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Abstract

Ecosystems at high latitudes are under increasing stress from climate change. To understand changes in carbon fluxes, in situ

measurements from eddy covariance networks are needed. However, there are large spatiotemporal gaps in the high-latitude

eddy covariance network. Here we used the relative extrapolation error index in machine learning-based upscaled gross primary

production as a measure of network representativeness and as the basis for a network optimization. We show that the relative

extrapolation error index has steadily decreased from 2001 to 2020, suggesting diminishing upscaling errors. In experiments

where we limit site activity by either setting a maximum duration or by ending measurements at a fixed time those errors

increase significantly, in some cases setting the network status back more than a decade. Our experiments also show that

with equal site activity across different theoretical network setups, a more spread out design with shorter-term measurements

functions better in terms of larger-scale representativeness than a network with fewer long-term towers. We developed a method

to select optimized site additions for a network extension, which blends an objective modeling approach with expert knowledge.

Using a case study in the Canadian Arctic we show several optimization scenarios and compare these to a random site selection

among reasonable choices. This method greatly outperforms an unguided network extension and can compensate for suboptimal

human choices. Overall, it is important to keep sites active and where possible make the extra investment to survey new strategic

locations.
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Key Points: 12 

• The network of high-latitude eddy covariance sites has grown considerably over time, 13 
still towers should remain active and new remote locations added.  14 

• Without new measurements our knowledge will degrade at a rate at least equal to which 15 
would otherwise be its growth.  16 

• Network optimization methods as shown here are essential for representative network 17 
design. 18 

 19 

Abstract 20 

Ecosystems at high latitudes are under increasing stress from climate change. To understand 21 
changes in carbon fluxes, in situ measurements from eddy covariance networks are needed. 22 
However, there are large spatiotemporal gaps in the high-latitude eddy covariance network. Here 23 
we used the relative extrapolation error index in machine learning-based upscaled gross primary 24 
production as a measure of network representativeness and as the basis for a network 25 
optimization. We show that the relative extrapolation error index has steadily decreased from 26 
2001 to 2020, suggesting diminishing upscaling errors. In experiments where we limit site 27 
activity by either setting a maximum duration or by ending measurements at a fixed time those 28 
errors increase significantly, in some cases setting the network status back more than a decade. 29 
Our experiments also show that with equal site activity across different theoretical network 30 
setups, a more spread out design with shorter-term measurements functions better in terms of 31 
larger-scale representativeness than a network with fewer long-term towers. We developed a 32 
method to select optimized site additions for a network extension, which blends an objective 33 
modeling approach with expert knowledge. Using a case study in the Canadian Arctic we show 34 
several optimization scenarios and compare these to a random site selection among reasonable 35 
choices. This method greatly outperforms an unguided network extension and can compensate 36 
for suboptimal human choices. Overall, it is important to keep sites active and where possible 37 
make the extra investment to survey new strategic locations.  38 
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1 Introduction 39 

The Arctic and boreal biomes have been recognized as a domain that is changing rapidly 40 
as a result of climate change (Serreze & Barry, 2011; IPCC, 2014; Meredith et al., 2019). These 41 
changes may lead to strong positive feedbacks with ongoing climate change, since large stocks 42 
of carbon sequestered in soils may become unstable as permafrost thaws (Gustaf Hugelius et al., 43 
2020; E. A. G. Schuur et al., 2015; Edward A. G. Schuur et al., 2008; Serreze & Barry, 2011). 44 
For reliable forecasts of future global climate, it is of vital importance to monitor the carbon 45 
cycle in these regions and understand the mechanisms that govern it.  46 

 47 

Eddy covariance (EC) is a key technique to investigate the carbon cycle. With this 48 
method, fluxes of greenhouse gasses (GHG), predominantly carbon dioxide (CO2) and methane 49 
(CH4, and energy are measured continuously at high temporal resolution above the canopy to 50 
quantify their rate of exchange between the atmosphere and biosphere (Baldocchi, 2003; 51 
Pastorello et al., 2020; Sulkava et al., 2011). The typical field of view, or footprint area, for EC 52 
towers found in most parts of the Arctic is relatively small, usually on the scale of hundreds of 53 
meters, (Göckede et al., 2004; Kljun et al., 2002; Rannik et al., 2000; Schmid, 1997; Vesala et 54 
al., 2008). To obtain regional carbon budgets, these local measurements need to be upscaled to 55 
much larger domains. There are varied methods to upscale fluxes, which have greatly improved 56 
over the years (Byrne et al., 2023; Chu et al., 2021; Desai, 2010; Jung et al., 2011; Xiao et al., 57 
2012) with some specifically targeting the Arctic (Birch et al., 2021; Ito et al., 2023; Peltola et 58 
al., 2019; Virkkala et al., 2021). Of these methods, machine learning techniques are becoming 59 
increasingly important. Still, no matter how advanced the methods, the fluxes used either as 60 
input or reference should cover the relevant range of conditions and ecosystem types; otherwise 61 
prediction accuracy can neither be guaranteed nor properly assessed. Therefore, location and 62 
coverage of the EC towers should be carefully considered in any upscaling endeavor.  63 

 64 

Typically, EC towers have been placed to answer specific research questions, while the 65 
role of a given tower in the larger observational network plays a minor role in decision making 66 
and funding. Moreover, site selection is often strongly constrained by logistical considerations 67 
and available infrastructure. This has led to a site distribution in the Arctic that greatly favors 68 
Alaska and Europe, often at locations with access to electricity, leaving large areas of northern 69 
Canada and Siberia undersampled (Pallandt et al., 2022). When evaluating tower infrastructure 70 
for wintertime CO2 fluxes, or CH4 fluxes, we see even larger gaps across these regions, with 71 
wintertime representativeness values 74% worse and CH4  48% worse than the summertime CO2 72 
measurements (Pallandt et al., 2022). The establishment of a long time series of flux 73 
measurements is another major challenge: Typically, funding for EC towers is provided on a 74 
project basis, which typically guarantees funding only for a couple of years. Researchers cobble 75 
together grants to keep towers active for longer, though this is not an ideal basis for a stable 76 
monitoring network. Research Infrastructures like ICOS and NEON aim to alleviate this problem 77 
by advocating for long-term data collection and flux data standardization, however these are only 78 
active in Europe and the USA respectively, and even there not all EC towers fall under their 79 
umbrella. Overall, the future of most EC sites is highly uncertain. 80 

 81 
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Several studies have investigated the representativeness of EC networks, and in some 82 
cases, virtually extended these networks by including mechanics to optimize the spatial 83 
distribution of the network in case of potential future extension (Chu et al., 2021; Hoffman et al., 84 
2013; Pallandt et al., 2022; Sulkava et al., 2011; Villarreal & Vargas, 2021). Still, no studies 85 
have investigated the representativeness of the EC network in relation to long-term temporal data 86 
coverage. Pallandt et al. (2022) looked at the differences between the winter- and summertime 87 
network representativeness, though only in terms of differences in the spatial component. Still 88 
temporal changes are important for the EC network. The longer a monitoring network remains 89 
active and expands, the more data it will accumulate, which in turn increases its capabilities to 90 
interpolate within its dataspace or extrapolate beyond it (Banko & Brill, 2001; Bosveld & 91 
Beljaars, 2001; Loescher et al., 2006; Wisz et al., 2008), though as climate changes, we are 92 
entering non-analog climate conditions which past towers may not fully represent. It remains to 93 
be quantified how the growing coverage period of an existing network, associated with more 94 
accumulated data over time for the same subset of sites, changes our ability to upscale fluxes. 95 
This information is crucial to guide us in maintaining and upgrading the network with increased 96 
efficiency.  97 

 98 

In this paper, we aim to quantify the EC network representativeness potential for 99 
upscaling flux data to a larger domain, in relation to temporal factors. As a starting point for our 100 
analysis, we update the existing high-latitude EC meta-database used in Pallandt et al. (2022) 101 
through further evaluation of meta-data and an updated survey. We then extend the extrapolation 102 
index metric first shown in Jung et al. (2020) by including an optimization scheme to investigate 103 
network growth and expansion. We use these methods to investigate how choices in the temporal 104 
arrangement of the network can affect its representativeness. We do this through several 105 
experiments that each test a specific temporal aspect of the network's design and functioning: 106 
termination of measurements, limitation of site activity to a few seasons and the tradeoff between 107 
few long term and many shorter measurements. Finally we demonstrate a practical application of 108 
these techniques in a case study where we combine modeled optimization with expert knowledge 109 
in an actual potential network extension. 110 

2 Methods 111 

2.1 Network status 112 

To update our database on high-latitude EC towers to reflect the current status up to 113 
2022, we updated the survey conducted by Pallandt et al. (2022) in 2017 and added more specific 114 
questions about a given site's biome, planned future activity and future funding as well as 115 
extending the site activity table to 2022. The survey was distributed among the FLUXNET 116 
newsletter members and known PIs of high-latitude EC sites. Counting direct correspondence to 117 
the survey as well as submissions to the online form we received 37 replies. Combined with our 118 
previous results, we now have temporally explicit information for 88 sites from 1993 when the 119 
first towers in the Arctic were erected, though not all cover the period from 2018 to 2022. 120 
Combining these further with online sources such as the flux databases (e.g., AmeriFlux, 121 
AsiaFlux, Fluxnet, ICOS, NEON), personal communication, and collaborating database projects 122 
(ABCflux, Virkkala et al. (2022)) we added or updated information on a total of 145 EC sites in 123 
comparison to the previous database version. This database is available at the high-latitude 124 
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carbon flux tool: https://cosima.nceas.ucsb.edu/carbon-flux-sites/, which, besides metadata on 125 
EC flux sites, also lists metadata on flux chambers and atmospheric towers.  126 

 127 

While Pallandt et al. (2022) limited the study domain to areas above 60 degrees North, in 128 
this study we opted for a more natural southern border that follows the extent of Tundra and 129 
Boreal biomes (58 ecoregions) as defined by Dinerstein et al. (2017), which is an update of 130 
(Olson et al., 2001); details on the domains can be found in figure S2 and table S2.1. By setting 131 
the cutoff of the domain based on bioclimatic conditions, we reduce the risk of excluding sites – 132 
especially near domain borders – that would be relevant to our representativeness assessment. 133 
And through the inclusion of these ecoregions, we can more specifically target and describe 134 
regions of interest throughout this work.  135 

2.2 Extrapolation error 136 

The extrapolation error index (EI) metric aims to quantify the relative increase in 137 
upscaled flux error as a function of increased distance (in predictor variable space) to the nearest 138 
flux measurements used for training, it is conceptually very similar to the Dissimilarity Index 139 
from Meyer & Pebesma (2021). For details on the EI method please refer to supplement S2 of 140 
Jung et al. (2020), while a short summary follows here for the reader's convenience.  141 

 142 

The procedure of estimating EI consists of two steps: 1) Estimating the distance in 143 
predictor space between a predicted data point to the nearest training data points, and 2) 144 
estimating how the prediction error increases with distance from training data to yield a 145 
normalization of this distance. In the first step, weights for predictors variables (to account for 146 
different variable importances) and the considered number of nearest training data points is 147 
established by an optimization algorithm.  148 

The predictor data space is a set of variables representing the conditions observed at the 149 
EC sites, which, in our case, are the nine predictors in the FLUXCOM-RS upscaling model 150 
ensemble (Jung et al. 2020, Tramontana et al. 2016, Table 1). The target variable is GPP from 151 
FLUXCOM-RS extracted at the locations of available EC sites. The entireThis process of 152 
training the model and calculating EI values is repeated 7 times in an ensemble to make the 153 
results more robust. Three separate training runs have beenbene performed: one for the temporal 154 
experiments, one for optimization runs and one for the comparison with previous work (S5). 155 

 156 

Table 1: variables used in the calculation of the EI. All variables are provided in a global 157 
grid at 0.0833 degrees spatial resolution. Unless otherwise stated, the temporal range is 158 
from 2001 to 2020 with monthly steps, others are either static or a climatology of 12 159 
months. All predictor variables are available at the Max Planck Institute for 160 
Biogeochemistry Data Portal file id 260. For a description of the quality flags and gap 161 
filling approaches used see (Jung et al., 2020) 162 
 163 

Variable Original Source/ MODIS ID Temporal resolution 
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Nadir Reflectance Band7 MCD43B4.006.v4_201905 static 

Enhanced Vegetation Index  MOD13A2 static 

Day Time Land Surface Temperature MOD11A2 monthly  

Night Time Land Surface Temperature MOD11A2 monthly  

Maximum Day Time Land Surface Temperature MOD11A2 static 

Land Cover Data +C4 fraction croplands MCD12Q1 static 

Fraction of photosynthetically active radiation  MOD15A2 climatology  

Normalized Difference Vegetation Index * Rg MOD13A2 monthly  

NDWI Normalized difference water index MCD43A4 monthly  

Gross Primary Productivity - RS Jung et al. (2020) monthly  

2.3 Temporal effects 164 

We performed several experiments to assess the effect of variations in site activity on the 165 
network's EI (see table S3 for an overview). For means of comparison, we first established a base 166 
scenario (Baseline), which formed the network setup against which all other runs were 167 
compared. It represents the full EC network as it has grown from 2001 to 2020, with extra data 168 
added to those available previously, just as the dataset of measurements increases over time. Site 169 
activity was assigned in several steps: years of sites for which we have explicit monthly activity 170 
status required no further steps, while years of sites with known wintertime activity were 171 
assumed to be active throughout all the months within the year. For the remaining sites years, we 172 
assumed “summertime-only” activity, with data coverage restricted to the months. The following 173 
setups differ from Baseline only in aspects listed below.  174 

 175 

As a first scenario, to gauge how the network would be affected in the hypothetical 176 
absence of new measurements, we performed the End10 and End15 runs. These runs progressed 177 
exactly as the baseline case, except all measurements were terminated at the start of 2010 and 178 
2015, respectively. From these points onwards the extrapolation could only utilize past data. This 179 
experiment not only reflects potential gaps in data acquisition or even termination of sites but 180 
could also serve as a measure of the trajectory of uncertainties as temporal distance to the last 181 
measurement increases when extrapolating into the future.  182 

 183 

In the second scenario, we assessed the effect of limiting site activity to quantify how 184 
much the EI increases if sites would only be active for a limited duration, e.g., in the framework 185 
of a typical research project. These runs are called MaxX where X reflects the maximum number 186 
of months sites were allowed to remain active. In these scenarios, for each site we tracked their 187 
activity and quit any sampling after the allotted number of active months was completed. Here 188 
the Max12 run represents a full year of measurements, while Max18 corresponds to three years 189 
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of summertime measurements. Finally, Max36 represents three full years of measurements. The 190 
three year mark was chosen in correspondence with the survey which indicated this project 191 
duration as a period for which most sites had funding.  192 

 193 

As a third scenario, we investigated the relative impact of site month distribution over the 194 
network, where one site month represents one site being active for one month. For this purpose, 195 
we compared the performance of a network with fewer sites with long activity (depth) to that of 196 
a network with many sites with shorter activity (breadth). In both cases, the amount of data 197 
supplied for the analysis ( i.e. the total number of site months considered) was uniform. These 198 
depth versus breadth runs DvB10, DvB15 and DvB20 were based on the networks’ total site 199 
months in 2010, 2015 and 2020, respectively. The number of sites ranges from 55 (largest depth) 200 
to 127 (largest breadth), modifying site number in steps of 12 in between. To keep site months 201 
consistent among each of the setups, we had to adjust actual site activity. For example, in the 202 
case of a network with 55 sites, all of these sites would typically be active all the time year 203 
round. In order to keep a realistic distribution of site activity under these conditions, we 204 
developed a pseudorandom data month distribution among the existing site locations as 205 
explained in supplement 1. 206 

2.4 Network optimization 207 

To allow the use of our network evaluation tool for the purpose of strategic observation 208 
network expansion, we added routines that allow for the optimized addition of sites to an existing 209 
network. We test 3 methods here, in all cases starting with the baseline of the current network. In 210 
order not to confuse this with the 20-year baseline runs from the temporal effects section, we 211 
name this baseline EI_ref. It represents the EI calculated for the network in its 2022 state based 212 
on the monthly climatology used in comparison to previous work. Three optimization methods 213 
were tested, we eventually used a greedy optimization method which evaluates the EI for all 214 
potential candidate sites individually. The algorithm then selects the one site which generates the 215 
lowest mean EI over the domain and adds it to the existing network. After updating the baseline 216 
for the extended network, the same steps are repeated sequentially, adding one site at a time until 217 
none are left in the list of candidate sites. This method is fast, but the independent step-by-step 218 
additions cannot guarantee that the optimal site combination is chosen for more than 1 additional 219 
site; however, the other two methods (S4) are too computationally expensive to optimize for 220 
more than 7 site additions, and this greedy method resulted in the same site selection where we 221 
were able to compare. 222 

 223 

This method only considers a site's EI impact, though often there are many more 224 
considerations that play a role in site selection such as logistic feasibility, a site's history, other 225 
research demands etc. Many of these requirements are hard to quantify, and even if quantified, 226 
weighing them would be fairly objective making a numerical approach undesirable for these 227 
extra considerations. This where an expert would come in such as the PI, they could for example 228 
decide between similar sites in regard to network improvement which additional requirements 229 
would be a deciding factor in choosing a new location. To facilitate this process, we added 230 
further metrics that aid the expert to make informed decisions, where if less than ideal sites are 231 
chosen site similarity and loss of improvement can be considered. We compute the similarity 232 
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between sites as the Euclidean distance between all sites based on the local summertime 233 
predictor values. To make the distance metric more intuitive, clusters are created based on these 234 
distances following the wards method of hierarchical clustering (Ward, 1963), in which we 235 
choose a cutoff that results in 5 clusters that roughly represent a north-south gradient. This 236 
information is then combined with the EI metric to show optimal sites and all subsequent less 237 
than ideal sites in plots such as figure 5 to create a comprehensive view of all options. In 238 
subsequent model runs the preselected sites can be added which the model will then take into 239 
account. 240 
 241 

2.5 Regional case study for network optimization 242 

In a case study, we used optimization methods described above to guide the improvement 243 
of the high-latitude EC network within Canada. As an additional goal, this extension was aiming 244 
at the establishment of a north-to-south transect of EC sites that would characterize the transition 245 
of forests in warmer climates to the wetlands and treeless tundra in the colder climates. As a first 246 
step, a selection of potential sites was made based on proximity to populated places within the 247 
target region, and sites in our database that were no longer active. This resulted in a list of 28 248 
potential new sites (listed in Fig. 6 and table S2.2). The EI_ref run showed the EI of the domain 249 
based on the network's EC site activity in 2022 , which is used as the basis for further 250 
optimizations. Several optimization runs were then performed to gain a better idea of the impact 251 
of site selection: 252 

• Free search: This approach considered all potential sites in Canada. 253 

• Fixed search: Using the same subset as the free search, the Iqaluit, Churchill Fen 254 
and Reservoir site were selected before starting a ‘free’ optimization. Iqaluit was 255 
included at the start because it had the highest positive impact on the EI and it is 256 
logistically optimally located. The latter two sites were selected here because their 257 
inclusion had been predetermined for other reasons unrelated to network 258 
optimization. 259 

• Free exclude search: this approach was similar to ‘free search’ run, except seven 260 
sites were excluded prior to network optimization. The Mackenzie river region is 261 
fairly well represented thus we focus on Eastern canada in this case. And we 262 
removed sites that after further investigation currently lacked the right 263 
infrastructure for EC towers.  264 

 265 

As a benchmark of the optimization, we evaluated a random allocation instead of an 266 
optimized one. For each number of site additions ( n = [1,28]), 1000 random site combinations 267 
are tested. The highest, mean and lowest domain wide EI means of these randomized trials were 268 
calculated. In cases where there were less than 1000 combinations possible (2 ≥ n ≥ 26), we 269 
evaluated all combinations.  270 
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3 Results 271 

3.1 Network status 272 

The network of high-latitude EC sites has grown significantly over the past 29 years 273 
(1993 to 2022) to a total of 213 EC sites being active at least periodically within the boreal and 274 
Arctic domain. Of these sites, 119 were active in 2022, and 44 of these remain active throughout 275 
the winter months (Figure 1). Sixty-six out of 213 sites feature methane measurements, but only 276 
45 of these sites are active. By the end of 2022 the network has accumulated a total of 15048 site 277 
months (Figure 1) assuming unspecified monthly or wintertime activity means they are only 278 
active during the summer months. Regarding funding and planned future activity, of the 22 279 
respondents that answered this question in our latest survey, 59% indicated they plan to remain 280 
active for 5 years or more, and when only considering sites that are currently active this 281 
increased to 76%. When asked how long their funding lasts, PIs that planned to keep their sites 282 
active for 5 years or more had funding secured for a mean of 3.1 years.  283 

 284 

We evaluated the growth of the network in detail from 2001 to 2020. In this period, the 285 
summer activity increased from 34 sites in 2001 to 123 in 2020, while winter site activity 286 
underwent a larger relative change from 7 sites to 44 on average. Over these 20 years, on average 287 
sites were kept active for 63 months (~5.3 years), with 17 sites active throughout the entire 20-288 
year period though these sites typically have wintertime shutdowns. 289 

  290 

For each of the 240 months from 2001 to 2020, we calculated the EI based on the 291 
cumulative collected data up until that point. The yearly mean EI dropped from 3.0 to 1.2 (Figure 292 
S4.a, Video S6), indicating the mean extrapolation error more than halved during this period. 293 
Domain wide pixel based minimum values decreased substantially from 0.12 to 0.0. Maximum 294 
values have mostly stayed at a high level, dropping from 20.3 to 15.7 in the first four years and 295 
then to 14.7 in the subsequent 16 years. This indicates that while the extension of the network 296 
and the longer time series improved our capability for upscaling in most regions, only minor 297 
improvements were obtained in some of the most remote or extreme locations.  298 

 299 
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homogeneous, and thus with lower variation in the predictors less observation points are 327 
required.  328 
 329 

Table 1. Median and standard deviations of yearly and monthly explicit predictor variables 330 
data over the entire domain. Summer is defined as April through September whereas the 331 
remaining months are assigned as Winter. The Overall columns list statistics for all data. 332 
The Spatial columns list the mean standard deviation for each time step over the entire 333 
domain. The Temporal columns list the mean standard deviation for each location over all 334 
time steps. GPP, NDVIRg and NDWI, clearly show in all cases smaller mean and std in 335 
winter compared to summer.  336 
 337 
 Overall Spatial Temporal 

Variable Winter 
mean 

Summer 
mean 

Winter 
std 

Summer 
std 

Winter 
std 

Summer  
std 

Winter 
std 

Summer  
std 

Gross Primary Productivity  0.07 2.26 0.14 2.15 0.09 1.48 0.08 1.50 

Day Time Land Surface Temperature 253 283 11.1 11.4 8.26 6.80 8.22 9.57 

Night Time Land Surface 
Temperature 

250 274 10.2 9.46 7.79 5.05 7.41 8.26 

Normalized Difference Vegetation 
Index * Rg  

0.30 6.44 0.78 5.22 0.57 3.69 0.46 3.92 

NDWI Normalized difference water 
index  

0.23 0.08 0.10 0.19 0.08 0.13 0.08 0.17 

 338 



339 
340 
341 
342 
343 

344 

345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 

Figure 2
a low EI
white) in
of EC sit

3.2 Temp

In
measurem
fluxes in 
the EI inc
in 2020. 
total incr
times sm
End15 sc
for the En
detected.
the doma

2. EI of the n
 thus low er

ndicate unde
tes and gray

poral effects

n the End10 
ments (after 
the domain 

creased on a
For the End

rease of EI b
maller than th
cenario the d
nd15 scenar
 Regarding 

ain: for exam

man

network in i
rrors indica
errepresent
yed out area

and End15 s
in 2010 and
(Figure S4 b

average by 0
15 scenario,
y 0.07 in 20

he decrease o
decrease in th
rio. When res
spatial varia

mple, the high

nuscript submit

its 2022 stat
ating better 
ted areas wi
as indicate n

scenarios, w
d 2015 respec
b-c). Compa
.005 per yea
 we observe
20. This inc

of the baselin
he baseline i
stricting this

ability, these 
hest rate of c

tted to JGR: Bi

 

te based on 
representat
ith high EI r
no data regi

we investigate
ctively) wou
ared to the ba
ar (p >0.01 n
d a 0.011 (p
rease in EI i
ne in this sam
is at the sam
s evaluation 
changes are

change can b

iogeosciences

one year cli
tiveness whe
ratings. Gre
ions from 8

ed how a hy
uld affect our
aseline scena

n= 11) for a t
p > 0.01 n=6)
in the End10
me period at

me level as th
to wintertim

e not uniform
be found in t

imatology. Y
ereas colder
een dots sho
0 degrees N

ypothetical te
r capability 
ario, in the E
total increas
) increase in

0 scenario is 
t 0.022 per y

he increase at
me, no measu
mly distribut
the Yamal-G

Yellow indi
r colors (blu
ow the locat

North and up

ermination o
of upscaling

End10 scena
e of EI by 0

n EI per year 
approximate

year, while in
t a 0.011 per
urable effect 
ed througho

GydanTundra

 
icates 
ue to 
tions 
p.  

of 
g 
ario 
.08 
for a 

ely 4 
n the 
r year 
is 
ut 
a 



manuscript submitted to JGR: Biogeosciences 

 

where a yearly EI increase of 0.019 was observed from 2010, while many other regions did not 356 
show any difference at all.  357 
 358 

  359 
Figure 3. Yearly averages in EI showing the effect of ceasing measurements from 2010 360 
(End10 -purple) and 2015 (End15 - yellow) compared to the baseline (blue) which reflect 361 
actual conditions. In both cases the EI became worse over time. 362 
 363 

When limiting each site's activity to 12 (Max12), 18 (Max18) and 36 months (Max36), 364 
respectively, to investigate the effect of limited tower activity periods we found notable increases 365 
in the EI, indicating that extended tower operation periods have a strong beneficial effect on the 366 
reduction of upscaling uncertainties (Figure S4 d,e,f). In 2020, the average EI for Max12 was 367 
0.38 higher than the baseline, which is equivalent to setting the network back 14 years to 2006. 368 
For the Max18 scenario, EI was 0.27 higher than baseline, equivalent to a 12 year setback to 369 
2008, while for Max36 a reduction in EI of 0.15 was observed, equivalent to rewinding the 370 
network to a state 8 years ago to 2012. Across all the experiments, we find a stronger 371 
relationship ( R2 0.76, p >0.001, n=120) between total mean site activity per year and negative 372 
reciprocal transformed EI (-1/EI) (for time passed the relation is weaker R2 0.44, p > 0.01, n=120 373 
for total). The strong relation to the negative reciprocal of the data indicates that as more data are 374 
added, each addition is relatively less impactful than the ones before. 375 

 376 

The depth versus breadth analysis showed that, with the number of active months being 377 
exactly equal, there is a slightly better network performance for multiple shorter-lived sites, 378 
compared to fewer long active sites. In the BvD10 scenario, the maximum number of sites (127) 379 
had a 0.016pp lower EI than the minimum number (55), while in the case of BvD15 and BvD20 380 
these values were 0.017 and 0.024 lower, respectively. In the case of BvD10, the high and low 381 
rating fell within each other's estimated standard deviation based on 20 replicate runs. In the 382 
BvD15 scenario, the high value fell outside the low value’s standard deviation, and in BvD20 383 
both values fell outside each other's standard deviation (Fig. 4). Thus, as the network progresses, 384 
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4 Discussion 459 

4.1 Network status 460 

Following the expansion of our domain (Figure 4) compared to the assessment presented 461 
by Pallandt et al. (2022), the updated representativeness maps indicate that the boreal biome in 462 
central Canada is very well represented, on par with Sweden and Finland and selected Alaskan 463 
regions. In contrast, the Arctic in Canada lacks representation by the current network of EC 464 
towers mainly at high latitudes. Considering the low number of towers in Siberia, the extension 465 
of the analysis domain further south in Russia shows that large areas are not well represented in 466 
that region. However, even in the case of relatively well represented regions, areas with poor 467 
representativeness still exist. Of note is the Aleutian island chain in Western Alaska, which is 468 
barely covered by the existing tower network. Having any type of flux measurement here thus 469 
appears to be a meaningful upgrade to the network, since, as opposed to many other 470 
underrepresented areas, these islands are neither fully mountainous nor Arctic deserts. 471 
Furthermore, this rainy region might provide important insights into how northern ecosystems 472 
might function in a future wetter climate (Bintanja & Andry, 2017). It should be noted that 473 
regions near the southern border may show elevated EI ratings, corresponding to large 474 
extrapolation errors, that may not be indicative of their actual status. The reason for this is that 475 
we do not consider sites outside the domain that could still influence it, particularly along the 476 
southern margins. The overall effect should be minimal though, since in this study we have 477 
delineated the domain based on complete ecoregions.  478 

 479 
4.2 Extrapolation framework, and uncertainty assessment 480 
The EI approach estimates how the model error increases with distance in predictor space from 481 
the training data. The distance considers different predictor importances for the defined target 482 
variable. While this yields an objectively defined and interpretable metric it is important to 483 
understand caveats of the approach. The choice of the target variable, here GPP, influences the 484 
extrapolation assessment because the target variable should determine the set of relevant 485 
predictors and associated weights used to calculate the distance to the training data. Transferring 486 
the results to other target variables would require that the set of predictors and related 487 
importances are similar to the chosen GPP target. Here we used GPP predictions from 488 
FLUXCOM extracted at site locations as target variable instead of using real EC data due to a 489 
lack of availability. This means that the estimated increase in model error with increased distance 490 
to training data in environmental space is larger than if real GPP observations were used and 491 
explains the substantially larger EI values compared to Jung et al. 2020. The model error 492 
assessed by real observations is much less sensitive to distance to training data because the error 493 
is dominated by site-specific peculiarities that are not perfectly captured, for example due to an 494 
incomplete predictor set. An incomplete predictor set further implies that we can only assess the 495 
‘known unknowns’ by our extrapolation assessment (Jung et al. 2020). Essentially, the 496 
considerations above imply that (1) the spatial-temporal patterns of estimated EI are qualitatively 497 
meaningful but probably optimistic because the chosen predictor set and the FLUXCOM model 498 
are not perfect, and that (2) the magnitude of the estimated EI values are likely conservative, i.e. 499 
overestimated, because of using model predictions that are more sensitive to distance in predictor 500 
space compared to observations. 501 
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4.3 Consideration of temporal aspects in representativeness assessments 502 

Since 2011, the network representativeness assessment during winter months performs better, 503 
i.e., yields a lower averaged EI, than during summer. This finding appears counter-intuitive, 504 
since the wintertime features substantially fewer active towers, with site activity being restricted 505 
to the growing season for a large fraction of the EC towers. At the same time, spatial 506 
heterogeneity in several of the parameter grids used for upscaling, e.g. NDVIRg or NDWI, is 507 
strongly reduced and sometimes zero when snow cover is present, and due to these homogeneous 508 
conditions in the wintertime fewer towers are needed to properly reflect conditions within the 509 
upscaling domain; note though that our predictors did not include variables describing snow 510 
depth and density that might create more spatial variation in the wintertime environmental space. 511 
Accordingly, by considering temporal differences in conditions we now can show that this 512 
temporal aspect is essential to gain a full picture of the network's performance. However, to fully 513 
capture wintertime variability we should utilize actual fluxes as target since wintertime GPP is 514 
essentially zero Finally there are increased gaps and errors in wintertime fluxes as a result of 515 
adverse measurement conditions (Oechel et al., 2014) which are not present in this dataset. Thus, 516 
while these results indicate a reduced need for wintertime monitoring, further research is 517 
required to properly account for all nuances in Arctic ecosystems.  518 

From the perspective of managing a continuously operating Arctic observation network, we see a 519 
discrepancy between the funding required for proper network performance and the funding that 520 
is secured. While our historic data show that many sites stay active for longer than the prevailing 521 
three-year funding, the lack of a central, long-term funding source in many regions leads to the 522 
discontinuation of EC towers that fill crucial positions within the network. Our results highlight 523 
that network representativeness scales with the number of total active months in the dataset, and 524 
that continued, long-term measurements are required since our knowledge of the region's fluxes 525 
will eventually deteriorate in the absence of new measurements especially with increasing 526 
disturbances, ecosystem shifts, and climate change. In addition to upscaling potential of the 527 
network, there are other reasons to aim for longer time series such as understanding the 528 
ecosystems response to changing conditions, such as (Baldocchi, 2020). In other words, even 529 
though it may be sufficient to measure for about three years to constrain a basic carbon budget 530 
for a given site, at least if those measurements are done in average site conditions and not during 531 
extreme climate or disturbance years, this amount of data is not sufficient to support long-term 532 
extrapolation studies. There are programs in place which build long term networks such as the 533 
EU based ICOS (Integrated Carbon Observation System (ICOS) Research Infrastructure, 2022) 534 
network, and USA based NEON (Schimel et al., 2007). The pan-Arctic network would benefit 535 
from having such funding sources for the entire domain. 536 

The depth versus breadth analysis shows that under equal activity there is a slightly better result 537 
from the representativeness evaluation for multiple shorter lasting sites over fewer long-term 538 
sites. Combined with the results of the case study and previous work, this could lead to the 539 
conclusion that raising towers in unique new locations is more impactful than long site activity in 540 
a singular space. However, there are other factors to consider beyond regional upscaling. With a 541 
focus on breath, we might lose understanding of detailed local processes: as the ecosystem and 542 
climate changes, ecosystems respond and new processes and disturbances may happen, which 543 
could be missed or only detected after a considerably longer time. Furthermore, the cost of 544 
maintaining a tower is one to two orders of magnitude lower than establishing a new tower, 545 
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where the instrument cost (ICOS ERIC, 2020) and the costs for permits and construction are by 546 
far the largest investments. Since the total site months of the network is the most important 547 
indicator of EI, the most cost effective method to extend this is by keeping existing towers 548 
operational. New towers should then ideally be located in underrepresented regions as selected 549 
by this or similar methods, while still answering the project's research questions. In cases where 550 
there is no direct experimental need to remain in one location for a long time, from the 551 
perspective of the network as a whole, it would be efficient to rotate equipment between several 552 
locations. If, at the start of an experiment, power and a tower structure are erected at several 553 
locations, then the instruments can be rotated between these sites with relative ease. The results 554 
from the Endx experiments show that loss of representativeness represented by increase of EI are 555 
relatively slow, therefore gaps should be manageable when considering flux upscaling, and when 556 
one would return at regular intervals it allows for any correction of accelerated change in the 557 
ecosystem. Furthermore, many remote locations have low expected fluxes (Lafleur et al., 2012; 558 
Virkkala et al., 2021); temporary or mobile towers could be ideal to add representativeness of 559 
such locations to the network without having to make the investment of a permanent tower. 560 
Drone campaigns such as polar Modular Observation Solutions for Earth Systems camping can 561 
fulfill a similar purpose. It is clear from these analyses (Figure 3 and 6) that as far as network 562 
design is concerned to fill the gaps the EC community has to focus on less accessible locations, 563 
even though this comes at increased costs. 564 

The results of the Endx experiments should be considered a conservative estimate with actual EI 565 
increase likely higher. Several of the input rasters used are static over the years. And while 566 
measurements such as NBAR will not see significant change on these time scales, data such as 567 
Enhanced Vegetation Index, Land cover and Maximum Day Time Land Surface Temperature are 568 
expected to change and not remain static. If these layers were dynamic, variations over time in 569 
these variables would increase and so would the EI when no new measurements are taken. 570 
Furthermore, the Arctic is changing at an accelerating rate (Box et al., 2019), in the absence of 571 
measurements this leads to an accelerated increase of the EI as known conditions are 572 
increasingly exceeded. All of these arguments again speak for the continuation of long-term 573 
experiments. 574 

4.4 Network expansion strategies 575 

We have shown here that utilizing a model-guided approach to network extension greatly 576 
outperforms a random allocation (to the same feasible locations), and that this holds true even 577 
when we include less ideal choices since the model can compensate for this with further 578 
selections. As expected from the EI map in Figure 2, there is a clear preference for more northern 579 
locations. It should be noted though that this optimization was aimed at reducing the EI, the 580 
relative error as a function of distance to closest sites, which does not include the magnitude of 581 
the individual fluxes. If flux magnitude were to be considered in the metric, high-latitude sites 582 
would be comparatively less likely to be selected owing to typically lower fluxes. However such 583 
inclusion would add additional complexity and potential biases as it would either require a model 584 
ensemble to establish error magnitudes of the fluxes (Jung et al., 2020) or a weighting of the 585 
errors by expected fluxes with ambiguity on the weight the magnitude should have. 586 

When choosing a location for a new site, methods like these where representativeness-based 587 
optimization models are used in tandem with expert knowledge combine the best of two worlds. 588 
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The modeling component grants objective insights in a potential site’s impact to the network and 589 
its relation to other sites, and the expert can easily consider aspects that are too unwieldy or 590 
impossible to properly model, such as experimental design, infrastructure, and advice and 591 
requests from local communities. Quantifying tradeoffs further helps the decision-making 592 
process especially with clear visualizations. 593 

Conclusion 594 

We have shown that the high-latitude EC network has grown considerably over time, with 595 
significant increases in representativeness. This analysis also shows that the coverage of the EC 596 
network still needs to be improved for estimating more robust Arctic-boreal carbon budgets. 597 
Large improvements are needed especially in the highest latitudes, mountainous regions and 598 
large parts of Russia. However, improving the network requires relatively more effort with each 599 
site addition since each additional site will have comparatively less impact than the ones before 600 
as the data space is steadily filled. At the same time, we see that the largest gaps are in more 601 
remote locations, further adding to the difficulty of expansion.  602 

To further guide the growth of the network we have demonstrated a network optimization 603 
method that greatly outperforms a random approach in a case study where we optimize the 604 
network by considering future expansions in the Canadian Arctic. We illustrate a way to merge 605 
representativeness based optimized network design with expert knowledge in an iterative way 606 
that incorporates understanding, local knowledge, and other hard to quantify factors. 607 

Beyond extending the network it has become clear that we cannot be complacent with the 608 
existing network, as gaps in data and cessation of measurements will not only freeze our 609 
knowledge but deteriorate our ability to understand the carbon cycle. This is especially the case 610 
since rapid climate change in the Arctic is bound to move conditions further from past 611 
measurements. This is exacerbated by acceleration at which the high latitudes are changing as a 612 
result of climate change. And since total site months are central to increasing network 613 
representativeness, it is therefore of importance that existing sites should remain active and be 614 
funded for as long as possible in addition to efforts to extend the network to underrepresented 615 
locations. 616 

Acknowledgements 617 

None of the authors report any affiliations or financial interests that cause conflicts of interest. 618 
This work was supported by the Max Planck Society and through funding by the European 619 
Commission (INTAROS project, H2020-BG-09-2016, grant agreement no. 727890), and also by 620 
the European Research Council (ERC) under the European Union’s Horizon 2020 research and 621 
innovation programme (grant agreement No 951288, Q-Arctic). Additional support for this work 622 
came from the TED Audacious Project and Woodwell Climate Research Center’s Fund For 623 
Climate Solutions Project. Kyle A. Arndt is additionally supported by NSF Office of Polar 624 
Programs grant no. 2316114. The article processing charges for this open-access publication 625 
were covered by the Max Planck Society. We would like to thank Michał Gałkowski for his 626 
review of this manuscript.  627 



manuscript submitted to JGR: Biogeosciences 

 

Open Research 628 

Table 1 lists all original MODIS data codes for raster datasets used in this research, and is 629 
available at https://lpdaac.usgs.gov/products, these products have been regridded for use with 630 
FLUXCOM those versions can be found in the Max Planck Institute for Biogeochemistry data 631 
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constantly updated, for transparency a snapshot of the EC component of this database used for 634 
this paper is retained and available on request by reviewers. EI code is from Jung et al. (2020) 635 
with specific details in supplement 2. All analyses were performed using matlab (The 636 
MathWorks Inc, 2022), Figures were produced in matlab, Figure 1 was produced with the 637 
addaxis addon to plot an extra axis (Lee, 2023), and Figure 2 utilized the shaded area error bar 638 
plot addon for the std shading (Martínez-Cagigal, 2023) , Figure 2 and S2 was created as geotiff 639 
in matlab and then finalized using Qgis (QGIS Development Team, 2009).  640 
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