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Abstract

This study assesses less-explored Southern Ocean sea-ice parameters, namely Sea-ice Thickness and Volume, through a compre-

hensive comparison of 26 CMIP6 models with reanalyses and satellite observations. Findings indicate that models replicate the

mean seasonal cycle and spatial patterns of sea-ice thickness, particularly during its maxima in February. However, some models

simulate implausible historical mean states compared to satellite observations, leading to large inter-model spread. September

sea-ice thickness is consistently biased low across the models. Our results show a positive relationship between modeled mean

sea-ice area and thickness in September (i.e., models with more area tend to have thicker ice); in February this relationship

becomes negative. While CMIP6 models demonstrate proficiency in simulating Area, thickness accuracy remains a challenge.

This study, therefore, highlights the need for improved representation of Antarctic sea-ice processes in models for accurate

projections of thickness and volume changes.
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Key Points: 

• CMIP6 models can capture the timing of annual cycle (particularly in February) and 

spatial patterns of SIT resembling the observations. 

• Compared to sea-ice area, CMIP6 models exhibit larger negative biases in 

thickness/volume, with a higher degree of variation among models. 

• Seasonal variations in sea-ice show positive (negative) relationships between sea ice area 

and thickness during September (February).  
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Abstract 

This study assesses less-explored Southern Ocean sea-ice parameters, namely Sea-ice Thickness 

and Volume, through a comprehensive comparison of 26 CMIP6 models with reanalyses and 

satellite observations. Findings indicate that models replicate the mean seasonal cycle and spatial 

patterns of sea-ice thickness, particularly during its maxima in February. However, some models 

simulate implausible historical mean states compared to satellite observations, leading to large 

inter-model spread. September sea-ice thickness is consistently biased low across the models.  

Our results show a positive relationship between modeled mean sea-ice area and thickness in 

September (i.e., models with more area tend to have thicker ice); in February this relationship 

becomes negative. While CMIP6 models demonstrate proficiency in simulating Area, thickness 

accuracy remains a challenge. This study, therefore, highlights the need for improved 

representation of Antarctic sea-ice processes in models for accurate projections of thickness and 

volume changes. 

Plain Language Summary 

In this study, we investigated sea-ice thickness and volume in the Southern Ocean using data 

from 26 different climate models and observation datasets. Our findings show that the models 

generally capture the seasonal cycle and spatial patterns of sea-ice thickness well, with the 

highest average thickness occurring in February. We also found that the models tend to perform 

better in simulating sea-ice area compared to thickness. Furthermore, simulated sea-ice area and 

thickness tend to behave differently during different seasons—positively (negatively) covarying 

in September (February). The models that performed well in simulating sea-ice area faced 

challenges in accurately representing thickness and volume. This raises the question regarding 

the overall performance of such models or, more definitively, whether it's reliable to evaluate 

model accuracy or performance based solely on sea-ice area. Nevertheless, sea-ice thickness 

simulations in CMIP6 can offer a basis for initial analyses of absolute sea-ice changes in the 

Southern Ocean, despite the need for more reliable observational thickness. 

1. Introduction 

Antarctic sea-ice extent, which showed a small positive linear trend since the start of satellite era 

(Cavalieri & Parkinson, 2008; Parkinson & Cavalieri, 2012; Turner et al., 2015; Zwally et al., 

2002), has decreased significantly since mid-2016 (Raphael and Handcock, 2022; Wang et al., 

2022; Turner et al., 2022; Eayrs et al., 2021). Attempts to understand this variation have focused 

primarily on the surface characteristics (extent and area) of the ice. Variability in sea-ice 

thickness (SIT) and volume (SIV) have not been explored and this is due to limited SIT 

observations. However, complete understanding of the changes in sea-ice and their potential 

impact on climate is not possible if these variables are not examined. For example, SIV serves as 

a measure of total sea-ice production and, hence, a measure of the surface salinity flux in winter, 

the freshwater input to the ocean in summer, and total heat loss to the atmosphere.  This further 

aids our understanding of surface buoyancy flux and related ventilation of SO deep waters 

(Pellichero et al., 2018) hence by inference, global ocean heat and carbon uptake. Detection of 

variations in SIT/SIV are also important for understanding a variety of climate-sea-ice feedbacks 

(Holland et al., 2006; Stammerjohn et al., 2008) as well as trends and variability in SO salinity 

(Haumann et al., 2016). Therefore, a long-term assessment of these variables is important for a 
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complete assessment and quantification of the ongoing changes in the mass balance of the sea-

ice cover (Massonnet et al., 2013) allowing for a deep propagation of the global climate change 

signal (Sallée et al., 2023). 

Accurate simulations of long-term SIT are also important for understanding the marine biology 

of the Antarctic ecosystem. SIT affects the maximum biomass of algae in different ice layers, 

which in turn influences the food web of the SO. SIV along with the snow depth, also affects the 

light penetration and availability for the phytoplankton contributing further in their production 

and bloom (Massom & Stammerjohn, 2010; Schultz, 2013). Therefore, a comprehensive 

assessment of Antarctic sea-ice variability and its impact on the ocean requires an additional 

consideration of the SIT and SIV (Maksym et al., 2012; Maksym & Markus, 2008).  

Global coupled climate models (GCMs) are potentially valuable tools for assessing long-term 

SIT and SIV variability and providing future projections. However, the simulation of Antarctic 

sea-ice, particularly SIT in GCMs, remains a challenge, adding to the low confidence in 

Antarctic sea-ice projections (Meredith et al, 2019). Here, we present a high-level evaluation of 

models in the Sixth Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) in 

simulating Antarctic SIT/SIV and compare them to available observations. Our findings indicate 

that models can reasonably capture the timing of SIT seasonal cycle, although some biases and 

model disagreements are evident. However, when compared to SIA, their performance remains 

suboptimal.  

2. Data and Methods 

2.1. Observation Datasets 

Our study uses three different observational records for SIT: Satellite dataset Envisat-CryoSat-2 

(2002-2012),  the  Global Ice-Ocean Modeling and Assimilation System (GIOMAS, 1979-2014) 

and the German contribution to the Estimating the Circulation and Climate of the Ocean project 

(GECCO3, 1979-2014). The satellite dataset is used as the comparison baseline.  

SIT from  Envisat and Cryosat-2: 

The Sea-Ice Climate Change Initiative (SICCI) project provides a large-scale Antarctic SIT 

dataset from Envisat and CryoSat-2 with a 50 km spatial resolution (Hendricks et al., 2018). 

While these SIT products have uncertainties due to radar altimeter estimates (Paul et al., 2018; 

Tilling et al., 2019; Willatt et al., 2010), they offer valuable insights. Previous studies have 

shown reasonable regional agreement between Envisat and CryoSat-2 radar freeboards 

(Schwegmann et al., 2016), although Envisat tends to overestimate ice thickness (Shi et al., 

2021) particularly in the Antarctic (Hendricks et al., 2018a; Hendricks et al., 2018b; Wang et al., 

2022). Despite these challenges, the SICCI dataset remains the most comprehensive satellite 

dataset available, covering the circumpolar Antarctic SIT from 2002 to present. Envisat and 

CryoSat-2  have been found comparable to Upward Looking Sonar (ULS)-derived SIT for the 

Weddell region (Shi et al., 2021;Liao et al., 2022; Wang et al., 2022) and also aligns well with 

in-situ ship-based observations, (ASPeCt; Worby et al., 2008) which showed highest thickness in 

summers and lowest in autumn-winter. These agreements can help refine and assess model 

performance, particularly in capturing the seasonal cycle of SIT.  
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SIT from sea-ice estimates and reanalysis: 

The GECCO3 ocean synthesis, an improved version of GECCO2 based on MITgcm, employs 

the adjoint method to fit the model to various data over a multidecadal period, providing a global 

eddy-permitting synthesis at a resolution of 0.4° (Köhl, 2020). The Global Ice-Ocean Modeling 

and Assimilation System (GIOMAS) uses the Parallel Ocean Model coupled with a 12-category 

thickness and enthalpy distribution ice model at a horizontal resolution of 0.8° (Zhang & 

Rothrock, 2003). GIOMAS assimilates sea-ice concentration, demonstrates good agreement of 

its SIT (Lindsay & Zhang (2006) with satellite observations in the Arctic and is useful for 

studying long-term variations in Antarctic sea-ice (Liao et al., 2022; Shi et al., 2021). To make 

reanalysis products comparable to absolute floe thickness estimates (the SIV per grid-cell area or 

“equivalent sea-ice thickness”), we convert them into “effective thicknesses” by dividing them 

with observed SIC records from the National Snow and Ice Data Center (NSIDC) (Cavalieri et 

al.,1999) by re-gridding the SIT to the concentration grid.  

2.2. CMIP6 Models 

In our study, we analyze the historical experiments of the CMIP6 dataset, specifically focusing 

on the “sithick” variable, representing simulated effective floe thickness. We also incorporate 

“siconc” (sea-ice concentration) and “areacello” (area of individual grid cells over the ocean) 

variables. CMIP6 models generate multiple ensemble members, which are multiple runs or 

simulations with slightly different initial conditions or variable settings, used to capture 

uncertainty and variability in model predictions. In this study, we consider the first ensemble 

member for each model  (Table S1) to account for internal variability and ensure consistency 

(Notz & Community, 2020; Roach et al., 2020). We calculate SIV by multiplying “siconc”, 

“sithick” and “areacello” and summing over the circumAntarctic SO. For SIA, we multiply 

“siconc” and “areacello” and integrate it over the circumAntarctic SO. Lastly, for floe thickness, 

we use the averaged “sithick” over SO. 

3. Results 

3.1. Sea-ice variables: Mean and Anomaly State  

Fig.1 shows the 2002-2014 mean annual cycles of SIV, SIT, and SIA in different observational 

estimates and CMIP6 models. As mentioned earlier, the Envisat-CryoSat2 observations 

(henceforth referred to as satellite product) are known to have high positive biases especially in 

the Southern Hemisphere (SH); thus, anomalously high volume (Fig.1a) and thickness (Fig.1b). 

The multi-model mean (MMM) is much smaller than the satellite and reanalysis products for SIA 

and SIV, whereas in SIT most of the models simulate thicker sea-ice than the reanalyses between 

January-April. However, all the models can simulate the SIV maxima (Sept-Oct) and minima 

(Feb) and the SIT maxima (Feb), while simulated SIT minima fall in April at the start of the 

growing period (like the reanalyses). 
 

Previous studies have shown that CMIP6 models perform well in simulating SIA climatology in 

the circumAntarctic (Roach et al., 2020; Shu et al., 2020). Significant negative biases are 

consistently observed in SIV (Fig.1a). However, for SIT during summer, the outcomes vary 

considerably based on the observation dataset, with certain models simulating unusually thick 

sea-ice (>3m) in January-February (Fig.1b). This summer biases can be attributed to the 

increased complexity in satellite retrieval of summer SIT (Kurtz & Markus, 2012). 
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Fig. 1: Comparison of annual cycles of SIV, SIT and SIA of the circumpolar Antarctic. All 

the CMIP6 models are shown as grey lines, The Multi-Model Mean (MMM) is the  black 

dashed line. GECCO3 in blue, GIOMASS in green, and Envisat-CryoSat-2/NSIDC in red. 

Grey shaded areas are +-1 standard deviation for the MMM.     

 

There is a similar pattern in the SIA (Fig.1c) cycles except a few models which tend to simulate 

larger SIAs during the entire cycle particularly between July and November. The inter-model 

spread of annual mean Antarctic SIT, SIV and SIA is 5.9m, 20 thousand km3 and 16 million km2 

for the maxima and 1.8m, 7.5 thousand km3 and 4 million km2 for the minima, respectively. 

Inter-model spread however fluctuates and is larger during fall and winter for SIV and SIA while 

it greatly reduces during the summers. By contrast, SIT has greater inter-model spread during 

summers and shrinks significantly from April-November. Among the observation datasets, all 

variables show the highest spread during the cooler seasons.  

 

The highest average thickness of ice in the SO occurs in February in the form of the compacted 

ice which survives the melt season (Kurtz & Markus, 2012; Worby et al., 2008; Xu et al., 2021). 

It is for this reason that the SIT seasonal cycles look very different from those of SIA/SIV. 

Therefore, to capture the sea-ice seasons based exclusively on the SIT climatology, we 

conducted our analyses using February and September.  

 

Previous studies have shown that CMIP6 models struggle to reproduce the observed positive 

trend in Antarctic sea-ice extent (SIE) and SIA (Li et al., 2023; Shu et al., 2015; Turner et al., 

2013). The negative trends in simulated SIT/SIV (Fig.S1) are consistent with the negative trends 

in SIE/SIA (Roach et al., 2020 and Shu et al., 2020). However, no significant trends were found 

in modeled and observed SIT  in February with only a weak negative trend in the MMM of SIV, 

which can be potentially attributed to the simulated negative trend in SIA. This negative trend 

becomes stronger in the early 2000s, particularly in September (similar to trends in Shu et al., 

2020).  

 

We conducted a similar analysis over the four seasons and observed seasonal variability in sea-

ice  (Fig. S2). There were significant SIT/SIV trends apparent during the cooler seasons (winter 

and spring), while such trends were absent in the warmer seasons. On the contrary, studies have 

shown the observed SIA trends are primarily observed in the warmer seasons (Summer and Fall) 

because the maximum ice edge is constrained by SO hydrography, while they remain absent 

during the cooler seasons (Eayrs et al., 2019; Hobbs et al., 2016). This implies that changes in 

SIT/SIV may contribute to Antarctic sea-ice variability during colder months. The presence of 

robust land-ocean temperature gradients during winters may be a contributing mechanism here 

a) b) c) 
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because they result in high-intensity winds, which are recognized as significant contributors to 

SIT/SIV fluctuations in the SO (Zhang, 2014). 

 

 

3.2. CMIP6 Model Performance 

An accurate spatial distribution of SIT is key to estimates of SIV and it reflects the skill in 

simulation of local processes, coupled interactions and energy transfer among the ocean below, 

the sea-ice, and the atmosphere above (Stroeve et al., 2014). To estimate this, we computed 

spatial pattern correlations and Root Mean Square Deviations (RMSD) for the sea-ice variables 

among 26 models, the reanalyses, and the satellite product. These calculations were performed 

based on area-integrated spatial averages of sea-ice over February and September, using data 

subsets for models and observations corresponding to those months. We utilized the satellite 

dataset as the reference for calculating RMSD and correlation values across spatial grids. The 

values plotted on the Taylor Diagram (Fig.S3) represent the spatial average of the correlation 

coefficient, RMSDs and standard deviations across the circumpolar Antarctic. 

 

Higher correlation coupled with a lower RMSD represents greater accuracy of CMIP6 models in 

simulating the sea-ice variables. Fig.S3 shows that most of the models have a lower RMSD for 

SIA (Fig.S3c,d) compared to SIV and SIT. Out of all the variables, models tend to have highest 

RMSDs for the SIT (Fig.S3a,b)  with almost all the models with their values between 0.5-1.0 

during both months. The reanalysis products show the highest RMSDs and lowest correlations 

for SIT, indicating lack of agreement among different observations, while a contrasting pattern is 

seen for SIA (Fig.S3e,f). Comparing the two months, we observe that RMSDs are smaller for 

September, most notably in SIA and SIV. For SIT, models tend to perform better for the SIT 

maxima in February (Fig.S3a). Spatial correlation coefficients range between 0.6-0.9 for all the 

variables in both the months (Table S2, S3 and S4). NorCPM1, MRI-ESM2-0, SAM0-UNICON, 

CESM2-WACCM-FV2, and CESM2-FV2 demonstrate highest correlations for SIA. For SIV, 

NorCPM1, MRI-ESM2-0, and SAM0-UNICON perform well, while MPI-ESM1-2-LR, MPI-

ESM1-2-HR, MPI-ESM1-2-HAM, and ACCESS-CM2 show high correlations for SIT in both 

months. In summary, the Taylor Diagram reveals that while most CMIP6 models demonstrate 

relatively higher accuracy in simulating SIA and SIV with strong correlations and lower RMSD, 

they face greater challenges in accurately reproducing SIT, particularly during September. 

Additionally, the reanalysis products exhibit lower agreement and higher RMSD for SIT, 

emphasizing the complexity of capturing this variable across different observation datasets. 

  

Given their better performance in simulating SIA, we considered whether or not this 

performance correlated with SIT accuracy in CMIP6 models. For this, we compared the annual 

averages of SIT and SIA in models with the observations (Fig.2). SIA biases look similar in both 

the months with their values ranging between -1.3 to -2.0 million km2. On the other hand, SIT 

consistently exhibits thin biases across all models for September ranging between 1-2m (Fig.2b). 

February is also characterized by thinner sea-ice simulations (most models in Fig.2a have values 

less than observed value of 3m) except a few models which show a good agreement with the 

observations (models with their average SIT ~3m).  
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Fig. 2: Scatter plots between the annual means of SIT (y-axis) and SIA (x-axis) for CMIP6 

models and Observations for the period (2002-2014) for February (red) and September 

(blue). The line of best fit represents the relationship between the two variables for selected 

months. Each small dot represents a model while the larger dots represent observations (E-

CS2 and NSIDC for SIT and SIA, respectively). The figure clearly demonstrates seasonal 

variations in magnitudes of both the variables. 

 

We anticipate consistency in model simulations and responses for the sea-ice variables, so that 

smaller SIA, would be accompanied by thinner SIT as most areas will be covered with thin first 

year ice. However, some models exhibit contrasting behaviors. In February, EC-Earth3 models 

display positive biases in SIT (with SIT > 3m in Fig.2a) and negative biases in SIA. In 

September, models like MRI-ESM2-0, SAM0-UNICON, NorCPM1, IPSL-CM6A-LR, and 

IPSL-CM6A-LR-INCA simulate thinner sea-ice along with positive biases in SIA (with values 

greater than 17.5 km2 in Fig.2b). This intriguing behavior raises questions about the accuracy 

and reliability of these models in simulating sea-ice variables. These opposing relationships may 

be due to some intricate thermodynamic relationships between SIA and SIT captured by the 

models or to model errors. Further study might clarify this.  

 

Fig.2 also highlights how simulated seasonal means in SIA and SIT behave differently—with 

positive (negative) correlation occurring during September (February). This could happen as 

increasing temperatures during summers result in sea-ice melt thereby reducing SIA with the 

thickest of the sea-ice surviving the melt season, hence an inverse relationship in February. A 

positive correlation is observed between SIA and SIT during the growing season when 

temperatures are decreasing. These thermal changes lead to increases in both area and thickness, 

with SIT increasing but remaining relatively thinner as SIA expands. Consequently, Area and 

Thickness “positively covary” with reduced temperatures. 

 

3.3. Spatial patterns and biases  

Compared to other sea-ice variables, simulated SIT shows a noticeable agreement among  

models during February. Despite the agreement, it is necessary to acknowledge the substantial 

level of uncertainty that exists regarding the accuracy of SIT simulation due to heterogeneity 

among various models. This variability is manifested in the significant inter-model disparity as 

well as marked differences in the spatial distribution of thickness across the SO (Fig.3 and Fig. 

S4). The mean observed SIT in the satellite product shows that thickest sea-ice is in the Weddell 

a) b) 
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Sea along the Antarctic Peninsula and along the coastal edges of the Amundsen-Bellingshausen 

Seas (ABS)--the ice which survives the summer melt. There is relatively thinner sea-ice observed 

on the eastern Antarctic (Kurtz & Markus, 2012). Our analysis reveals that most of the CMIP6 

models capture a similar spatial pattern in SIT around the Antarctic. However, they do exhibit 

negative biases and underestimate thickness primarily along the Peninsula in Weddell and in the 

ABS. Some models simulate a thicker sea-ice compared to the observations (Fig.S4) around the 

tip of the Peninsula (IPSL-CM6A-LR, IPSL-CM6A-LR-INCA and IPSL-CM5A2-INCA), 

between the western edge of the ABS and Ross Sea (EC-Earth3 models), around the coast of 

ABS (SAM0-UNICON) and western Weddell Sea region (NorCPM1). It is probably this 

thickness in sea-ice along Peninsula in the Weddell region which contributes to a high spatial 

correlation value between such models and satellite observations in February. 
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Fig. 3: Spatial Biases of SIT averaged over 2002 to 2014 (September) for 26 CMIP6 models 

and Reanalyses from the reference dataset: ENVISAT-CS-2. Last figure shows the time 

averaged SIT for ENVISAT-CS-2.  

 

The spatial distribution patterns of SIT during September (Fig.3) bear similarities to February, 

with thickest multi-year sea-ice in the Weddell. Here, we find anomalously thick ice (>3m) in 

some CMIP6 models primarily in two regions: an elongated tongue of thickest sea-ice extending 

northward from the northwest Weddell Sea along the AP and, the other is around the sea-ice 

edge. Multiple models, including IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, IPSL-CM5A2-

INCA, EC-Earth3-Veg-LR, EC-Earth3-AerChem, NorCPM1, and ACCESS-ESM-1-5, show a 

similar tongue of thick sea-ice that also agrees with observed patterns (consistent with ICESat 

measurement by Holland & Kwok, 2012 and modeled SIT by Holland, 2014). The distinctive 

tongue-like pattern, characterized by clockwise ice motion, is a due to a prominent feature in the 

Weddell Sea called the Weddell Gyre (Vernet et al., 2019). This mechanism contributes 

significantly to the regional sea-ice dynamics in the form of an apparent westward ice motion in 

the southern Weddell. As a result, ice convergence occurs in the southwestern Weddell causing 

dynamic thickening (Shi et al., 2021). The sea-ice velocity vectors showed that CMIP6 models 

tend to capture this gyre (not shown) which results in the formation of a thick ice along the 

Peninsula.  

 

Another potential explanation for the prominent sea-ice tongue is the influence of fast-ice in the 

Weddell (i.e., sea-ice that is pinned to the coast or grounded icebergs, Fraser et al 2023), a 

feature often inadequately represented or omitted in GCMs. Some sea-ice models have 

previously used prescribed fast-ice, either through a constant SIT over a specific region, or by 

setting its velocity at zero to render the blocking of sea-ice advection by sub grid-scale grounded 

icebergs (Kusahara et al., 2017; St-Laurent et al., 2017). Recent high-resolution regional NEMO-

LIM-based experiments exhibited overestimations of SIT by 30-50% (compared to the satellite 

altimetric sea-ice products) during Winter and Fall within the fast-ice zone, indicating the 

presence of thicker ice, particularly in dynamically formed fast-ice areas (Van Achter et al., 

2022). Interestingly, the CMIP6 models examined in our study, which demonstrate thicker 

coastal SIT around the Peninsula, utilize NEMO-LIM as their sea-ice model (Table S1 and 

Fig.3). Such thicknesses are far in excess of that expected from heat loss to the atmosphere 

alone, indicating likely contributions from platelet accretion and/or snow-ice formation hinting at 

the presence of fast-ice (Fraser et al., 2023). 

 

The other region of thick sea-ice bias is the sea-ice edge (Fig.3). It’s interesting to note that the 

CMIP6 models that have exhibited better performance in simulating Antarctic SIA such as 

CESMs, NorESM2, and ACCESS (Holmes et al., 2019; Li et al., 2023; Roach et al., 2020; Uotila 

et al., 2014) and showed lower thickness biases in February, simulate very high thickness at the 

sea-ice edge (between 0-700E). A potential explanation for this could be through combinations of 

changes in air-ice drag and the direction of cold or warm-air advection. These may result in 

northward wind stress causing the sea-ice to drift, transport and accumulate causing dynamic 

convergence at the sea-ice edge (Singh et al., 2021; Holland et al., 2014; Holland & Kwok, 
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2012). Another reason could be the high-intensity ocean-wave fields linked to the SO which 

deeply infiltrate the sea-ice marginal ice zone. This penetration induces alterations in thickness 

distribution through processes like rafting and ridging, especially in the vicinity of the ice edge 

(Langhorne et al., 1998). In any case, the simulated sea-ice at the ice edge is much thicker than 

observed and further study is required to eliminate modeling error as its cause.  

 

Overall, CMIP6 models simulations compare favorably with satellite-derived SIT observations 

during February (Fig.S4). About 38% of the CMIP6 models (10 out of 26) have their mean 

biases between +/-1m. Among them, NorESM2-MM, CESM2-Models, and CMCC-ESM2 while 

spatially consistent with the observations display some biases. In general, all models tend to 

underestimate SIT and produce relatively thinner sea-ice during both months. These negative 

biases are more pronounced in September and reduce considerably in February. It should be kept 

in mind that our comparisons are made with respect to the satellite dataset which themselves 

exhibit an exaggerated SIT in the SO. Therefore, the 7 out of 26 models which show even greater 

positive biases (>1m), may be simulating unrealistic and excessively thick sea-ice in the SO and 

may represent a false picture of future Antarctic sea-ice changes. 

 

4. Conclusions 

Given the current context of global warming, it is imperative to develop predictions regarding 

Antarctic sea-ice behavior to enhance our understanding of its future variability and response to 

climate change. For this we need reliable estimates of SIT and SIV to assess the absolute 

changes in the global sea-ice. While there is the understanding that the models do not yet 

accurately simulate SIT and SIV, it is still necessary to see how well they perform if only to 

understand where more work is needed. The research presented here is a comprehensive 

evaluation of Antarctic SIT/SIV by comparing 26 model outputs with satellite data as a reference 

baseline. It is difficult to estimate and simulate SIT accurately due to the lack of long-term, 

reliable observational datasets. However, despite these limitations, CMIP6 models can offer 

longer timescales of SIT data which when compared with the observed (and accounting for the 

limitations), can enhance our understanding of Antarctic sea-ice.  

 

Regardless of simulation of processes or trends, a precise modeling of climatological mean sea-

ice cover in the GCMs is a necessary condition for accurate projections (Holmes et al., 2022). In 

line with this, our study shows that most models can simulate the timing of annual cycles of 

SIT/SIV. Additionally, in February, the SO retains the thickest sea-ice, consisting of sea-ice that 

survives the summer, which is also effectively captured by CMIP6 models. Modeled seasonal 

cycles for SIV and SIA show significant biases in April-October, with higher inter-model 

spreads in fall-winter. Conversely, SIT inter-model spreads are higher during November-March 

but exhibit relatively lower biases compared to the reference dataset. It should be noted that 

simulations without data assimilation are always out of phase with natural variability seen in the 

observations. Hence, these differences between simulations and observations can either be due to 

model biases or natural climate variability (Stroeve et al., 2014).  

 

CMIP6 models continue to simulate negative trends in Antarctic SIT/SIV, contrary to the 

observed positive trends, until 2014. Additionally, we observe positive trends in SIT/SIV during 

cooler seasons (which are absent in SIA) implying that sea-ice variability in these colder months 
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could be influenced by thickness/volume changes, possibly due to intensified seasonal winds. 

Among the models, MRI-ESM2-0, CESM2, and ACCESS-CM2 demonstrate higher correlations 

and relatively lower RMSDs across all variables during both months. An evaluation of model 

biases demonstrates that SIA exhibits least biases compared to SIV and SIT, with better 

alignment observed in February. We also examined seasonal variations in sea-ice correlations, 

showing positive(negative) relationships between SIA and SIT during September(February). 

Certain models simulate opposing biases for SIT and SIA, revealing discrepancies between 

modeled simulations of these two variables and their responses to the model processes.  

 

While many CMIP6 models simulate spatial SIT patterns like observations, they tend to 

underestimate SIT particularly in September. Intriguingly, certain models display anomalously 

thick sea-ice along the Peninsula and on the eastern sea-ice edges even greater than the 

exaggerations in reference dataset itself.  

 

Such deviations can hamper our understanding of climate-sea-ice interactions as well as 

biological feedback between the oceans and climate. For instance, lower SIT could potentially 

create a misleading impression of lower albedo and increased light penetration, subsequently 

leading to increased Primary Production (Jeffery et al., 2020) and lower ocean acidification. We 

have not explored the causes of such anomalous biases in SIT. However, their potential 

explanations may include cloud effects (Kay et al., 2016; Zelinka et al., 2020), spatial resolution 

that does not permit eddies, which are understood to be highly important for representation of SO 

dynamics (Poulsen et al., 2018; Rackow et al., 2019), models treating all sea-ice to be able to 

drift when in reality up to 15% of ice should be held still either being anchored to land or 

grounded icebergs (Fraser et al., 2023) and the lack of coupled ice sheet interactions, which have 

relevance for the entire Antarctic climate system (Bronselaer et al., 2018; Golledge et al., 2019; 

Purich & England, 2023).  

 

Considering these findings, we anticipate that future studies will investigate these aspects with 

respect to Antarctic SIT. Addressing such model biases could be initial steps in further 

improving the representation of dynamic processes in sea-ice, climate, and biogeochemical 

models, ensuring their accurate predictions. Understanding biases in sea-ice parameters and 

physical mechanisms behind these constraints will improve the reliability of sea-ice projections 

and increase confidence in our understanding of what controls the rate of Antarctic sea-ice loss. 

Therefore, our research addresses a critical knowledge gap of understanding and modeling of 

Antarctic SIT and the dynamics involved in shaping its temporal and spatial distributions using 

the long-term coupled climate simulations.  

Acknowledgement 

M.R. Raphael and S. Trivedi acknowledge funding by the National Science Foundation 

(NSF) under the Office of Polar Programs (NSF-OPP-1745089). W.R. Hobbs acknowledges 

support by the Australian Government as part of the Antarctic Science Collaboration Initiative 

program and receives funding from the Australian Research Council Discovery 

Project (DP230102994). 

 

Data Availability Statement 



manuscript submitted to Geophysical Research Letters 

 

The satellite product used in the study is CryoSat-2 and Envisat sea-ice thickness data which is 

available at https://dx.doi.org/10.5285/b1f1ac03077b4aa784c5a413a2210bf5 (Hendricks et al., 

2018). The GECCO3 sea-ice thickness data are available at https://www.cen.uni-

hamburg.de/en/icdc/data/ocean/easy-init-ocean/gecco3.html (last access: 31 May 2021, Köhl, 

2020). The GIOMAS sea-ice thickness data are available at 

http://psc.apl.washington.edu/zhang/Global_seaice/data.html (last access:26 December 2020, 

Zhang and Rothrick, 2003). Monthly values of sea-ice concentration from NSIDC are available 

at https://doi.org/10.5067/7Q8HCCWS4I0R. All the CMIP6 model datasets are available at 

ESGF website: https://esgf-node.llnl.gov/search/cmip6/ (Table S1).  
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Key Points: 

• CMIP6 models can capture the timing of annual cycle (particularly in February) and 

spatial patterns of SIT resembling the observations. 

• Compared to sea-ice area, CMIP6 models exhibit larger negative biases in 

thickness/volume, with a higher degree of variation among models. 

• Seasonal variations in sea-ice show positive (negative) relationships between sea ice area 

and thickness during September (February).  
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Abstract 

This study assesses less-explored Southern Ocean sea-ice parameters, namely Sea-ice Thickness 

and Volume, through a comprehensive comparison of 26 CMIP6 models with reanalyses and 

satellite observations. Findings indicate that models replicate the mean seasonal cycle and spatial 

patterns of sea-ice thickness, particularly during its maxima in February. However, some models 

simulate implausible historical mean states compared to satellite observations, leading to large 

inter-model spread. September sea-ice thickness is consistently biased low across the models.  

Our results show a positive relationship between modeled mean sea-ice area and thickness in 

September (i.e., models with more area tend to have thicker ice); in February this relationship 

becomes negative. While CMIP6 models demonstrate proficiency in simulating Area, thickness 

accuracy remains a challenge. This study, therefore, highlights the need for improved 

representation of Antarctic sea-ice processes in models for accurate projections of thickness and 

volume changes. 

Plain Language Summary 

In this study, we investigated sea-ice thickness and volume in the Southern Ocean using data 

from 26 different climate models and observation datasets. Our findings show that the models 

generally capture the seasonal cycle and spatial patterns of sea-ice thickness well, with the 

highest average thickness occurring in February. We also found that the models tend to perform 

better in simulating sea-ice area compared to thickness. Furthermore, simulated sea-ice area and 

thickness tend to behave differently during different seasons—positively (negatively) covarying 

in September (February). The models that performed well in simulating sea-ice area faced 

challenges in accurately representing thickness and volume. This raises the question regarding 

the overall performance of such models or, more definitively, whether it's reliable to evaluate 

model accuracy or performance based solely on sea-ice area. Nevertheless, sea-ice thickness 

simulations in CMIP6 can offer a basis for initial analyses of absolute sea-ice changes in the 

Southern Ocean, despite the need for more reliable observational thickness. 

1. Introduction 

Antarctic sea-ice extent, which showed a small positive linear trend since the start of satellite era 

(Cavalieri & Parkinson, 2008; Parkinson & Cavalieri, 2012; Turner et al., 2015; Zwally et al., 

2002), has decreased significantly since mid-2016 (Raphael and Handcock, 2022; Wang et al., 

2022; Turner et al., 2022; Eayrs et al., 2021). Attempts to understand this variation have focused 

primarily on the surface characteristics (extent and area) of the ice. Variability in sea-ice 

thickness (SIT) and volume (SIV) have not been explored and this is due to limited SIT 

observations. However, complete understanding of the changes in sea-ice and their potential 

impact on climate is not possible if these variables are not examined. For example, SIV serves as 

a measure of total sea-ice production and, hence, a measure of the surface salinity flux in winter, 

the freshwater input to the ocean in summer, and total heat loss to the atmosphere.  This further 

aids our understanding of surface buoyancy flux and related ventilation of SO deep waters 

(Pellichero et al., 2018) hence by inference, global ocean heat and carbon uptake. Detection of 

variations in SIT/SIV are also important for understanding a variety of climate-sea-ice feedbacks 

(Holland et al., 2006; Stammerjohn et al., 2008) as well as trends and variability in SO salinity 

(Haumann et al., 2016). Therefore, a long-term assessment of these variables is important for a 
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complete assessment and quantification of the ongoing changes in the mass balance of the sea-

ice cover (Massonnet et al., 2013) allowing for a deep propagation of the global climate change 

signal (Sallée et al., 2023). 

Accurate simulations of long-term SIT are also important for understanding the marine biology 

of the Antarctic ecosystem. SIT affects the maximum biomass of algae in different ice layers, 

which in turn influences the food web of the SO. SIV along with the snow depth, also affects the 

light penetration and availability for the phytoplankton contributing further in their production 

and bloom (Massom & Stammerjohn, 2010; Schultz, 2013). Therefore, a comprehensive 

assessment of Antarctic sea-ice variability and its impact on the ocean requires an additional 

consideration of the SIT and SIV (Maksym et al., 2012; Maksym & Markus, 2008).  

Global coupled climate models (GCMs) are potentially valuable tools for assessing long-term 

SIT and SIV variability and providing future projections. However, the simulation of Antarctic 

sea-ice, particularly SIT in GCMs, remains a challenge, adding to the low confidence in 

Antarctic sea-ice projections (Meredith et al, 2019). Here, we present a high-level evaluation of 

models in the Sixth Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) in 

simulating Antarctic SIT/SIV and compare them to available observations. Our findings indicate 

that models can reasonably capture the timing of SIT seasonal cycle, although some biases and 

model disagreements are evident. However, when compared to SIA, their performance remains 

suboptimal.  

2. Data and Methods 

2.1. Observation Datasets 

Our study uses three different observational records for SIT: Satellite dataset Envisat-CryoSat-2 

(2002-2012),  the  Global Ice-Ocean Modeling and Assimilation System (GIOMAS, 1979-2014) 

and the German contribution to the Estimating the Circulation and Climate of the Ocean project 

(GECCO3, 1979-2014). The satellite dataset is used as the comparison baseline.  

SIT from  Envisat and Cryosat-2: 

The Sea-Ice Climate Change Initiative (SICCI) project provides a large-scale Antarctic SIT 

dataset from Envisat and CryoSat-2 with a 50 km spatial resolution (Hendricks et al., 2018). 

While these SIT products have uncertainties due to radar altimeter estimates (Paul et al., 2018; 

Tilling et al., 2019; Willatt et al., 2010), they offer valuable insights. Previous studies have 

shown reasonable regional agreement between Envisat and CryoSat-2 radar freeboards 

(Schwegmann et al., 2016), although Envisat tends to overestimate ice thickness (Shi et al., 

2021) particularly in the Antarctic (Hendricks et al., 2018a; Hendricks et al., 2018b; Wang et al., 

2022). Despite these challenges, the SICCI dataset remains the most comprehensive satellite 

dataset available, covering the circumpolar Antarctic SIT from 2002 to present. Envisat and 

CryoSat-2  have been found comparable to Upward Looking Sonar (ULS)-derived SIT for the 

Weddell region (Shi et al., 2021;Liao et al., 2022; Wang et al., 2022) and also aligns well with 

in-situ ship-based observations, (ASPeCt; Worby et al., 2008) which showed highest thickness in 

summers and lowest in autumn-winter. These agreements can help refine and assess model 

performance, particularly in capturing the seasonal cycle of SIT.  
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SIT from sea-ice estimates and reanalysis: 

The GECCO3 ocean synthesis, an improved version of GECCO2 based on MITgcm, employs 

the adjoint method to fit the model to various data over a multidecadal period, providing a global 

eddy-permitting synthesis at a resolution of 0.4° (Köhl, 2020). The Global Ice-Ocean Modeling 

and Assimilation System (GIOMAS) uses the Parallel Ocean Model coupled with a 12-category 

thickness and enthalpy distribution ice model at a horizontal resolution of 0.8° (Zhang & 

Rothrock, 2003). GIOMAS assimilates sea-ice concentration, demonstrates good agreement of 

its SIT (Lindsay & Zhang (2006) with satellite observations in the Arctic and is useful for 

studying long-term variations in Antarctic sea-ice (Liao et al., 2022; Shi et al., 2021). To make 

reanalysis products comparable to absolute floe thickness estimates (the SIV per grid-cell area or 

“equivalent sea-ice thickness”), we convert them into “effective thicknesses” by dividing them 

with observed SIC records from the National Snow and Ice Data Center (NSIDC) (Cavalieri et 

al.,1999) by re-gridding the SIT to the concentration grid.  

2.2. CMIP6 Models 

In our study, we analyze the historical experiments of the CMIP6 dataset, specifically focusing 

on the “sithick” variable, representing simulated effective floe thickness. We also incorporate 

“siconc” (sea-ice concentration) and “areacello” (area of individual grid cells over the ocean) 

variables. CMIP6 models generate multiple ensemble members, which are multiple runs or 

simulations with slightly different initial conditions or variable settings, used to capture 

uncertainty and variability in model predictions. In this study, we consider the first ensemble 

member for each model  (Table S1) to account for internal variability and ensure consistency 

(Notz & Community, 2020; Roach et al., 2020). We calculate SIV by multiplying “siconc”, 

“sithick” and “areacello” and summing over the circumAntarctic SO. For SIA, we multiply 

“siconc” and “areacello” and integrate it over the circumAntarctic SO. Lastly, for floe thickness, 

we use the averaged “sithick” over SO. 

3. Results 

3.1. Sea-ice variables: Mean and Anomaly State  

Fig.1 shows the 2002-2014 mean annual cycles of SIV, SIT, and SIA in different observational 

estimates and CMIP6 models. As mentioned earlier, the Envisat-CryoSat2 observations 

(henceforth referred to as satellite product) are known to have high positive biases especially in 

the Southern Hemisphere (SH); thus, anomalously high volume (Fig.1a) and thickness (Fig.1b). 

The multi-model mean (MMM) is much smaller than the satellite and reanalysis products for SIA 

and SIV, whereas in SIT most of the models simulate thicker sea-ice than the reanalyses between 

January-April. However, all the models can simulate the SIV maxima (Sept-Oct) and minima 

(Feb) and the SIT maxima (Feb), while simulated SIT minima fall in April at the start of the 

growing period (like the reanalyses). 
 

Previous studies have shown that CMIP6 models perform well in simulating SIA climatology in 

the circumAntarctic (Roach et al., 2020; Shu et al., 2020). Significant negative biases are 

consistently observed in SIV (Fig.1a). However, for SIT during summer, the outcomes vary 

considerably based on the observation dataset, with certain models simulating unusually thick 

sea-ice (>3m) in January-February (Fig.1b). This summer biases can be attributed to the 

increased complexity in satellite retrieval of summer SIT (Kurtz & Markus, 2012). 
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Fig. 1: Comparison of annual cycles of SIV, SIT and SIA of the circumpolar Antarctic. All 

the CMIP6 models are shown as grey lines, The Multi-Model Mean (MMM) is the  black 

dashed line. GECCO3 in blue, GIOMASS in green, and Envisat-CryoSat-2/NSIDC in red. 

Grey shaded areas are +-1 standard deviation for the MMM.     

 

There is a similar pattern in the SIA (Fig.1c) cycles except a few models which tend to simulate 

larger SIAs during the entire cycle particularly between July and November. The inter-model 

spread of annual mean Antarctic SIT, SIV and SIA is 5.9m, 20 thousand km3 and 16 million km2 

for the maxima and 1.8m, 7.5 thousand km3 and 4 million km2 for the minima, respectively. 

Inter-model spread however fluctuates and is larger during fall and winter for SIV and SIA while 

it greatly reduces during the summers. By contrast, SIT has greater inter-model spread during 

summers and shrinks significantly from April-November. Among the observation datasets, all 

variables show the highest spread during the cooler seasons.  

 

The highest average thickness of ice in the SO occurs in February in the form of the compacted 

ice which survives the melt season (Kurtz & Markus, 2012; Worby et al., 2008; Xu et al., 2021). 

It is for this reason that the SIT seasonal cycles look very different from those of SIA/SIV. 

Therefore, to capture the sea-ice seasons based exclusively on the SIT climatology, we 

conducted our analyses using February and September.  

 

Previous studies have shown that CMIP6 models struggle to reproduce the observed positive 

trend in Antarctic sea-ice extent (SIE) and SIA (Li et al., 2023; Shu et al., 2015; Turner et al., 

2013). The negative trends in simulated SIT/SIV (Fig.S1) are consistent with the negative trends 

in SIE/SIA (Roach et al., 2020 and Shu et al., 2020). However, no significant trends were found 

in modeled and observed SIT  in February with only a weak negative trend in the MMM of SIV, 

which can be potentially attributed to the simulated negative trend in SIA. This negative trend 

becomes stronger in the early 2000s, particularly in September (similar to trends in Shu et al., 

2020).  

 

We conducted a similar analysis over the four seasons and observed seasonal variability in sea-

ice  (Fig. S2). There were significant SIT/SIV trends apparent during the cooler seasons (winter 

and spring), while such trends were absent in the warmer seasons. On the contrary, studies have 

shown the observed SIA trends are primarily observed in the warmer seasons (Summer and Fall) 

because the maximum ice edge is constrained by SO hydrography, while they remain absent 

during the cooler seasons (Eayrs et al., 2019; Hobbs et al., 2016). This implies that changes in 

SIT/SIV may contribute to Antarctic sea-ice variability during colder months. The presence of 

robust land-ocean temperature gradients during winters may be a contributing mechanism here 

a) b) c) 
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because they result in high-intensity winds, which are recognized as significant contributors to 

SIT/SIV fluctuations in the SO (Zhang, 2014). 

 

 

3.2. CMIP6 Model Performance 

An accurate spatial distribution of SIT is key to estimates of SIV and it reflects the skill in 

simulation of local processes, coupled interactions and energy transfer among the ocean below, 

the sea-ice, and the atmosphere above (Stroeve et al., 2014). To estimate this, we computed 

spatial pattern correlations and Root Mean Square Deviations (RMSD) for the sea-ice variables 

among 26 models, the reanalyses, and the satellite product. These calculations were performed 

based on area-integrated spatial averages of sea-ice over February and September, using data 

subsets for models and observations corresponding to those months. We utilized the satellite 

dataset as the reference for calculating RMSD and correlation values across spatial grids. The 

values plotted on the Taylor Diagram (Fig.S3) represent the spatial average of the correlation 

coefficient, RMSDs and standard deviations across the circumpolar Antarctic. 

 

Higher correlation coupled with a lower RMSD represents greater accuracy of CMIP6 models in 

simulating the sea-ice variables. Fig.S3 shows that most of the models have a lower RMSD for 

SIA (Fig.S3c,d) compared to SIV and SIT. Out of all the variables, models tend to have highest 

RMSDs for the SIT (Fig.S3a,b)  with almost all the models with their values between 0.5-1.0 

during both months. The reanalysis products show the highest RMSDs and lowest correlations 

for SIT, indicating lack of agreement among different observations, while a contrasting pattern is 

seen for SIA (Fig.S3e,f). Comparing the two months, we observe that RMSDs are smaller for 

September, most notably in SIA and SIV. For SIT, models tend to perform better for the SIT 

maxima in February (Fig.S3a). Spatial correlation coefficients range between 0.6-0.9 for all the 

variables in both the months (Table S2, S3 and S4). NorCPM1, MRI-ESM2-0, SAM0-UNICON, 

CESM2-WACCM-FV2, and CESM2-FV2 demonstrate highest correlations for SIA. For SIV, 

NorCPM1, MRI-ESM2-0, and SAM0-UNICON perform well, while MPI-ESM1-2-LR, MPI-

ESM1-2-HR, MPI-ESM1-2-HAM, and ACCESS-CM2 show high correlations for SIT in both 

months. In summary, the Taylor Diagram reveals that while most CMIP6 models demonstrate 

relatively higher accuracy in simulating SIA and SIV with strong correlations and lower RMSD, 

they face greater challenges in accurately reproducing SIT, particularly during September. 

Additionally, the reanalysis products exhibit lower agreement and higher RMSD for SIT, 

emphasizing the complexity of capturing this variable across different observation datasets. 

  

Given their better performance in simulating SIA, we considered whether or not this 

performance correlated with SIT accuracy in CMIP6 models. For this, we compared the annual 

averages of SIT and SIA in models with the observations (Fig.2). SIA biases look similar in both 

the months with their values ranging between -1.3 to -2.0 million km2. On the other hand, SIT 

consistently exhibits thin biases across all models for September ranging between 1-2m (Fig.2b). 

February is also characterized by thinner sea-ice simulations (most models in Fig.2a have values 

less than observed value of 3m) except a few models which show a good agreement with the 

observations (models with their average SIT ~3m).  
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Fig. 2: Scatter plots between the annual means of SIT (y-axis) and SIA (x-axis) for CMIP6 

models and Observations for the period (2002-2014) for February (red) and September 

(blue). The line of best fit represents the relationship between the two variables for selected 

months. Each small dot represents a model while the larger dots represent observations (E-

CS2 and NSIDC for SIT and SIA, respectively). The figure clearly demonstrates seasonal 

variations in magnitudes of both the variables. 

 

We anticipate consistency in model simulations and responses for the sea-ice variables, so that 

smaller SIA, would be accompanied by thinner SIT as most areas will be covered with thin first 

year ice. However, some models exhibit contrasting behaviors. In February, EC-Earth3 models 

display positive biases in SIT (with SIT > 3m in Fig.2a) and negative biases in SIA. In 

September, models like MRI-ESM2-0, SAM0-UNICON, NorCPM1, IPSL-CM6A-LR, and 

IPSL-CM6A-LR-INCA simulate thinner sea-ice along with positive biases in SIA (with values 

greater than 17.5 km2 in Fig.2b). This intriguing behavior raises questions about the accuracy 

and reliability of these models in simulating sea-ice variables. These opposing relationships may 

be due to some intricate thermodynamic relationships between SIA and SIT captured by the 

models or to model errors. Further study might clarify this.  

 

Fig.2 also highlights how simulated seasonal means in SIA and SIT behave differently—with 

positive (negative) correlation occurring during September (February). This could happen as 

increasing temperatures during summers result in sea-ice melt thereby reducing SIA with the 

thickest of the sea-ice surviving the melt season, hence an inverse relationship in February. A 

positive correlation is observed between SIA and SIT during the growing season when 

temperatures are decreasing. These thermal changes lead to increases in both area and thickness, 

with SIT increasing but remaining relatively thinner as SIA expands. Consequently, Area and 

Thickness “positively covary” with reduced temperatures. 

 

3.3. Spatial patterns and biases  

Compared to other sea-ice variables, simulated SIT shows a noticeable agreement among  

models during February. Despite the agreement, it is necessary to acknowledge the substantial 

level of uncertainty that exists regarding the accuracy of SIT simulation due to heterogeneity 

among various models. This variability is manifested in the significant inter-model disparity as 

well as marked differences in the spatial distribution of thickness across the SO (Fig.3 and Fig. 

S4). The mean observed SIT in the satellite product shows that thickest sea-ice is in the Weddell 

a) b) 
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Sea along the Antarctic Peninsula and along the coastal edges of the Amundsen-Bellingshausen 

Seas (ABS)--the ice which survives the summer melt. There is relatively thinner sea-ice observed 

on the eastern Antarctic (Kurtz & Markus, 2012). Our analysis reveals that most of the CMIP6 

models capture a similar spatial pattern in SIT around the Antarctic. However, they do exhibit 

negative biases and underestimate thickness primarily along the Peninsula in Weddell and in the 

ABS. Some models simulate a thicker sea-ice compared to the observations (Fig.S4) around the 

tip of the Peninsula (IPSL-CM6A-LR, IPSL-CM6A-LR-INCA and IPSL-CM5A2-INCA), 

between the western edge of the ABS and Ross Sea (EC-Earth3 models), around the coast of 

ABS (SAM0-UNICON) and western Weddell Sea region (NorCPM1). It is probably this 

thickness in sea-ice along Peninsula in the Weddell region which contributes to a high spatial 

correlation value between such models and satellite observations in February. 
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Fig. 3: Spatial Biases of SIT averaged over 2002 to 2014 (September) for 26 CMIP6 models 

and Reanalyses from the reference dataset: ENVISAT-CS-2. Last figure shows the time 

averaged SIT for ENVISAT-CS-2.  

 

The spatial distribution patterns of SIT during September (Fig.3) bear similarities to February, 

with thickest multi-year sea-ice in the Weddell. Here, we find anomalously thick ice (>3m) in 

some CMIP6 models primarily in two regions: an elongated tongue of thickest sea-ice extending 

northward from the northwest Weddell Sea along the AP and, the other is around the sea-ice 

edge. Multiple models, including IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, IPSL-CM5A2-

INCA, EC-Earth3-Veg-LR, EC-Earth3-AerChem, NorCPM1, and ACCESS-ESM-1-5, show a 

similar tongue of thick sea-ice that also agrees with observed patterns (consistent with ICESat 

measurement by Holland & Kwok, 2012 and modeled SIT by Holland, 2014). The distinctive 

tongue-like pattern, characterized by clockwise ice motion, is a due to a prominent feature in the 

Weddell Sea called the Weddell Gyre (Vernet et al., 2019). This mechanism contributes 

significantly to the regional sea-ice dynamics in the form of an apparent westward ice motion in 

the southern Weddell. As a result, ice convergence occurs in the southwestern Weddell causing 

dynamic thickening (Shi et al., 2021). The sea-ice velocity vectors showed that CMIP6 models 

tend to capture this gyre (not shown) which results in the formation of a thick ice along the 

Peninsula.  

 

Another potential explanation for the prominent sea-ice tongue is the influence of fast-ice in the 

Weddell (i.e., sea-ice that is pinned to the coast or grounded icebergs, Fraser et al 2023), a 

feature often inadequately represented or omitted in GCMs. Some sea-ice models have 

previously used prescribed fast-ice, either through a constant SIT over a specific region, or by 

setting its velocity at zero to render the blocking of sea-ice advection by sub grid-scale grounded 

icebergs (Kusahara et al., 2017; St-Laurent et al., 2017). Recent high-resolution regional NEMO-

LIM-based experiments exhibited overestimations of SIT by 30-50% (compared to the satellite 

altimetric sea-ice products) during Winter and Fall within the fast-ice zone, indicating the 

presence of thicker ice, particularly in dynamically formed fast-ice areas (Van Achter et al., 

2022). Interestingly, the CMIP6 models examined in our study, which demonstrate thicker 

coastal SIT around the Peninsula, utilize NEMO-LIM as their sea-ice model (Table S1 and 

Fig.3). Such thicknesses are far in excess of that expected from heat loss to the atmosphere 

alone, indicating likely contributions from platelet accretion and/or snow-ice formation hinting at 

the presence of fast-ice (Fraser et al., 2023). 

 

The other region of thick sea-ice bias is the sea-ice edge (Fig.3). It’s interesting to note that the 

CMIP6 models that have exhibited better performance in simulating Antarctic SIA such as 

CESMs, NorESM2, and ACCESS (Holmes et al., 2019; Li et al., 2023; Roach et al., 2020; Uotila 

et al., 2014) and showed lower thickness biases in February, simulate very high thickness at the 

sea-ice edge (between 0-700E). A potential explanation for this could be through combinations of 

changes in air-ice drag and the direction of cold or warm-air advection. These may result in 

northward wind stress causing the sea-ice to drift, transport and accumulate causing dynamic 

convergence at the sea-ice edge (Singh et al., 2021; Holland et al., 2014; Holland & Kwok, 
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2012). Another reason could be the high-intensity ocean-wave fields linked to the SO which 

deeply infiltrate the sea-ice marginal ice zone. This penetration induces alterations in thickness 

distribution through processes like rafting and ridging, especially in the vicinity of the ice edge 

(Langhorne et al., 1998). In any case, the simulated sea-ice at the ice edge is much thicker than 

observed and further study is required to eliminate modeling error as its cause.  

 

Overall, CMIP6 models simulations compare favorably with satellite-derived SIT observations 

during February (Fig.S4). About 38% of the CMIP6 models (10 out of 26) have their mean 

biases between +/-1m. Among them, NorESM2-MM, CESM2-Models, and CMCC-ESM2 while 

spatially consistent with the observations display some biases. In general, all models tend to 

underestimate SIT and produce relatively thinner sea-ice during both months. These negative 

biases are more pronounced in September and reduce considerably in February. It should be kept 

in mind that our comparisons are made with respect to the satellite dataset which themselves 

exhibit an exaggerated SIT in the SO. Therefore, the 7 out of 26 models which show even greater 

positive biases (>1m), may be simulating unrealistic and excessively thick sea-ice in the SO and 

may represent a false picture of future Antarctic sea-ice changes. 

 

4. Conclusions 

Given the current context of global warming, it is imperative to develop predictions regarding 

Antarctic sea-ice behavior to enhance our understanding of its future variability and response to 

climate change. For this we need reliable estimates of SIT and SIV to assess the absolute 

changes in the global sea-ice. While there is the understanding that the models do not yet 

accurately simulate SIT and SIV, it is still necessary to see how well they perform if only to 

understand where more work is needed. The research presented here is a comprehensive 

evaluation of Antarctic SIT/SIV by comparing 26 model outputs with satellite data as a reference 

baseline. It is difficult to estimate and simulate SIT accurately due to the lack of long-term, 

reliable observational datasets. However, despite these limitations, CMIP6 models can offer 

longer timescales of SIT data which when compared with the observed (and accounting for the 

limitations), can enhance our understanding of Antarctic sea-ice.  

 

Regardless of simulation of processes or trends, a precise modeling of climatological mean sea-

ice cover in the GCMs is a necessary condition for accurate projections (Holmes et al., 2022). In 

line with this, our study shows that most models can simulate the timing of annual cycles of 

SIT/SIV. Additionally, in February, the SO retains the thickest sea-ice, consisting of sea-ice that 

survives the summer, which is also effectively captured by CMIP6 models. Modeled seasonal 

cycles for SIV and SIA show significant biases in April-October, with higher inter-model 

spreads in fall-winter. Conversely, SIT inter-model spreads are higher during November-March 

but exhibit relatively lower biases compared to the reference dataset. It should be noted that 

simulations without data assimilation are always out of phase with natural variability seen in the 

observations. Hence, these differences between simulations and observations can either be due to 

model biases or natural climate variability (Stroeve et al., 2014).  

 

CMIP6 models continue to simulate negative trends in Antarctic SIT/SIV, contrary to the 

observed positive trends, until 2014. Additionally, we observe positive trends in SIT/SIV during 

cooler seasons (which are absent in SIA) implying that sea-ice variability in these colder months 
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could be influenced by thickness/volume changes, possibly due to intensified seasonal winds. 

Among the models, MRI-ESM2-0, CESM2, and ACCESS-CM2 demonstrate higher correlations 

and relatively lower RMSDs across all variables during both months. An evaluation of model 

biases demonstrates that SIA exhibits least biases compared to SIV and SIT, with better 

alignment observed in February. We also examined seasonal variations in sea-ice correlations, 

showing positive(negative) relationships between SIA and SIT during September(February). 

Certain models simulate opposing biases for SIT and SIA, revealing discrepancies between 

modeled simulations of these two variables and their responses to the model processes.  

 

While many CMIP6 models simulate spatial SIT patterns like observations, they tend to 

underestimate SIT particularly in September. Intriguingly, certain models display anomalously 

thick sea-ice along the Peninsula and on the eastern sea-ice edges even greater than the 

exaggerations in reference dataset itself.  

 

Such deviations can hamper our understanding of climate-sea-ice interactions as well as 

biological feedback between the oceans and climate. For instance, lower SIT could potentially 

create a misleading impression of lower albedo and increased light penetration, subsequently 

leading to increased Primary Production (Jeffery et al., 2020) and lower ocean acidification. We 

have not explored the causes of such anomalous biases in SIT. However, their potential 

explanations may include cloud effects (Kay et al., 2016; Zelinka et al., 2020), spatial resolution 

that does not permit eddies, which are understood to be highly important for representation of SO 

dynamics (Poulsen et al., 2018; Rackow et al., 2019), models treating all sea-ice to be able to 

drift when in reality up to 15% of ice should be held still either being anchored to land or 

grounded icebergs (Fraser et al., 2023) and the lack of coupled ice sheet interactions, which have 

relevance for the entire Antarctic climate system (Bronselaer et al., 2018; Golledge et al., 2019; 

Purich & England, 2023).  

 

Considering these findings, we anticipate that future studies will investigate these aspects with 

respect to Antarctic SIT. Addressing such model biases could be initial steps in further 

improving the representation of dynamic processes in sea-ice, climate, and biogeochemical 

models, ensuring their accurate predictions. Understanding biases in sea-ice parameters and 

physical mechanisms behind these constraints will improve the reliability of sea-ice projections 

and increase confidence in our understanding of what controls the rate of Antarctic sea-ice loss. 

Therefore, our research addresses a critical knowledge gap of understanding and modeling of 

Antarctic SIT and the dynamics involved in shaping its temporal and spatial distributions using 

the long-term coupled climate simulations.  
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The satellite product used in the study is CryoSat-2 and Envisat sea-ice thickness data which is 

available at https://dx.doi.org/10.5285/b1f1ac03077b4aa784c5a413a2210bf5 (Hendricks et al., 

2018). The GECCO3 sea-ice thickness data are available at https://www.cen.uni-

hamburg.de/en/icdc/data/ocean/easy-init-ocean/gecco3.html (last access: 31 May 2021, Köhl, 

2020). The GIOMAS sea-ice thickness data are available at 

http://psc.apl.washington.edu/zhang/Global_seaice/data.html (last access:26 December 2020, 

Zhang and Rothrick, 2003). Monthly values of sea-ice concentration from NSIDC are available 

at https://doi.org/10.5067/7Q8HCCWS4I0R. All the CMIP6 model datasets are available at 

ESGF website: https://esgf-node.llnl.gov/search/cmip6/ (Table S1).  
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Introduction  

The data files used in the supporting document are derived using Python. The format of 

the datasets was netcdf (.nc) format. The visualization generated is in the form of images 

(.png) format.  

The anomaly time series have been produced by removing the climatological means 

from every timestep of the data for each sea-ice parameter i.e., Sea-ice Area, Thickness 

and Volume. These anomaly time-series were then segregated for two selected months 

in our study: February and September (Fig.S1) as well as four austral seasons (Fig.S2). We 

defined summer from December-February, Fall from March-May, Winter from June 

August, and Spring from September-November. Taylor diagram has been produced in 

Python using “skill_metrics” package. The spatial biases are calculated in Python by 

subtracting the observation dataset for respective months from the CMIP6 modeled 

data. (Fig.S4) 

The reference data of sea-ice thickness is known to have exaggerated values especially 

for southern hemisphere.  
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Figure S1: Anomalies for the two months: February and September of sea-ice thickness 

(top), sea-ice volume (middle) and sea-ice area (bottom) of the circumpolar Antarctic. All 

the CMIP6 models are shown as grey lines, Multi-model mean in dashed line, GECCO3 in 

blue, GIOMASS in green, and Envisat-CryoSat-2/NSIDC in red.  
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Figure S2: Anomalies for four seasons: Spring and Winter (Colder Seasons), Summer and 

Fall (Warm Seasons) of sea-ice thickness (left), sea-ice volume (middle) and sea-ice area 

(right) of the circumpolar Antarctic. All the CMIP6 models are shown as grey lines, Multi-

model mean in dashed line, GECCO3 in blue, GIOMASS in green, and Envisat-CryoSat-

2/NSIDC in red. 

 
Figure S3: Taylor Diagrams representing spatial correlation using time-averaged means 

between CMIP6 models and different observation datasets where the distance between 

each model and the point labeled “Observed” is a measure of how realistically each 

model reproduces observations. For each model, three statistics are plotted: the Pearson 

correlation coefficient, related to the azimuthal angle (blue contours); the centered Root 

Mean Square Deviation (RMSD) in the simulated field viz proportional to the distance 

from the point on the x-axis identified as “observed” (green dashed contours); and the 

standard deviation of the simulated pattern viz proportional to the radial distance from 

(FEB) (FEB) (FEB) 

(SEP) (SEP) (SEP) 
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the origin (black dotted contours). Red dots represent individual CMIP6 models and 

black squares represent Reanalysis datasets. The period used for comparison is 2002-

2014 for February (a,c,e) and September (b,d,f). For February, GECCO3 is not included as 

it had very small negative correlation. Reference datasets used for SIT and SIA are 

Envisat-CryoSat2 and NSIDC, respectively. 

 

 

 

 

 

    

 



 

 

6 

 

Fig. S4: Spatial Biases of SIT from 2002 to 2014 (February) from 26 CMIP6 models and 

Reanalyses from the reference dataset: ENVISAT-CS-2. Last figure shows the time 

averaged SIT for ENVISAT-CS-2.  

 

Model Name  

Atmospheric 

Model Ocean Model Sea-Ice Model References 

ACCESS-

CM2 

MetUM-

HadGEM3-GA7.1 ACCESS-OM2 CICE5.1.2 Dix et al., 2019  

ACCESS-

ESM1-5 

HadGAM2  

[250km] 

ACCESS-OM2 

(MOM5) [100km] 

CICE4.1  

[100km] Ziehn et al., 2020 

CESM2 CAM6  [100km] POP2  [100km] 

CICE5.1  

[100km] 

Danabasoglu et al., 

2020 

CESM2-FV2 CAM6  [100km] POP2  [100km] 

CICE5.1  

[100km] 

Danabasoglu et al., 

2020 

CESM2-

WACCM-FV2 WACCM6 MAM4 CICE5.1 

Danabasoglu et al., 

2020, Gettelman et 

al., 2019 

CIESM CIESM-AM CIESM-OM CICE4 Lin et al., 2020 

CMCC-CM2-

SR5  CAM5.3  NEMO3.6 CICE4.0 Lovato et al., 2020 

CMCC-ESM2 CAM5.3 NEMO3.6 CICE4.0 Cherchi et al., 2019 

EC-Earth3 IFS cy36r4 NEMO3.6 LIM3 

Massonnet et al., 

2020 

EC-Earth3-

AerChem IFS cy36r4  NEMO3.6 LIM3 

van Noije et al., 

2021 

EC-Earth3-CC  IFS cy36r4 NEMO3.6 LIM3 

Döscher et al., 

2022 

EC-Earth3-

Veg-LR 

IFS cy36r4 

[100km] NEMO3.6 [100km] LIM3 [100km] Wyser et al., 2020 

GFDL-CM4 GFDL-AM4.0.1 GFDL-OM4p25 

GFDL-

SIM4p25 Held et al., 2019 

GFDL-ESM4 GFDL-AM4.1 GFDL-OM4p5 GFDL-SIM4p5 

Krasting et al., 

2018 

IPSL-CM5A2-

INCA LMDZ NEMO-OPA NEMO-LIM3 

Boucher et al., 

2020 

IPSL-CM6A-

LR-INCA LMDZ NEMO-OPA NEMO-LIM3 

Boucher et al., 

2021 

IPSL.IPSL-

CM6A-LR LMDZ [250km] NEMO-OPA [100km] 

NEMO-LIM3 

[100km] Lurton et al., 2020 

MIROC6 CCSR AGCM COCO4.9 COCO4.9 Tatebe et al., 2019 

MPI-ESM-1-

2-HAM ECHAM6.3 MPIOM1.63 

UNNAMED 

(thermodynami

c (Semtner 

zero-layer) 

dynamic 

(Hibler 79)  

Mauritsen et al., 

2019 

MPI-ESM1-2-

HR Same as above Same as above Same as above Gutjahr et al., 2019 

MPI-ESM1-2-

LR Same as above Same as above Same as above 

Mauritsen et al., 

2019 
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MRI-ESM2-0 MRI-AGCM3. MRI.COM4.4 MRI.COM4.4 

Yukimoto et al., 

2019 

NorCPM1 CAM-OSLO4.1  MICOM1.1 CICE4 

Counillon et al., 

2016 

NorESM2-LM CAM-OSLO  MICOM CICE Seland et al., 2020 

NorESM2-

MM CAM-OSLO  MICOM CICE Seland et al., 2020 

SAM0-

UNICON 

CAM5.3 with 

UNICON POP2 CICE4.0 Park et al., 2019 

Table S1: Details of the specifications of 26 CMIP6 models used in the study. 

 

  February September 

Models STD RMSD Corr STD RMSD Corr 

ENV-CS2 1.021 0 1 1.269 0 1 

ACCESS-CM2 0.777 0.326 0.903 0.534 0.642 0.847 

NorCPM1 0.779 0.352 0.794 0.944 0.647 0.76 

MPI-ESM-1-2-HAM 0.095 0.207 0.948 0.33 0.744 0.855 

NorESM2-LM 1.507 0.498 0.789 1.267 0.769 0.613 

MIROC6 0.135 0.193 0.982 0.34 0.652 0.777 

MRI-ESM2-0 0.785 0.387 0.907 0.592 0.648 0.82 

GFDL-ESM4 0.13 0.535 0.592 0.351 0.739 0.833 

IPSL-CM5A2-INCA 0.323 0.502 0.471 0.503 0.725 0.702 

EC-Earth3-CC 0.366 0.199 0.887 0.349 0.745 0.754 

GFDL-CM4 0.117 0.544 0.517 0.379 0.716 0.862 

NorESM2-MM 1.08 0.393 0.903 0.818 0.678 0.716 

EC-Earth3-AerChem 0.626 0.217 0.81 0.489 0.709 0.792 

CMCC-CM2-SR5 1.238 0.507 0.892 0.714 0.636 0.793 

MPI-ESM1-2-HR 0.205 0.26 0.94 0.42 0.734 0.811 

SAM0-UNICON 1.028 0.426 0.865 0.813 0.58 0.813 

ACCESS-ESM1-5 1.012 0.39 0.896 0.704 0.655 0.758 

CESM2-WACCM-FV2 1.281 0.57 0.693 0.966 0.707 0.677 

EC-Earth3-Veg-LR 0.708 0.227 0.798 0.461 0.723 0.775 

CESM2-FV2 1.417 0.655 0.655 1.134 0.779 0.607 

EC-Earth3 0.634 0.226 0.823 0.446 0.725 0.777 

CESM2 1.084 0.499 0.849 0.74 0.605 0.817 

IPSL-CM6A-LR 1.603 0.395 0.809 0.914 0.59 0.8 

MPI-ESM1-2-LR 0.185 0.262 0.93 0.362 0.755 0.834 

CMCC-ESM2 1.233 0.494 0.891 0.679 0.626 0.811 

CIESM 0.927 0.281 0.838 0.456 0.697 0.813 

GIOMAS 0.675 0.487 0.041 0.515 0.699 0.226 

GECCO3 0.876 0.478 -0.033 0.46 0.702 0.32 



 

 

8 

 

Table S2: Table showing spatial correlations, RMSDs and Standard Deviations for Sea-ice 

Thickness. 

 

  February September 

Models STD RMSD Corr STD RMSD Corr 

ENV-CS2 0.592 0.000 1 0.760 0.000 1 

ACCESS-CM2 0.301 0.263 0.567 1.070 0.536 0.77 

NorCPM1 1.532 0.788 0.793 2.203 1.431 0.809 

MPI-ESM-1-2-HAM 0.227 0.113 0.791 0.953 0.432 0.73 

NorESM2-LM 1.357 0.325 0.547 1.417 0.528 0.687 

MIROC6 0.057 0.120 0.578 0.673 0.393 0.596 

MRI-ESM2-0 0.890 0.302 0.84 1.168 0.543 0.842 

GFDL-ESM4 0.032 0.328 0.492 0.144 0.485 0.813 

IPSL-CM5A2-INCA 1.933 1.228 0.375 3.234 2.280 0.657 

EC-Earth3-CC 0.105 0.110 0.881 0.449 0.397 0.699 

GFDL-CM4 0.008 0.337 0.423 0.042 0.548 0.848 

NorESM2-MM 0.696 0.282 0.628 1.041 0.533 0.708 

EC-Earth3-AerChem 0.338 0.143 0.772 0.682 0.383 0.752 

CMCC-CM2-SR5 0.484 0.309 0.445 0.949 0.444 0.782 

MPI-ESM1-2-HR 0.099 0.166 0.686 0.287 0.441 0.765 

SAM0-UNICON 1.211 0.431 0.793 2.000 1.288 0.812 

ACCESS-ESM1-5 1.045 0.349 0.695 1.557 0.869 0.657 

CESM2-WACCM-FV2 1.520 0.665 0.57 2.007 1.049 0.753 

EC-Earth3-Veg-LR 0.367 0.141 0.693 0.663 0.392 0.732 

CESM2-FV2 1.868 0.845 0.531 2.284 1.216 0.713 

EC-Earth3 0.437 0.146 0.727 0.657 0.395 0.727 

CESM2 0.922 0.315 0.688 1.722 0.867 0.82 

IPSL-CM6A-LR 0.895 0.263 0.767 1.442 0.741 0.743 

MPI-ESM1-2-LR 0.457 0.153 0.707 1.168 0.491 0.794 

CMCC-ESM2 0.385 0.307 0.459 0.907 0.408 0.807 

CIESM 0.147 0.274 0.291 1.107 0.535 0.782 

GIOMAS 0.432 0.287 0.102 0.334 0.418 0.301 

GECCO3 0.566 0.292 -0.074 0.297 0.424 0.368 

Table S3: Table showing spatial correlations, RMSDs and Standard Deviations for Sea-ice 

Volume. The STD and RMSD values are of scale 109m. 

 

  February September 

Models STD RMSD Corr STD RMSD Corr 

NSIDC 0.200 0.000 1 0.288 0.000 1 

ACCESS-CM2 0.130 0.121 0.488 1.031 0.742 0.787 
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NorCPM1 0.590 0.312 0.86 1.331 0.933 0.901 

MPI-ESM-1-2-HAM 0.107 0.134 0.151 1.141 0.901 0.617 

NorESM2-LM 0.171 0.116 0.551 0.676 0.458 0.742 

MIROC6 0.015 0.126 0.05 0.555 0.461 0.39 

MRI-ESM2-0 0.383 0.213 0.836 1.139 0.778 0.901 

GFDL-ESM4 0.037 0.115 0.52 0.218 0.131 0.848 

IPSL-CM5A2-INCA 0.608 0.480 0.464 3.415 2.705 0.797 

EC-Earth3-CC 0.016 0.126 0.097 0.526 0.396 0.588 

GFDL-CM4 0.009 0.125 0.466 0.061 0.195 0.866 

NorESM2-MM 0.162 0.110 0.613 0.711 0.478 0.772 

EC-Earth3-AerChem 0.076 0.124 0.287 0.687 0.483 0.717 

CMCC-CM2-SR5 0.106 0.114 0.459 0.761 0.511 0.81 

MPI-ESM1-2-HR 0.051 0.121 0.277 0.320 0.162 0.825 

SAM0-UNICON 0.542 0.267 0.824 1.250 0.899 0.887 

ACCESS-ESM1-5 0.339 0.195 0.684 1.047 0.758 0.779 

CESM2-WACCM-FV2 0.387 0.237 0.723 1.175 0.866 0.864 

EC-Earth3-Veg-LR 0.077 0.124 0.285 0.681 0.480 0.724 

CESM2-FV2 0.394 0.235 0.719 1.195 0.862 0.874 

EC-Earth3 0.085 0.125 0.302 0.661 0.470 0.691 

CESM2 0.332 0.203 0.693 1.189 0.871 0.864 

IPSL-CM6A-LR 0.186 0.108 0.713 0.953 0.629 0.786 

MPI-ESM1-2-LR 0.211 0.174 0.293 1.510 1.156 0.748 

CMCC-ESM2 0.097 0.114 0.454 0.769 0.517 0.811 

CIESM 0.065 0.125 0.225 1.050 0.802 0.785 

GIOMAS 0.213 0.000 0.761 0.190 0.000 0.943 

GECCO3 0.187 0.000 0.682 0.090 0.000 0.936 

Table S4: Table showing spatial correlations, RMSDs and Standard Deviations for Sea-ice 

Area. The STD and RMSD values are of scale 109m. 
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