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Abstract

The observed partitioning of poleward heat transport between atmospheric and oceanic heat transports (AHT and OHT) is

compared to that in coupled climate models. Poleward OHT in the models is biased low in both hemispheres, with the largest

biases in the Southern Hemisphere extratropics. Poleward AHT is biased high in the Northern Hemisphere, especially in the

vicinity of the peak AHT near 40$ˆ\circ$N. The significant model biases are persistent across three model generations (CMIP3,

CMIP5, CMIP6) and are insensitive to the satellite radiation and atmospheric reanalyses products used to derive observational

estimates of AHT and OHT. Model biases in heat transport partitioning are consistent with biases in the spatial structure

of energy input to the ocean and atmosphere. Specifically, larger than observed model evaporation in the tropics adds excess

energy to the atmosphere that drives enhanced poleward AHT at the expense of weaker OHT
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Key Points:13

• Climate models simulate too little poleward oceanic heat transport and too much14

poleward atmospheric heat transport in the extratropics15

• Model biases in heat transport partitioning are persistent across model genera-16

tion and are insensitive to the observational data sets used17

• Stronger than observed evaporation in models enhances atmospheric heat trans-18

port at the expense of oceanic heat transport19
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Abstract20

The observed partitioning of poleward heat transport between atmospheric and oceanic21

heat transports (AHT and OHT) is compared to that in coupled climate models. Pole-22

ward OHT in the models is biased low in both hemispheres, with the largest biases in23

the Southern Hemisphere extratropics. Poleward AHT is biased high in the Northern24

Hemisphere, especially in the vicinity of the peak AHT near 40◦N. The significant model25

biases are persistent across three model generations (CMIP3, CMIP5, CMIP6) and are26

insensitive to the satellite radiation and atmospheric reanalyses products used to derive27

observational estimates of AHT and OHT. Model biases in heat transport partitioning28

are consistent with biases in the spatial structure of energy input to the ocean and at-29

mosphere. Specifically, larger than observed model evaporation in the tropics adds ex-30

cess energy to the atmosphere that drives enhanced poleward AHT at the expense of weaker31

OHT.32

Plain Language Summary33

The equator-to-pole contrast of solar radiation entering the climate system drives34

the large-scale oceanic and atmospheric circulations that, in turn, move heat from the35

equator to the poles to moderate latitudinal temperature contrasts. The ocean moves36

the majority of heat in the tropics whereas the atmosphere moves the vast majority of37

heat in the mid- and polar-latitudes. We demonstrate that state-of-the-art climate mod-38

els representing both oceanic and atmospheric circulations systematically simulate too39

little oceanic heat transport and too much atmospheric heat transport relative to ob-40

servational estimates. These model biases in the atmosphere-ocean partitioning of pole-41

ward heat transport are persistent across three generations of climate model ensembles42

spanning twenty years of progress in climate modeling and are insensitive to the choice43

of datasets used to calculate observed heat transports. The model biases are consistent44

with stronger than observed surface evaporation in the tropics which enhances atmospheric45

heat transport at the expense of oceanic heat transport.46

1 Introduction47

The combined meridional heat transport (MHT) by the ocean and atmosphere mod-48

erates spatial gradients in temperature on Earth. In the absence of MHT, the equator-49

to-pole temperature gradient would be approximately three times larger than observed50

based on radiative considerations alone (Pierrehumbert, 2010), rendering the tropics un-51

inhabitably warm and the high latitudes uninhabitably cold. Observational estimates52

of the partitioning of MHT between poleward atmospheric heat transport (AHT) and53

poleward oceanic heat transport (OHT) show that OHT exceeds AHT in the deep trop-54

ics (equatorward of 10◦) while AHT dominates in the mid- and high-latitudes of both55

hemispheres (Vonder Haar & Oort, 1973; Oort & Haar, 1976; Trenberth & Caron, 2001;56

Mayer et al., 2021).57

The partitioning of MHT between AHT and OHT impacts climate and its changes.58

For example, the convergence of OHT in the extratropics is inherently linked to the sur-59

face energy budget and thus demands a surface temperature response, whereas the con-60

vergence of the same quantity of AHT in the atmosphere can be radiated to space with61

less impact on surface climate (Cardinale et al., 2020). Indeed, previous work by Ender-62

ton & Marshall (2009) has shown that aquaplanets with nearly identical total MHT but63

different AHT-OHT partitioning can have very different climates (e.g., different surface64

temperature and sea ice distributions).65

Given the dependence of climate on the partitioning between poleward AHT and66

OHT, we ask here: how well do coupled climate models represent the observed AHT-67

OHT partitioning? This question was briefly addressed in Chapter 9 of the Intergovern-68
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mental Panel on Climate Change 5th assessment report (Flato et al., 2013) which con-69

cluded that model OHT was within the wide range of observational OHT estimates. Com-70

parison of observational and model AHT-OHT partitioning is difficult because the stan-71

dard methodology for partitioning MHT between AHT and OHT differs between obser-72

vations and models due to the contrasting reliability and availability of the climate fields73

used to calculate AHT and OHT. Recent work (Donohoe et al., 2020) has demonstrated74

the near equivalence of the model and observational approaches to AHT-OHT partition-75

ing in a model setting, enabling a comprehensive observational-model comparison. In76

this study we apply these methods to three generations of coupled model simulations (Phases77

3, 5, and 6 of the Coupled Model Intercomparison Project, CMIP) and to several obser-78

vational radiation and atmospheric reanalysis products. Our aim is to determine whether79

the models accurately capture the partitioning of AHT and OHT derived from obser-80

vational datasets.81

In Section 2 we provide an overview of the observational and model methodologies82

for partitioning MHT into AHT and OHT and demonstrate the near equivalence of these83

two approaches. In section 3, we compare the observational and model MHT partition-84

ing across the three different model generations (CMIP3, CMIP5, and CMIP6) and ex-85

amine the sensitivity of our findings to the choice of observational data sets used to par-86

tition MHT. In Section 4 we consider an alternative method for comparing AHT-OHT87

partitioning in models and observations from the processes that contribute to spatial gra-88

dients in energy input to the atmosphere and ocean. A summary and discussion follows.89

2 Methods for partitioning MHT into AHT and OHT in observations90

and coupled models91

The methodology used to partition MHT into AHT and OHT in coupled climate92

models and observations is described in detail in Donohoe et al. (2020). Here we sum-93

marize the conceptual approach.94

2.1 Heat transport partitioning in climate models95

Near closure of the top of atmosphere (TOA) and surface energy budgets in climate96

models allows for the energy transport by the atmosphere and ocean across a latitude97

band to be calculated from the energy input into/out-of the fluid spatially integrated over98

the polar cap bounded by that latitude:99

MHT(Θ) = 2πa2
∫ 90

Θ

−F ∗ cos θdθ, (1)

where a is the radius of the Earth, Θ is the latitude (with θ a latitude variable of inte-100

gration), and F is the net energy input to the atmosphere, ocean, or combined atmosphere-101

ocean system. The total MHT can be found by taking F to be the radiative flux at the102

TOA (RADTOA), OHT by taking F to be the net surface heat flux (SHF = radiative103

plus turbulent flux into the ocean), and AHT by setting F to be the net energy input104

to the atmosphere (RADTOA - SHF). The ∗ denotes that the global mean of each en-105

ergy flux term has been removed to ensure heat transport goes to zero at both poles. This106

adjustment is necessary because climate models do not conserve energy globally (≈ 1 W107

m−2 imbalances) in both the atmosphere and ocean (Lucarini & Ragone, 2011).108

2.2 Heat transport partitioning in observations109

In contrast to coupled climate models where the surface energy budget is (nearly)110

closed, the sparsity and uncertainty of observational surface radiative and turbulent en-111

ergy flux measurements results in an unrealistically large (>10 W m−2) global mean sur-112
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face energy imbalance (Stephens et al., 2012; Trenberth et al., 2009), which prohibits the113

evaluation of OHT from the net surface heat flux. Instead, we use a conceptual approach114

following Vonder Haar & Oort (1973) and Trenberth & Caron (2001): MHT is calculated115

using Eq. 1 with satellite RADTOA (Loeb & Coauthors, 2018); AHT is calculated from116

the time average of the vertically and zonally integrated meridional energy flux in the117

atmosphere derived from high frequency (6 hourly) atmospheric reanalysis; OHT is then118

calculated as the residual of satellite derived MHT and reanalysis derived AHT. In the119

AHT calculation, a vertically integrated moist static energy anomaly is removed before120

integrating (Donohoe & Battisti, 2013; Cardinale et al., 2020; Donohoe et al., 2020), ef-121

fectively applying a mass correction needed to make the AHT calculation physically mean-122

ingful (Trenberth & Stepaniak, 2003; Liang et al., 2018).123

To show that the "observational" and "model" methods are comparable, we par-124

tition MHT into AHT and OHT using both methods in a NCAR CESM1 coupled pre-125

industrial control simulation (see Donohoe et al., 2020, for details). The two approaches126

give nearly identical partitioning of MHT into AHT and OHT (cf. the dashed and solid127

red and blue lines in Supporting Information Fig. S1) with a root mean squared differ-128

ence AHT (and OHT) between the two methods of 0.07 PW. The close correspondence129

of the two calculations of MHT partitioning suggests that the "observational" and "model"130

approaches we use here to partition MHT are directly comparable. We use this result131

to justify the examination of potential model biases in MHT partitioning using these two132

methodologies.133

3 Results: model biases in MHT partitioning134

Climate model biases in MHT partitioning are analyzed using pre-industrial con-135

trol simulations from three different CMIP generations and several different sets of ob-136

servational products (see Supporting Information for details). The presentation of our137

results is organized as follows. Section 3.1 presents the observational estimate of MHT138

partitioning using the most contemporary and high resolution data available, which is139

compared against the MHT partitioning in the three CMIP ensembles. Section 3.2 an-140

alyzes the sensitivity of our results to the observational data used by comparing eight141

different observational estimates of MHT partitioning against the multi-generation CMIP142

ensemble mean. The results show that the sign and spatial structure of model biases in143

MHT partitioning are consistent across model generation and observational data sets used.144

3.1 Consistent model biases in AHT-OHT partitioning across three CMIP145

generations146

In this section, we use CERES Energy Balanced and Filled (EBAF) TOA radia-147

tion (Loeb et al., 2009) and the ERA5 atmospheric reanalysis (Hersbach et al., 2020) to148

calculate an observational estimate of MHT and its partitioning over the period 2001-149

2020. This observational estimate (solid line) is compared against each of the three CMIP150

ensembles (in each row of Fig. 1; with dashed lines showing individual models and the151

thick dashed lines showing CMIP ensemble averages).152

Poleward MHT peaks near 35◦ in both hemispheres in both models and observa-153

tions (Fig. 1), consistent with constraints due to Earth-Sun geometry whereby the merid-154

ional distribution of net TOA radiation (RAD∗
TOA) is dominated by the second order Leg-155

endre polynomial (equator-to-pole scale) as discussed by Stone (1978). However, across156

all three CMIP generations, the amplitude of poleward MHT in models is biased low in157

the mid-latitudes of both hemispheres relative to the observational estimate. In the South-158

ern Hemisphere (SH), the observational estimate of maximum poleward MHT is 5.7 PW,159

which is significantly larger (95% confidence interval of t-test) than the ensemble means160

of CMIP3 (5.2 PW), CMIP5 (5.3 PW), and CMIP6 (5.4 PW). In the Northern Hemi-161

sphere (NH) the observational estimate of maximum poleward MHT is 5.8 PW, exceed-162
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ing the ensemble mean of CMIP3 (5.6 PW), CMIP5 (5.5 PW), and CMIP6 (5.7 PW),163

but only for CMIP5 is the difference statistically significant. In the SH, the inter-model164

spread in peak MHT (2 standard deviations) is as large as 23% of the ensemble mean165

and has values of 1.2 PW in CMIP3, 0.8 PW in CMIP5, and 0.8 PW in CMIP6. The166

inter-model spread in peak NH MHT is smaller than its SH counterpart with values of167

0.8 PW in CMIP3, 0.6 PW in CMIP5, and 0.6 PW in CMIP6. Donohoe & Battisti (2011)168

demonstrated that the the inter-model spread and bias in MHT in CMIP3 results from169

biases and spread in the albedo of clouds which impact the equator-to-pole gradient of170

absorbed solar radiation. The bias and spread in MHT is only slightly reduced in CMIP5171

and CMIP6, and also results primarily from model differences in mean-state shortwave172

cloud radiative effects (not shown).173

We next analyze the partitioning of MHT between OHT and AHT. In the NH, the174

model ensemble mean is significantly biased toward too little poleward OHT and too much175

poleward AHT in all three CMIP generations. The observational estimate of peak NH176

AHT is 4.4 PW as compared to 4.7 ± 0.2 PW in CMIP3, 4.7 ± 0.1 PW in CMIP5, and177

4.8 ± 0.1 PW in CMIP6 where the stated uncertainty is two standard deviations of the178

ensemble mean. The peak in NH OHT is robustly equatorward of the peak AHT, but179

has significantly larger values for the observational estimate (2.0 PW) than in the model180

ensemble means (1.7 PW in CMIP3, 1.8 PW in CMIP5, and 1.7 PW in CMIP6). The181

model bias toward smaller than observed OHT extends poleward to the Arctic where OHT182

has been demonstrated to have large impacts on sea ice extent (Holland et al., 2006; Sea-183

ger et al., 2002).184

In the SH, poleward OHT in the models is biased low relative to the observational185

estimate in all three CMIP generations. The largest biases in OHT are found the vicin-186

ity of 40◦S where the observational OHT is -0.7 PW compared to the ensemble mean187

OHT at that latitude is -0.3 ± 0.2 PW in CMIP3, -0.2 ± 0.1 PW in CMIP5, and -0.1188

± 0.1 PW in CMIP6. The observational estimate of poleward OHT is only exceeded in189

three model simulations (two in CMIP3 and one in CMIP5). In contrast, the poleward190

AHT in the SH is not significantly different between the models and observational es-191

timates.192

These results suggest that in the SH, the majority of the model biases in MHT are193

a result in biases in OHT, whereas in the NH the models generally simulate too much194

poleward AHT and too little poleward OHT. Alternatively, the fractional contribution195

of AHT-OHT to total MHT (i.e., normalizing each model by the model specific MHT)196

is biased toward too much poleward AHT and too little poleward OHT with biases that197

are nearly hemispherically symmetric between the two hemispheres (not shown). Impor-198

tantly, the sign and spatial structure of model biases in MHT and AHT-OHT partition-199

ing are remarkably consistent across the three CMIP generations spanning over 20 years200

of progress in climate modeling.201

3.2 Sensitivity of results to observational data sets used202

We next consider whether the identified model biases in AHT-OHT partitioning203

are sensitive to the choice of observational data sets (TOA radiation and atmospheric204

reanalysis) used to partition MHT. We use the mean of all ensemble members across all205

three CMIP generations, referred to as the CMIP-mean, as a reference for all analyses206

in this subsection.207

We begin by analyzing the MHT and AHT/OHT partitioning estimated using two208

additional satellite-derived observational estimates of TOA radiation (see Supporting In-209

formation for details): the unadjusted CERES single scanner footprint (SSF) data and210

the ERBE satellite data which spans the 1984-1990 (left panels of Fig. 2 bordered by211

the black box). In these three panels, the choice of TOA radiation product alters the cal-212

culated observational MHT (solid black line) whereas the AHT is unchanged between213
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panels (ERA5 is used in each). Because the observational OHT is calculated from the214

difference of MHT and AHT, the observational OHT estimate (solid blue line) also varies215

between panels. Observational MHT calculated from the three different TOA radiation216

products is consistently larger than the CMIP-mean in both hemispheres. Model biases217

in MHT are largest when the CERES SSF product is used (Fig. 2E) and smallest when218

the ERBE product is used (Fig. 2C). The CMIP-mean OHT is biased low compared to219

that derived from all three TOA radiation datasets with largest magnitude biases when220

CERES SSF is used, especially in the SH. Model biases in AHT/OHT partitioning are221

insensitive to observational TOA radiation data set used which give a consistent estimate222

of MHT despite their substantial (≈ 5 W m−2 = 2.5 PW globally integrated) differences223

in global mean TOA radiative balance associated with absolute calibration uncertainty224

(Loeb et al., 2009).225

We next analyze the sensitivity of our results to the choice of atmospheric reanal-226

ysis used to calculate the AHT (Fig. 2 panels A, B, D, F and H). In these five panels,227

the MHT is identical (calculated using the CERES EBAF product) whereas the AHT228

is calculated from the ERA5, ERA-interim, NCEP, MERRA2, and JRA reanalyses. Since229

OHT is calculated from the residual of MHT and AHT, the OHT difference between the230

three panels are equal and opposite to the the inter-panel differences in AHT. The CMIP-231

mean bias toward too much poleward AHT and too little poleward OHT is apparent us-232

ing all five observational estimates of AHT. Poleward AHT is largest when using ERA5233

followed closely by JRA, MERRA2 and then ERA interim, whereas using NCEP pro-234

duces the smallest poleward AHT with the most notable difference near the peak in the235

SH at 40◦S. Therefore, model biases in the AHT-OHT partitioning are smallest using236

ERA5 and largest using NCEP. These results suggest that the sign and spatial struc-237

ture of model biases in MHT partitioning are consistent across atmospheric reanalysis238

datasets, whereas the magnitude of the bias depends on the reanalyses product used. Dif-239

ferences in AHT calculated between the different reanalyses are not impacted by differ-240

ences in the spatial resolution (see analysis and Fig. S2 in the Supporting Information)241

as even the coarsest product (NCEP) resolves the spatial scales responsible for the vast242

majority of AHT.243

Finally, we evaluate whether heat storage due to the transient response to anthro-244

pogenic forcing impacts our observational estimates of OHT. The Earth is not in equi-245

librium but, rather, is accumulating energy at an average rate of 0.7 W m−2 globally (John-246

son et al., 2016). The vast majority of this energy accumulation is stored in the ocean247

(Von Schuckmann et al., 2016) and it is possible that the spatial structure of this energy248

storage projects onto our diagnoses of observational OHT for the following reason: ob-249

served ‘implied’ OHT is calculated from the spatial integral of inferred surface heat fluxes250

(TOA radiation plus AHT convergence) and the latter is balanced by the sum of OHT251

divergence and ocean heat storage in a transient system. We diagnose the impact of ob-252

served ocean heat storage on the implied OHT (OHTSTORAGE) from the trend in ocean253

heat content, derived from UK Hadley Center EN4 objective ocean analysis (Good et254

al., 2013) over the CERES period (see Supporting Information for details). OHTSTORAGE255

is removed from the ‘implied’ OHT to estimate the ‘true’ OHT (solid teal line in Fig.256

1F) that must be transported laterally in the ocean to close the ocean energy budget.257

OHTSTORAGE is very small (< 0.1 PW in magnitude) and, thus, the diagnosed ‘true’258

OHT is visually indistinguishable from the observational ‘implied’ OHT (solid blue line259

in Fig. 1F). The global mean ocean heat uptake of 0.7 W m−2 translates to 0.4 PW of260

global energy input to the ocean but the implied OHT of ocean heat storage is signif-261

icantly smaller in magnitudes due to ocean heat uptake being more globally uniform than262

regionally isolated. The negligible impact of ocean heat storage on ‘implied’ OHT over263

the historical period is consistent with the small (< 0.1 PW) differences between OHT264

in the ensemble mean of historical CMIP5 simulations averaged over the 2000-2018 time265

period as compared the pre-industrial control simulations using the same models (Sup-266

porting Information Fig. S3).267
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Collectively, these results suggest that the sign of model biases in AHT-OHT par-268

titioning is robust to different observational products (satellite TOA radiation and at-269

mospheric reanalysis) used to partition MHT. Additionally, the spatial pattern of tran-270

sient heat uptake by the ocean makes a negligible impact on estimated OHT. However,271

the magnitude of the model bias in AHT-OHT partitioning does vary with observational272

datasets used. In this regard, the use of CERES EBAF and ERA5 data for our primary273

analysis (Fig. 1) is a conservative estimate of model biases in AHT-OHT partitioning274

(a smaller OHT bias is found only when using the combination of ERBE and ERA5 prod-275

ucts).276

4 Biases in energy input to the atmosphere and ocean and inferred AHT277

and OHT biases278

Here we evaluate potential causes of the persistent model biases in AHT and OHT279

in terms of model biases in the spatial structure of energy input into the ocean and at-280

mosphere. Starting in the ocean, energy conservation demands that OHT across a lat-281

itude band balances the net surface heat flux out of the ocean (-SHF by our sign con-282

vention) integrated over the polar cap bounded by that latitude, which from Eq. 1 is rep-283

resented by:284

OHT(Θ) = 2πa2
∫ 90

Θ

(−SHF∗) cos(θ)dθ. (2)

SHF is equal to the net downward surface radiation (RADSURF) into the ocean minus285

the upward turbulent energy fluxes of sensible (SENS) and latent heat (LvE):286

SHF = RADSURF − SENS− LvE. (3)

Substitution of Eq. (3) into Eq. (2) allows the OHT to be decomposed into the implied287

transports of each term contributing to SHF:288

OHT = OHTRAD,SURF +OHTSENS +OHTE, (4)

where, for example, the OHT implied by evaporation (OHTE) is:289

OHT(Θ)E = 2πa2
∫ 90

Θ

LvE
∗cos(θ)dθ, (5)

where, as in Eq. 1 and 2, the ∗ indicates that the global (ocean domain) mean has been290

removed from the term. Because SENS∗ is small compared to the other terms (Fig. 3C)291

and RADSURF is dominated by solar input to the surface (Supporting Information Figs.292

S5E,F), the predominant energy balance in this framework can be summarized as fol-293

lows: the magnitude of OHT (black line in Fig. 3D) is governed by the imbalance be-294

tween excess (relative to the global mean) solar radiation entering the tropical ocean (or-295

ange line) and excess evaporative loss (green). Perfect local compensation between sur-296

face solar input and evaporation implies zero OHT whereas weaker evaporative loss de-297

mands a larger fraction of solar input be realized as OHT. We use this framework to un-298

derstand model biases in OHT in terms of biases in the meridional structure of terms299

contributing to SHF.300

The latitudinal structure of CMIP-mean LvE, SENS and SURFRAD over the ocean301

domain is compared to observational estimates of the same quantities with LvE and SENS302

taken from the WHOI Objectively Analyzed (OA) Air-Sea Flux product (Yu et al., 2004)303

and SURFRAD estimates from the CERES EBAF surface product (Kato & Coauthors,304
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2018) in Fig. 3C. Evaporation is biased high in models (relative to the observational es-305

timate) at all latitudes except the Arctic (Supporting Information Fig. S4). Evapora-306

tion biases are largest (> 20 W m−2) in the subtropics of both hemispheres and are much307

smaller in the high latitudes. These evaporation biases manifest as enhanced subtrop-308

ical ocean energy loss by E∗ in the models (cf. the dashed and solid green lines in Fig.309

3C) and an implied model bias toward too little (by approximately 0.4 PW) poleward310

OHT due to evaporation in each hemisphere (OHTE, green line in Fig. 3D). Thus, evap-311

oration biases alone explain the majority of the model bias in OHT identified in Section312

3 (compare green and dashed black lines in Fig. 3D).313

The observational RAD∗
SURF has a stronger equator-to-pole gradient than that in314

climate models (cf. the solid and dashed orange lines in Fig. 3C) especially in the SH.315

Model biases in RAD∗
SURF are associated with larger than observed downwelling solar316

radiation into the extratropical Southern Ocean (Supporting Information Fig. S5E) due317

to clouds that are optically thinner than observed (Donohoe & Battisti, 2012). As a re-318

sult, observed poleward OHTRAD,SURF is larger than that in models with larger mag-319

nitude (0.4 PW) biases in the SH. The model biases in OHTRAD,SURF mirror the im-320

pact of TOA radiation biases on MHT (left panels of Figure 1) including the partition-321

ing between shortwave and longwave biases within each hemisphere, suggesting that model322

biases in MHT and OHT in the SH are due to biases in shortwave absorption whereas323

those in the NH are due to biases in OLR and net surface longwave (Supporting Infor-324

mation Figs. S5B,F).325

The sum of model biases in OHTE, OHTRAD,SURF and OHTSENS (solid black line326

in Fig. 3D) finds that models would have weaker than observed poleward OHT of 0.6327

PW in the NH and 0.8 PW in the SH based on biases in energy input to the ocean. This328

overall inferred OHT bias is primarily due to a nearly hemispherically mirror-imaged bias329

in OHTE which is enhanced by poleward OHTRAD,SURF in the SH. The bias in OHT330

inferred from surface flux biases matches the spatial structure but exceeds in magnitude331

the OHT biases calculated in Section 3 from TOA radiation and atmospheric reanaly-332

sis (dashed black line in Fig. 3D). These two calculations of model OHT biases do not333

have to match as they use different conceptual approaches and rely on completely in-334

dependent observational climate fields. Nonetheless, the consistency of the sign, spatial335

pattern, and magnitude of the OHT biases calculated using the two different approaches336

suggest that the model biases in surface energy fluxes are large enough to account for337

the AHT-OHT partitioning biases inferred from the residual TOA radiation and AHT338

estimates.339

We use a similar calculation of the model biases in implied AHT from the spatial340

structure of energy input to the atmosphere to compute an alternative estimate of AHT341

biases to those calculated in Section 3. The AHT analog to Eq. 4 is:342

AHT = AHTRAD,ATMOS +AHTSENS +AHTE, (6)

where the atmospheric analog to Eq. 5 for the AHT due to evaporation (AHTE) is:343

AHT(Θ)E = 2πa2
∫ 90

Θ

−LvE
∗cos(θ)dθ. (7)

The spatial integral is over a global (land plus ocean) domain. Here RADATMOS is the344

net radiative heating of the atmospheric column which is equivalent to the net radiation345

at TOA minus RADSURF. Fajber et al. (2023) demonstrated that poleward AHT is pri-346

marily determined by evaporation (AHT ≈ AHTE) because LvE∗ dominates the spa-347

tial structure of energy input to the atmosphere. We note that LvE∗ spatially integrated348

over the ocean domain has opposing impacts on AHTE versus OHTE (and likewise for349

SENS∗ and AHTSENS versus OHTSENS). This arises because excess evaporation over the350
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low latitudes (E∗ > 0) adds energy to the atmosphere to enhance the demand for pole-351

ward AHT at the expense of removing energy from the low-latitude ocean to reduce the352

demand for poleward OHT.353

To more clearly see the compensation between biases in AHT-OHT due to model354

biases in LvE∗ (and SENS∗) over the ocean domain, we take the following approach to355

compare models and observations of AHT via Eqs. 6 and 7. First, AHTE and AHTSENS356

are calculated from the observational WHOI OA evaporation and sensible heat flux data357

over the ocean domain only, and are compared to analogous model calculations over the358

ocean domain. Then, the contribution of turbulent energy fluxes over land to the com-359

bined AHTE and AHTSENS is estimated from the CERES EBAF net surface radiation360

spatially integrated over land. This approach assumes that (via surface energy balance)361

surface radiative gain is balanced by turbulent loss. These calculations are compared to362

analogous calculations in the models. Finally, AHTRAD,ATMOS is calculated from the CERES363

EBAF TOA and surface data over the global domain and is compared to the analogous364

global domain calculation in models (orange lines in Fig. 3A,B). This strategy circum-365

vents the lack of reliable observational estimates of turbulent energy fluxes over land –366

instead inferring them from a like-with-like observational-to-model comparison of sur-367

face radiation over land and assuming that RADSURF is balanced by upward turbulent368

fluxes from the land to the atmosphere (the latter assumption has been validated in mod-369

els).370

Model biases in AHTE compose the vast majority of AHT biases diagnosed from371

Eq. 6 (cf. the green and solid black lines in Fig. 3B) and suggest that the stronger than372

observed poleward AHT in models is driven by an enhanced equator-to-pole gradient in373

evaporation. Model RAD∗
ATMOS is more negative in the deep tropics as compared to ob-374

servations (due to stronger longwave cooling in the models– Supporting Information Fig.375

S5) which contributes to smaller AHTRAD,ATMOS export from the tropics in the mod-376

els that generally opposes the low latitude biases in AHTE (orange line in Fig. 3B). In-377

terestingly, shortwave absorption in the atmosphere is biased low in the models, which378

reduces the demand for poleward AHT by nearly 0.4 PW in both hemispheres (red line379

in Supporting Information Fig. S5D). However, this model deficit in atmospheric heat-380

ing of the tropics is nearly compensated for by weaker than observed longwave cooling381

of the atmosphere such that there is almost no bias in AHTRAD,ATMOS at the equator-382

to-pole scale. Turbulent energy fluxes over the land inferred from net surface radiation383

are nearly identical in models and observations and make a negligible impact on AHT384

biases (cf. purple dashed and solid lines in Fig. 3C,D).385

These calculations demonstrate that the model biases in the partitioning of pole-386

ward heat transport between AHT and OHT that were inferred in Section 3 are consis-387

tent (in sign, spatial structure, and magnitude) with the model biases in energy input388

into the atmosphere and ocean by radiative fluxes and turbulent exchange between the389

atmosphere and ocean. Stronger than observed evaporation in the models contributes390

to enhanced poleward AHT at the expense of reduced OHT that is nearly hemispher-391

ically symmetric whereas radiative biases due to thinner than observed clouds in the ex-392

tratropical Southern Ocean results in too weak poleward MHT that is primarily man-393

ifested in the surface energy budget and implied OHT bias.394

5 Summary and discussion395

Coupled climate models have too little poleward OHT in both hemispheres and too396

much AHT in the NH, compared to observational estimates. These model biases are re-397

markably consistent across three generations of coupled model ensembles (CMIP3, CMIP5,398

and CMIP6) and across different sets of observational TOA radiation and atmospheric399

reanalysis data. These conclusions are not impacted by observed transient energy ac-400

cumulation in the ocean.401
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The method used here to balance the mass budget of the atmospheric reanalysis402

differs from that used in the work of Trenberth & Stepaniak (2004) and M. et al. (2017).403

Specifically, we implicitly assume zero net atmospheric mass flux through a given lat-404

itude circle whereas other works adjust the mass flux to balance the polar cap spatial405

integral of the surface pressure tendency and evaporation minus precipitation. Our choice406

stems from defining the energy budget with respect to a fixed mass of atmosphere (Dono-407

hoe & Battisti, 2013; Liang et al., 2018). The AHT associated with the mass flux due408

to evaporation minus precipitation is primarily compensated for a return flow of mass409

and energy in the ocean and requires a consistent treatment of the energy fluxes through410

the atmosphere, surface and ocean (M. et al., 2017) that depends on the choice of zero411

point energy (e.g., the units used for temperature). Physically, a poleward (water) mass412

flux in the atmosphere is balanced by the mass flux of precipitation minus evaporation413

and an equivalent equatorward mass flux in the ocean. The energy flux of each of these414

mass fluxes is the product of mass flux and mean energy of the fluid, has a minimal net415

(AHT+OHT) poleward energy transport but is of order 0.2 PW in magnitude for each416

the compensating AHT and OHT. The standard definition of SHF in climate models does417

not include the sensible heat of this net (water) mass flux across the air/sea interface418

and we believe including this term would create an inconsistency between the model de-419

rived and observationally inferred OHT. Our interpretation is supported by the near equiv-420

alence of the AHT calculated in CESM via the "observational" and "model" partition-421

ing calculations using our method of calculating AHT from reanalysis data whereas in-422

cluding the net mass flux of water in the AHT creates a substantial mismatch between423

the two calculations (not shown). We emphasize that all choices made here were aimed424

at creating a consistent way to compare observational and model MHT and AHT-OHT425

partitioning despite the different climate fields that go into each calculation.426

This work focused on model biases in the vertical zonal and time integral of atmo-427

spheric moist static energy fluxes that comprise AHT without regard for biases in the428

underlying atmospheric circulations and associated temperature and humidity structures429

of the atmosphere. Donohoe et al. (2020) demonstrated that model biases in poleward430

AHT primarily result from larger than observed dry (sensible) heat transport by tran-431

sient eddies in the mid-latitudes of both hemisphere (their Fig. 4D) and in the NH smaller432

than observed dry heat transport by stationary eddies; the moisture (latent heat) trans-433

port has negligible biases. Model biases in evaporation are expected to be manifested434

as biases in both moist and dry AHT because dry AHT is set by the spatial pattern of435

condensational heating of the atmosphere which represents the portion of AHTE that436

is not transported poleward as latent heat (Fajber et al., 2023); while spatial patterns437

of evaporation directly demand poleward moist AHT, the energy input to the atmosphere438

via evaporation is handed off to dry AHT where precipitation forms and the atmosphere439

is heated condensationally. Therefore, our finding that model biases toward too much440

AHT result from stronger than observed evaporation is consistent with the finding that441

excess poleward AHT in the models is expressed as a bias toward too much dry heat trans-442

port.443

Remarkably, the model OHT bias inferred from observational estimates from satel-444

lite TOA radiation and atmospheric reanalyses is in descent agreement with model bi-445

ases in the energy exchange between the ocean and atmosphere calculated from inde-446

pendent observational estimates of surface heat fluxes. The latter bias is due primarily447

to stronger than observed low-latitude evaporation in the models. We note that the com-448

munity has been reluctant to diagnose OHT from the observed surface energy balance449

because of uncertainty in the turbulent energy fluxes. Yet, our analysis paints a consis-450

tent picture of the model biases in turbulent energy fluxes – whether these are inferred451

from the residual of TOA radiation and AHT or from bulk formula. We also note that452

observational estimates of global mean evaporation and its equator-to-pole gradient vary453

substantially (Stephens et al., 2012) with reanalysis products generally having more evap-454

oration than the bulk formula based estimates such as WHOI OA flux (Yu et al., 2004)455
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and SEAFLUX (Curry et al., 2004). We chose to use WHOI OA flux for the analysis in456

Section 4 because the bulk formula in this product are optimized to match buoy obser-457

vations – making it the most observationally constrained estimate of evaporation. Ad-458

ditionally, the global constraint of evaporation balancing precipitation is nearly satisfied459

from the combination of the WHOI OA FLUX evaporation over the ocean (62.8 W m−2
460

contribution to global mean) plus the ERA5 reanalysis evaporation over land (12.9 W461

m−2 for a global total evaporation of 75.7 W m−2) nearly balancing the best observa-462

tional estimate of global mean precipitation (77.9 W m−2) from the NOAA GPCP (Adler463

et al., 2018). The lack of closure of the observed global mean surface energy budget sug-464

gests that observational surface radiation and/or turbulent energy fluxes are poorly con-465

strained and one hypothesized solution is that both global mean evaporation and pre-466

cipitation are substantially underestimated (Stephens et al., 2012). Our analysis circum-467

vents this debate by removing global mean quantities, showing that the equator-to-pole468

gradient of surface energy fluxes is consistent with that inferred from TOA radiation and469

AHT divergence. This suggests that the meridional structure of surface energy fluxes con-470

strained by TOA radiation and AHT could be used in conjunction with global mean im-471

balances to give an additional constraint for reconciling which terms in the observed sur-472

face energy budget are most uncertain and/or biased.473
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Figure 1. Observational and model (left panels) total meridional heat transport (MHT) and
(right panels) its partitioning between the atmosphere (AHT, red) and ocean (OHT, blue). Re-
sults from the CMIP3, CMIP5, and CMIP6 models are shown in the top, middle and bottom
panels respectively. The observational estimates are shown by the heavy solid line, individual
coupled models are shown by the dotted lines and the model ensemble mean is shown by the
heavy dashed line.

–12–



manuscript submitted to Geophysical Research Letters

80S 60S 40S 20S  EQ 20N 40N 60N 80N

M
er

id
io

na
l h

ea
t t

ra
ns

po
rt 

(P
W

)

  -6

  -4

  -2

   0-

   2

   4

   6

CERES EBAF radiation and ERA5 reanalysis -- 3/2001-12/2018

80S 60S 40S 20S  EQ 20N 40N 60N 80N

M
er

id
io

na
l h

ea
t t

ra
ns

po
rt 

(P
W

)

  -6

  -4

  -2

   0-

   2

   4

   6

ERBE radiation and ERA5 reanalysis -- 11/1984-3/1990

80S 60S 40S 20S  EQ 20N 40N 60N 80N

M
er

id
io

na
l h

ea
t t

ra
ns

po
rt 

(P
W

)

  -6

  -4

  -2

   0-

   2

   4

   6

CERES SSF radiation and ERA5 reanalysis -- 3/2001-12/2018

Observational AHT/OHT partitioning in different radiation and reanalysis datasets

S
en

si
ti

vi
ty

 t
o 

to
p 

of
 a

tm
os

ph
er

e 
ra

di
at

io
n

Total
 Atmosphere
      Ocean 

Observational
Estimate

Model 
Mean

80S 60S 40S 20S  EQ 20N 40N 60N 80N

M
er

id
io

na
l h

ea
t t

ra
ns

po
rt 

(P
W

)

  -6

  -4

  -2

   0-

   2

   4

   6

CERES EBAF radiation and ERA Interim reanalysis -- 3/2001-12/2018

80S 60S 40S 20S  EQ 20N 40N 60N 80N

M
er

id
io

na
l h

ea
t t

ra
ns

po
rt 

(P
W

)

  -6

  -4

  -2

   0-

   2

   4

   6

S
en

si
ti

vi
ty

 t
o 

at
m

os
ph

er
ic

 r
ea

na
ly

si
s

CERES EBAF radiation and NCEP reanalysis -- 3/2001-12/2018

80S 60S 40S 20S  EQ 20N 40N 60N 80N

M
er

id
io

na
l h

ea
t t

ra
ns

po
rt 

(P
W

)

  -6

  -4

  -2

   0-

   2

   4

   6

CERES EBAF radiation and MERRA 2 reanalysis -- 3/2001-12/2018

80S 60S 40S 20S  EQ 20N 40N 60N 80N

M
er

id
io

na
l h

ea
t t

ra
ns

po
rt 

(P
W

)

  -6

  -4

  -2

   0-

   2

   4

   6

CERES EBAF radiation and JRA reanalysis -- 3/2001-12/2018

80S 60S 40S 20S  EQ 20N 40N 60N 80N

M
er

id
io

na
l h

ea
t t

ra
ns

po
rt 

(P
W

)

  -6

  -4

  -2

   0-

   2

   4

   6

CERES EBAF radiation and ERA 5 reanalysis 
Ocean heat content change from EN4 trend over 1980-2018

Im
pa

ct
 o

f 
O

ce
an

H
ea

t 
U

pt
ak

e

Observational 
“true” OHT

Observational
“implied” OHT

A

C

E

G

B

D

F

H

Figure 2. Comparison of MHT, OHT and AHT in models and observations using eight differ-
ent observational estimates of MHT (black solid), AHT (red), and OHT (blue). The left panels
show the sensitivity of the transports to TOA radiation product used with CERES EBAF on
the top panel, ERBE in the second panel, and the unadjusted CERES SSF on the bottom and
with the ERA5 AHT estimate across all panels. The right panels show the observational trans-
ports calculated using CERES EBAF TOA radiation in all panels but using different atmospheric
reanalysis products in each panel: (B) ERA Interim; (D) NCEP; (F) MERRA2 and; (H) JRA.
Panel (G) shows the impact of observed spatial patterns in ocean heat storage on implied OHT
using EN4 ocean heat content changes over 2000-2018. The model mean is the average over all
models in CMIP3, CMIP5, and CMIP6 (CMIP-mean).
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Figure 3. Model and observational estimates of the energy input into the atmosphere and
ocean and the implied AHT and OHT biases resulting from each input. (A) Global anomaly
energy input into the atmosphere in models (dashed) and observations (solid). See text for def-
inition of terms. (B) Implied AHT bias (observations minus models) due to each energy input.
The solid black line shows the sum of all terms. The dashed black line shows the bias in heat
transport inferred from CERES and ERA5 data. (C) As in A but for the energy input to the
ocean. (D) As in B but for the implied OHT bias.
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Key Points:13

• Climate models simulate too little poleward oceanic heat transport and too much14

poleward atmospheric heat transport in the extratropics15

• Model biases in heat transport partitioning are persistent across model genera-16

tion and are insensitive to the observational data sets used17

• Stronger than observed evaporation in models enhances atmospheric heat trans-18

port at the expense of oceanic heat transport19
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Abstract20

The observed partitioning of poleward heat transport between atmospheric and oceanic21

heat transports (AHT and OHT) is compared to that in coupled climate models. Pole-22

ward OHT in the models is biased low in both hemispheres, with the largest biases in23

the Southern Hemisphere extratropics. Poleward AHT is biased high in the Northern24

Hemisphere, especially in the vicinity of the peak AHT near 40◦N. The significant model25

biases are persistent across three model generations (CMIP3, CMIP5, CMIP6) and are26

insensitive to the satellite radiation and atmospheric reanalyses products used to derive27

observational estimates of AHT and OHT. Model biases in heat transport partitioning28

are consistent with biases in the spatial structure of energy input to the ocean and at-29

mosphere. Specifically, larger than observed model evaporation in the tropics adds ex-30

cess energy to the atmosphere that drives enhanced poleward AHT at the expense of weaker31

OHT.32

Plain Language Summary33

The equator-to-pole contrast of solar radiation entering the climate system drives34

the large-scale oceanic and atmospheric circulations that, in turn, move heat from the35

equator to the poles to moderate latitudinal temperature contrasts. The ocean moves36

the majority of heat in the tropics whereas the atmosphere moves the vast majority of37

heat in the mid- and polar-latitudes. We demonstrate that state-of-the-art climate mod-38

els representing both oceanic and atmospheric circulations systematically simulate too39

little oceanic heat transport and too much atmospheric heat transport relative to ob-40

servational estimates. These model biases in the atmosphere-ocean partitioning of pole-41

ward heat transport are persistent across three generations of climate model ensembles42

spanning twenty years of progress in climate modeling and are insensitive to the choice43

of datasets used to calculate observed heat transports. The model biases are consistent44

with stronger than observed surface evaporation in the tropics which enhances atmospheric45

heat transport at the expense of oceanic heat transport.46

1 Introduction47

The combined meridional heat transport (MHT) by the ocean and atmosphere mod-48

erates spatial gradients in temperature on Earth. In the absence of MHT, the equator-49

to-pole temperature gradient would be approximately three times larger than observed50

based on radiative considerations alone (Pierrehumbert, 2010), rendering the tropics un-51

inhabitably warm and the high latitudes uninhabitably cold. Observational estimates52

of the partitioning of MHT between poleward atmospheric heat transport (AHT) and53

poleward oceanic heat transport (OHT) show that OHT exceeds AHT in the deep trop-54

ics (equatorward of 10◦) while AHT dominates in the mid- and high-latitudes of both55

hemispheres (Vonder Haar & Oort, 1973; Oort & Haar, 1976; Trenberth & Caron, 2001;56

Mayer et al., 2021).57

The partitioning of MHT between AHT and OHT impacts climate and its changes.58

For example, the convergence of OHT in the extratropics is inherently linked to the sur-59

face energy budget and thus demands a surface temperature response, whereas the con-60

vergence of the same quantity of AHT in the atmosphere can be radiated to space with61

less impact on surface climate (Cardinale et al., 2020). Indeed, previous work by Ender-62

ton & Marshall (2009) has shown that aquaplanets with nearly identical total MHT but63

different AHT-OHT partitioning can have very different climates (e.g., different surface64

temperature and sea ice distributions).65

Given the dependence of climate on the partitioning between poleward AHT and66

OHT, we ask here: how well do coupled climate models represent the observed AHT-67

OHT partitioning? This question was briefly addressed in Chapter 9 of the Intergovern-68
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mental Panel on Climate Change 5th assessment report (Flato et al., 2013) which con-69

cluded that model OHT was within the wide range of observational OHT estimates. Com-70

parison of observational and model AHT-OHT partitioning is difficult because the stan-71

dard methodology for partitioning MHT between AHT and OHT differs between obser-72

vations and models due to the contrasting reliability and availability of the climate fields73

used to calculate AHT and OHT. Recent work (Donohoe et al., 2020) has demonstrated74

the near equivalence of the model and observational approaches to AHT-OHT partition-75

ing in a model setting, enabling a comprehensive observational-model comparison. In76

this study we apply these methods to three generations of coupled model simulations (Phases77

3, 5, and 6 of the Coupled Model Intercomparison Project, CMIP) and to several obser-78

vational radiation and atmospheric reanalysis products. Our aim is to determine whether79

the models accurately capture the partitioning of AHT and OHT derived from obser-80

vational datasets.81

In Section 2 we provide an overview of the observational and model methodologies82

for partitioning MHT into AHT and OHT and demonstrate the near equivalence of these83

two approaches. In section 3, we compare the observational and model MHT partition-84

ing across the three different model generations (CMIP3, CMIP5, and CMIP6) and ex-85

amine the sensitivity of our findings to the choice of observational data sets used to par-86

tition MHT. In Section 4 we consider an alternative method for comparing AHT-OHT87

partitioning in models and observations from the processes that contribute to spatial gra-88

dients in energy input to the atmosphere and ocean. A summary and discussion follows.89

2 Methods for partitioning MHT into AHT and OHT in observations90

and coupled models91

The methodology used to partition MHT into AHT and OHT in coupled climate92

models and observations is described in detail in Donohoe et al. (2020). Here we sum-93

marize the conceptual approach.94

2.1 Heat transport partitioning in climate models95

Near closure of the top of atmosphere (TOA) and surface energy budgets in climate96

models allows for the energy transport by the atmosphere and ocean across a latitude97

band to be calculated from the energy input into/out-of the fluid spatially integrated over98

the polar cap bounded by that latitude:99

MHT(Θ) = 2πa2
∫ 90

Θ

−F ∗ cos θdθ, (1)

where a is the radius of the Earth, Θ is the latitude (with θ a latitude variable of inte-100

gration), and F is the net energy input to the atmosphere, ocean, or combined atmosphere-101

ocean system. The total MHT can be found by taking F to be the radiative flux at the102

TOA (RADTOA), OHT by taking F to be the net surface heat flux (SHF = radiative103

plus turbulent flux into the ocean), and AHT by setting F to be the net energy input104

to the atmosphere (RADTOA - SHF). The ∗ denotes that the global mean of each en-105

ergy flux term has been removed to ensure heat transport goes to zero at both poles. This106

adjustment is necessary because climate models do not conserve energy globally (≈ 1 W107

m−2 imbalances) in both the atmosphere and ocean (Lucarini & Ragone, 2011).108

2.2 Heat transport partitioning in observations109

In contrast to coupled climate models where the surface energy budget is (nearly)110

closed, the sparsity and uncertainty of observational surface radiative and turbulent en-111

ergy flux measurements results in an unrealistically large (>10 W m−2) global mean sur-112
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face energy imbalance (Stephens et al., 2012; Trenberth et al., 2009), which prohibits the113

evaluation of OHT from the net surface heat flux. Instead, we use a conceptual approach114

following Vonder Haar & Oort (1973) and Trenberth & Caron (2001): MHT is calculated115

using Eq. 1 with satellite RADTOA (Loeb & Coauthors, 2018); AHT is calculated from116

the time average of the vertically and zonally integrated meridional energy flux in the117

atmosphere derived from high frequency (6 hourly) atmospheric reanalysis; OHT is then118

calculated as the residual of satellite derived MHT and reanalysis derived AHT. In the119

AHT calculation, a vertically integrated moist static energy anomaly is removed before120

integrating (Donohoe & Battisti, 2013; Cardinale et al., 2020; Donohoe et al., 2020), ef-121

fectively applying a mass correction needed to make the AHT calculation physically mean-122

ingful (Trenberth & Stepaniak, 2003; Liang et al., 2018).123

To show that the "observational" and "model" methods are comparable, we par-124

tition MHT into AHT and OHT using both methods in a NCAR CESM1 coupled pre-125

industrial control simulation (see Donohoe et al., 2020, for details). The two approaches126

give nearly identical partitioning of MHT into AHT and OHT (cf. the dashed and solid127

red and blue lines in Supporting Information Fig. S1) with a root mean squared differ-128

ence AHT (and OHT) between the two methods of 0.07 PW. The close correspondence129

of the two calculations of MHT partitioning suggests that the "observational" and "model"130

approaches we use here to partition MHT are directly comparable. We use this result131

to justify the examination of potential model biases in MHT partitioning using these two132

methodologies.133

3 Results: model biases in MHT partitioning134

Climate model biases in MHT partitioning are analyzed using pre-industrial con-135

trol simulations from three different CMIP generations and several different sets of ob-136

servational products (see Supporting Information for details). The presentation of our137

results is organized as follows. Section 3.1 presents the observational estimate of MHT138

partitioning using the most contemporary and high resolution data available, which is139

compared against the MHT partitioning in the three CMIP ensembles. Section 3.2 an-140

alyzes the sensitivity of our results to the observational data used by comparing eight141

different observational estimates of MHT partitioning against the multi-generation CMIP142

ensemble mean. The results show that the sign and spatial structure of model biases in143

MHT partitioning are consistent across model generation and observational data sets used.144

3.1 Consistent model biases in AHT-OHT partitioning across three CMIP145

generations146

In this section, we use CERES Energy Balanced and Filled (EBAF) TOA radia-147

tion (Loeb et al., 2009) and the ERA5 atmospheric reanalysis (Hersbach et al., 2020) to148

calculate an observational estimate of MHT and its partitioning over the period 2001-149

2020. This observational estimate (solid line) is compared against each of the three CMIP150

ensembles (in each row of Fig. 1; with dashed lines showing individual models and the151

thick dashed lines showing CMIP ensemble averages).152

Poleward MHT peaks near 35◦ in both hemispheres in both models and observa-153

tions (Fig. 1), consistent with constraints due to Earth-Sun geometry whereby the merid-154

ional distribution of net TOA radiation (RAD∗
TOA) is dominated by the second order Leg-155

endre polynomial (equator-to-pole scale) as discussed by Stone (1978). However, across156

all three CMIP generations, the amplitude of poleward MHT in models is biased low in157

the mid-latitudes of both hemispheres relative to the observational estimate. In the South-158

ern Hemisphere (SH), the observational estimate of maximum poleward MHT is 5.7 PW,159

which is significantly larger (95% confidence interval of t-test) than the ensemble means160

of CMIP3 (5.2 PW), CMIP5 (5.3 PW), and CMIP6 (5.4 PW). In the Northern Hemi-161

sphere (NH) the observational estimate of maximum poleward MHT is 5.8 PW, exceed-162
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ing the ensemble mean of CMIP3 (5.6 PW), CMIP5 (5.5 PW), and CMIP6 (5.7 PW),163

but only for CMIP5 is the difference statistically significant. In the SH, the inter-model164

spread in peak MHT (2 standard deviations) is as large as 23% of the ensemble mean165

and has values of 1.2 PW in CMIP3, 0.8 PW in CMIP5, and 0.8 PW in CMIP6. The166

inter-model spread in peak NH MHT is smaller than its SH counterpart with values of167

0.8 PW in CMIP3, 0.6 PW in CMIP5, and 0.6 PW in CMIP6. Donohoe & Battisti (2011)168

demonstrated that the the inter-model spread and bias in MHT in CMIP3 results from169

biases and spread in the albedo of clouds which impact the equator-to-pole gradient of170

absorbed solar radiation. The bias and spread in MHT is only slightly reduced in CMIP5171

and CMIP6, and also results primarily from model differences in mean-state shortwave172

cloud radiative effects (not shown).173

We next analyze the partitioning of MHT between OHT and AHT. In the NH, the174

model ensemble mean is significantly biased toward too little poleward OHT and too much175

poleward AHT in all three CMIP generations. The observational estimate of peak NH176

AHT is 4.4 PW as compared to 4.7 ± 0.2 PW in CMIP3, 4.7 ± 0.1 PW in CMIP5, and177

4.8 ± 0.1 PW in CMIP6 where the stated uncertainty is two standard deviations of the178

ensemble mean. The peak in NH OHT is robustly equatorward of the peak AHT, but179

has significantly larger values for the observational estimate (2.0 PW) than in the model180

ensemble means (1.7 PW in CMIP3, 1.8 PW in CMIP5, and 1.7 PW in CMIP6). The181

model bias toward smaller than observed OHT extends poleward to the Arctic where OHT182

has been demonstrated to have large impacts on sea ice extent (Holland et al., 2006; Sea-183

ger et al., 2002).184

In the SH, poleward OHT in the models is biased low relative to the observational185

estimate in all three CMIP generations. The largest biases in OHT are found the vicin-186

ity of 40◦S where the observational OHT is -0.7 PW compared to the ensemble mean187

OHT at that latitude is -0.3 ± 0.2 PW in CMIP3, -0.2 ± 0.1 PW in CMIP5, and -0.1188

± 0.1 PW in CMIP6. The observational estimate of poleward OHT is only exceeded in189

three model simulations (two in CMIP3 and one in CMIP5). In contrast, the poleward190

AHT in the SH is not significantly different between the models and observational es-191

timates.192

These results suggest that in the SH, the majority of the model biases in MHT are193

a result in biases in OHT, whereas in the NH the models generally simulate too much194

poleward AHT and too little poleward OHT. Alternatively, the fractional contribution195

of AHT-OHT to total MHT (i.e., normalizing each model by the model specific MHT)196

is biased toward too much poleward AHT and too little poleward OHT with biases that197

are nearly hemispherically symmetric between the two hemispheres (not shown). Impor-198

tantly, the sign and spatial structure of model biases in MHT and AHT-OHT partition-199

ing are remarkably consistent across the three CMIP generations spanning over 20 years200

of progress in climate modeling.201

3.2 Sensitivity of results to observational data sets used202

We next consider whether the identified model biases in AHT-OHT partitioning203

are sensitive to the choice of observational data sets (TOA radiation and atmospheric204

reanalysis) used to partition MHT. We use the mean of all ensemble members across all205

three CMIP generations, referred to as the CMIP-mean, as a reference for all analyses206

in this subsection.207

We begin by analyzing the MHT and AHT/OHT partitioning estimated using two208

additional satellite-derived observational estimates of TOA radiation (see Supporting In-209

formation for details): the unadjusted CERES single scanner footprint (SSF) data and210

the ERBE satellite data which spans the 1984-1990 (left panels of Fig. 2 bordered by211

the black box). In these three panels, the choice of TOA radiation product alters the cal-212

culated observational MHT (solid black line) whereas the AHT is unchanged between213
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panels (ERA5 is used in each). Because the observational OHT is calculated from the214

difference of MHT and AHT, the observational OHT estimate (solid blue line) also varies215

between panels. Observational MHT calculated from the three different TOA radiation216

products is consistently larger than the CMIP-mean in both hemispheres. Model biases217

in MHT are largest when the CERES SSF product is used (Fig. 2E) and smallest when218

the ERBE product is used (Fig. 2C). The CMIP-mean OHT is biased low compared to219

that derived from all three TOA radiation datasets with largest magnitude biases when220

CERES SSF is used, especially in the SH. Model biases in AHT/OHT partitioning are221

insensitive to observational TOA radiation data set used which give a consistent estimate222

of MHT despite their substantial (≈ 5 W m−2 = 2.5 PW globally integrated) differences223

in global mean TOA radiative balance associated with absolute calibration uncertainty224

(Loeb et al., 2009).225

We next analyze the sensitivity of our results to the choice of atmospheric reanal-226

ysis used to calculate the AHT (Fig. 2 panels A, B, D, F and H). In these five panels,227

the MHT is identical (calculated using the CERES EBAF product) whereas the AHT228

is calculated from the ERA5, ERA-interim, NCEP, MERRA2, and JRA reanalyses. Since229

OHT is calculated from the residual of MHT and AHT, the OHT difference between the230

three panels are equal and opposite to the the inter-panel differences in AHT. The CMIP-231

mean bias toward too much poleward AHT and too little poleward OHT is apparent us-232

ing all five observational estimates of AHT. Poleward AHT is largest when using ERA5233

followed closely by JRA, MERRA2 and then ERA interim, whereas using NCEP pro-234

duces the smallest poleward AHT with the most notable difference near the peak in the235

SH at 40◦S. Therefore, model biases in the AHT-OHT partitioning are smallest using236

ERA5 and largest using NCEP. These results suggest that the sign and spatial struc-237

ture of model biases in MHT partitioning are consistent across atmospheric reanalysis238

datasets, whereas the magnitude of the bias depends on the reanalyses product used. Dif-239

ferences in AHT calculated between the different reanalyses are not impacted by differ-240

ences in the spatial resolution (see analysis and Fig. S2 in the Supporting Information)241

as even the coarsest product (NCEP) resolves the spatial scales responsible for the vast242

majority of AHT.243

Finally, we evaluate whether heat storage due to the transient response to anthro-244

pogenic forcing impacts our observational estimates of OHT. The Earth is not in equi-245

librium but, rather, is accumulating energy at an average rate of 0.7 W m−2 globally (John-246

son et al., 2016). The vast majority of this energy accumulation is stored in the ocean247

(Von Schuckmann et al., 2016) and it is possible that the spatial structure of this energy248

storage projects onto our diagnoses of observational OHT for the following reason: ob-249

served ‘implied’ OHT is calculated from the spatial integral of inferred surface heat fluxes250

(TOA radiation plus AHT convergence) and the latter is balanced by the sum of OHT251

divergence and ocean heat storage in a transient system. We diagnose the impact of ob-252

served ocean heat storage on the implied OHT (OHTSTORAGE) from the trend in ocean253

heat content, derived from UK Hadley Center EN4 objective ocean analysis (Good et254

al., 2013) over the CERES period (see Supporting Information for details). OHTSTORAGE255

is removed from the ‘implied’ OHT to estimate the ‘true’ OHT (solid teal line in Fig.256

1F) that must be transported laterally in the ocean to close the ocean energy budget.257

OHTSTORAGE is very small (< 0.1 PW in magnitude) and, thus, the diagnosed ‘true’258

OHT is visually indistinguishable from the observational ‘implied’ OHT (solid blue line259

in Fig. 1F). The global mean ocean heat uptake of 0.7 W m−2 translates to 0.4 PW of260

global energy input to the ocean but the implied OHT of ocean heat storage is signif-261

icantly smaller in magnitudes due to ocean heat uptake being more globally uniform than262

regionally isolated. The negligible impact of ocean heat storage on ‘implied’ OHT over263

the historical period is consistent with the small (< 0.1 PW) differences between OHT264

in the ensemble mean of historical CMIP5 simulations averaged over the 2000-2018 time265

period as compared the pre-industrial control simulations using the same models (Sup-266

porting Information Fig. S3).267
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Collectively, these results suggest that the sign of model biases in AHT-OHT par-268

titioning is robust to different observational products (satellite TOA radiation and at-269

mospheric reanalysis) used to partition MHT. Additionally, the spatial pattern of tran-270

sient heat uptake by the ocean makes a negligible impact on estimated OHT. However,271

the magnitude of the model bias in AHT-OHT partitioning does vary with observational272

datasets used. In this regard, the use of CERES EBAF and ERA5 data for our primary273

analysis (Fig. 1) is a conservative estimate of model biases in AHT-OHT partitioning274

(a smaller OHT bias is found only when using the combination of ERBE and ERA5 prod-275

ucts).276

4 Biases in energy input to the atmosphere and ocean and inferred AHT277

and OHT biases278

Here we evaluate potential causes of the persistent model biases in AHT and OHT279

in terms of model biases in the spatial structure of energy input into the ocean and at-280

mosphere. Starting in the ocean, energy conservation demands that OHT across a lat-281

itude band balances the net surface heat flux out of the ocean (-SHF by our sign con-282

vention) integrated over the polar cap bounded by that latitude, which from Eq. 1 is rep-283

resented by:284

OHT(Θ) = 2πa2
∫ 90

Θ

(−SHF∗) cos(θ)dθ. (2)

SHF is equal to the net downward surface radiation (RADSURF) into the ocean minus285

the upward turbulent energy fluxes of sensible (SENS) and latent heat (LvE):286

SHF = RADSURF − SENS− LvE. (3)

Substitution of Eq. (3) into Eq. (2) allows the OHT to be decomposed into the implied287

transports of each term contributing to SHF:288

OHT = OHTRAD,SURF +OHTSENS +OHTE, (4)

where, for example, the OHT implied by evaporation (OHTE) is:289

OHT(Θ)E = 2πa2
∫ 90

Θ

LvE
∗cos(θ)dθ, (5)

where, as in Eq. 1 and 2, the ∗ indicates that the global (ocean domain) mean has been290

removed from the term. Because SENS∗ is small compared to the other terms (Fig. 3C)291

and RADSURF is dominated by solar input to the surface (Supporting Information Figs.292

S5E,F), the predominant energy balance in this framework can be summarized as fol-293

lows: the magnitude of OHT (black line in Fig. 3D) is governed by the imbalance be-294

tween excess (relative to the global mean) solar radiation entering the tropical ocean (or-295

ange line) and excess evaporative loss (green). Perfect local compensation between sur-296

face solar input and evaporation implies zero OHT whereas weaker evaporative loss de-297

mands a larger fraction of solar input be realized as OHT. We use this framework to un-298

derstand model biases in OHT in terms of biases in the meridional structure of terms299

contributing to SHF.300

The latitudinal structure of CMIP-mean LvE, SENS and SURFRAD over the ocean301

domain is compared to observational estimates of the same quantities with LvE and SENS302

taken from the WHOI Objectively Analyzed (OA) Air-Sea Flux product (Yu et al., 2004)303

and SURFRAD estimates from the CERES EBAF surface product (Kato & Coauthors,304
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2018) in Fig. 3C. Evaporation is biased high in models (relative to the observational es-305

timate) at all latitudes except the Arctic (Supporting Information Fig. S4). Evapora-306

tion biases are largest (> 20 W m−2) in the subtropics of both hemispheres and are much307

smaller in the high latitudes. These evaporation biases manifest as enhanced subtrop-308

ical ocean energy loss by E∗ in the models (cf. the dashed and solid green lines in Fig.309

3C) and an implied model bias toward too little (by approximately 0.4 PW) poleward310

OHT due to evaporation in each hemisphere (OHTE, green line in Fig. 3D). Thus, evap-311

oration biases alone explain the majority of the model bias in OHT identified in Section312

3 (compare green and dashed black lines in Fig. 3D).313

The observational RAD∗
SURF has a stronger equator-to-pole gradient than that in314

climate models (cf. the solid and dashed orange lines in Fig. 3C) especially in the SH.315

Model biases in RAD∗
SURF are associated with larger than observed downwelling solar316

radiation into the extratropical Southern Ocean (Supporting Information Fig. S5E) due317

to clouds that are optically thinner than observed (Donohoe & Battisti, 2012). As a re-318

sult, observed poleward OHTRAD,SURF is larger than that in models with larger mag-319

nitude (0.4 PW) biases in the SH. The model biases in OHTRAD,SURF mirror the im-320

pact of TOA radiation biases on MHT (left panels of Figure 1) including the partition-321

ing between shortwave and longwave biases within each hemisphere, suggesting that model322

biases in MHT and OHT in the SH are due to biases in shortwave absorption whereas323

those in the NH are due to biases in OLR and net surface longwave (Supporting Infor-324

mation Figs. S5B,F).325

The sum of model biases in OHTE, OHTRAD,SURF and OHTSENS (solid black line326

in Fig. 3D) finds that models would have weaker than observed poleward OHT of 0.6327

PW in the NH and 0.8 PW in the SH based on biases in energy input to the ocean. This328

overall inferred OHT bias is primarily due to a nearly hemispherically mirror-imaged bias329

in OHTE which is enhanced by poleward OHTRAD,SURF in the SH. The bias in OHT330

inferred from surface flux biases matches the spatial structure but exceeds in magnitude331

the OHT biases calculated in Section 3 from TOA radiation and atmospheric reanaly-332

sis (dashed black line in Fig. 3D). These two calculations of model OHT biases do not333

have to match as they use different conceptual approaches and rely on completely in-334

dependent observational climate fields. Nonetheless, the consistency of the sign, spatial335

pattern, and magnitude of the OHT biases calculated using the two different approaches336

suggest that the model biases in surface energy fluxes are large enough to account for337

the AHT-OHT partitioning biases inferred from the residual TOA radiation and AHT338

estimates.339

We use a similar calculation of the model biases in implied AHT from the spatial340

structure of energy input to the atmosphere to compute an alternative estimate of AHT341

biases to those calculated in Section 3. The AHT analog to Eq. 4 is:342

AHT = AHTRAD,ATMOS +AHTSENS +AHTE, (6)

where the atmospheric analog to Eq. 5 for the AHT due to evaporation (AHTE) is:343

AHT(Θ)E = 2πa2
∫ 90

Θ

−LvE
∗cos(θ)dθ. (7)

The spatial integral is over a global (land plus ocean) domain. Here RADATMOS is the344

net radiative heating of the atmospheric column which is equivalent to the net radiation345

at TOA minus RADSURF. Fajber et al. (2023) demonstrated that poleward AHT is pri-346

marily determined by evaporation (AHT ≈ AHTE) because LvE∗ dominates the spa-347

tial structure of energy input to the atmosphere. We note that LvE∗ spatially integrated348

over the ocean domain has opposing impacts on AHTE versus OHTE (and likewise for349

SENS∗ and AHTSENS versus OHTSENS). This arises because excess evaporation over the350
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low latitudes (E∗ > 0) adds energy to the atmosphere to enhance the demand for pole-351

ward AHT at the expense of removing energy from the low-latitude ocean to reduce the352

demand for poleward OHT.353

To more clearly see the compensation between biases in AHT-OHT due to model354

biases in LvE∗ (and SENS∗) over the ocean domain, we take the following approach to355

compare models and observations of AHT via Eqs. 6 and 7. First, AHTE and AHTSENS356

are calculated from the observational WHOI OA evaporation and sensible heat flux data357

over the ocean domain only, and are compared to analogous model calculations over the358

ocean domain. Then, the contribution of turbulent energy fluxes over land to the com-359

bined AHTE and AHTSENS is estimated from the CERES EBAF net surface radiation360

spatially integrated over land. This approach assumes that (via surface energy balance)361

surface radiative gain is balanced by turbulent loss. These calculations are compared to362

analogous calculations in the models. Finally, AHTRAD,ATMOS is calculated from the CERES363

EBAF TOA and surface data over the global domain and is compared to the analogous364

global domain calculation in models (orange lines in Fig. 3A,B). This strategy circum-365

vents the lack of reliable observational estimates of turbulent energy fluxes over land –366

instead inferring them from a like-with-like observational-to-model comparison of sur-367

face radiation over land and assuming that RADSURF is balanced by upward turbulent368

fluxes from the land to the atmosphere (the latter assumption has been validated in mod-369

els).370

Model biases in AHTE compose the vast majority of AHT biases diagnosed from371

Eq. 6 (cf. the green and solid black lines in Fig. 3B) and suggest that the stronger than372

observed poleward AHT in models is driven by an enhanced equator-to-pole gradient in373

evaporation. Model RAD∗
ATMOS is more negative in the deep tropics as compared to ob-374

servations (due to stronger longwave cooling in the models– Supporting Information Fig.375

S5) which contributes to smaller AHTRAD,ATMOS export from the tropics in the mod-376

els that generally opposes the low latitude biases in AHTE (orange line in Fig. 3B). In-377

terestingly, shortwave absorption in the atmosphere is biased low in the models, which378

reduces the demand for poleward AHT by nearly 0.4 PW in both hemispheres (red line379

in Supporting Information Fig. S5D). However, this model deficit in atmospheric heat-380

ing of the tropics is nearly compensated for by weaker than observed longwave cooling381

of the atmosphere such that there is almost no bias in AHTRAD,ATMOS at the equator-382

to-pole scale. Turbulent energy fluxes over the land inferred from net surface radiation383

are nearly identical in models and observations and make a negligible impact on AHT384

biases (cf. purple dashed and solid lines in Fig. 3C,D).385

These calculations demonstrate that the model biases in the partitioning of pole-386

ward heat transport between AHT and OHT that were inferred in Section 3 are consis-387

tent (in sign, spatial structure, and magnitude) with the model biases in energy input388

into the atmosphere and ocean by radiative fluxes and turbulent exchange between the389

atmosphere and ocean. Stronger than observed evaporation in the models contributes390

to enhanced poleward AHT at the expense of reduced OHT that is nearly hemispher-391

ically symmetric whereas radiative biases due to thinner than observed clouds in the ex-392

tratropical Southern Ocean results in too weak poleward MHT that is primarily man-393

ifested in the surface energy budget and implied OHT bias.394

5 Summary and discussion395

Coupled climate models have too little poleward OHT in both hemispheres and too396

much AHT in the NH, compared to observational estimates. These model biases are re-397

markably consistent across three generations of coupled model ensembles (CMIP3, CMIP5,398

and CMIP6) and across different sets of observational TOA radiation and atmospheric399

reanalysis data. These conclusions are not impacted by observed transient energy ac-400

cumulation in the ocean.401
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The method used here to balance the mass budget of the atmospheric reanalysis402

differs from that used in the work of Trenberth & Stepaniak (2004) and M. et al. (2017).403

Specifically, we implicitly assume zero net atmospheric mass flux through a given lat-404

itude circle whereas other works adjust the mass flux to balance the polar cap spatial405

integral of the surface pressure tendency and evaporation minus precipitation. Our choice406

stems from defining the energy budget with respect to a fixed mass of atmosphere (Dono-407

hoe & Battisti, 2013; Liang et al., 2018). The AHT associated with the mass flux due408

to evaporation minus precipitation is primarily compensated for a return flow of mass409

and energy in the ocean and requires a consistent treatment of the energy fluxes through410

the atmosphere, surface and ocean (M. et al., 2017) that depends on the choice of zero411

point energy (e.g., the units used for temperature). Physically, a poleward (water) mass412

flux in the atmosphere is balanced by the mass flux of precipitation minus evaporation413

and an equivalent equatorward mass flux in the ocean. The energy flux of each of these414

mass fluxes is the product of mass flux and mean energy of the fluid, has a minimal net415

(AHT+OHT) poleward energy transport but is of order 0.2 PW in magnitude for each416

the compensating AHT and OHT. The standard definition of SHF in climate models does417

not include the sensible heat of this net (water) mass flux across the air/sea interface418

and we believe including this term would create an inconsistency between the model de-419

rived and observationally inferred OHT. Our interpretation is supported by the near equiv-420

alence of the AHT calculated in CESM via the "observational" and "model" partition-421

ing calculations using our method of calculating AHT from reanalysis data whereas in-422

cluding the net mass flux of water in the AHT creates a substantial mismatch between423

the two calculations (not shown). We emphasize that all choices made here were aimed424

at creating a consistent way to compare observational and model MHT and AHT-OHT425

partitioning despite the different climate fields that go into each calculation.426

This work focused on model biases in the vertical zonal and time integral of atmo-427

spheric moist static energy fluxes that comprise AHT without regard for biases in the428

underlying atmospheric circulations and associated temperature and humidity structures429

of the atmosphere. Donohoe et al. (2020) demonstrated that model biases in poleward430

AHT primarily result from larger than observed dry (sensible) heat transport by tran-431

sient eddies in the mid-latitudes of both hemisphere (their Fig. 4D) and in the NH smaller432

than observed dry heat transport by stationary eddies; the moisture (latent heat) trans-433

port has negligible biases. Model biases in evaporation are expected to be manifested434

as biases in both moist and dry AHT because dry AHT is set by the spatial pattern of435

condensational heating of the atmosphere which represents the portion of AHTE that436

is not transported poleward as latent heat (Fajber et al., 2023); while spatial patterns437

of evaporation directly demand poleward moist AHT, the energy input to the atmosphere438

via evaporation is handed off to dry AHT where precipitation forms and the atmosphere439

is heated condensationally. Therefore, our finding that model biases toward too much440

AHT result from stronger than observed evaporation is consistent with the finding that441

excess poleward AHT in the models is expressed as a bias toward too much dry heat trans-442

port.443

Remarkably, the model OHT bias inferred from observational estimates from satel-444

lite TOA radiation and atmospheric reanalyses is in descent agreement with model bi-445

ases in the energy exchange between the ocean and atmosphere calculated from inde-446

pendent observational estimates of surface heat fluxes. The latter bias is due primarily447

to stronger than observed low-latitude evaporation in the models. We note that the com-448

munity has been reluctant to diagnose OHT from the observed surface energy balance449

because of uncertainty in the turbulent energy fluxes. Yet, our analysis paints a consis-450

tent picture of the model biases in turbulent energy fluxes – whether these are inferred451

from the residual of TOA radiation and AHT or from bulk formula. We also note that452

observational estimates of global mean evaporation and its equator-to-pole gradient vary453

substantially (Stephens et al., 2012) with reanalysis products generally having more evap-454

oration than the bulk formula based estimates such as WHOI OA flux (Yu et al., 2004)455
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and SEAFLUX (Curry et al., 2004). We chose to use WHOI OA flux for the analysis in456

Section 4 because the bulk formula in this product are optimized to match buoy obser-457

vations – making it the most observationally constrained estimate of evaporation. Ad-458

ditionally, the global constraint of evaporation balancing precipitation is nearly satisfied459

from the combination of the WHOI OA FLUX evaporation over the ocean (62.8 W m−2
460

contribution to global mean) plus the ERA5 reanalysis evaporation over land (12.9 W461

m−2 for a global total evaporation of 75.7 W m−2) nearly balancing the best observa-462

tional estimate of global mean precipitation (77.9 W m−2) from the NOAA GPCP (Adler463

et al., 2018). The lack of closure of the observed global mean surface energy budget sug-464

gests that observational surface radiation and/or turbulent energy fluxes are poorly con-465

strained and one hypothesized solution is that both global mean evaporation and pre-466

cipitation are substantially underestimated (Stephens et al., 2012). Our analysis circum-467

vents this debate by removing global mean quantities, showing that the equator-to-pole468

gradient of surface energy fluxes is consistent with that inferred from TOA radiation and469

AHT divergence. This suggests that the meridional structure of surface energy fluxes con-470

strained by TOA radiation and AHT could be used in conjunction with global mean im-471

balances to give an additional constraint for reconciling which terms in the observed sur-472

face energy budget are most uncertain and/or biased.473
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Figure 1. Observational and model (left panels) total meridional heat transport (MHT) and
(right panels) its partitioning between the atmosphere (AHT, red) and ocean (OHT, blue). Re-
sults from the CMIP3, CMIP5, and CMIP6 models are shown in the top, middle and bottom
panels respectively. The observational estimates are shown by the heavy solid line, individual
coupled models are shown by the dotted lines and the model ensemble mean is shown by the
heavy dashed line.
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CERES EBAF radiation and NCEP reanalysis -- 3/2001-12/2018
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Figure 2. Comparison of MHT, OHT and AHT in models and observations using eight differ-
ent observational estimates of MHT (black solid), AHT (red), and OHT (blue). The left panels
show the sensitivity of the transports to TOA radiation product used with CERES EBAF on
the top panel, ERBE in the second panel, and the unadjusted CERES SSF on the bottom and
with the ERA5 AHT estimate across all panels. The right panels show the observational trans-
ports calculated using CERES EBAF TOA radiation in all panels but using different atmospheric
reanalysis products in each panel: (B) ERA Interim; (D) NCEP; (F) MERRA2 and; (H) JRA.
Panel (G) shows the impact of observed spatial patterns in ocean heat storage on implied OHT
using EN4 ocean heat content changes over 2000-2018. The model mean is the average over all
models in CMIP3, CMIP5, and CMIP6 (CMIP-mean).
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Figure 3. Model and observational estimates of the energy input into the atmosphere and
ocean and the implied AHT and OHT biases resulting from each input. (A) Global anomaly
energy input into the atmosphere in models (dashed) and observations (solid). See text for def-
inition of terms. (B) Implied AHT bias (observations minus models) due to each energy input.
The solid black line shows the sum of all terms. The dashed black line shows the bias in heat
transport inferred from CERES and ERA5 data. (C) As in A but for the energy input to the
ocean. (D) As in B but for the implied OHT bias.
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1. Coupled models analyzed

We analyze pre-industrial (PI) control simulations in coupled climate models that rep-

resent the equilibrium response to fixed green house gas concentrations. We analyze 66

model simulations from three different generations of the coupled climate model inter-

comparison project (CMIP): CMIP3 (Meehl et al., 2007) which ran from 2005-2006 (14

simulations); CMIP5 (Taylor et al., 2012) which ran from 2010-2014 (20 simulations) and;

CMIP6 (Eyring et al., 2016) which ran from 2014-2020 (32 simulations). All calculations

discussed here use annual mean long term climatologies calculated from the last 50 of

available years of the PI simulation. We additionally analyze 12 CMIP5 historical sim-

ulations to evaluate the differences between the MHT/AHT/OHT in the PI simulations

and historical era which may impact the observational-model comparison.

2. Observational datasets used

2.1. Top of atmosphere radiation

Observational MHT is primarily calculated using satellite derived RADTOA from the

Clouds and Earth’s Radiant Energy System (CERES) Energy Balanced and Filled

(EBAF) product version 4.0 (Loeb & Coauthors, 2018). This product is a gridded re-

trieval of net longwave and shortwave radiation at the TOA derived from instruments on

the Aqua and Terra satellites. The retrieved RADTOA is subsequently adjusted to satisfy

Earth’s global energy imbalance of 0.71 ± 0.10 W m−2 constrained by long-term changes

in global ocean heat content changes (Johnson et al., 2016). This adjustment is accom-

plished via modification of uncertain parameters in the retrieval algorithm (e.g. radiative

transfer model) used to produce the gridded product and primarily involves adjustment
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of the absolute calibration of the shortwave and longwave fluxes which have a combined

uncertainty (95% confidence interval) of 4.2 W m−2 (Loeb et al., 2009). We also analyze

unadjusted gridded CERES data from single scanner footprints (SSF) to diagnose the

impact of the EBAF adjustment on MHT. The average of four (FM1 and FM2 on Terra

and FM3 and FM4 and Aqua) SSF RADTOA data sets is analyzed. The climatological av-

erage RADTOA over the 3/2001-12/2018 period is used to calculate MHT from all CERES

products with the exception of the Aqua SSF data which begin in 7/2002. We also use

RADTOA from the Earth Radiation Budget Experiment (ERBE Barkstrom & Hall, 1982).

Climatological ERBE RADTOA over the 11/1984-3/1990 period is used to calculate an

additional observational estimate of MHT.

Given that the global mean net TOA radiative imbalance ranges from 7.0 W m−2 (3.6

PW globally) in the unadjusted CERES dataset to 4.9 W m−2 (2.5 PW) in ERBE dataset

(see table 1 of Loeb et al., 2009) to 0.7 W m−2 (0.4 PW) in the CERES EBAF dataset

(Johnson et al., 2016), it is perhaps surprising that the calculated MHT only differs by

of order 0.1 PW across these data sets. We interpret this result to imply that the largest

differences between the TOA radiation data sets is the absolute calibration (addition

of a spatially invariant constant) of the shortwave and longwave fluxes which are the

stated largest source of uncertainty in the data sets (Loeb & Coauthors, 2018) and make

no impact on the derived MHT calculated here via removal of the global mean value.

Stated otherwise, the spatial gradients in net TOA radiation are less uncertain (or at

least consistent between datasets) as compared to the global means.
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2.2. Atmospheric reanalysis

AHT is derived from the time average of the vertical and zonal integral of the meridional

flux of moist static energy calculated from high spatial-temporal resolution atmospheric

reanalysis. Our analysis primarily focuses on AHT estimates calculated from the European

Center for Medium Range Forecasting’s (ECMWF) ERA5 reanalysis (Hersbach et al.,

2020). We use instantaneous 6-hourly ERA5 data on 37 pressure levels and a horizontal

resolution of 0.5◦. Additional AHT calculations are performed and analyzed using two

other sets of 6-hourly instantaneous atmospheric reanalysis: 1. ECMWF’s ERA-interim

reanalysis which has 37 vertical levels and horizontal resolution of 1.5◦ (Dee et al., 2011)

and; 2. the National Center for Atmospheric Research’s (NCEP) reanalysis which has 17

vertical levels and a horizontal spectral resolution of T62.

The following four-dimensional (pressure level, latitude,longitude, time) atmospheric

fields are used to calculate AHT; meridional velocity (V), temperature (T), specific hu-

midity (Q) and geopotential height (Z). The climatological surface pressure is used to set

the bounds of the vertical integration. AHT calculations are preformed for each month

then the results are averaged to produce a long-term average climatology. AHT clima-

tologies are computed over the corresponding time period of the radiation data: 3/2001-

12/2018 when used in conjunction with CERES data and 11/1984-2/1990 when used in

conjunction with ERBE data.

3. Estimating the impact of ocean energy storage on ’implied’ OHT

We first calculate the latitudinal structure of the observed long-term trend in ocean

heat storage (STORAGE) over the CERES period (2000-2018) from potential temper-

ature data in the UK Hadley Center EN4 objective ocean analysis (Good et al., 2013).
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STORAGE is equal to the linear trend in zonal-mean, vertically (mass-weighted) inte-

grated (deseasonalized) ocean potential temperature. The result is the rate of ocean heat

uptake (STORAGE) in W m−2 at each latitude averaged over the CERES era. We convert

this to an implied OHT due to ocean heat storage (OHTSTORAGE) by spatially integrating

the local departure STORAGE from the global mean (indicated by an ∗) over the polar

cap:

OHT (Θ)STORAGE = 2πa2
∫ 90

Θ
−STORAGE∗cos(θ)dθ. (1)

OHTSTORAGE is the ’implied’ OHT that would be calculated from the surface heat fluxes

needed to balance the local storage in the absence of lateral ocean transport. We remove

the OHTSTOARGE from the ’implied’ observational OHT (=MHT-AHT) to isolate the

’dynamic’ OHT that would need to be transported laterally in the ocean to balance

the ocean energy budget (the sum of STORAGE and energy lost from the surface of the

ocean to the atmosphere). If ocean heat uptake is preferentially in the high latitudes (as is

observed), the associated downward extratropical surface fluxes would be diagnosed as an

equatorward ’implied’ OHT and our observational based estimate of poleward OHT from

the inferred surface fluxes would be biased low relative to an equilibrium climate system

with no STORAGE. Thus, the observed high latitude ocean heat uptake reduces our

observational estimate of OHT and therefore the model biases toward too little poleward

OHT are larger in magnitude than reported here even if the magnitude of ocean heat

uptake was underestimated by EN4.

Consistent with the reasoning above, model biases toward too little OHT (relative to

observations) are stronger in magnitude when comparing historical simulations to (his-

torical) observations than found in the present work which compares pre-industrial (PI)
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simulations with (historical) observations. Historical simulations have slightly weaker

poleward OHT into the Southern Ocean compared to their PI counterparts (c.f. the

dashed and solid lines in Supplemental Fig. 3) – which is consistent with the expectations

discussed above based on preferential STORAGE in the Southern Ocean – and enhanced

poleward AHT in the SH as one would expect from down-gradient energy transport under

delayed Southern Ocean warming (Armour et al., 2019). In addition to the differences in

the AHT/OHT partitioning between the pre-industrial and historical simulations being

small in magnitude (relative to the model biases) these results suggest that the model bias

toward too much poleward AHT and too little poleward OHT in the SH would be larger

in magnitude if observations over the historical period were compared to the historical (as

opposed to PI) simulations.

4. Impact of spatial resolution on calculated AHT

Given that the ERA5 reanalysis is the highest spatial resolution considered here and

produces the largest poleward AHT, the reader may be suspicious of whether the reanalysis

are of sufficient spatial and temporal resolution (on the model output grid) to capture

the processes responsible for AHT. We address the potential limitation of the 6-hourly

instantaneous temporal resolution of the data first. Instantaneous data does not alias the

variance (or co-variance) at any frequency with the exception of the discrete harmonics of

the sampling period (periods of 6 hours, 3 hours, 1.5 hours, etc) which should be negligible

in a continuous spectra. To test this conclusion, we sub-sampled random (white noise)

1 minute data at 6 hourly intervals and found the variance was reduced by less than

0.01% over 100,000 Monte-Carlo realizations. To evaluate the potential limitation of the

horizontal resolution of the reanalysis, we calculate the cross-spectra of meridional velocity
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and temperature/humidity at 40N, 700 hPa during DJF, the location and season of global

maximum climatological poleward AHT (supplemental Fig. 3). Both moist and dry AHT

are primarily accomplished by wavenumbers less than 15 with negligible contributions

from wavenumbers greater than 90 (corresponding to the smallest resolved wave at 2◦

longitude grid spacing). Therefore, reducing the resolution of the reanalysis from 0.5

degrees to 2 degrees is equivalent to spectrally truncating the co-spectra at wavenumber

90 which results in a loss of covariance (AHT) of 0.009 % for the dry AHT and 0.021 %

for the moisture transport. Stated otherwise, the enhanced horizontal resolution of the

ERA5 reanalysis (relative to the resolution of the NCEP reanalysis) makes a negligible

contribution to the derived AHT. This analysis does not preclude the possibility that

spatial structures smaller than the 0.5◦ resolution of the ERA5 reanalysis contribute to

AHT but does suggest that the enhanced resolution of the ERA5 reanalysis relative to the

NCEP reanalysis makes a negligible contribution to the calculated AHT. This conclusion is

consistent with the near equivalence of two different AHT calculations in the NCEP CESM

simulation shown in Section 2.3; the AHT calculated (dynamically) from the vertical and

zonal integral of the product of meridional velocity and temperature/humidity on the

1.25◦ and 30 vertical level output grid matches that inferred from (energy conservation)

of TOA radiation and surface fluxes (Fig. 1 of main text).
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Figure S1. Comparison of the MHT/AHT/OHT partitioning method used for the

observations versus that used for the models in an NCAR CESM1 simulation in which

the atmospheric fields used to calculate AHT were exported akin to the atmospheric

reanalysis. MHT (black) is calculated from the TOA radiation integrated over the polar

cap in both methods. AHT (red) is calculated from the time averaged vertical and zonal

integral of the product of atmospheric MSE and meridional velocity in the observational

approach (solid) and from the spatial integral over the polar cap of TOa radiation minus

the surface flux in the model approach (dashed). OHT (blue) is calculated from the

residual of MHT and AHT in the observational methodology (solid) and from the spatial

integral over the polar cap of the surface heat flux in the model methodology (dashed).
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Figure S2. The spectra of atmospheric heat transport at 40N and 700 hPa. The

red line shows the spectral co-variance of meridional velocity and temperature (time the

specific heat of dry air) and the blue line shows the spectral covariance of meridional

velocity and specific humidity (times the latent heat of vaporization of water). The co-

spectra are calculated from the product of the spectral power of meridional velocity and

temperature/humidity at each instant times the cosine of the spatial phase (wavenumber

specific) then time averaged. The wavenumbers on the x-axis are presented on a log scale

such that the independent spectral realizations are more densely packed on the right hand

side of the plot and the spectral co-variances on the y-axis are multiplied by wavenumber

in order to preserve the interpretation of the area under the curve representing the heat

transport. The gray shaded box shown an area equal to one PW of zonally and verti-

cally integrated AHT if the spectral co-variance at 700 hPa was realized throughout the

atmospheric column. The vertical black line shows the spectral truncation of 4 degrees

longitude grid spacing.
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Figure S3. Comparison of the MHT/AHT/OHT partitioning between CMIP historical

simulations (dashed lines) and pre-industrial simulation (solid lines). The MHT is shown

in black. The AHT is shown in red. The OHT is shown in blue. Both lines are the

ensemble mean of the 12 models that have sufficient output for the historical simulations.

Historical simulations are averaged over the 2000-2018 period with no adjustment made

for ocean heat storage to mimic the observational methodology.
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Figure S4. Comparison between evaporation over the ocean in models (ensemble mean)

and observations (WHOI OA flux). All values show the annual mean average over the
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Figure S5. Comparison of radiation in observations (solid lines) and model ensemble

mean (dashed lines) at the top of atmosphere (A), in the atmospheric column (C) and at

the surface (E). Shortwave fluxes are shown in red, longwave fluxes are shown in blue and

the net radiation is shown in orange with positive values defined as a heating tendency

on the climate system, atmosphere and surface respectively. The global mean of each

term has been removed to emphasize the contribution to the spatial gradients in heating.

The right panels show the implied heat transport of the radiative components for the total

(atmosphere plus ocean) meridional heat transport (B, MHT), atmospheric heat transport

(D, AHT) and ocean heat transport (F, OHT) in PW. Note that the y-axis range differs

between panels.
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