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Abstract

The Kuroshio-Oyashio Extension and Gulf Stream oceanic frontal zones with sharp sea-surface temperature gradients are

characterized by enhanced activity of synoptic-scale cyclones and anticyclones and vigorous air-sea exchange of heat and

moisture in the cold season. However, the air-sea exchanges attributed separately to cyclones and anticyclones have not been

assessed. Here we quantify cyclonic and anticyclonic contributions around the oceanic frontal zones to surface turbulent heat

fluxes, precipitation, and the associated hydrological cycle. The evaluation reveals that precipitation exceeds evaporation

climatologically within cyclonic domains while evaporation dominates within anticyclonic domains. These features as well as

the net moisture transport from anticyclonic to cyclonic domains are all enhanced in the presence of the frontal zones. Oceanic

frontal zones thus climatologically act to strengthen the hydrological cycle through increasing low-level storm-track activity

and specific humidity. These findings aid our understanding of the relationship between midlatitude air-sea interactions on

synoptic- and longer-time scales.

Hosted file

972800_0_art_file_11450998_s1zmtz.docx available at https://authorea.com/users/601690/

articles/671369-midlatitude-oceanic-fronts-strengthen-the-moisture-transport-from-

anticyclones-to-cyclones

1

https://authorea.com/users/601690/articles/671369-midlatitude-oceanic-fronts-strengthen-the-moisture-transport-from-anticyclones-to-cyclones
https://authorea.com/users/601690/articles/671369-midlatitude-oceanic-fronts-strengthen-the-moisture-transport-from-anticyclones-to-cyclones
https://authorea.com/users/601690/articles/671369-midlatitude-oceanic-fronts-strengthen-the-moisture-transport-from-anticyclones-to-cyclones


manuscript submitted to Geophysical Research Letters 

 

 1 
Midlatitude Oceanic Fronts Strengthen the Moisture Transport from Anticyclones to 2 

Cyclones 3 

 4 

S. Okajima1, H. Nakamura1, and T. Spengler2  5 

 6 

1Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 7 
Japan 8 
2Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, 9 
Norway 10 

 11 

Corresponding author: Satoru Okajima (okajima@atmos.rcast.u-tokyo.ac.jp)  12 

 13 

Key Points: 14 

• Cyclonic and anticyclonic contributions to air-sea heat and moisture exchange are 15 
quantified around midlatitude oceanic frontal zones 16 

• Oceanic frontal zones primarily enhance surface turbulent heat fluxes within anticyclones 17 
and precipitation within cyclones, respectively 18 

• Midlatitude oceanic frontal zones strenghen the net moisture transport from anticyclones 19 
to cyclones 20 

  21 



manuscript submitted to Geophysical Research Letters 

 

Abstract 22 

The Kuroshio-Oyashio Extension and Gulf Stream oceanic frontal zones with sharp sea-surface 23 
temperature gradients are characterized by enhanced activity of synoptic-scale cyclones and 24 
anticyclones and vigorous air-sea exchange of heat and moisture in the cold season. However, 25 
the air-sea exchanges attributed separately to cyclones and anticyclones have not been assessed. 26 
Here we quantify cyclonic and anticyclonic contributions around the oceanic frontal zones to 27 
surface turbulent heat fluxes, precipitation, and the associated hydrological cycle. The evaluation 28 
reveals that precipitation exceeds evaporation climatologically within cyclonic domains while 29 
evaporation dominates within anticyclonic domains. These features as well as the net moisture 30 
transport from anticyclonic to cyclonic domains are all enhanced in the presence of the frontal 31 
zones. Oceanic frontal zones thus climatologically act to strengthen the hydrological cycle 32 
through increasing low-level storm-track activity and specific humidity. These findings aid our 33 
understanding of the relationship between midlatitude air-sea interactions on synoptic- and 34 
longer-time scales. 35 

 36 

Plain Language Summary 37 

Two regions with pronounced sea surface temperature gradients over the North Pacific and 38 
North Atlantic are known as major oceanic frontal zones that are important for air-sea 39 
interactions with vigorous heat and moisture release from the ocean to the atmosphere. Recent 40 
studies found that high-frequency variations, such as migratory cyclones and anticyclones, are 41 
essential for the air-sea interaction over these frontal zones. However, the relative importance of 42 
cyclones and anticyclones has not been quantified. We show that anticyclonic contributions are 43 
important for the enhanced heat and moisture supply from the ocean in response to realistic 44 
oceanic frontal zones, while cyclonic contributions are crucial for the changes in rainfall. We 45 
further demonstrate that the moisture transport from anticyclones to cyclones is strengthened 46 
climatologically with the sharpness of midlatitude oceanic frontal zones. Our findings indicate 47 
that synoptic-scale migratory cyclones and anticyclones play an important role in midlatitude air-48 
sea interactions. These results bridge the gap between our understanding of midlatitude air-sea 49 
interactions from day-to-day to longer-time scales.  50 
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1 Introduction 51 

Midlatitude oceanic frontal zones that form along confluent warm and cool ocean 52 
currents with sharp meridional gradients in sea surface temperature (SST) are characterized by 53 
vigorous heat and moisture release from the ocean that can mainly be attributed to synoptic time 54 
scales (e.g., Ogawa and Spengler, 2019). In particular, the Kuroshio−Oyashio Extension (KOE) 55 
and Gulf Stream (GS) frontal zones are well known for their prominent heat release and restoring 56 
effect on near-surface baroclinicity (Tanimoto, 2003; Small et al., 2008; Nonaka et al., 2009; 57 
Kwon et al., 2010; Kelly et al., 2010; Papritz and Spengler, 2015; Czaja et al., 2019). Thereby, 58 
these frontal zones influence the climatological-mean surface wind convergence, precipitation, 59 
storm-tracks, atmospheric fronts, and westerly jets (e.g., Chelton et al., 2004; Nakamura et al., 60 
2004, 2008; Minobe et al., 2008; Woollings et al., 2010; Parfitt et al., 2016; Ma et al., 2017; 61 
O’Neill et al, 2017; Masunaga et al., 2018, 2020a, 2020b; Reeder et al., 2021). They also have 62 
the potential to force basin-scale atmospheric anomalies and variabilities on interannual to 63 
decadal timescales (Taguchi et al., 2012; Okajima et al., 2014, 2018; Smirnov et al., 2015; 64 
O’Reilly and Czaja, 2015; O’Reilly et al., 2017). Recently, there has been mounting evidence 65 
that heat and moisture supplied in the midlatitudes are important for blocking events (Woollings, 66 
2011; O’Reilly et al., 2016; Yamamoto et al., 2021) and intense warm moist intrusions into the 67 
Arctic (Woods et al., 2013; Papritz et al., 2021) that contribute to the pronounced warming trend 68 
over the Arctic (Woods and Cabarello, 2016; Gong et al., 2017; Messori et al., 2018). 69 
Nevertheless, the processes related to the vigorous supply of heat and moisture over the oceanic 70 
frontal zones as well as the transport and variability of the supplied heat and moisture on 71 
synoptic and longer time scales are not well understood. 72 

Ogawa and Spengler (2019) highlighted the importance of wind variations on synoptic 73 
time scales in air-sea heat exchange over oceanic frontal zones. With a set of atmospheric 74 
general circulation model (AGCM) experiments, Kuwano-Yoshida and Minobe (2017) 75 
demonstrated that the KOE fronts act to enhance the intensification rate of migratory cyclones 76 
over the western North Pacific (NP), leading to a meandering jet over the eastern NP. To 77 
pinpoint the synoptic-scale processes relevant to the frontal air-sea interactions, Tsopouridis et al. 78 
(2021; hereafter TSS21) evaluated the surface flux contribution within extratropical cyclones to 79 
surface fluxes and assessed the impact of oceanic fronts over the NP and North Atlantic (NA). 80 
They found that extratropical cyclones are mainly important for a response in precipitation and 81 
only play a secondary role in modulating a response in surface turbulent heat fluxes (THF).  82 

However, as the attribution of atmospheric fields to extratropical cyclones by TSS21 is 83 
based on a fixed-size circular mask centered on the position of a surface cyclone, their analysis 84 
does neither represent the actual size of different cyclones nor capture their three-dimensional 85 
structure. Furthermore, TSS21 did not assess the potential contribution of anticyclones. Hence, 86 
we still lack insight into the relative contributions of cyclones and anticyclones, which limits our 87 
understanding of midlatitude air-sea interactions around oceanic frontal zones. 88 

Recently, Okajima et al. (2021; hereafter ONK21) proposed a method to quantify 89 
contributions from cyclonic and anticyclonic domains to Eulerian statistics, demonstrating that 90 
instantaneous local curvature can be used to distinguish low-level migratory cyclones and 91 
anticyclones as well as upper-level pressure troughs and ridges. We apply the ONK21 92 
methodology to a set of AGCM experiments with observed climatological-mean and artificially 93 
smoothed SST fields to quantify the cyclonic and anticyclonic contributions to THF and 94 
precipitation along the two major oceanic frontal zones over the NP and NA. Our results provide 95 
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insights into the hydrological cycle along the SST front as well as into the moisture exchange 96 
between cyclones and anticyclones. 97 

 98 

2 Data and Methods 99 

2.1 AGCM experiments 100 

We analyze the same 6-hourly outputs of the AGCM experiments as analyzed by TSS21. 101 
The AGCM is the version 3 of the AGCM for the Earth Simulator (AFES; Ohfuchi et al., 2004; 102 
Enomoto et al., 2008; Kuwano-Yoshida et al., 2010). The data period spans from 1 September 103 
1981 to 31 August 2001 with a horizontal resolution of ~0.5° (T239) and 48 vertical levels. In 104 
the control experiment (CNTL), the climatological-mean SST derived from the 0.25° daily 105 
OISST (Reynolds et al., 2007) was prescribed. In the SMTHK and SMTHG experiments, the 106 
prescribed SST fields have been horizontally smoothed over the western NP and NA, 107 
respectively. Responses to the realistic KOE and GS fronts can be evaluated as the difference 108 
between the corresponding smoothed experiments and CNTL (i.e., CNTL−SMTHK and 109 
CNTL−SMTHG, respectively). Figures 1a-b show the differences in SST prescribed to CNTL 110 
compared to SMTHK and SMTHG, respectively.  111 
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given variable by accumulating its instantaneous values within cyclonic or anticyclonic domains, 129 
normalized by the total number of times steps, to yield additive climatological contributions. For 130 
evaporation (E), we use surface latent heat fluxes and assume a latent heat of vaporization of 131 
2,500 kJ/kg. 132 

We did not smooth the data horizontally to retain the influence of the land surface at a 133 
minimum. We use the curvature of wind at 850-hPa to determine our cyclonic and anticyclonic 134 
domains, because near-surface wind is likely to be influenced by underlyng SST directly through 135 
vertical mixing (Wallace et al., 1989; Hayes et al., 1989) or pressure adjustment mechanism 136 
(Lindzen and Nigam, 1987), which makes it rather difficult to extract the contributions from 137 
synoptic-scale cyclones and anticyclones.  138 

We set a curvature threshold of ±4.0 × 10ି଺ mିଵ to determine cyclonic and anticyclonic 139 
domains, respectively, corresponding to a curvature radius of 2,500 km. Grid points with a 140 
curvature radius larger than the threshold are named “neutral”, because they are classified neither 141 
as “cyclonic” nor as “anticyclonic”. Our results are not very sensitive to setting the curvature 142 
threshold to zero (Supplementary Fig. S1) or ±1.0 × 10ିହ mିଵ (Supplementary Fig. S2). We 143 
also obtain similar results based on the curvature of wind at 925-hPa (Supplementary Fig. S3). 144 

Overall, we obtain qualitatively similar results to CNTL based on the JRA-55 reanalysis 145 
(Text S1 and Supplementary Figs. S4, S6, and S8). 146 

 147 
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3 Results 148 

3.1 Cyclonic and anticyclonic contributions to the climatological hydrological cycle for 149 
CNTL 150 

Over both oceanic frontal zones in the NP and NA, the cyclonic contribution to the 151 
climatological difference between evaporation minus precipitation (E–P) is overall negative 152 
(Figs. 1c-d), indicative of excessive precipitation compared to local evaporation within cyclonic 153 
domains in the storm-track core regions. In the storm-track entrance regions, a positive cyclonic 154 
E–P contribution is evident over the ocean, especially along the Kuroshio Current south of Japan 155 
and the Florida Current by Cape Hatteras.  156 

In contrast, the anticyclonic contribution to the climatological E–P is overall positive 157 
(Figs. 1e-f), especially equatorward of the storm-track cores and along the warm ocean currents. 158 
The large anticyclonic E–P contribution south of ~30–35°N is most likely related to the 159 
relatively high probability of anticyclonic domains (ONK21). The difference between the 160 
distributions of the cyclonic and anticyclonic frequencies is compatible with those of the 161 
densities of migratory cyclones and anticyclones based on Lagrangian tracking (Hoskins and 162 
Hodges, 2002; Okajima et al., 2023). In the storm-track entrance regions, the large positive 163 
anticyclonic E–P contribution is indicative of the importance of cold-air outbreaks for air-sea 164 
heat exchange in those regions, which acts as thermal damping for transient eddy activity 165 
(Okajima et al., 2022). 166 

 167 

3.2 Local response of the climatological-mean hydrological cycle to oceanic frontal zones 168 

In response to changes in the NP oceanic frontal zone, the cyclonic contribution to the 169 
climatological E–P significantly decreases, especially over the cool SST anomalies along the 170 
main branch of the Oyashio Front and the front over the Japan Sea (Figs. 1a and 2a). In the 171 
former region, this response acts to enhance the climatological-mean precipitation excess by up 172 
to ~30% (Fig. 1c), with no apparent change in the frequency of cyclonic domains around the 173 
oceanic frontal zone (Fig. 2a). In the latter region, the climatological-mean excess in evaporation 174 
is reduced substantially together with a slight decrease in the occurrence of cyclonic domains. In 175 
addition, the weaker negative cyclonic contribution to the E–P response around the second 176 
branch of the Oyashio Front (around 40°N, 170°E) is likely associated with a decreased 177 
occurrence of cyclonic domains, which is consistent with the cyclone density response in TSS21. 178 
Over the warm SST anomaly around the Kuroshio Extension, however, the cyclonic contribution 179 
to E–P does not significantly change in response to the oceanic frontal zone.  180 
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domains also increases in the climatological anticyclones southeast of the respective oceanic 206 
frontal zones. 207 

 The differences between the cyclonic and anticyclonic contributions to the E–P response 208 
to the oceanic frontal zones are related to responses in both THF and precipitation 209 
(Supplementary Fig. S5). Within cyclonic domains, the suppression of upward THF over the 210 
cool SST anomalies as well as the pronounced precipitation increase over the warm SST 211 
anomalies yield the overall negative contribution to the E–P response for the cyclonic domains, 212 
whereas the corresponding anticyclonic response in precipitation is weaker. The anticyclonic 213 
contribution to the THF response is somewhat greater than the cyclonic counterpart over the 214 
warm SST anomalies around the NP frontal zones and along the Kuroshio, while the opposite is 215 
the case over the warm SST anomalies along the GS. 216 

 217 

3.3 Area-averaged, net contributions to the hydrological cycle 218 

The area-averaged cyclonic contribution to the climatological-mean net (viz. sensible 219 
plus latent) THF is substantially (by ~30–50%) larger than its anticyclonic counterpart over both 220 
the NP and NA (Figs. 3a-b). The contribution of neutral domains to THF is roughly comparable 221 
with the cyclonic or anticyclonic contributions, with the three types of domains being 222 
comparably probable (Figs. 1c-f). The substantial THF contribution of neutral domains is 223 
compatible with the importance of cyclone-anticyclone transition zones, as pointed out by 224 
Rudeva and Gulev (2011) and Tilinina et al. (2018). In contrast, the climatological-mean total 225 
precipitation is associated predominantly with cyclonic domains (Figs. 3a-b). The additional 226 
contribution from neutral domains may be associated with atmospheric fronts, cold-air outbreaks, 227 
or planetary waves. The climatological E–P is positive (negative) for anticyclonic (cyclonic) 228 
domains, indicative of their distinct roles in the climatological hydrological cycle (see section 229 
3.1). Neutral domains also contribute positively to the E–P climatology. The result is consistent 230 
with that based on the JRA-55 (Supplementary Fig. S6). 231 
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for (c) CNTL−SMTHK and (d) CNTL−SMTHG. Stipples signify statistically significant signals 280 
at the 90% confidence level by a Student’s t-test. Black contours indicate the climatological-281 
mean moisture exchange (mm m/s) in CNTL (field smoothed). 282 

The oceanic frontal zones strengthen the climatological cyclone-anticyclone moisture 283 
transport (Figs. 4c-d), which is compatible with the results of the E–P contributions (Figs. 3c-d). 284 
The more distinct enhancement in the moisture transport over the NA is most likely related to the 285 
stronger positive SST anomaly over the NA (Fig. 1b). Increased specific humidity around the 286 
warm ocean currents and positive SST anomalies equatorward of the oceanic frontal zones as 287 
well as intensified low-level storm-track activity are the most likely causes for the enhanced 288 
moisture transport (Supplementary Fig. S9). 289 

 290 

4 Conclusions 291 

We assessed the role of cyclones and anticyclones in air-sea interactions over midlatitude 292 
oceanic frontal zones in the wintertime Northern Hemisphere by quantifying cyclonic and 293 
anticyclonic contributions to the climatological THF, precipitation, and E–P as well as their 294 
responses to the oceanic frontal zones based on AGCM experiments. In addition, we delineated 295 
the climatological moisture transport between cyclonic and anticyclonic domains and their 296 
corresponding response to the influence of the SST fronts. 297 

We demonstrated that synoptic-scale, sub-weekly disturbances play an important role in 298 
midlatitude air-sea interactions on a climatological time scale, bridging our understanding of 299 
midlatitude air-sea interactions from synoptic to longer time scales. When smoothing the SST 300 
gradients, THF is climatologically reduced when compared to realistic oceanic frontal zones. 301 
This reduction mainly occurs within anticyclonic domains, while precipitation is climatologically 302 
enhanced predominantly within cyclonic domains. Consistently, the net moisture transport from 303 
anticyclonic to cyclonic domains is strengthened when realistic oceanic frontal zones are present. 304 
These changes are mainly attributable to a moisture increase around the anomalously warmer 305 
waters as well as enhanced storm-track activity, yielding an overall strengthened climatological 306 
hydrological cycle around the midlatitude oceanic frontal zones. 307 

Our results thus emphasize that variations in synoptic-scale THF and precipitation are 308 
modulated by midlatitude frontal zones and SSTs around them. The modulation of heat and 309 
moisture release along oceanic frontal zones can modulate storm-track activity and a westerly jet 310 
response (e.g., Nakamura et al., 2008; Kuwano-Yoshida and Minobe, 2017), though requires 311 
further studies to pinpoint the mechanisms including the enhancement of moisture transport from 312 
cyclones to anticyclones. 313 
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Introduction  

The supporting information includes (1) two text sections that describe details of the 
JRA-55 reanalysis and how to evaluate moisture transport locally between cyclonic 
and anticyclonic domains, and (2) nine supplementary figures that are referred to but 
not presented in the main text. 
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Text S1. 
To verify the reproducibility of CNTL, we utilize the global atmospheric JRA-55 

reanalysis (Kobayashi et al. 2015; Harada et al. 2016) in Supplementary Figs. S4 and S7 to 
compare the climatological-mean fields with those from CNTL. We analyze 6-hourly fields of 
surface sensible and latent heat fluxes as well as precipitation for the period 1958/59-2019/20. 
The JRA-55 has been constructed by the Japan Meteorological Agency (JMA) through a four-
dimensional variational data assimilation system with TL319 horizontal resolution (equivalent 
to 55 km) and 60 vertical levels up to 0.1-hPa. 
 
Harada, Y., Kamahori, H., Kobayashi, C., Endo, H., Kobayashi, S., Ota, Y., et al. (2016). The JRA-55 
Reanalysis: Representation of Atmospheric Circulation and Climate Variability. Journal of the 
Meteorological Society of Japan, 94(3), 269–302. 
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et al. (2015). The JRA-55 
Reanalysis: General specifications and basic characteristics. Journal of the Meteorological 
Society of Japan, 93(1), 5–48. 
 

Text S2. 
As a measure of moisture transport between cyclonic and anticyclonic domains, we 

calculated a moisture flux projected onto the upgradient direction of local curvature. Under 
the assumption of a geostrophic wind balance, the upgradient direction of local curvature is 
normal to horizontal wind vector pointing to a larger cyclonic curvature. 

Specifically, the scaler value is evaluated at each pressure level as: 

𝜖𝜖 ≡ (𝑞𝑞𝕧𝕧′) ∙
∇𝜅𝜅2

|∇𝜅𝜅2|, 

where 𝕧𝕧 denotes horizontal wind, q specific humidity, 𝜅𝜅2 two-dimensional curvature of the 
wind vectors, and a prime high-pass-filtered fluctuations based on a Lanczos filter with a 
cutoff period of 8 days. Here, the moisture flux was calculated with high-pass-filtered wind 
fluctuations to measure the effectiveness of moisture transport associated with transient 
eddies, in analogy to (anti)cyclone-relative winds. Nevertheless, we have confirmed that a 
qualitatively similar result can be obtained with fluctuations calculated either with unfiltered 
horizontal wind components or with high-pass-filtered specific humidity. We calculated the 
climatological-mean value of 𝜖𝜖 with a mask of grid points where the local curvature radius is 
less than 2,500km to focus on marginal zones between cyclonic and anticyclonic domains 
where the moisture transport takes place. The moisture transport shown in Fig. 4 and 
Supplementary Fig. S8 is vertically integrated from the surface to the 100-hPa. 
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Figure S1. Same as in Fig. 3, respectively, but for the results based on a curvature threshold of 
zero. 
 

 

Figure S2. Same as in Fig. 3, respectively, but for the results based on a curvature threshold of 
±1.0 × 10−6 m−1, corresponding to a curvature radius of 1,000km. 
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Figure S3. Same as in Fig. 3, respectively, but for the results based on the curvature of 925-hPa 
winds. 

 

 

Figure S4. Same as in Figs. 1c-f, respectively, but for the results based on the JRA-55 
reanalysis. 
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Figure S5. a-b Difference in climatological-mean wintertime net turbulent heat flux (black 
contours, W/m2) between CNTL and SMTHK (CNTL−SMTHK) for (a) cyclonic and (b) anticyclonic 
contributions. Stipples denote statistically significant signals at 90% confidence level by 
Student’s t-test. Red and blue contours indicate regions of warmer and colder SST (every 1K, 
zero contour omitted) in CNTL compared to SMTHK. c-d As panels a-b, respectively, but for 
total precipitation (mm/day). e-h As panels a-d, respectively, but for the differences between 
CNTL and SMTHG (CNTL−SMTHG). Dashed boxes signify the domains used to calculate the 
area-averaged contributions for the NP and NA, respectively.  
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Figure S6. Same as in Figs. 3a-b, respectively, but for the results based on the JRA-55 
reanalysis. 
 

 

 

Figure S7. Same as in Fig. 3c-d, respectively, but for the results normalized by the 
corresponding probabilities of domains at 850-hPa for individual seasons. 
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Figure S8. Same as in Figs. 4a-b, respectively, but for the results based on the JRA-55 
reanalysis. 

 

 

Figure S9. a Total response (CNTL−SMTHK) of the climatological specific humidity (shadings 
in kg/m3) integrated vertically from the surface to 100-hPa. Stipples signify statistically 
significant signals at 90% confidence levels by Student’s t-test. Contours denote vertically-
integrated climatological specific humidity (kg/m3) in CNTL. b Same as in (a), but for the total 
response of CNTL−SMTHG. c-d Same as in a-b, but for the variance of high-pass-filtered wind 
fluctuation projected onto the upgradient direction of local curvature (shadings in 104 
kg/m/s2; see Text S2 for details) integrated vertically from the surface to 700-hPa. In a-b, red 
and blue contours indicate regions of warmer and colder SST (every 1K, zero contour omitted) 
in CNTL compared to SMTHK or SMTHG. 
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