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Abstract

The influence of climate feedbacks on regional hydrological changes under warming is poorly understood. Here, a moist energy

balance model (MEBM) with a Hadley Cell parameterization is used to isolate the influence of climate feedbacks on changes

in zonal-mean precipitation-minus-evaporation (P-E) under greenhouse-gas forcing. It is shown that cloud feedbacks act to

narrow bands of tropical P-E and increase P-E in the deep tropics. The surface-albedo feedback shifts the location of maximum

tropical P-E and increases P-E in the polar regions. The intermodel spread in the P-E changes associated with feedbacks arises

mainly from cloud feedbacks, with the lapse-rate and surface-albedo feedbacks playing important roles in the polar regions.

The P-E change associated with cloud feedback locking in the MEBM is similar to that of a climate model with inactive cloud

feedbacks. This work highlights the unique role that climate feedbacks play in causing deviations from the “wet-gets-wetter,

dry-gets-drier” paradigm.
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Key Points:14

• A moist energy balance model (MEBM) is used to investigate the influence of climate15

feedbacks on regional hydrological change under warming.16

• Cloud feedbacks act to narrow and increase tropical P − E and are the dominant17

source of feedback uncertainty in regional hydrological changes.18

• The MEBM with locked cloud feedbacks largely replicates a climate model with in-19

active cloud feedbacks.20
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Abstract21

The influence of climate feedbacks on regional hydrological changes under warming is poorly22

understood. Here, a moist energy balance model (MEBM) with a Hadley Cell parame-23

terization is used to isolate the influence of climate feedbacks on changes in zonal-mean24

precipitation-minus-evaporation (P − E) under greenhouse-gas forcing. It is shown that25

cloud feedbacks act to narrow bands of tropical P − E and increase P − E in the deep26

tropics. The surface-albedo feedback shifts the location of maximum tropical P − E and27

increases P −E in the polar regions. The intermodel spread in the P −E changes associated28

with feedbacks arises mainly from cloud feedbacks, with the lapse-rate and surface-albedo29

feedbacks playing important roles in the polar regions. The P − E change associated with30

cloud feedback locking in the MEBM is similar to that of a climate model with inactive31

cloud feedbacks. This work highlights the unique role that climate feedbacks play in caus-32

ing deviations from the “wet-gets-wetter, dry-gets-drier” paradigm.33

Plain Language Summary34

Climate feedbacks, which act to amplify or dampen global warming, play an important role35

in shaping how the climate system responds to changes in greenhouse-gas concentrations.36

Here, we use an idealized climate model, which makes a simplified assumption about how37

energy is transported in the atmosphere, to examine how climate feedbacks influence the38

patterns of precipitation and evaporation change under global warming. We find that cloud39

feedbacks act to narrow the band of rainfall on the equator known as the Intertropical Con-40

vergence Zone and that the surface-albedo feedback acts to shift the location of maximum41

rainfall. We also find that cloud feedbacks account for most of the uncertainty associated42

with feedbacks in regional hydrological change under warming. The idealized model with43

locked cloud feedbacks also simulates a change in precipitation and evaporation that is44

similar to a comprehensive climate model with no cloud feedbacks.45
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1 Introduction46

Climate feedbacks, which govern the top-of-atmosphere (TOA) radiative response to surface47

warming, have long been known to play a central role in shaping the climate response to48

forcing (e.g., Charney et al., 1979; Hansen et al., 1984). In recent years, climate feedbacks49

have been used to explain why climate models, when subject to increases in greenhouse-50

gas concentrations, exhibit a large intermodel spread in global-mean surface temperature51

change (Soden & Held, 2006; Roe & Baker, 2007; Dufresne & Bony, 2008; Webb et al.,52

2013; Zelinka et al., 2020) and in other features, such as Arctic amplification (Pithan &53

Mauritsen, 2014; Roe et al., 2015; Stuecker et al., 2018; Bonan et al., 2018; Goosse et al.,54

2018; Hahn et al., 2021; Beer & Eisenman, 2022). It is argued that cloud feedbacks are the55

dominant contributor to uncertainty in warming at both regional (e.g., Bonan et al., 2018)56

and global (e.g., Soden & Held, 2006; Dufresne & Bony, 2008; Zelinka et al., 2020) scales.57

While it is clear that climate feedbacks exert a strong influence on surface temperature58

change, it is less clear what influence they have on other components of the climate sys-59

tem, such as regional hydrological changes. Recent studies have linked regional hydrological60

changes to the atmospheric energy budget and climate feedbacks (Muller & O’Gorman,61

2011; Anderson et al., 2018; Pithan & Jung, 2021; Bonan, Feldl, et al., 2023). These studies62

have found that dry-static energy transport shapes hydrological change in the tropics and63

that both dry-static energy transport and radiation together shape hydrological change in64

the polar regions. Bonan, Feldl, et al. (2023) further examined how radiative (or climate)65

feedbacks shape the pattern of precipitation change and found that in the polar regions, the66

Planck feedback exerts a strong control on atmospheric radiative cooling and thus precipi-67

tation increases. However, such diagnostic approaches hinder inference about how radiative68

processes in one region affect the hydrological response in another. Quantifying the in-69

fluence of radiative feedbacks on regional hydrological change requires using a framework70

that enables feedbacks and atmospheric energy transport to interact with each other across71

latitudes.72

Several recent studies have shown that regional hydrological changes can be understood73

through the lens of downgradient atmospheric energy transport, which provides a frame-74

work for quantifying the role of local and nonlocal radiative processes (Siler et al., 2018;75

Armour et al., 2019; Bonan, Siler, et al., 2023). Siler et al. (2018) used a moist energy76

balance model (MEBM) to connect the change in precipitation-minus-evaporation (P −E)77
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to downgradient atmospheric energy transport and showed that this perspective improved78

on the “wet-gets-wetter, dry-gets-drier” thermodynamic scaling of Held and Soden (2006).79

Additional MEBM-based work by Bonan, Siler, et al. (2023) showed that the pattern of80

radiative feedbacks places a strong energetic constraint on the atmosphere and can signif-81

icantly alter the pattern of P − E change. A less-negative net radiative feedback in the82

tropics results in a larger increase in tropical P −E because the atmosphere cannot radiate83

sufficient energy away locally and must export energy to regions where radiative energy loss84

is more efficient (such as the subtropics). This increased energy export requires an increase85

in the strength of the Hadley circulation in the deep tropics and thus causes an increase in86

tropical P −E via increased equator-ward moisture transport. However, it is unclear which87

radiative feedbacks are most responsible for causing changes to the Hadley circulation and88

thus the pattern of tropical P −E. It also unclear how radiative feedbacks influence P −E89

change in other regions, such as the extratropics, where feedbacks and atmospheric energy90

transport are tightly coupled (Hwang & Frierson, 2010; Hwang et al., 2011; Feldl et al.,91

2017). This leads to a key question: how do individual climate feedbacks influence the92

response of regional P − E to warming?93

The purpose of this paper is to investigate how individual radiative feedbacks modulate94

the response of zonal-mean P − E to global warming. To do this, we use a MEBM with a95

Hadley Cell parameterization and output from climate models participating in Phase 5 of the96

Coupled Model Inter-comparison Project (CMIP5; Taylor et al., 2012). Our work combines97

the energetic perspective on regional precipitation change from Muller and O’Gorman (2011)98

with the energy transport perspective on regional hydrological changes from Siler et al.99

(2018) using a feedback-locking approach similar to Beer and Eisenman (2022). In what100

follows, we first describe the MEBM. We then remove individual radiative feedbacks in the101

MEBM and examine the influence of each on zonal-mean P − E change. Our work shows102

that individual climate feedbacks can substantially modulate the “wet-gets-wetter, dry-gets-103

drier” paradigm that is commonly applied to understanding P−E change under greenhouse-104

gas forcing via changes in atmospheric energy transport and feedback interactions. Finally,105

we compare feedback locking in the MEBM to feedback locking in a comprehensive climate106

model.107
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2 Methods108

2.1 Moist energy balance model (MEBM)109

We simulate the change in zonal-mean near-surface air temperature T ′ and P ′ −E′ using a

MEBM, which has been shown to accurately simulate patterns of temperature and hydro-

logical change under greenhouse-gas forcing (e.g., Flannery, 1984; Hwang & Frierson, 2010;

Roe et al., 2015; Bonan et al., 2018; Siler et al., 2018; Armour et al., 2019; Peterson & Boos,

2020). The MEBM assumes that the change in poleward atmospheric energy transport F ′

is proportional to the change in the meridional gradient of near-surface moist static energy

h′ = cpT
′+Lvq

′, where cp is the specific heat of air (1005 J kg−1 K−1), Lv is the latent heat

of vaporization (2.5 × 106 J kg−1), and q′ is the change in near-surface specific humidity

(assuming fixed relative humidity of 80%). This gives

F ′ =
2πps
g

D
(
1− x2

) dh′
dx

, (1)

where ps is surface air pressure (1000 hPa), g is the acceleration due to gravity (9.81 m s−2),110

D is a constant diffusion coefficient (with units of m2 s−1), x is the sine of the latitude, and111

1− x2 accounts for the spherical geometry.112

Under warming, the change in annual-mean net heating of the atmosphere must be balanced

by the divergence of F ′. We define Rf as the local TOA radiative forcing; λ as the local net

radiative feedback, meaning the change in the net TOA radiative flux per degree of local

surface warming (W m−2 K−1); and G′ as the change in net surface heat flux or ocean heat

uptake. Combining these three terms with the divergence of Eq. (1) gives

Rf + λT ′ −G′ = ∇ · F ′, (2)

which is a single differential equation that can be solved numerically for T ′ and F ′ given113

zonal-mean profiles of Rf , G′, and λ and a value (or zonal-mean profile) of D. Figure S1114

shows the zonal-mean pattern of T ′ from each CMIP5 model and MEBM solution. We115

set D = 1.02 × 106 m2 s−1 for the multi-model mean analysis, which is the multi-model116

mean value from pre-industrial control (piControl) simulations (see Section 2.2). For the117

individual model analyses, D is unique to each climate model. The supporting information118

provides more detail as to how D is calculated.119

Following Siler et al. (2018), we simulate the change in poleward latent energy transport

F ′latent as the sum of two components that represent transport by the Hadley Cells and

transport by midlatitude eddies. To correctly simulate equator-ward latent energy transport

–5–
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in the tropics, we use a simple Hadley Cell parameterization to approximate the Hadley

Cell mass flux ψ (kg s−1). The strength of ψ is found by partitioning poleward atmospheric

energy transport into a component due to midlatitude eddies and a component due to

the Hadley Cell using a Gaussian weighting function w and energetic constraints on gross

moist stability (see Siler et al. (2018) and the supporting information for more details). For

the midlatitude eddies, latent energy transport is parameterized as downgradient diffusion

modulated by w. The total change in poleward latent energy transport is thus

F ′latent = −
(
ψ′Lvq + ψLvq

′ + ψ′Lvq
′)︸ ︷︷ ︸

Hadley Cells

− (1− w)
2πps
g

LvD
(
1− x2

) dq′
dx︸ ︷︷ ︸

Eddies

, (3)

where (·) denotes the climatological control state and (·)′ denotes the change under warming.

The supporting information details how the climatological state of each climate model is

approximated with the MEBM. The zonal-mean pattern of P ′ −E′ can be found by taking

the divergence of Eq. (3) and is shown for each climate model in Figure S2. Combining the

divergence of Eq. (3) with Eq. (2) and rearranging gives

P ′ − E′ = G′ −Rf − λT ′ +∇ · F ′dry, (4)

where ∇ · F ′dry is the change in dry-static energy flux divergence and can be found as the120

residual between the atmospheric energy flux divergence and the latent energy flux diver-121

gence. The dry-static energy transport can be further decomposed into a thermodynamic122

term and a dynamic term, where the dynamic term accounts for changes in the Hadley circu-123

lation. Eq. (4) relates zonal-mean P −E change directly to the atmospheric energy budget124

in the spirit of Muller and O’Gorman (2011), except now the representation of ocean heat125

uptake is explicit because Eq. (2) represents TOA radiative feedbacks and radiative forcing.126

Crucially, in this framework, the zonal-mean pattern of P ′ − E′ can change depending on127

the zonal-mean pattern of Rf , G′, λ, and T ′ both through local energetic constraints and128

nonlocal changes in atmospheric energy transport and feedback interactions.129

2.2 CMIP5 output130

In this study, we use monthly-mean output from 27 CMIP5 models (see Table S1 for more131

information). We use the r1i1p1 ensemble from the piControl and abrupt CO2 quadrupling132

(abrupt4xCO2) simulations and calculate time-averaged anomalies for years 120 – 150 in133

the abrupt4xCO2 simulations relative to the concurrent piControl climatology.134
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We use zonal-mean patterns of λ from Feldl et al. (2020), which were calculated using the135

radiative-kernel method (Soden & Held, 2006; Soden et al., 2008; Shell et al., 2008) with136

CESM1-CAM5 radiative kernels (Pendergrass et al., 2018). The feedbacks are presented here137

using the decomposition described by Held and Shell (2012) which includes the water vapor138

changes that occur at constant relative humidity in the lapse rate and Planck feedbacks, and139

a separate relative-humidity feedback associated with changes in relative humidity. Each140

feedback is found by taking the difference in the climate variable between the piControl and141

abrupt4xCO2 simulations and multiplying the variable by the respective radiative kernel.142

We calculate the zonal-mean pattern of Rf as the y-intercept of the regression between TOA143

radiation anomalies at each grid point against the global-mean near-surface temperature144

anomalies for the first 20 years after abrupt4xCO2 (Gregory et al., 2004). Smith et al.145

(2020) noted that this 20-year regression produces radiative forcing values that closely match146

methods using fixed sea-surface temperatures (Hansen et al., 2005). Finally, we calculate147

the zonal-mean pattern of G′ as anomalies in the net surface heat flux. Figure S3 shows the148

zonal-mean profiles of λ, Rf , and G′ for each climate model.149

2.3 Global climate model (GCM) experiments150

We analyze a set of locked cloud feedback simulations from Chalmers et al. (2022) using the151

CESM1-CAM5 (Hurrell et al., 2013). Two pairs of simulations are used. In the first pair,152

CO2 concentrations are abruptly doubled (abrupt2xCO2) from the 1850 piControl levels153

and held constant for 150 years. The second pair of simulations are a repeat of the first pair154

but with cloud radiative feedbacks disabled (Middlemas et al., 2020; Chalmers et al., 2022).155

Cloud feedbacks are disabled by prescribing cloud radiative properties from a neutral El156

Niño/Southern Oscillation preindustrial year in the atmospheric model radiation calcula-157

tions, while leaving the rest of the climate system to freely evolve. Note that differences from158

the piControl simulations also account for cloud-locked versus free-running simulations.159

For each variable, we compute climatological averages from the years 100 – 150 of each160

abrupt2xCO2 simulation and compare this to the concurrent piControl climatology. The161

zonal-mean patterns of λ and G′ are calculated using a similar procedure as described above.162

However, the zonal-mean pattern of Rf is calculated from abrupt2xCO2 simulations under163

fixed-SST conditions (Smith et al., 2020).164
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3 Influence of climate feedbacks on regional hydrological change165

We begin by examining the influence of individual feedbacks on regional P − E change166

by systematically locking each in the MEBM. Below, we describe the process of feedback167

locking in the MEBM. While the contribution of radiative feedbacks to regional P −E can168

be inferred directly from an atmospheric energy budget (e.g., Bonan, Feldl, et al., 2023),169

such diagnostic approaches miss interactions between feedbacks and atmospheric energy170

transport (e.g., Beer & Eisenman, 2022). The feedback locking approach alleviates these171

concerns by turning off individual feedbacks and allowing the climate system to adjust,172

thus quantifying the full influence of a particular feedback. This approach also allows us173

to improve on Muller and O’Gorman (2011) and examine how radiative feedbacks affect174

dry-static energy transport and thus indirectly affect regional P − E change.175

3.1 Feedback locking176

The net feedback λ is the sum of individual feedbacks

λ =
∑
i

λi, (5)

where i is the index of the individual feedback. To lock each feedback, we replace λ with

λ−λi in the MEBM. We refer to the resulting pattern of T ′ as T ′−i and P ′−E′ as (P ′ − E′)−i.

Similarly, because the locked feedback simulation also results in a change in atmospheric

energy transport, we refer to the resulting change in atmospheric energy transport as F ′−i

or F ′dry,−i and F ′latent,−i for the dry-static and latent energy transport changes, respectively.

With these terms, the hydrological component of the MEBM when a feedback is locked can

be written as

(P ′ − E′)−i = G′ −Rf − (λ− λi)T ′−i +∇ · F ′dry,−i. (6)

The pattern of T ′ and P ′−E′ attributed to each feedback process in this approach, T ′i and177

(P ′ − E′)i, can be found by taking the difference between the MEBM with all feedbacks178

active (Eq. 4) and the MEBM with an individual feedback locked (Eq. 6) as T ′i ≡ T ′ − T ′−i179

and (P ′ − E′)i ≡ (P ′ − E′) − (P ′ − E′)−i. A similar procedure can be done to isolate the180

influence of G′ and Rf on T ′ and P ′ − E′. Figure S4 shows how each term in Eq. (2)181

contributes to the pattern of T ′ and P ′ − E′. For the remainder of the analysis, we focus182

on the surface-albedo, relative-humidity, lapse-rate, and net cloud feedbacks. We do not183

analyze the Planck feedback as removing it from the MEBM causes stability issues but184

–8–
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note that Bonan, Feldl, et al. (2023) found the Planck feedback exerts a strong influence on185

regional precipitation change in the high-latitudes.186

Figure 1 shows the impact of removing each (left) individual feedback on (middle) zonal-187

mean T ′ and (right) zonal-mean P ′ − E′. Overall, the influence of each feedback on zonal-188

mean T ′ and P ′ − E′ is regionally distinct. When the surface-albedo feedback is removed,189

warming in both the Arctic and Antarctic is substantially reduced and warming in the190

subtropics and deep tropics is approximately the same (Fig. 1a, middle). In contrast, the191

P − E changes associated with the surface-albedo feedback has similar magnitudes in the192

tropics and polar regions (Fig. 1a, right). There is also a shift in tropical P ′ − E′ with193

increasing P − E around 10°N and decreasing P − E around 10°S. This is consistent with194

high-latitude albedo changes resulting in meridional shifts in the location of the ITCZ (e.g.,195

Chiang & Bitz, 2005). The relative-humidity feedback contributes to global cooling that is196

nearly-uniform in latitude (Fig. 1b, middle). The resulting zonal-mean pattern of P ′ − E′197

results in dry regions (like the subtropics) getting slightly wetter and wet regions (like the198

extratropics) getting slightly drier, though the magnitude is quite weak, with the P − E199

change being approximately 0.05 mm day−1 (Fig. 1b, right).200

The impact of removing other feedbacks on T ′ and P ′−E′ is even more striking. The lapse-201

rate feedback contributes to a small amount of surface warming in the Arctic and surface202

cooling at most other latitudes (Fig. 1c, middle). The P − E change associated with the203

lapse-rate feedback also results in dry regions (like the subtropics) getting slightly wetter204

and wet regions (like the extratropics) getting slightly drier (Fig. 1c, right). Notably, the205

lapse-rate feedback modulates the amplitude of the hydrological cycle largely through its206

control on global-mean warming (Fig. 1c, middle). The cloud feedback, on the other hand,207

contributes to warming everywhere of approximately 1°C, except for in the Antarctic, where208

it contributes to slight cooling of approximately 0.5°C (Fig. 1d, middle). The zonal-mean209

pattern of P ′ − E′, however, exhibits distinct regional features. Here the cloud feedback is210

associated with an increase in P − E in the deep tropics and a narrowing of the change in211

the ITCZ region, which can be seen as an equator-ward shift of where P ′ −E′ = 0. This is212

consistent with previous work arguing that ITCZ biases are related to cloud radiative biases213

(e.g., Hwang & Frierson, 2013). The cloud feedback also contributes slightly to an increase214

in P −E in the high latitudes of each hemisphere, including the peak increase in P −E over215

the Southern Ocean (Fig. 1d, right).216
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a

b

d

c

Figure 1. Influence of climate feedbacks on regional hydrological change. Contribution

of the (a) surface-albedo feedback, (b) relative-humidity feedback, (c) lapse-rate feedback, and (d)

shortwave and longwave cloud feedbacks to changes in zonal-mean temperature (T ′) and precipi-

tation minus evaporation (P ′ − E′). The left panel shows the (black) net feedback, (orange) net

feedback with the individual feedback removed, and (green) individual feedback. The middle panel

shows the pattern of T ′ associated with the (black) net feedback and (orange) individual feedback

removed from the net feedback. The green line represents the impact of the individual feedback

on T ′ and is found by taking the difference between the black line and the orange line. The right

panel shows same but for the pattern of P ′ − E′.
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3.2 Decomposition of regional hydrological change217

The influence of an individual feedback on P −E changes can be attributed to three terms:

(1) the P − E change due to the feedback in isolation, (2) the P − E change due to inter-

actions between the feedback and other climate feedbacks, and (3) the P − E change due

to interactions between the feedback and dry-static energy transport. The contributions of

these three terms can be identified by subtracting the equation for the MEBM with a feed-

back locked (Eq. 6) from the equation for the full MEBM (Eq. 4). Further simplification of

these terms can be found by rewriting the net feedback given by Eq. (5) as λ = λi+
∑

j 6=i λj

and using the definition of T ′i in Section 3.1. This results in

(P ′ − E′)i = −λiT ′︸︷︷︸
(1)

−
∑
j 6=i

λjT
′
i︸ ︷︷ ︸

(2)

+
(
∇ · F ′dry −∇ · F ′dry,−i

)
︸ ︷︷ ︸

(3)

. (7)

The left-hand side of Eq. (7) represents the P − E change associated with an individual218

feedback i in the feedback locking analysis. The three terms on the right hand side of Eq.219

(7) represent the P −E change associated with: (1) the individual feedback; (2) the product220

of all other feedbacks and the warming associated with the inclusion of feedback i; and (3)221

changes in the dry-static energy flux divergence induced by the inclusion of feedback i. A222

similar expression can be derived for temperature change as detailed in Beer and Eisenman223

(2022).224

Figure 2 shows the three terms in Eq. (7) for each feedback as well as the thermodynamic225

and dynamic contributions to the dry-static energy flux divergence. For the surface-albedo226

feedback, the increase in tropical P − E and shift of the ITCZ is related to the dynamical227

change in the dry-static energy flux divergence (Fig. 3a, purple line). As noted by Bonan,228

Siler, et al. (2023), the Hadley Cell mass flux change can be decomposed into changes229

associated with the poleward atmospheric energy transport and changes in gross moist230

stability. The change in poleward energy transport dominates the Hadley Cell mass flux231

change for all feedback-locking simulations (not shown). In the high latitudes, the surface-232

albedo feedback in isolation results in a large decrease in P−E that is compensated by a large233

increase in P − E from other feedbacks (dotted) and the dry-static energy flux divergence234

(dash-dot). The surface-albedo feedback contributes to strong polar amplification (Fig. 1a,235

middle) which reduces the dry-static energy flux convergence in the polar regions and is236

associated with a cooling tendency that is balanced by an increase in latent heat release237

associated with an increase in P − E.238
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a b

c d

Figure 2. Decomposition of regional hydrological change for each climate feedback.

Contribution of the (a) surface-albedo feedback, (b) relative-humidity feedback, (c) lapse-rate feed-

back, and (d) shortwave and longwave cloud feedbacks to (green) changes in zonal-mean precip-

itation minus evaporation (P ′ − E′) decomposed into three terms. Term 1 (dash) represents the

individual contribution of the feedback alone, Term 2 (dot) represents interactions with other feed-

backs, and Term 3 (dash-dot) represents dry-static energy transport changes. Term 3 (dash-dot) is

further broken up into thermodynamic (red) and dynamic (purple) components. The three green

dash/dot green lines sum to the solid green line.
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The other feedbacks also have regionally distinct patterns associated with distinct mecha-239

nisms. For the relative-humidity feedback, the increase in subtropical P−E is almost entirely240

related to the thermodynamic dry-static energy flux divergence and the relative-humidity241

feedback in isolation. For the lapse-rate feedback, every term in Eq. (7) contributes to242

the overall structure of P − E change. In the deep tropics and subtropics, the decrease in243

P − E is contributed equally by both the dynamic and thermodynamic dry-static energy244

flux divergence change. However, in the polar regions, the lapse-rate feedback in isolation245

is associated with a decrease in P − E which is somewhat compensated by an increase in246

P − E from dry-static energy flux divergence. This is also consistent with Bonan, Feldl, et247

al. (2023) who found the lapse-rate feedback is associated with a decrease in high-latitude248

precipitation. For the cloud feedback, the narrowing of the ITCZ and P −E change in the249

tropics and subtropics is almost entirely related to the dynamical change in the dry-static250

energy flux divergence. Here, the cloud feedback causes the net feedback to be much less251

negative in the deep tropics. This limits the atmosphere from radiating energy to space252

locally, and means it must transport this energy to the subtropics, where radiative loss is253

more efficient due to a strongly negative net feedback. This increase in transport requires254

an increase in the Hadley Cell mass flux and increases P − E in the deep tropics. This255

is also consistent with Merlis (2015) and Byrne and Schneider (2016), who argued local256

energetic constraints can explain large-scale Hadley circulation changes and ITCZ changes.257

Finally, in the polar regions, such as the Southern Ocean, the cloud feedback in isolation is258

associated with most of the P − E change.259

3.3 Sources of uncertainty260

The large influence of individual climate feedbacks on the pattern of P −E change suggests261

that individual feedbacks also influence the intermodel spread in P −E change. To quantify262

the contributions of individual feedbacks to the intermodel spread in P − E change, we263

run the MEBM with individual feedbacks locked for each of the 27 CMIP5 models and264

subtract the feedback-locked simulation from the full-feedback simulation as detailed in265

Section 3.1. Figure 3 shows (left) the intermodel spread of each individual feedback, (middle)266

the resulting change in (P ′ − E′)i, and (right) the fractional contribution of each feedback267

to the total feedback variance in P ′−E′. This analysis approximates that the variance from268

each feedback linearly sums such that the fractional contribution of all feedbacks sums to269

one.270

–13–



manuscript submitted to Geophysical Research Letters

a

b

d

c

Figure 3. Contribution of climate feedbacks to the intermodel spread in regional

hydrological change. The left panel shows the (a) surface-albedo feedback, (b) relative-humidity

feedback, (c) lapse-rate feedback, and (d) shortwave and longwave cloud feedbacks for 27 CMIP5

models. The middle panel shows the zonal profile of P ′ − E′ associated with each feedback (a-e).

The light colored lines denote individual climate models and the dark lines denote the multi-model

mean. The right panel shows the fractional contribution of each feedback to the total uncertainty

in P − E change for these four feedbacks.
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Overall, each feedback contributes substantially to the intermodel spread in regional P −E271

change. The surface-albedo feedback, despite being confined mainly to the polar regions,272

contributes to tropical and subtropical uncertainty in P − E change, accounting for 10 –273

20% of the total intermodel variance for these four feedbacks (Fig. 3a, right). However, the274

influence of the intermodel variations in the surface-albedo feedback on P − E change is275

confined mainly to the polar regions, accounting for 20-35% of the total variance for these276

four feedbacks. The relative-humidity feedback contributes nearly uniform uncertainty with277

some larger influence in the subtropical regions (Fig. 3b, right). Intermodel variations in278

the lapse-rate feedback lead to large intermodel variations in P − E change in the deep279

tropics, subtropics, and high-latitude regions. In the polar regions, the surface-albedo and280

lapse-rate feedback combined contribute to approximately 60% of the total variance for these281

four feedbacks (Fig. 3a-c). However, intermodel variations in the cloud feedback dominate282

uncertainty in P −E change, contributing approximately 60% of the total variance for these283

four feedbacks globally (Fig. 3d). And at some latitudes, the cloud feedback contributes284

more than 70% of the total variance for these four feedbacks in P − E change.285

3.4 GCM and MEBM comparison286

Our feedback locking approach allowed us to isolate the impact of individual feedback pro-287

cesses on regional hydrological changes within the MEBM. However, because the MEBM288

does not allow for the feedbacks to influence each other, it is worth considering the extent to289

which its results hold within comprehensive climate models. Numerous studies have locked290

cloud, surface-albedo, and water-vapor feedbacks in coupled climate models (Hall, 2004;291

Graversen & Wang, 2009; Langen et al., 2012; Middlemas et al., 2020; Chalmers et al.,292

2022). These studies have all found that when one feedback is locked other components of293

the climate system change, suggesting the MEBM might be too simple to quantify the in-294

fluence of feedbacks on P −E change. To assess the limitation of the MEBM framework we295

compare the cloud feedback locking experiments in the MEBM with cloud feedback locking296

experiments in CESM1-CAM5, using the simulations from Chalmers et al. (2022).297

The left panel of Figure 4a shows the CESM1 net radiative feedback from the standard298

abrupt2xCO2 simulation (black line) and abrupt2xCO2 simulation with locked cloud ra-299

diative effects (orange line). With cloud-locking, the net feedback becomes more negative300

at most latitudes except in the Southern Ocean (orange line, left panel, Fig. 4a). The301

zonal-mean temperature change from the cloud-locked abrupt2xCO2 simulation is less at302
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all latitudes, particularly in the Arctic, when compared to the normal abrupt2xCO2 simu-303

lation (compare black and orange line, middle panel, Fig. 4a). Thus, the radiative effects of304

clouds results in warming at all latitudes with stronger Arctic warming (green line, middle305

panel, Fig. 4a). The P − E change, however, is quite distinct with and without cloud306

locking. With cloud-locking, there is a large decrease in P −E near the southern edge of the307

ITCZ and large decreases in P − E in the extratropics of each hemisphere when compared308

to the normal abrupt2xCO2 simulation (compare black and orange line, right panel, Fig.309

4a). This suggests cloud radiative effects act to increase P −E at the southern edge of the310

ITCZ and in the extratropics of each hemisphere, and decrease P −E at the northern edge311

of the ITCZ (green line, right panel, Fig. 4a).312

Locking cloud feedbacks and then doubling CO2 results in a similar net feedback pattern313

to doubling CO2 and removing the net cloud feedback diagnosed from the simulation with314

interactive clouds (compare orange line, Fig. 4a-b, left). Note that the feedback patterns315

differ slightly in the Southern Hemisphere subtropics. However, despite similarity in the net316

radiative feedback, the MEBM patterns of T ′ and P ′ − E′ are slightly different from the317

GCM-based results (compare orange lines, Fig. 4a-b, middle/right). For T ′, when the cloud318

feedback is removed, the MEBM predicts less warming, similar to CESM1, but does not319

simulate the correct magnitude of Arctic warming. For P ′ − E′, when the cloud feedback320

is removed, the MEBM correctly simulates the decrease in P − E in the extratropics of321

each hemisphere but fails to simulate the shift in tropical P − E. A possible reason for322

these discrepancies comes from the fact that G′ and Rf also change in the CESM1-based323

cloud-locking simulation, resulting in slightly less Northern Hemisphere ocean heat uptake324

and weaker radiative forcing (see Figure S5). When the patterns of G′, Rf , and λ from the325

cloud-locked abrupt2xCO2 simulation are prescribed, the MEBM more correctly simulates326

the zonal-mean pattern of T ′ and P ′−E′ change (green dotted line Fig. 4b, middle/right).327

In summary, the MEBM-based feedback locking approximates the CESM1-based feedback328

locking well in the extratropics, but less well in the tropics. However, the MEBM still pre-329

dicts the correct tropical hydrological change when the patterns of G′ and Rf are included,330

which is consistent with the requirements from atmospheric energy transport changes. Over-331

all, we conclude that the principle of down-gradient energy transport by the atmosphere pro-332

vides valuable intuition for how climate feedbacks influence regional hydrological change.333
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a

b

Figure 4. Feedback locking in a GCM and a MEBM. (a) The zonal-mean profile of (left)

λ, (middle) T ′, and (right) P ′ − E′ averaged 100 − 150 years after the abrupt2xCO2 in the GCM.

The black line denotes the total change and the orange line denotes the change when the cloud

radiative effect has been disabled (see Section 2.3). The green line represents the impact of the

cloud radiative feedback and is found by taking the difference between the black and orange line.

(b) The zonal-mean profiles as in (a) but from a MEBM where the cloud radiative feedback was

locked retroactively. The black line denotes the total change and the orange line denotes the change

when the net cloud feedback is removed. The green line in the left panel of (b) represents the net

cloud feedback diagnosed from the simulation with interactive clouds. The green dotted lines in

(b) denote the MEBM solutions for T ′ and P ′−E′ with λ, G′, and Rf from the cloud-locked GCM

simulation.
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4 Discussion and conclusions334

In this study, we examined how radiative feedbacks influence the response of zonal-mean335

P −E to global warming by explicitly accounting for interactions among feedbacks and at-336

mospheric energy transport in a MEBM with a Hadley Cell parameterization. We systemat-337

ically locked individual radiative feedbacks in the MEBM and showed how each feedback can338

substantially modulate the so-called “wet-gets-wetter, dry-get-drier” paradigm commonly339

applied to understanding the response of P − E to greenhouse-gas forcing.340

Overall, P−E change in the tropics and subtropics is influenced by changes in the dry-static341

energy flux divergence, while P−E change in the polar regions is influenced by both changes342

in the dry-static energy flux divergence and radiative feedbacks — consistent with Bonan,343

Feldl, et al. (2023). However, the contribution of radiative feedbacks to regional P − E344

change is more nuanced than previously thought, as radiative feedbacks can significantly345

alter dry-static energy transport and thus indirectly influence regional P − E change (see346

Eq. 7). For example, we found that the surface-albedo feedback can shift the location of347

maximum tropical P − E change by changing the Hadley circulation. We also found that348

the cloud feedback acts to narrow bands of tropical P − E and increase tropical P − E by349

causing an export of energy from the deep tropics. This causes the Hadley Cell mass flux350

to increase and P − E in the deep tropics to increase via increased equatorward moisture351

transport. Finally, we showed that the lapse-rate feedback contributes to a decrease in P−E352

in the polar regions, which is similar to the thermodynamic contributions described in Siler353

et al. (2023) and the energy budget analysis described in Bonan, Feldl, et al. (2023).354

While we showed that radiative feedbacks strongly influence the spatial pattern of P − E355

change, our study has an important caveat: the radiative feedbacks in the MEBM cannot356

influence other components such as G′ or Rf . It is clear that this assumption affects sub-357

tropical and tropical P −E change associated with the net cloud feedback. When compared358

to the cloud-locked GCM (CESM1), the MEBM with a cloud feedback removed does not359

capture the full shift of the ITCZ. But when the MEBM also contains the cloud-locked pat-360

terns of G′ and Rf , the structure of P −E change aligns much better with the GCM. While361

the MEBM accounts for interactions across the radiative responses of the feedbacks (Term362

2, Eq. 7), it does not include changes in the feedback processes themselves or interactions363

with G′ or Rf . Including the ability for other components to change when an individual364

feedback is locked might better align the MEBM with GCM-based result. Nonetheless, the365
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fact the MEBM largely replicates the P ′−E′ pattern of the cloud-locked GCM simulation,366

particularly in the extratropics, suggests downgradient energy transport can provide valu-367

able intuition for understanding how radiative feedbacks influence the patterns of climate368

change.369

Overall, these results demonstrate how the spatial structure of radiative feedbacks influence370

zonal-mean P − E change and can cause significant deviations from the “wet-gets-wetter,371

dry-gets-drier” thermodynamic paradigm. Key results from this analysis are that under372

greenhouse-gas forcing, cloud feedbacks act to narrow the ITCZ and increase P − E in the373

deep tropics, and the surface-albedo feedback acts to shift the ITCZ and increase P −E in374

the polar regions. We further find that cloud feedbacks dominate feedback uncertainty in375

P−E change for most regions, except in the polar regions where the surface-albedo feedback376

and lapse-rate feedbacks dominate feedback uncertainty in P − E change.377

Acknowledgments378

The authors thank Emma Beer and Matt Luongo for helpful comments that improved this379

research. D.B.B was supported by was supported the National Science Foundation (NSF)380

Graduate Research Fellowship Program (NSF Grant DGE1745301). N.F. was supported381

by NSF Grant AGS-1753034, N.S. was supported by NSF Grant AGS-1954663. J.E.K was382

supported by the University of Colorado. K.C.A and G.H.R. were supported by NSF Grant383

AGS-2019647. I.E. was supported by NSF Grant OCE-2048590.384

Open Research385

The authors thank the climate modeling groups for producing and making available their386

model output, which is accessible at the Earth System Grid Federation (ESGF) Portal387

(https://esgf-node.llnl.gov/search/cmip5/). A list of the CMIP5 models used in this study388

is provided in Table S1. The processed model output and code for the moist energy balance389

model is available at https://github.com/dbonan/energy-balance-models and will be made390

publicly available on Zenodo upon acceptance of this manuscript.391

References392

Anderson, B. T., Feldl, N., & Lintner, B. R. (2018). Emergent behavior of Arctic pre-393

cipitation in response to enhanced Arctic warming. Journal of Geophysical Research:394

Atmospheres, 123 (5), 2704–2717.395

–19–



manuscript submitted to Geophysical Research Letters

Armour, K. C., Siler, N., Donohoe, A., & Roe, G. H. (2019). Meridional atmospheric heat396

transport constrained by energetics and mediated by large-scale diffusion. Journal of397

Climate, 32 (12), 3655–3680.398

Beer, E., & Eisenman, I. (2022). Revisiting the role of the water vapor and lapse rate399

feedbacks in the Arctic amplification of climate change. Journal of Climate, 35 (10),400

2975–2988.401

Bonan, D. B., Armour, K., Roe, G., Siler, N., & Feldl, N. (2018). Sources of uncertainty402

in the meridional pattern of climate change. Geophysical Research Letters, 45 (17),403

9131–9140.404

Bonan, D. B., Feldl, N., Zelinka, M. D., & Hahn, L. C. (2023). Contributions to regional405

precipitation change and its polar-amplified pattern under warming. Environmental406

Research: Climate, 2 (3), 035010.407

Bonan, D. B., Siler, N., Roe, G., & Armour, K. (2023). Energetic constraints on the pattern408

of changes to the hydrological cycle under global warming. Journal of Climate, 36 (10),409

3499–3522.410

Byrne, M. P., & Schneider, T. (2016). Narrowing of the ITCZ in a warming climate:411

Physical mechanisms. Geophysical Research Letters, 43 (21), 11–350.412

Chalmers, J., Kay, J. E., Middlemas, E. A., Maroon, E. A., & DiNezio, P. (2022). Does dis-413

abling cloud radiative feedbacks change spatial patterns of surface greenhouse warming414

and cooling? Journal of Climate, 35 (6), 1787–1807.415

Charney, J. G., Arakawa, A., Baker, D. J., Bolin, B., Dickinson, R. E., Goody, R. M., . . .416

Wunsch, C. I. (1979). Carbon dioxide and climate: a scientific assessment. National417

Academy of Sciences, Washington, DC.418

Chiang, J. C., & Bitz, C. M. (2005). Influence of high latitude ice cover on the marine419

Intertropical Convergence Zone. Climate Dynamics, 25 (5), 477–496.420

Dufresne, J.-L., & Bony, S. (2008). An assessment of the primary sources of spread of421

global warming estimates from coupled atmosphere–ocean models. Journal of Climate,422

21 (19), 5135–5144.423

Feldl, N., Bordoni, S., & Merlis, T. M. (2017). Coupled high-latitude climate feedbacks and424

their impact on atmospheric heat transport. Journal of Climate, 30 (1), 189–201.425

Feldl, N., Po-Chedley, S., Singh, H. K., Hay, S., & Kushner, P. J. (2020). Sea ice and426

atmospheric circulation shape the high-latitude lapse rate feedback. NPJ climate and427

atmospheric science, 3 (1), 1–9.428

–20–



manuscript submitted to Geophysical Research Letters

Flannery, B. P. (1984). Energy balance models incorporating transport of thermal and429

latent energy. Journal of the Atmospheric Sciences, 41 (3), 414–421.430

Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., . . .431

others (2018). Quantifying climate feedbacks in polar regions. Nature communications,432

9 (1), 1919.433

Graversen, R. G., & Wang, M. (2009). Polar amplification in a coupled climate model with434

locked albedo. Climate Dynamics, 33 , 629–643.435

Gregory, J., Ingram, W., Palmer, M., Jones, G., Stott, P., Thorpe, R., . . . Williams, K.436

(2004). A new method for diagnosing radiative forcing and climate sensitivity. Geo-437

physical research letters, 31 (3).438

Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M., & Donohoe, A. (2021). Con-439

tributions to polar amplification in CMIP5 and CMIP6 models. Frontiers in Earth440

Science, 9 , 710036.441

Hall, A. (2004). The role of surface albedo feedback in climate. Journal of climate, 17 (7),442

1550–1568.443

Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., . . . Lerner, J. (1984).444

Climate sensitivity: Analysis of feedback mechanisms. Climate processes and climate445

sensitivity , 29 , 130–163.446

Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G., . . . others (2005).447

Efficacy of climate forcings. Journal of geophysical research: atmospheres, 110 (D18).448

Held, I. M., & Shell, K. M. (2012). Using relative humidity as a state variable in climate449

feedback analysis. Journal of Climate, 25 (8), 2578–2582.450

Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global451

warming. Journal of climate, 19 (21), 5686–5699.452

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., . . . others453

(2013). The community earth system model: a framework for collaborative research.454

Bulletin of the American Meteorological Society , 94 (9), 1339–1360.455

Hwang, Y.-T., & Frierson, D. M. (2010). Increasing atmospheric poleward energy transport456

with global warming. Geophysical Research Letters, 37 (24).457

Hwang, Y.-T., & Frierson, D. M. (2013). Link between the double-Intertropical Convergence458

Zone problem and cloud biases over the Southern Ocean. Proceedings of the National459

Academy of Sciences, 110 (13), 4935–4940.460

Hwang, Y.-T., Frierson, D. M., & Kay, J. E. (2011). Coupling between Arctic feedbacks461

–21–



manuscript submitted to Geophysical Research Letters

and changes in poleward energy transport. Geophysical Research Letters, 38 (17).462

Langen, P. L., Graversen, R. G., & Mauritsen, T. (2012). Separation of contributions from463

radiative feedbacks to polar amplification on an aquaplanet. Journal of climate, 25 (8),464

3010–3024.465

Merlis, T. M. (2015). Direct weakening of tropical circulations from masked co2 radiative466

forcing. Proceedings of the National Academy of Sciences, 112 (43), 13167–13171.467

Middlemas, E., Kay, J., Medeiros, B., & Maroon, E. (2020). Quantifying the influence of468

cloud radiative feedbacks on Arctic surface warming using cloud locking in an Earth469

system model. Geophysical Research Letters, 47 (15), e2020GL089207.470

Muller, C. J., & O’Gorman, P. (2011). An energetic perspective on the regional response471

of precipitation to climate change. Nature Climate Change, 1 (5), 266–271.472

Pendergrass, A. G., Conley, A., & Vitt, F. M. (2018). Surface and top-of-atmosphere473

radiative feedback kernels for CESM-CAM5. Earth System Science Data, 10 (1), 317–474

324.475

Peterson, H. G., & Boos, W. R. (2020). Feedbacks and eddy diffusivity in an energy balance476

model of tropical rainfall shifts. npj Climate and Atmospheric Science, 3 (1), 11.477

Pithan, F., & Jung, T. (2021). Arctic amplification of precipitation changes—The energy478

hypothesis. Geophysical Research Letters, 48 (21), e2021GL094977.479

Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature feed-480

backs in contemporary climate models. Nature geoscience, 7 (3), 181–184.481

Roe, G. H., & Baker, M. B. (2007). Why is climate sensitivity so unpredictable? Science,482

318 (5850), 629–632.483

Roe, G. H., Feldl, N., Armour, K. C., Hwang, Y.-T., & Frierson, D. M. (2015). The remote484

impacts of climate feedbacks on regional climate predictability. Nature Geoscience,485

8 (2), 135–139.486

Shell, K. M., Kiehl, J. T., & Shields, C. A. (2008). Using the radiative kernel technique to487

calculate climate feedbacks in NCAR’s Community Atmospheric Model. Journal of488

Climate, 21 (10), 2269–2282.489

Siler, N., Bonan, D. B., & Donohoe, A. (2023). Diagnosing mechanisms of hydrologic change490

under global warming in the CESM1 Large Ensemble. Journal of Climate.491

Siler, N., Roe, G. H., & Armour, K. C. (2018). Insights into the zonal-mean response of the492

hydrologic cycle to global warming from a diffusive energy balance model. Journal of493

Climate, 31 (18), 7481–7493.494

–22–



manuscript submitted to Geophysical Research Letters

Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., . . . others495

(2020). Effective radiative forcing and adjustments in CMIP6 models. Atmospheric496

Chemistry and Physics, 20 (16), 9591–9618.497

Soden, B. J., & Held, I. M. (2006). An assessment of climate feedbacks in coupled ocean–498

atmosphere models. Journal of climate, 19 (14), 3354–3360.499

Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., & Shields, C. A. (2008).500

Quantifying climate feedbacks using radiative kernels. Journal of Climate, 21 (14),501

3504–3520.502

Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M., Xie, S.-P., . . .503

others (2018). Polar amplification dominated by local forcing and feedbacks. Nature504

Climate Change, 8 (12), 1076–1081.505

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the506

experiment design. Bulletin of the American meteorological Society , 93 (4), 485–498.507

Webb, M. J., Lambert, F. H., & Gregory, J. M. (2013). Origins of differences in climate508

sensitivity, forcing and feedback in climate models. Climate Dynamics, 40 , 677–707.509

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P.,510

. . . Taylor, K. E. (2020). Causes of higher climate sensitivity in CMIP6 models.511

Geophysical Research Letters, 47 (1), e2019GL085782.512

–23–



manuscript submitted to Geophysical Research Letters

The influence of climate feedbacks on regional1

hydrological changes under global warming2

David B. Bonan1, Nicole Feldl2, Nicholas Siler3, Jennifer E. Kay4,5, Kyle C.3

Armour6,7, Ian Eisenman8, Gerard H. Roe9
4

1Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA5

2Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, USA6

3College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA7

4Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA8

5Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA9

6Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA10

7School of Oceanography, University of Washington, Seattle, WA, USA11

8Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA12

9Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA13

Key Points:14

• A moist energy balance model (MEBM) is used to investigate the influence of climate15

feedbacks on regional hydrological change under warming.16

• Cloud feedbacks act to narrow and increase tropical P − E and are the dominant17

source of feedback uncertainty in regional hydrological changes.18

• The MEBM with locked cloud feedbacks largely replicates a climate model with in-19

active cloud feedbacks.20
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Abstract21

The influence of climate feedbacks on regional hydrological changes under warming is poorly22

understood. Here, a moist energy balance model (MEBM) with a Hadley Cell parame-23

terization is used to isolate the influence of climate feedbacks on changes in zonal-mean24

precipitation-minus-evaporation (P − E) under greenhouse-gas forcing. It is shown that25

cloud feedbacks act to narrow bands of tropical P − E and increase P − E in the deep26

tropics. The surface-albedo feedback shifts the location of maximum tropical P − E and27

increases P −E in the polar regions. The intermodel spread in the P −E changes associated28

with feedbacks arises mainly from cloud feedbacks, with the lapse-rate and surface-albedo29

feedbacks playing important roles in the polar regions. The P − E change associated with30

cloud feedback locking in the MEBM is similar to that of a climate model with inactive31

cloud feedbacks. This work highlights the unique role that climate feedbacks play in caus-32

ing deviations from the “wet-gets-wetter, dry-gets-drier” paradigm.33

Plain Language Summary34

Climate feedbacks, which act to amplify or dampen global warming, play an important role35

in shaping how the climate system responds to changes in greenhouse-gas concentrations.36

Here, we use an idealized climate model, which makes a simplified assumption about how37

energy is transported in the atmosphere, to examine how climate feedbacks influence the38

patterns of precipitation and evaporation change under global warming. We find that cloud39

feedbacks act to narrow the band of rainfall on the equator known as the Intertropical Con-40

vergence Zone and that the surface-albedo feedback acts to shift the location of maximum41

rainfall. We also find that cloud feedbacks account for most of the uncertainty associated42

with feedbacks in regional hydrological change under warming. The idealized model with43

locked cloud feedbacks also simulates a change in precipitation and evaporation that is44

similar to a comprehensive climate model with no cloud feedbacks.45
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1 Introduction46

Climate feedbacks, which govern the top-of-atmosphere (TOA) radiative response to surface47

warming, have long been known to play a central role in shaping the climate response to48

forcing (e.g., Charney et al., 1979; Hansen et al., 1984). In recent years, climate feedbacks49

have been used to explain why climate models, when subject to increases in greenhouse-50

gas concentrations, exhibit a large intermodel spread in global-mean surface temperature51

change (Soden & Held, 2006; Roe & Baker, 2007; Dufresne & Bony, 2008; Webb et al.,52

2013; Zelinka et al., 2020) and in other features, such as Arctic amplification (Pithan &53

Mauritsen, 2014; Roe et al., 2015; Stuecker et al., 2018; Bonan et al., 2018; Goosse et al.,54

2018; Hahn et al., 2021; Beer & Eisenman, 2022). It is argued that cloud feedbacks are the55

dominant contributor to uncertainty in warming at both regional (e.g., Bonan et al., 2018)56

and global (e.g., Soden & Held, 2006; Dufresne & Bony, 2008; Zelinka et al., 2020) scales.57

While it is clear that climate feedbacks exert a strong influence on surface temperature58

change, it is less clear what influence they have on other components of the climate sys-59

tem, such as regional hydrological changes. Recent studies have linked regional hydrological60

changes to the atmospheric energy budget and climate feedbacks (Muller & O’Gorman,61

2011; Anderson et al., 2018; Pithan & Jung, 2021; Bonan, Feldl, et al., 2023). These studies62

have found that dry-static energy transport shapes hydrological change in the tropics and63

that both dry-static energy transport and radiation together shape hydrological change in64

the polar regions. Bonan, Feldl, et al. (2023) further examined how radiative (or climate)65

feedbacks shape the pattern of precipitation change and found that in the polar regions, the66

Planck feedback exerts a strong control on atmospheric radiative cooling and thus precipi-67

tation increases. However, such diagnostic approaches hinder inference about how radiative68

processes in one region affect the hydrological response in another. Quantifying the in-69

fluence of radiative feedbacks on regional hydrological change requires using a framework70

that enables feedbacks and atmospheric energy transport to interact with each other across71

latitudes.72

Several recent studies have shown that regional hydrological changes can be understood73

through the lens of downgradient atmospheric energy transport, which provides a frame-74

work for quantifying the role of local and nonlocal radiative processes (Siler et al., 2018;75

Armour et al., 2019; Bonan, Siler, et al., 2023). Siler et al. (2018) used a moist energy76

balance model (MEBM) to connect the change in precipitation-minus-evaporation (P −E)77
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to downgradient atmospheric energy transport and showed that this perspective improved78

on the “wet-gets-wetter, dry-gets-drier” thermodynamic scaling of Held and Soden (2006).79

Additional MEBM-based work by Bonan, Siler, et al. (2023) showed that the pattern of80

radiative feedbacks places a strong energetic constraint on the atmosphere and can signif-81

icantly alter the pattern of P − E change. A less-negative net radiative feedback in the82

tropics results in a larger increase in tropical P −E because the atmosphere cannot radiate83

sufficient energy away locally and must export energy to regions where radiative energy loss84

is more efficient (such as the subtropics). This increased energy export requires an increase85

in the strength of the Hadley circulation in the deep tropics and thus causes an increase in86

tropical P −E via increased equator-ward moisture transport. However, it is unclear which87

radiative feedbacks are most responsible for causing changes to the Hadley circulation and88

thus the pattern of tropical P −E. It also unclear how radiative feedbacks influence P −E89

change in other regions, such as the extratropics, where feedbacks and atmospheric energy90

transport are tightly coupled (Hwang & Frierson, 2010; Hwang et al., 2011; Feldl et al.,91

2017). This leads to a key question: how do individual climate feedbacks influence the92

response of regional P − E to warming?93

The purpose of this paper is to investigate how individual radiative feedbacks modulate94

the response of zonal-mean P − E to global warming. To do this, we use a MEBM with a95

Hadley Cell parameterization and output from climate models participating in Phase 5 of the96

Coupled Model Inter-comparison Project (CMIP5; Taylor et al., 2012). Our work combines97

the energetic perspective on regional precipitation change from Muller and O’Gorman (2011)98

with the energy transport perspective on regional hydrological changes from Siler et al.99

(2018) using a feedback-locking approach similar to Beer and Eisenman (2022). In what100

follows, we first describe the MEBM. We then remove individual radiative feedbacks in the101

MEBM and examine the influence of each on zonal-mean P − E change. Our work shows102

that individual climate feedbacks can substantially modulate the “wet-gets-wetter, dry-gets-103

drier” paradigm that is commonly applied to understanding P−E change under greenhouse-104

gas forcing via changes in atmospheric energy transport and feedback interactions. Finally,105

we compare feedback locking in the MEBM to feedback locking in a comprehensive climate106

model.107
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2 Methods108

2.1 Moist energy balance model (MEBM)109

We simulate the change in zonal-mean near-surface air temperature T ′ and P ′ −E′ using a

MEBM, which has been shown to accurately simulate patterns of temperature and hydro-

logical change under greenhouse-gas forcing (e.g., Flannery, 1984; Hwang & Frierson, 2010;

Roe et al., 2015; Bonan et al., 2018; Siler et al., 2018; Armour et al., 2019; Peterson & Boos,

2020). The MEBM assumes that the change in poleward atmospheric energy transport F ′

is proportional to the change in the meridional gradient of near-surface moist static energy

h′ = cpT
′+Lvq

′, where cp is the specific heat of air (1005 J kg−1 K−1), Lv is the latent heat

of vaporization (2.5 × 106 J kg−1), and q′ is the change in near-surface specific humidity

(assuming fixed relative humidity of 80%). This gives

F ′ =
2πps
g

D
(
1− x2

) dh′
dx

, (1)

where ps is surface air pressure (1000 hPa), g is the acceleration due to gravity (9.81 m s−2),110

D is a constant diffusion coefficient (with units of m2 s−1), x is the sine of the latitude, and111

1− x2 accounts for the spherical geometry.112

Under warming, the change in annual-mean net heating of the atmosphere must be balanced

by the divergence of F ′. We define Rf as the local TOA radiative forcing; λ as the local net

radiative feedback, meaning the change in the net TOA radiative flux per degree of local

surface warming (W m−2 K−1); and G′ as the change in net surface heat flux or ocean heat

uptake. Combining these three terms with the divergence of Eq. (1) gives

Rf + λT ′ −G′ = ∇ · F ′, (2)

which is a single differential equation that can be solved numerically for T ′ and F ′ given113

zonal-mean profiles of Rf , G′, and λ and a value (or zonal-mean profile) of D. Figure S1114

shows the zonal-mean pattern of T ′ from each CMIP5 model and MEBM solution. We115

set D = 1.02 × 106 m2 s−1 for the multi-model mean analysis, which is the multi-model116

mean value from pre-industrial control (piControl) simulations (see Section 2.2). For the117

individual model analyses, D is unique to each climate model. The supporting information118

provides more detail as to how D is calculated.119

Following Siler et al. (2018), we simulate the change in poleward latent energy transport

F ′latent as the sum of two components that represent transport by the Hadley Cells and

transport by midlatitude eddies. To correctly simulate equator-ward latent energy transport
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in the tropics, we use a simple Hadley Cell parameterization to approximate the Hadley

Cell mass flux ψ (kg s−1). The strength of ψ is found by partitioning poleward atmospheric

energy transport into a component due to midlatitude eddies and a component due to

the Hadley Cell using a Gaussian weighting function w and energetic constraints on gross

moist stability (see Siler et al. (2018) and the supporting information for more details). For

the midlatitude eddies, latent energy transport is parameterized as downgradient diffusion

modulated by w. The total change in poleward latent energy transport is thus

F ′latent = −
(
ψ′Lvq + ψLvq

′ + ψ′Lvq
′)︸ ︷︷ ︸

Hadley Cells

− (1− w)
2πps
g

LvD
(
1− x2

) dq′
dx︸ ︷︷ ︸

Eddies

, (3)

where (·) denotes the climatological control state and (·)′ denotes the change under warming.

The supporting information details how the climatological state of each climate model is

approximated with the MEBM. The zonal-mean pattern of P ′ −E′ can be found by taking

the divergence of Eq. (3) and is shown for each climate model in Figure S2. Combining the

divergence of Eq. (3) with Eq. (2) and rearranging gives

P ′ − E′ = G′ −Rf − λT ′ +∇ · F ′dry, (4)

where ∇ · F ′dry is the change in dry-static energy flux divergence and can be found as the120

residual between the atmospheric energy flux divergence and the latent energy flux diver-121

gence. The dry-static energy transport can be further decomposed into a thermodynamic122

term and a dynamic term, where the dynamic term accounts for changes in the Hadley circu-123

lation. Eq. (4) relates zonal-mean P −E change directly to the atmospheric energy budget124

in the spirit of Muller and O’Gorman (2011), except now the representation of ocean heat125

uptake is explicit because Eq. (2) represents TOA radiative feedbacks and radiative forcing.126

Crucially, in this framework, the zonal-mean pattern of P ′ − E′ can change depending on127

the zonal-mean pattern of Rf , G′, λ, and T ′ both through local energetic constraints and128

nonlocal changes in atmospheric energy transport and feedback interactions.129

2.2 CMIP5 output130

In this study, we use monthly-mean output from 27 CMIP5 models (see Table S1 for more131

information). We use the r1i1p1 ensemble from the piControl and abrupt CO2 quadrupling132

(abrupt4xCO2) simulations and calculate time-averaged anomalies for years 120 – 150 in133

the abrupt4xCO2 simulations relative to the concurrent piControl climatology.134

–6–



manuscript submitted to Geophysical Research Letters

We use zonal-mean patterns of λ from Feldl et al. (2020), which were calculated using the135

radiative-kernel method (Soden & Held, 2006; Soden et al., 2008; Shell et al., 2008) with136

CESM1-CAM5 radiative kernels (Pendergrass et al., 2018). The feedbacks are presented here137

using the decomposition described by Held and Shell (2012) which includes the water vapor138

changes that occur at constant relative humidity in the lapse rate and Planck feedbacks, and139

a separate relative-humidity feedback associated with changes in relative humidity. Each140

feedback is found by taking the difference in the climate variable between the piControl and141

abrupt4xCO2 simulations and multiplying the variable by the respective radiative kernel.142

We calculate the zonal-mean pattern of Rf as the y-intercept of the regression between TOA143

radiation anomalies at each grid point against the global-mean near-surface temperature144

anomalies for the first 20 years after abrupt4xCO2 (Gregory et al., 2004). Smith et al.145

(2020) noted that this 20-year regression produces radiative forcing values that closely match146

methods using fixed sea-surface temperatures (Hansen et al., 2005). Finally, we calculate147

the zonal-mean pattern of G′ as anomalies in the net surface heat flux. Figure S3 shows the148

zonal-mean profiles of λ, Rf , and G′ for each climate model.149

2.3 Global climate model (GCM) experiments150

We analyze a set of locked cloud feedback simulations from Chalmers et al. (2022) using the151

CESM1-CAM5 (Hurrell et al., 2013). Two pairs of simulations are used. In the first pair,152

CO2 concentrations are abruptly doubled (abrupt2xCO2) from the 1850 piControl levels153

and held constant for 150 years. The second pair of simulations are a repeat of the first pair154

but with cloud radiative feedbacks disabled (Middlemas et al., 2020; Chalmers et al., 2022).155

Cloud feedbacks are disabled by prescribing cloud radiative properties from a neutral El156

Niño/Southern Oscillation preindustrial year in the atmospheric model radiation calcula-157

tions, while leaving the rest of the climate system to freely evolve. Note that differences from158

the piControl simulations also account for cloud-locked versus free-running simulations.159

For each variable, we compute climatological averages from the years 100 – 150 of each160

abrupt2xCO2 simulation and compare this to the concurrent piControl climatology. The161

zonal-mean patterns of λ and G′ are calculated using a similar procedure as described above.162

However, the zonal-mean pattern of Rf is calculated from abrupt2xCO2 simulations under163

fixed-SST conditions (Smith et al., 2020).164
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3 Influence of climate feedbacks on regional hydrological change165

We begin by examining the influence of individual feedbacks on regional P − E change166

by systematically locking each in the MEBM. Below, we describe the process of feedback167

locking in the MEBM. While the contribution of radiative feedbacks to regional P −E can168

be inferred directly from an atmospheric energy budget (e.g., Bonan, Feldl, et al., 2023),169

such diagnostic approaches miss interactions between feedbacks and atmospheric energy170

transport (e.g., Beer & Eisenman, 2022). The feedback locking approach alleviates these171

concerns by turning off individual feedbacks and allowing the climate system to adjust,172

thus quantifying the full influence of a particular feedback. This approach also allows us173

to improve on Muller and O’Gorman (2011) and examine how radiative feedbacks affect174

dry-static energy transport and thus indirectly affect regional P − E change.175

3.1 Feedback locking176

The net feedback λ is the sum of individual feedbacks

λ =
∑
i

λi, (5)

where i is the index of the individual feedback. To lock each feedback, we replace λ with

λ−λi in the MEBM. We refer to the resulting pattern of T ′ as T ′−i and P ′−E′ as (P ′ − E′)−i.

Similarly, because the locked feedback simulation also results in a change in atmospheric

energy transport, we refer to the resulting change in atmospheric energy transport as F ′−i

or F ′dry,−i and F ′latent,−i for the dry-static and latent energy transport changes, respectively.

With these terms, the hydrological component of the MEBM when a feedback is locked can

be written as

(P ′ − E′)−i = G′ −Rf − (λ− λi)T ′−i +∇ · F ′dry,−i. (6)

The pattern of T ′ and P ′−E′ attributed to each feedback process in this approach, T ′i and177

(P ′ − E′)i, can be found by taking the difference between the MEBM with all feedbacks178

active (Eq. 4) and the MEBM with an individual feedback locked (Eq. 6) as T ′i ≡ T ′ − T ′−i179

and (P ′ − E′)i ≡ (P ′ − E′) − (P ′ − E′)−i. A similar procedure can be done to isolate the180

influence of G′ and Rf on T ′ and P ′ − E′. Figure S4 shows how each term in Eq. (2)181

contributes to the pattern of T ′ and P ′ − E′. For the remainder of the analysis, we focus182

on the surface-albedo, relative-humidity, lapse-rate, and net cloud feedbacks. We do not183

analyze the Planck feedback as removing it from the MEBM causes stability issues but184
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note that Bonan, Feldl, et al. (2023) found the Planck feedback exerts a strong influence on185

regional precipitation change in the high-latitudes.186

Figure 1 shows the impact of removing each (left) individual feedback on (middle) zonal-187

mean T ′ and (right) zonal-mean P ′ − E′. Overall, the influence of each feedback on zonal-188

mean T ′ and P ′ − E′ is regionally distinct. When the surface-albedo feedback is removed,189

warming in both the Arctic and Antarctic is substantially reduced and warming in the190

subtropics and deep tropics is approximately the same (Fig. 1a, middle). In contrast, the191

P − E changes associated with the surface-albedo feedback has similar magnitudes in the192

tropics and polar regions (Fig. 1a, right). There is also a shift in tropical P ′ − E′ with193

increasing P − E around 10°N and decreasing P − E around 10°S. This is consistent with194

high-latitude albedo changes resulting in meridional shifts in the location of the ITCZ (e.g.,195

Chiang & Bitz, 2005). The relative-humidity feedback contributes to global cooling that is196

nearly-uniform in latitude (Fig. 1b, middle). The resulting zonal-mean pattern of P ′ − E′197

results in dry regions (like the subtropics) getting slightly wetter and wet regions (like the198

extratropics) getting slightly drier, though the magnitude is quite weak, with the P − E199

change being approximately 0.05 mm day−1 (Fig. 1b, right).200

The impact of removing other feedbacks on T ′ and P ′−E′ is even more striking. The lapse-201

rate feedback contributes to a small amount of surface warming in the Arctic and surface202

cooling at most other latitudes (Fig. 1c, middle). The P − E change associated with the203

lapse-rate feedback also results in dry regions (like the subtropics) getting slightly wetter204

and wet regions (like the extratropics) getting slightly drier (Fig. 1c, right). Notably, the205

lapse-rate feedback modulates the amplitude of the hydrological cycle largely through its206

control on global-mean warming (Fig. 1c, middle). The cloud feedback, on the other hand,207

contributes to warming everywhere of approximately 1°C, except for in the Antarctic, where208

it contributes to slight cooling of approximately 0.5°C (Fig. 1d, middle). The zonal-mean209

pattern of P ′ − E′, however, exhibits distinct regional features. Here the cloud feedback is210

associated with an increase in P − E in the deep tropics and a narrowing of the change in211

the ITCZ region, which can be seen as an equator-ward shift of where P ′ −E′ = 0. This is212

consistent with previous work arguing that ITCZ biases are related to cloud radiative biases213

(e.g., Hwang & Frierson, 2013). The cloud feedback also contributes slightly to an increase214

in P −E in the high latitudes of each hemisphere, including the peak increase in P −E over215

the Southern Ocean (Fig. 1d, right).216
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b

d

c

Figure 1. Influence of climate feedbacks on regional hydrological change. Contribution

of the (a) surface-albedo feedback, (b) relative-humidity feedback, (c) lapse-rate feedback, and (d)

shortwave and longwave cloud feedbacks to changes in zonal-mean temperature (T ′) and precipi-

tation minus evaporation (P ′ − E′). The left panel shows the (black) net feedback, (orange) net

feedback with the individual feedback removed, and (green) individual feedback. The middle panel

shows the pattern of T ′ associated with the (black) net feedback and (orange) individual feedback

removed from the net feedback. The green line represents the impact of the individual feedback

on T ′ and is found by taking the difference between the black line and the orange line. The right

panel shows same but for the pattern of P ′ − E′.
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3.2 Decomposition of regional hydrological change217

The influence of an individual feedback on P −E changes can be attributed to three terms:

(1) the P − E change due to the feedback in isolation, (2) the P − E change due to inter-

actions between the feedback and other climate feedbacks, and (3) the P − E change due

to interactions between the feedback and dry-static energy transport. The contributions of

these three terms can be identified by subtracting the equation for the MEBM with a feed-

back locked (Eq. 6) from the equation for the full MEBM (Eq. 4). Further simplification of

these terms can be found by rewriting the net feedback given by Eq. (5) as λ = λi+
∑

j 6=i λj

and using the definition of T ′i in Section 3.1. This results in

(P ′ − E′)i = −λiT ′︸︷︷︸
(1)

−
∑
j 6=i

λjT
′
i︸ ︷︷ ︸

(2)

+
(
∇ · F ′dry −∇ · F ′dry,−i

)
︸ ︷︷ ︸

(3)

. (7)

The left-hand side of Eq. (7) represents the P − E change associated with an individual218

feedback i in the feedback locking analysis. The three terms on the right hand side of Eq.219

(7) represent the P −E change associated with: (1) the individual feedback; (2) the product220

of all other feedbacks and the warming associated with the inclusion of feedback i; and (3)221

changes in the dry-static energy flux divergence induced by the inclusion of feedback i. A222

similar expression can be derived for temperature change as detailed in Beer and Eisenman223

(2022).224

Figure 2 shows the three terms in Eq. (7) for each feedback as well as the thermodynamic225

and dynamic contributions to the dry-static energy flux divergence. For the surface-albedo226

feedback, the increase in tropical P − E and shift of the ITCZ is related to the dynamical227

change in the dry-static energy flux divergence (Fig. 3a, purple line). As noted by Bonan,228

Siler, et al. (2023), the Hadley Cell mass flux change can be decomposed into changes229

associated with the poleward atmospheric energy transport and changes in gross moist230

stability. The change in poleward energy transport dominates the Hadley Cell mass flux231

change for all feedback-locking simulations (not shown). In the high latitudes, the surface-232

albedo feedback in isolation results in a large decrease in P−E that is compensated by a large233

increase in P − E from other feedbacks (dotted) and the dry-static energy flux divergence234

(dash-dot). The surface-albedo feedback contributes to strong polar amplification (Fig. 1a,235

middle) which reduces the dry-static energy flux convergence in the polar regions and is236

associated with a cooling tendency that is balanced by an increase in latent heat release237

associated with an increase in P − E.238
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a b

c d

Figure 2. Decomposition of regional hydrological change for each climate feedback.

Contribution of the (a) surface-albedo feedback, (b) relative-humidity feedback, (c) lapse-rate feed-

back, and (d) shortwave and longwave cloud feedbacks to (green) changes in zonal-mean precip-

itation minus evaporation (P ′ − E′) decomposed into three terms. Term 1 (dash) represents the

individual contribution of the feedback alone, Term 2 (dot) represents interactions with other feed-

backs, and Term 3 (dash-dot) represents dry-static energy transport changes. Term 3 (dash-dot) is

further broken up into thermodynamic (red) and dynamic (purple) components. The three green

dash/dot green lines sum to the solid green line.
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The other feedbacks also have regionally distinct patterns associated with distinct mecha-239

nisms. For the relative-humidity feedback, the increase in subtropical P−E is almost entirely240

related to the thermodynamic dry-static energy flux divergence and the relative-humidity241

feedback in isolation. For the lapse-rate feedback, every term in Eq. (7) contributes to242

the overall structure of P − E change. In the deep tropics and subtropics, the decrease in243

P − E is contributed equally by both the dynamic and thermodynamic dry-static energy244

flux divergence change. However, in the polar regions, the lapse-rate feedback in isolation245

is associated with a decrease in P − E which is somewhat compensated by an increase in246

P − E from dry-static energy flux divergence. This is also consistent with Bonan, Feldl, et247

al. (2023) who found the lapse-rate feedback is associated with a decrease in high-latitude248

precipitation. For the cloud feedback, the narrowing of the ITCZ and P −E change in the249

tropics and subtropics is almost entirely related to the dynamical change in the dry-static250

energy flux divergence. Here, the cloud feedback causes the net feedback to be much less251

negative in the deep tropics. This limits the atmosphere from radiating energy to space252

locally, and means it must transport this energy to the subtropics, where radiative loss is253

more efficient due to a strongly negative net feedback. This increase in transport requires254

an increase in the Hadley Cell mass flux and increases P − E in the deep tropics. This255

is also consistent with Merlis (2015) and Byrne and Schneider (2016), who argued local256

energetic constraints can explain large-scale Hadley circulation changes and ITCZ changes.257

Finally, in the polar regions, such as the Southern Ocean, the cloud feedback in isolation is258

associated with most of the P − E change.259

3.3 Sources of uncertainty260

The large influence of individual climate feedbacks on the pattern of P −E change suggests261

that individual feedbacks also influence the intermodel spread in P −E change. To quantify262

the contributions of individual feedbacks to the intermodel spread in P − E change, we263

run the MEBM with individual feedbacks locked for each of the 27 CMIP5 models and264

subtract the feedback-locked simulation from the full-feedback simulation as detailed in265

Section 3.1. Figure 3 shows (left) the intermodel spread of each individual feedback, (middle)266

the resulting change in (P ′ − E′)i, and (right) the fractional contribution of each feedback267

to the total feedback variance in P ′−E′. This analysis approximates that the variance from268

each feedback linearly sums such that the fractional contribution of all feedbacks sums to269

one.270
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Figure 3. Contribution of climate feedbacks to the intermodel spread in regional

hydrological change. The left panel shows the (a) surface-albedo feedback, (b) relative-humidity

feedback, (c) lapse-rate feedback, and (d) shortwave and longwave cloud feedbacks for 27 CMIP5

models. The middle panel shows the zonal profile of P ′ − E′ associated with each feedback (a-e).

The light colored lines denote individual climate models and the dark lines denote the multi-model

mean. The right panel shows the fractional contribution of each feedback to the total uncertainty

in P − E change for these four feedbacks.
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Overall, each feedback contributes substantially to the intermodel spread in regional P −E271

change. The surface-albedo feedback, despite being confined mainly to the polar regions,272

contributes to tropical and subtropical uncertainty in P − E change, accounting for 10 –273

20% of the total intermodel variance for these four feedbacks (Fig. 3a, right). However, the274

influence of the intermodel variations in the surface-albedo feedback on P − E change is275

confined mainly to the polar regions, accounting for 20-35% of the total variance for these276

four feedbacks. The relative-humidity feedback contributes nearly uniform uncertainty with277

some larger influence in the subtropical regions (Fig. 3b, right). Intermodel variations in278

the lapse-rate feedback lead to large intermodel variations in P − E change in the deep279

tropics, subtropics, and high-latitude regions. In the polar regions, the surface-albedo and280

lapse-rate feedback combined contribute to approximately 60% of the total variance for these281

four feedbacks (Fig. 3a-c). However, intermodel variations in the cloud feedback dominate282

uncertainty in P −E change, contributing approximately 60% of the total variance for these283

four feedbacks globally (Fig. 3d). And at some latitudes, the cloud feedback contributes284

more than 70% of the total variance for these four feedbacks in P − E change.285

3.4 GCM and MEBM comparison286

Our feedback locking approach allowed us to isolate the impact of individual feedback pro-287

cesses on regional hydrological changes within the MEBM. However, because the MEBM288

does not allow for the feedbacks to influence each other, it is worth considering the extent to289

which its results hold within comprehensive climate models. Numerous studies have locked290

cloud, surface-albedo, and water-vapor feedbacks in coupled climate models (Hall, 2004;291

Graversen & Wang, 2009; Langen et al., 2012; Middlemas et al., 2020; Chalmers et al.,292

2022). These studies have all found that when one feedback is locked other components of293

the climate system change, suggesting the MEBM might be too simple to quantify the in-294

fluence of feedbacks on P −E change. To assess the limitation of the MEBM framework we295

compare the cloud feedback locking experiments in the MEBM with cloud feedback locking296

experiments in CESM1-CAM5, using the simulations from Chalmers et al. (2022).297

The left panel of Figure 4a shows the CESM1 net radiative feedback from the standard298

abrupt2xCO2 simulation (black line) and abrupt2xCO2 simulation with locked cloud ra-299

diative effects (orange line). With cloud-locking, the net feedback becomes more negative300

at most latitudes except in the Southern Ocean (orange line, left panel, Fig. 4a). The301

zonal-mean temperature change from the cloud-locked abrupt2xCO2 simulation is less at302
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all latitudes, particularly in the Arctic, when compared to the normal abrupt2xCO2 simu-303

lation (compare black and orange line, middle panel, Fig. 4a). Thus, the radiative effects of304

clouds results in warming at all latitudes with stronger Arctic warming (green line, middle305

panel, Fig. 4a). The P − E change, however, is quite distinct with and without cloud306

locking. With cloud-locking, there is a large decrease in P −E near the southern edge of the307

ITCZ and large decreases in P − E in the extratropics of each hemisphere when compared308

to the normal abrupt2xCO2 simulation (compare black and orange line, right panel, Fig.309

4a). This suggests cloud radiative effects act to increase P −E at the southern edge of the310

ITCZ and in the extratropics of each hemisphere, and decrease P −E at the northern edge311

of the ITCZ (green line, right panel, Fig. 4a).312

Locking cloud feedbacks and then doubling CO2 results in a similar net feedback pattern313

to doubling CO2 and removing the net cloud feedback diagnosed from the simulation with314

interactive clouds (compare orange line, Fig. 4a-b, left). Note that the feedback patterns315

differ slightly in the Southern Hemisphere subtropics. However, despite similarity in the net316

radiative feedback, the MEBM patterns of T ′ and P ′ − E′ are slightly different from the317

GCM-based results (compare orange lines, Fig. 4a-b, middle/right). For T ′, when the cloud318

feedback is removed, the MEBM predicts less warming, similar to CESM1, but does not319

simulate the correct magnitude of Arctic warming. For P ′ − E′, when the cloud feedback320

is removed, the MEBM correctly simulates the decrease in P − E in the extratropics of321

each hemisphere but fails to simulate the shift in tropical P − E. A possible reason for322

these discrepancies comes from the fact that G′ and Rf also change in the CESM1-based323

cloud-locking simulation, resulting in slightly less Northern Hemisphere ocean heat uptake324

and weaker radiative forcing (see Figure S5). When the patterns of G′, Rf , and λ from the325

cloud-locked abrupt2xCO2 simulation are prescribed, the MEBM more correctly simulates326

the zonal-mean pattern of T ′ and P ′−E′ change (green dotted line Fig. 4b, middle/right).327

In summary, the MEBM-based feedback locking approximates the CESM1-based feedback328

locking well in the extratropics, but less well in the tropics. However, the MEBM still pre-329

dicts the correct tropical hydrological change when the patterns of G′ and Rf are included,330

which is consistent with the requirements from atmospheric energy transport changes. Over-331

all, we conclude that the principle of down-gradient energy transport by the atmosphere pro-332

vides valuable intuition for how climate feedbacks influence regional hydrological change.333
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a

b

Figure 4. Feedback locking in a GCM and a MEBM. (a) The zonal-mean profile of (left)

λ, (middle) T ′, and (right) P ′ − E′ averaged 100 − 150 years after the abrupt2xCO2 in the GCM.

The black line denotes the total change and the orange line denotes the change when the cloud

radiative effect has been disabled (see Section 2.3). The green line represents the impact of the

cloud radiative feedback and is found by taking the difference between the black and orange line.

(b) The zonal-mean profiles as in (a) but from a MEBM where the cloud radiative feedback was

locked retroactively. The black line denotes the total change and the orange line denotes the change

when the net cloud feedback is removed. The green line in the left panel of (b) represents the net

cloud feedback diagnosed from the simulation with interactive clouds. The green dotted lines in

(b) denote the MEBM solutions for T ′ and P ′−E′ with λ, G′, and Rf from the cloud-locked GCM

simulation.
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4 Discussion and conclusions334

In this study, we examined how radiative feedbacks influence the response of zonal-mean335

P −E to global warming by explicitly accounting for interactions among feedbacks and at-336

mospheric energy transport in a MEBM with a Hadley Cell parameterization. We systemat-337

ically locked individual radiative feedbacks in the MEBM and showed how each feedback can338

substantially modulate the so-called “wet-gets-wetter, dry-get-drier” paradigm commonly339

applied to understanding the response of P − E to greenhouse-gas forcing.340

Overall, P−E change in the tropics and subtropics is influenced by changes in the dry-static341

energy flux divergence, while P−E change in the polar regions is influenced by both changes342

in the dry-static energy flux divergence and radiative feedbacks — consistent with Bonan,343

Feldl, et al. (2023). However, the contribution of radiative feedbacks to regional P − E344

change is more nuanced than previously thought, as radiative feedbacks can significantly345

alter dry-static energy transport and thus indirectly influence regional P − E change (see346

Eq. 7). For example, we found that the surface-albedo feedback can shift the location of347

maximum tropical P − E change by changing the Hadley circulation. We also found that348

the cloud feedback acts to narrow bands of tropical P − E and increase tropical P − E by349

causing an export of energy from the deep tropics. This causes the Hadley Cell mass flux350

to increase and P − E in the deep tropics to increase via increased equatorward moisture351

transport. Finally, we showed that the lapse-rate feedback contributes to a decrease in P−E352

in the polar regions, which is similar to the thermodynamic contributions described in Siler353

et al. (2023) and the energy budget analysis described in Bonan, Feldl, et al. (2023).354

While we showed that radiative feedbacks strongly influence the spatial pattern of P − E355

change, our study has an important caveat: the radiative feedbacks in the MEBM cannot356

influence other components such as G′ or Rf . It is clear that this assumption affects sub-357

tropical and tropical P −E change associated with the net cloud feedback. When compared358

to the cloud-locked GCM (CESM1), the MEBM with a cloud feedback removed does not359

capture the full shift of the ITCZ. But when the MEBM also contains the cloud-locked pat-360

terns of G′ and Rf , the structure of P −E change aligns much better with the GCM. While361

the MEBM accounts for interactions across the radiative responses of the feedbacks (Term362

2, Eq. 7), it does not include changes in the feedback processes themselves or interactions363

with G′ or Rf . Including the ability for other components to change when an individual364

feedback is locked might better align the MEBM with GCM-based result. Nonetheless, the365
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fact the MEBM largely replicates the P ′−E′ pattern of the cloud-locked GCM simulation,366

particularly in the extratropics, suggests downgradient energy transport can provide valu-367

able intuition for understanding how radiative feedbacks influence the patterns of climate368

change.369

Overall, these results demonstrate how the spatial structure of radiative feedbacks influence370

zonal-mean P − E change and can cause significant deviations from the “wet-gets-wetter,371

dry-gets-drier” thermodynamic paradigm. Key results from this analysis are that under372

greenhouse-gas forcing, cloud feedbacks act to narrow the ITCZ and increase P − E in the373

deep tropics, and the surface-albedo feedback acts to shift the ITCZ and increase P −E in374

the polar regions. We further find that cloud feedbacks dominate feedback uncertainty in375

P−E change for most regions, except in the polar regions where the surface-albedo feedback376

and lapse-rate feedbacks dominate feedback uncertainty in P − E change.377
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Hadley cell parametrization in the MEBM
Additional details
To simulate a realistic hydrological cycle, we define a Gaussian weighting function w that partitions the transport of latent and
dry-static energy within the tropics. We divide F into a component due to the Hadley Cells FHC and a component due to the
eddies Feddy, and define w as the fraction of total energy transport that is accomplished by the Hadley Cells at a given latitude:

FHC = wF and Feddy = (1 −w)F , (1)

and

w = exp

(

−x2

�2x

)

, (2)

where �x is a width parameter, which we set to 0.3 following previous studies. In this formulation, eddies account for essentially
all anomalous energy transport poleward of 45◦S and 45◦N, while the Hadley Cell accounts for most anomalous energy transport
between 10◦S and 10◦N.

In the mean-state climate, poleward atmospheric heat transport by the Hadley Cell FHC is equal to:

FHC =  H, (3)

where  is the mass transport (kg s−1) in each branch of the Hadley Cell and H is the gross moist stability, defined as the
difference between ℎ in the upper and lower branches at each latitude. We assume that upper tropospheric moist static energy
is uniform in the tropics with a constant value of ℎ0. Thus, variations inH are due entirely to meridional variations in ℎ giving
H = ℎ0 −ℎ where ℎ0 = 1.06×ℎ(0), or 6% above ℎ at the equator (x = 0). However, because we are considering P −E change
under warming, the anomalous poleward atmospheric heat transport by the Hadley Cell is represented as:

F ′
HC =  ′H +  H ′ +  ′H ′, (4)

where  ′ is the anomalous mass transport (kg s−1) in each branch of the Hadley Cell and H ′ is the anomalous gross moist
stability (i.e., the difference between ℎ′ in the upper and lower branches at each latitude). H ′ is estimated in the same way
described above. The section below details how the climatological state is approximated using the MEBM.

Climatological state
In the main text, we introduce the Hadley Cell parameterization using the perturbation version of the MEBM. However, the
mass transport of the Hadley Cell and thus the pattern of P − E change depends to some extent on the climatological state via
Eq. (3) in the main paper. To account for this, we use a climatological version of the MEBM to estimate the climatological state
of each GCM. This is done by first calculating the net heating of the atmosphere Qnet(x), which is the difference between the
net downward energy flux at the top-of-atmopshere and the surface in preindustrial control simulations. Because the northward
column-integrated atmospheric energy transport F is assumed to be related to the meridional gradient in ℎ, the climatological
version of the MEBM (with a constant D) is:

Qnet = −
ps
a2g

D d
dx

[

(1 − x2)dℎ
dx

]

. (5)

The MEBM climatological values of T and q (assuming relative humidity is fixed at 80%) and the value of D can be found by
minimizing the difference between the zonal-mean near-surface air temperature andQnet from each GCM and the MEBM using
Eq. S5. In other words, the MEBM is tuned to each GCM climatology by finding the value of D that minimizes the difference
between the zonal-mean near-surface temperature and Qnet . We then calculate  ,H , and P −E similar to what is described in
the main text except the poleward heat flux and moisture flux by the Hadley Cells take the form of:

FHC =  H, (6)

and
FL,HC = − Lvq, (7)

respectively.
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Model Name

1. ACCESS1-0
2. ACCESS1-3
3. bcc-csm1-1
4. bcc-csm1-1-m
5. BNU-ESM
6. CanESM2
7. CCSM4
8. CNRM-CM5
9. CSIRO-Mk3-6-0
10. FGOALS-g2
11. GFDL-CM3
12. GFDL-ESM2G
13. GFDL-ESM2M
14. GISS-E2-H
15. GISS-E2-R
16. HadGEM2-ES
17. inmcm4
18. IPSL-CM5A-LR
19. IPSL-CM5A-MR
20. IPSL-CM5B-LR
21. MIROC5
22. MIROC-ESM
23. MPI-ESM-LR
24. MPI-ESM-MR
25. MPI-ESM-P
26. MRI-CGCM3
27. NorESM1-M

Supplemental Table 1: List of the CMIP5 coupled GCMs used for piControl and 4xCO2 simulation. Each simulation is from
the r1i1p1 ensemble.
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Supplemental Figure 1: Response of the zonal-mean near-surface air temperature to global warming in a moist energy
balance model. The zonal-mean T change for 27 CMIP5 GCMs 120 – 150 years after an abrupt quadrupling of CO2. The black
line denotes the GCM and the blue line denotes the MEBM.
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Supplemental Figure 2: Response of the zonal-mean hydrological cycle to global warming in a moist energy balance model.
The zonal-mean P −E change for 27 CMIP5 GCMs 120 – 150 years after an abrupt quadrupling of CO2. The black line denotes
the GCM and the blue line denotes the MEBM.
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Supplemental Figure 3: Inputs for the moist energy balance model. Zonal-mean profiles of (red) the net radiative feedback (�),
(blue) ocean heat uptake (G′), (orange) radiative forcing (Rf ) for 27 CMIP5 GCMs 120 – 150 years after an abrupt quadrupling
of CO2.
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Supplemental Figure 4: Decomposition of regional hydrological changes for each component. Contribution of the surface-
albedo feedback, relative-humidity feedback, lapse-rate feedback, shortwave and longwave cloud feedbacks, radiative forcing,
and ocean heat uptake to changes in zonal-mean T ′ and zonal-mean P ′−E′. The black line denotes the MEBM solution and the
grey line is the residual of the sum of all colored lines and the black line. The residual is a combination of nonlinear interactions
between each component and the Planck feedback, which is not calculated here due to stability issues when removing it in the
MEBM.
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Supplemental Figure 5: GCM feedback locking. Zonal-mean profiles of ocean heat uptake (G′), radiative forcing (Rf ), and the
net radiative feedback (�) from the CESM1(CAM5) abrupt2xCO2 experiments with (solid) and without (dashed) cloud radiative
effects.
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