global Water Balance; 
Sutanudjaja et al., 2018); simulates the water 
storage in two vertically stacked soil layers and 
an underlying groundwater layer. Water 
exchanges are simulated between the layers 
(infiltration, percolation, and capillary rise) and 
the interaction of the top layer with the 
atmosphere (rainfall, evapotranspiration, and 
snowmelt). PCR-GLOBWB also calculates 
canopy interception and snow storage. Natural 
groundwater recharge is fed by net 
precipitation, and additional recharge from 
irrigation occurs as the net flux from the lowest 
soil layer to the groundwater layer, i.e., deep 
percolation minus capillary rise. The ARNO (a 
semi-distributed conceptual rainfall–runoff 
model; (Todini, 1996)) scheme is used to 
separate direct runoff, interflow, and GWR. 
Groundwater recharge can be balanced by 
capillary rise if the top of the groundwater level 
is within 5 m of the topographical surface 
(calculated as the height of the groundwater 

(Sutanudjaja et al., 2018) 
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storage over the storage coefficient on top of 
the streambed elevation and the sub-grid 
distribution of elevation). 

MATSIRO The Minimal Advanced Treatments of Surface 
Interaction and RunOff (MATSIRO; Takata et al., 
2003) is a global land surface model initially 
developed for an atmospheric–ocean general 
circulation model, the Model For 
Interdisciplinary Research On Climate 
(https://ccsr.aori.u-
tokyo.ac.jp/~hasumi/miroc_description.pdf). 
This process-based model calculates water and 
energy flux and storage at and below the land 
surface, also considering the stomatal response 
to CO2 increase in the photosynthesis process. 
The offline version of MATSIRO used for the 
ISIMIP2b simulation explicitly takes vertical 
groundwater dynamics into account, including 
groundwater pumping (Y. Pokhrel et al., 2012; Y. 
N. Pokhrel et al., 2015). Soil moisture flux 
between the 15 soil layers is expressed as a 
function of the vertical gradient of the hydraulic 
potential, which is the sum of the matric 
potential and the gravitational head, and the 
soil moisture movement is calculated by 
Richards equation. MATSIRO calculates net 
groundwater recharge as a budget of 
gravitational drainage into and capillary rise 
from the layer where the groundwater table 
exists. A simplified TOPMODEL (TOPography-
based MODEL; (Beven & Kirkby, 1979)) is used 
to represent surface runoff 
processes, and groundwater discharge is 
simulated by using an unconfined aquifer model 
(Koirala et al., 2014). 

(Takata et al., 2003) 

LPJML Lund Potsdam Jena managed Land (LPJmL) is a 
dynamic global vegetation model that simulates 
the growth and productivity of both natural and 
agricultural vegetation as being coherently 
linked through their water, carbon, and energy 
fluxes (Schaphoff et al., 2018). The soil column 
is divided into six active hydrological layers, with 
a total thickness of 13 m depth. Percolation of 
infiltrated water through the soil column is 

(Schaphoff et al., 2018) 
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calculated according to a storage routine 
technique that simulates free water in the soil 
bucket. Excess water over the saturation levels 
produces lateral runoff in each layer (subsurface 
runoff). GWR is considered to be percolation 
(seepage) from the bottom soil layer. As there is 
no groundwater storage in LPJmL, for the 
ISIMIP2b protocol, seepage from the base soil 
layer is reported as both GWR and groundwater 
runoff, which is routed directly (with no time 
delay) back into the river system. 

JULES-W1 The Joint UK Land Environment Simulator 
(JULES; Best et al., 2011; W1 stands for water-
related simulations in the ISIMIP framework) is 
a land surface model initially developed by the 
Met Office as the land surface component of the 
Met Office Unified Model. JULES is a process-
based model that simulates the carbon, water, 
energy, and momentum fluxes between land 
and atmosphere, including plant–carbon 
interactions (Clark et al., 2011). The rainfall that 
reaches the ground is partitioned into Hortonian 
surface runoff and an infiltration component. A 
total of four soil layers represent 
the soil column, with a total thickness of 3 m, 
with a unit hydraulic head gradient lower 
boundary condition and no groundwater 
component. The water that infiltrates the soil 
moves down the soil layers that are updated 
using a finite difference form of the Richards 
equation (Best et al., 2011). The saturation 
excess water from the bottom soil layer 
becomes subsurface runoff that can be 
considered to be GWR (Le Vine et al., 2016). 

(Best et al., 2011) 

H08 H08 (Hanasaki et al., 2018) is a GHM that 
includes various components for water use and 
management. It consists of five major 
components, namely a simple bucket-type land 
surface model, a river routing model, a crop 
growth model, which is mainly used to estimate 
the timing of planting, harvesting, and irrigation 
in cropland, a reservoir operation model, and a 
water abstraction model. The abstraction model 
supplies water to meet the daily water demand 

(Hanasaki et al., 2018) 
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of three sectors (irrigation, industry, and 
municipality) from six available and accessible 
sources (river, local reservoir, aqueduct, 
seawater desalination, renewable groundwater, 
and non-renewable groundwater) and one 
hypothetical one termed unspecified surface 
water. It has two soil layers; one is to represent 
the unsaturated rootzone and the other the 
saturated zone (groundwater). The scheme of 
GWR computation is identical to Döll and Fiedler 
(2008). 

CWATM The Community Water Model (CWatM) is a 
large-scale integrated hydrological model which 
encompasses general surface and groundwater 
hydrological processes, including human 
hydrological activities such as water use and 
reservoir regulation (Burek et al., 2020). CWatM 
takes six land cover classes into account and 
applies the tile approach. This hydrological 
model has three soil layers and one 
groundwater storage. The depth of the first soil 
layer is 5 cm, and the depth of second and third 
layers vary over grids, depending on the 
rootzone depth of each land cover class, 
resulting in total soil depth of up to 1.5 m. 
Groundwater storage is designed being as a 
linear reservoir. CWatM includes preferential 
bypass flow directly into groundwater storage 
and capillary rise from groundwater storage and 
percolation from the third soil layer to 
groundwater storage. Hence, the groundwater 
recharge reported by CWatM in ISIMIP2b is the 
net recharge calculated from these three terms. 

(Burek et al., 2020) 

CLM4.5 The Community Land Model version 4.5 
(CLM4.5; Swenson and Lawrence, 2015) is the 
land component of the Community Earth 
System Model (CESM), a fully coupled, state-of-
the-art Earth system model. CLM is a land 
surface model representing the physical, 
chemical, and biological processes through 
which terrestrial ecosystems influence and are 
influenced by climate, including CO2, across a 
variety of spatial and temporal scales (Lawrence 
et al. 2015). Individual land grid points can be 

(S. C. Swenson & Lawrence, 
2015) 



 

 

10 

 

composed of multiple land units due to the 
nested tile approach, which enables the 
implementation of multiple soil columns and 
represents biomes as a combination of different 
plant functional types. Groundwater processes, 
including sub-surface runoff, recharge, and 
water table depth variations, are simulated 
based on the SIMTOP scheme (SImple 
groundwater Model TOPgraphy based; (Oleson 
et al., 2013). 

 

 

 

Table S2 Explanatory variables used. Except for landcover all explanatory variables are 

based on ISIMIP (Warszawski et al., 2014) data aggregated  

 

Feature Temporal aggregation Source 

Precipitation Long-term mean (30-years; bias-
corrected GCMs) 

ISIMIP, (Gnann et al., 
2023)   

PET Long-term mean (model ensemble) ISIMIP, (Gnann et al., 
2023) 

Aridity (PET/P) See PET and P - 

Temperature Long-term mean (30-years, bias-
corrected GCM) 

ISIMIP (Gnann et al., 
2023) 

Temperature (cold day 
indicator) 

Days below 1°C (30-years, bias-
corrected GCM 

ISIMIP (Gnann et al., 
2023) 

Land cover (Forest, 
Shrubland, Grassland, 
Sparsely Veg., Bare areas, 
Wetlands, Cropland, 
Waterbodies, Snow/ice, 
Artificial) 

GlobCover (aggregated to 0.5° with 
area-weighted Mode) 

(ESA, 2010) 
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Figure S6 Landcover classes. 

 

 
Figure S7 Precipitation in mm/yr. 
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Figure S8 PET in mm/yr. 

 

 
Figure S9 Aridity index as PET/P. 
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Fig S10 Daily mean temperature in °C. 

 

 

 
Fig S11 Days below 0°C. 

 

 

 

 

 



 

 

14 

 

 
Fig S12 Scatterplot of the aridity index and the mean daily temperature in °C. 

 

S3 How do different categorizations of recharge effect the results? 

 

A difference in recharge classes only affects the results of the classification algorithms of 

CART (Fig. S13). SONAR does not make any prior assumptions about classes. 
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a)  b)   c)  

Fig S13 CART classification for the same global model and three different choices of 

what constitutes low recharge (class 0 in this text representation)): a) less than 1mm, b) 

less than 10mm and c) less than 100mm (as use in the main text). Text representation 

need to be read from left (values on the far left represent the first split, values on the far 

right the leaf nodes with the different recharge classifications) to right. 
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S4 Path comparison between trees 

 
Fig S14 A simple example of the path visualization used in this manuscript with the 

established flower classification problem (Unwin & Kleinman, 2021). Left the CART tree 

and right the path representation in the same colors for the explanatory variables. 
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Fig S15 Full CART tree of the three depicted in Fig. 3 of the main manuscript next to the 

corresponding path visualization. 
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Fig S16 Full CIT tree of the three depicted in Fig. 3 of the main manuscript next to the 

corresponding path visualization. 
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S5 Additional SONAR trees of other all models 

 

The following shows all SONAR trees of the 8 investigated models. The trees of the two 

models shown in the main manuscript are equal to the ones shown here in text 

representation. Text representation need to be read from left (values on the far left 

represent the first split, values on the far right the leaf nodes with the different recharge 

classifications) to right. 

 

 
Fig S17 SONAR tree for the model PCR-GlobWB. 

 

  
Fig S18 SONAR tree for the model WaterGAP2. 

 

 
Fig S19 SONAR tree for the model CLM4.5. 

 

 
Fig S20 SONAR tree for the model CWATM. 
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Fig S21 SONAR tree for the model H08. 

 

 

 
Fig S22 SONAR tree for the model Jules-W1. 

 

 

 
Fig S23 SONAR tree for the model LPJML. 

 

 
Fig S24 SONAR tree for the model MATSIRO. 

S6 Tree growth without minimum number of point requirement 

 

If the number of point requirement is set to a very low value (in the following: > 0.1% of 

points of parent node and at least 10) even SONAR trees grow bigger. However, the 

number of points in splits is likely to low to allow a meaningful calculation of a 

correlation. 
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Fig S25 SONAR tree of the model LPJML with almost no requirements on the minimum 

number of points per split. 

 

S7 Artificial generation of recharge test data 

 

Experiment 1: Completely random groundwater recharge 

 

In this experiment the groundwater recharge data is substituted by randomly generated 

data. The data lies within the same ranges as the original but does not follow its 

distribution or any spatial patterns. Fig. S26 shows the resulting values plotted as a global 

map. With the chosen explanatory variables SONAR does not find any splits for the 

randomly generated data. 
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Fig S26 Randomly generated recharge data plotted as a global map. 

 

 

Experiment 2: Precipitation as dominant control 

 

In this experiment we also generate groundwater recharge data based only on 

precipitation. To create a perfect correlation, we simply turn precipitation into recharge 

based on the following rules (Fig. S27). 

 

Multiplier k for the four climatic regions: 

 

Wet cold regions: 0.2 

Dry cold regions: 0.4 

Dry warm regions: 0.6 

Wet warm regions: 0.8 

 

Groundwater recharge = Precipitation * k  

 

This tests whether SONAR is correctly picking up this introduced signal. The resulting 

tree is shown in the text representation in Fig. S28. The dominant driver is always 

precipitation confirming that SONAR correctly picks up the artificially introduced 

relationship. Splits are based on PET which is likely because PET is a good proxy for 

separating water and energy limited regions (Fig. S8). 
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Fig S27 Groundwater recharge based on precipitation. 

 

 

 
Fig S28 SONAR tree of the generated groundwater recharge. 

 

Experiment 3: PET as dominant control 

 

This experiment works equally to experiment 2, but with PET instead of precipitation. PET 

is here turned directly into groundwater recharge: 10% of PET = recharge. The resulting 

SONAR tree is shown in text from in Fig. S30. Even if the tree grows relatively large PET is 

always identified as the dominant control (as the introduced correlation is 1). 
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Fig S29 Groundwater recharge generated based on PET. 

 

 
Fig S30 SONAR tree for recharge that is only based on PET. 
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