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Abstract

The Paleocene-Eocene Thermal Maximum (PETM) was a transient global warming event recognised in the geologic record by

a prolonged negative carbon isotope excursion (CIE). The onset of the CIE was the result of a rapid influx of 13C-depleted

carbon into the ocean-atmosphere system. However, the mechanisms required to sustain the negative CIE remains unclear.

Previous studies have identified enhanced mobilisation of petrogenic organic carbon (OCpetro) and argued that this was likely

oxidised, increasing atmospheric carbon dioxide (CO2) concentrations after the onset of the CIE. With existing evidence limited

to the mid-latitudes and subtropics, we determine whether: (i) enhanced mobilisation and subsequent burial of OCpetro in

marine sediments was a global phenomenon; and (ii) whether it occurred throughout the PETM. To achieve this, we utilised

a lipid biomarker approach to trace and quantify OCpetro burial in a global compilation of PETM-aged shallow marine sites

(n = 7, including five new sites). Our results confirm that OCpetro mass accumulation rates (MARs) increased within the

subtropics and mid-latitudes during the PETM, consistent with evidence of higher physical erosion rates and intense episodic

rainfall events. The high-latitude sites do not exhibit distinct changes in the organic carbon source during the PETM. This

may be due to the more stable hydrological regime and/or additional controls. Crucially, we also demonstrate that OCpetro

MARs remained elevated during the recovery phase of the PETM. Although OCpetro oxidation was likely an important positive

feedback mechanism throughout the PETM, we show that this feedback was both spatially and temporally variable.
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Key Points: 24 

• We assess spatial and temporal patterns in petrogenic organic carbon (OCpetro) 25 

mobilisation during the PETM 26 

• Enhanced OCpetro mobilisation in the subtropics and mid-latitudes, likely due to an 27 

increase in extreme rainfall events 28 

• Mobilisation of OCpetro remained elevated during the recovery phase of the PETM 29 

 30 
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Abstract 47 

The Paleocene-Eocene Thermal Maximum (PETM) was a transient global warming event 48 

recognised in the geologic record by a prolonged negative carbon isotope excursion (CIE). The 49 

onset of the CIE was the result of a rapid influx of 13C-depleted carbon into the ocean-50 

atmosphere system. However, the mechanisms required to sustain the negative CIE remains 51 

unclear. Previous studies have identified enhanced mobilisation of petrogenic organic carbon 52 

(OCpetro) and argued that this was likely oxidised, increasing atmospheric carbon dioxide (CO2) 53 

concentrations after the onset of the CIE. With existing evidence limited to the mid-latitudes and 54 

subtropics, we determine whether: (i) enhanced mobilisation and subsequent burial of OCpetro in 55 

marine sediments was a global phenomenon; and (ii) whether it occurred throughout the PETM. 56 

To achieve this, we utilised a lipid biomarker approach to trace and quantify OCpetro burial in a 57 

global compilation of PETM-aged shallow marine sites (n = 7, including five new sites). Our 58 

results confirm that OCpetro mass accumulation rates (MARs) increased within the subtropics and 59 

mid-latitudes during the PETM, consistent with evidence of higher physical erosion rates and 60 

intense episodic rainfall events. The high-latitude sites do not exhibit distinct changes in the 61 

organic carbon source during the PETM. This may be due to the more stable hydrological regime 62 

and/or additional controls. Crucially, we also demonstrate that OCpetro MARs remained elevated 63 

during the recovery phase of the PETM. Although OCpetro oxidation was likely an important 64 

positive feedback mechanism throughout the PETM, we show that this feedback was both 65 

spatially and temporally variable.  66 

 67 

Plain Language Summary 68 

The Paleocene-Eocene Thermal Maximum (PETM) was the most severe global warming event 69 

of the last 66 million years, caused by natural and rapid release of greenhouse gases into the 70 

atmosphere. However, scientists have been unable to determine why the PETM lasted for > 71 

100,000 years. Several theories suggest further emission of greenhouse gases from positive 72 

feedback mechanisms triggered by early onset warming. Here, we explore one such mechanism: 73 

CO2 released from the erosion, transport, and oxidation of ancient rock-derived (or petrogenic) 74 

organic carbon, and identify if it occurred globally and/or throughout the PETM. We achieve this 75 

by looking at biomarkers (molecular fossils) and use this approach to trace the input of 76 
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petrogenic organic carbon into the marine realm. Results suggest enhanced transport of 77 

petrogenic organic carbon was restricted to the subtropics and mid-latitudes, with limited 78 

changes in the high-latitudes. We also find evidence for erosion and transport of petrogenic 79 

organic carbon throughout the PETM. Therefore, this process likely contributed to increasing 80 

atmospheric CO2 levels and may have been an important positive feedback mechanism in past 81 

and future warm climates. 82 

1 Introduction 83 

Climate and tectonics have modulated the flux of carbon to and from terrestrial reservoirs 84 

over geological timescales. Early studies predominantly focused on understanding the role of 85 

inorganic carbon, for example, carbon dioxide (CO2) released from solid Earth degassing versus 86 

CO2 drawdown from silicate weathering (e.g., Berner et al., 1983; Caldeira & Berner, 1997; 87 

Walker et al., 1981). However, the past two decades have highlighted the importance of the 88 

terrestrial organic carbon cycle as a climate feedback mechanism (Hilton & West, 2020). 89 

Whether it acts as a positive or negative feedback mechanism largely depends on whether the 90 

organic carbon is ‘biospheric’ (OCbio), representing relatively recent thermally immature organic 91 

carbon (102–104 years old; e.g., vegetation and soils), or ‘petrogenic’ (OCpetro), representing 92 

ancient rock-derived and thermally mature organic carbon (> 106 years old; e.g., organic carbon-93 

rich shales).  Erosion, mobilisation, and the subsequent burial of OCbio in marine sediments 94 

sequesters CO2 (Berhe et al., 2007; Stallard, 1998). In contrast, exhumation and oxidation of 95 

OCpetro during lateral transport from land-to-sea can release CO2 (Petsch et al., 2000). 96 

Observations on modern fluvial systems suggest that the fraction of OCpetro oxidised positively 97 

correlates with the transit duration (Hilton & West, 2020). Up to ~90 % of OCpetro is oxidised in 98 

large catchments, such as the Amazon and Himalayan range (e.g., Bouchez et al., 2010; Galy et 99 

al., 2008), whereas a lower proportion (~10–40 %) of OCpetro is oxidised in mountain basins with 100 

steep rivers (e.g., Hilton et al., 2011, 2014). Thus, regardless of catchment dynamics, OCpetro has 101 

the potential to be oxidised and increase atmospheric CO2 concentrations. 102 

 103 

Several studies have quantified the mobilisation and burial of OCpetro in modern systems (e.g., 104 

Blair et al., 2003; Clark et al., 2017, 2022; T. I. Eglinton et al., 2021 and references therein; Galy 105 

et al., 2007, 2015 and references therein; Hilton et al., 2010, 2011; Hilton & West, 2020 and 106 
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references therein; Smith et al., 2013) and Holocene sediments (e.g., Hilton et al., 2015; Kao et 107 

al., 2008, 2014). While there is a bias towards environments where erosion and transport of 108 

terrestrial organic carbon is largely controlled by geomorphic processes, climate is also seen as a 109 

strong regulator (e.g., T. I. Eglinton et al., 2021; Hilton, 2017). For example, extreme rainfall 110 

events can trigger bedrock landslides (e.g., Hilton et al., 2008) and/or create deeply incised 111 

gullies (e.g., Leithold et al., 2006), both of which can increase the quantity of OCpetro transferred 112 

and exposed to atmospheric oxidation. Although, the resulting high abundance of clastic 113 

sediments from hyperpycnal flows and turbidites may also enhance the preservation of OCpetro 114 

(e.g., Bouchez et al., 2014; Hilton et al., 2011). As climate model simulations indicate an 115 

intensification of the hydrological cycle in response to rising atmospheric CO2 levels and global 116 

temperatures (Lee et al., 2021), the delivery of OCpetro to the oceans will likely be enhanced in 117 

the future. However, such predictions are based on present-day observations and/or past climate 118 

states that span a lower-than-modern atmospheric CO2 values.  119 

 120 

In contrast, the geological record enables investigations into high CO2 states of the past, 121 

providing unique insights on how terrestrial carbon cycle processes may operate in the future. 122 

Many studies have focused on the Paleocene-Eocene Thermal Maximum (PETM; ~56 million 123 

years ago) (McInerney & Wing, 2011), a transient global warming event (e.g., mean surface 124 

temperature increase of ~4–6 ºC; Inglis et al., 2020; Tierney et al., 2022) associated with an 125 

intensified hydrological cycle (Carmichael et al., 2017 and references therein). The PETM is 126 

identified in the geologic record by a negative carbon isotope excursion (CIE) (e.g., -4 ± 0.4 ‰; 127 

Elling et al., 2019). The onset of the PETM is on the order-of-millennia (Kirtland Turner, 2018; 128 

Zeebe et al., 2014) and is followed by sustained low and stable carbon isotope (δ13C) values for 129 

~94–170 thousand years (kyrs) (Zeebe & Lourens, 2019), referred to as the “body” of the CIE 130 

(Bowen et al., 2006). The body is then followed by a long recovery of ~50–120 kyrs (Bowen, 131 

2013; Murphy et al., 2010; Zeebe et al., 2009), which is further divided into Phase I (initial rapid 132 

rise in δ13C) and Phase II (final gradual rise in δ13C) (Röhl et al., 2007). 133 

 134 

The onset of the CIE was the result of a rapid influx of 13C-depleted carbon from one or more 135 

reservoirs outside the active global exogenic carbon pool (Dickens et al., 1997). Proposed 136 
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reservoirs include submarine methane hydrates (Dickens, 2011; Dickens et al., 1995), terrestrial 137 

organic carbon (Bowen, 2013; Deconto et al., 2012; Kurtz et al., 2003), and volcanic carbon 138 

related to the North Atlantic Igneous Province (Gutjahr et al., 2017; Jones et al., 2019; Storey et 139 

al., 2007; Svensen et al., 2004). Less explored are the mechanism responsible for the prolonged 140 

body of the CIE. This feature requires continual input of 13C-depleted carbon (e.g., Zeebe et al., 141 

2009) and several feedback mechanisms (either acting individually or in combination) have been 142 

proposed. This includes a slow dissociation of oceanic methane hydrates (Zeebe, 2013) and/or 143 

pulsed releases of thermogenic methane from vent complexes (e.g., Frieling et al., 2016; Kirtland 144 

Turner, 2018). Alternatively, recent work suggests that CO2 released from OCpetro oxidation 145 

could explain the extended body of the CIE (Lyons et al., 2019). This theory is based on 146 

evidence for an order-of-magnitude increase in the delivery of OCpetro to the oceans, ~10–20 kyrs 147 

after the onset of the PETM. However, this study was limited to the mid-latitudes (Atlantic 148 

Coastal Plain) and subtropics (Tanzania), and thus may not be globally representative. It is also 149 

unclear whether enhanced mobilisation of OCpetro was a persistent feature throughout the PETM 150 

or whether it was restricted to the body interval. 151 

 152 

Here we use lipid biomarker thermal maturity ratios to fingerprint OCpetro burial in a global 153 

compilation of PETM-aged shallow marine sites (n = 7, including five new sites). Lipid 154 

biomarkers undergo various structural alterations with increasing thermal maturity (e.g., 155 

defunctionalisation, isomerisation, catagenesis, and aromatisation; Peters et al., 2005) and thus 156 

can be used to assess the proportion of OCpetro in marine sediments (Lyons et al., 2019). We 157 

focus on thermally immature, shallow marine sediments as they are ‘hotspots’ for terrestrial 158 

organic carbon input (Bianchi et al., 2018). We quantify OCpetro burial fluxes before and during 159 

the PETM, using a two-endmember mixing model. Overall, we aim to determine whether: (i) 160 

enhanced mobilisation and subsequent burial of OCpetro in the ocean was a global phenomenon; 161 

and (ii) whether it occurred throughout the PETM.  162 

2 Methods 163 

2.1 Data compilation 164 

New n-alkane- and/or hopane-based thermal maturity ratios were acquired from the following 165 

PETM-aged shallow marine sites: the International Ocean Drilling Program Expedition 302 Site 166 
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M0004A (or the Arctic Coring Expedition; ACEX); the Ocean Drilling Program Site 1172 Hole 167 

D (ODP Site 1172); Kheu River; ODP Leg 174AX Ancora Site Hole A/B (Ancora); and the 168 

Tanzania Drilling Project Site 14 Hole A (TDP Site 14) (Figure 1 and Table S1 in the supporting 169 

information). We also compile n-alkane- and/or hopane-based thermal maturity ratios from the 170 

following published PETM-aged shallow marine sites: TDP Site 14 (Carmichael et al., 2017; 171 

Handley et al., 2012); South Dover Bridge (SDB) (Lyons et al., 2019); and Cambridge-172 

Dorchester Airport (CamDor) (Lyons et al., 2019).  173 

 174 

Figure 1: Location of sites with new data (1-5) and published data (5-7). Paleogeographic 

reconstructions of 56 million years ago, adapted from Carmichael et al., (2017) 

 

2.2 Organic geochemistry 175 

Samples from ACEX (n = 94), ODP Site 1172 (n = 41), and Ancora (n = 42) were freeze dried, 176 

homogenized, and extracted using a MARS5 microwave-assisted extraction system, using: (i) 177 

dichloromethane:methanol (DCM:MeOH; 1:1, v:v); (ii) DCM:MeOH (9:1, v:v); and (iii) DCM 178 

(see Elling et al., 2019). Each solvent mixture was heated for 30 minutes to 100 °C, followed by 179 

a hold time of 20 minutes. The extracts from the three steps were combined into a total lipid 180 

extract (TLE) and further divided into five fractions (following Polik et al., 2018). When 181 

required, extracted copper was added to the apolar fractions for 24 hours to remove elemental 182 

sulphur. The apolar fractions were analysed using a ThermoFisher Trace 1310 GC coupled to a 183 
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Thermo TSQ8000 Triple Quadrupole MS (GC-MS). Helium was used as the carrier gas and 184 

separation was achieved with DB-5 column (30 m x 0.25 mm i.d., 0.25 μm film thickness). The 185 

GC oven program started at 70 °C for 1 minute, increased to 130 °C at 20 °C min-1, followed by 186 

300 °C at 4 °C min-1, which was then held for 20 minutes. MS scanning occurred between mass-187 

to-charge ratio (m/z) 50 to 650 Daltons, and an ionisation energy of 70 eV. Compound 188 

identification was based on: retention times; fragmentation patterns; comparison to an in-house 189 

standard; and library matches.  190 

 191 

Kheu River samples (n = 39) were extracted at the University of Bristol by ultrasonicating 192 

homogenised samples sequentially with DCM, DCM:MeOH (1:1, v:v), and MeOH. Elemental 193 

sulphur was removed from the combined TLE using activated copper turnings. An activated 194 

silica column with saturated ammonia in chloroform and chloroform:acetic acid (100:1, v:v) was 195 

used to separate the neutral and acid fraction, respectively. The apolar fraction was split from the 196 

neutral fraction by eluting with hexane:DCM (9:1, v:v) via separation on an alumina column. The 197 

apolar fractions were then analysed at the University of Bristol on a Thermoquest Finnigan Trace 198 

GC interfaced with a Thermoquest Finnigan Trace MS. The GC was fitted with a fused capillary 199 

column (50 m x 0.32 mm i.d.) and the carrier gas was helium. The samples were suspended in 200 

ethyl acetate and injected at 70 °C. The temperature program increased to 130 °C (20 °C min-1), 201 

then 300 °C (4 °C min-1), and finally remained isothermal for 20 minutes. The MS operated with 202 

an electron ionisation source at 70 eV, scanning over m/z ranges of 50 to 850 Daltons. The 203 

compounds were quantified on the total ion chromatogram (TIC). 204 

 205 

Additional samples (n = 12) from TDP Site 14 were homogenised and extracted at the University 206 

of Bristol. Extractions were achieved via Soxhlet apparatus overnight, using DCM:MeOH (2:1 207 

v:v). The apolar fraction was suspended in hexane:DCM (9:1, v:v) and separated by alumina 208 

column chromatography. Co-eluting compounds and/or unresolved complex mixtures were 209 

reduced with urea adduction (following Pancost et al., 2008). Elemental sulphur was removed 210 

using extracted copper turnings. The apolar fractions were analysed at the University of Bristol 211 

on the same GC-MS as used for Kheu River. The GC was fitted with a CPsil-5CB column 212 

(Agilent Technologies, dimethylpolysiloxane stationary phase) and the carrier gas was helium. 213 
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The samples were injected in ethyl acetate at 70 °C. The temperature program increased to 130 214 

°C (20 °C min-1), then 300 °C (4 °C min-1), and finally held for 25 minutes. The MS operated 215 

with an electron ionisation source at 70 eV, scanning over m/z ranges of 50 to 850 Daltons.  216 

2.3 Lipid biomarker proxies 217 

2.3.1 n-alkane-based thermal maturity ratios  218 

Modern plants and sediments contain long-chain n-alkanes with an odd-over-even preference (G. 219 

Eglinton & Hamilton, 1967), however this is progressively lost during diagenesis. The shift away 220 

from a dominance of long-chain n-alkanes with an odd-over-even predominance is captured by 221 

the carbon preference index (CPI) (Bush & McInerney, 2013). Modern sediments exhibit high 222 

CPI values (> 3–30), indicating relatively unaltered thermally immature organic matter 223 

(Diefendorf & Freimuth, 2017). In contrast, mature organic matter (e.g,. coal, oil) exhibits low 224 

CPI values (~1). CPI values < 1 are less common, and typify low-maturity source rocks from 225 

carbonates or hypersaline environments. In this study, sites with extensive post-depositional 226 

diagenesis were excluded, such that CPI values closer to 1 likely suggests input of allochthonous 227 

thermally mature organic matter (e.g., OCpetro). Here, we use the equation as originally defined 228 

by Bray & Evans (1961): 229 

CPI = ଵଶ ቂቀ ∑ (େమఱషయభ)౥ౚౚ∑ (େమలషయమ)౛౬౛౤ ቁ  +  ቀ ∑ (େమళషయయ)౥ౚౚ∑ (େమలషయమ)౛౬౛౤ ቁቃ  (Eq. 1) 230 

2.3.2  Hopane-based thermal maturity ratios  231 

Hopanes are the diagenetic products of biohopanoids, which are produced by a wide diversity of 232 

bacteria and consequently ubiquitous in a range of environments (Kusch & Rush, 2022). The 233 

ratios between different hopanes and their various stereoisomers have long been utilised as a 234 

thermal maturity proxy in the field of petroleum geochemistry (e.g., Farrimond et al., 1998; 235 

Mackenzie et al., 1980). Most of the hopane-based thermal maturity ratios used in this study are 236 

normalised (with the exception of Equation 4). Values indicating high thermal maturity likely 237 

suggests allochthonous older material (e.g., pre-PETM-aged OCpetro), as sites with post-238 

depositional diagenesis were excluded from this study. We use a multi-ratio approach as each 239 

ratio corresponds to different stages of maturity relative to the oil window (i.e., from early 240 

diagenesis to the generation of oil), thus enabling insight on the degree of thermal maturation 241 
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(Figure S1 in the supporting information). However, hopane distributions also vary depending on 242 

the lithofacies and/or depositional environment (Peters et al., 2005). Therefore without 243 

knowledge of the source rock at each locality, comparison between the sites should be 244 

undertaken with caution. 245 

 246 

With the exception of Frankia spp. (Rosa-Putra et al., 2001), all bacteria synthesise hopanoids 247 

with a 17β21β configuration. However, this changes to a more stable βα and then αβ 248 

configuration during early diagenesis and then peak oil generation, respectively (Farrimond et 249 

al., 1998; Mackenzie et al., 1980). The shift from ββ to αβ is expressed via the following 250 

equation (sometimes referred in literature as ‘hopanoid isomerisation’): 251 αβ/(αβ +  ββ)  (Eq. 2) 252 

Higher thermal maturity is marked by values closer to 1. However, caution should be taken when 253 

interpreting sediments with input from peats, as C31 αβ isomers dominate the hopane distribution 254 

within acidic wetland environments (Inglis et al., 2018).  255 

 256 

The shift from βα (also referred to as moretane; M) to the more stable αβ (also referred to as 257 

hopane; H) is assessed via the following equation (sometimes referred in literature as 258 

‘moretane/hopane ratio’):  259 βα/(βα +  αβ)  (Eq. 3) 260 

This equation is mostly applied using C30 hopane (e.g., French et al., 2012), although C29 hopane 261 

has also been used (Peters et al., 2005). Values closer to ~0 indicate higher thermal maturity and 262 

oil generation. 263 

 264 

The C29 αβ hopane (also referred to as norhopane; N) is more thermally stable than C30 αβ 265 

hopane. This is assessed via the following equation (sometimes referred in literature as 266 

‘norhopane/hopane ratio’): 267 
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Cଶଽ αβ/Cଷ଴ αβ  (Eq. 4) 268 

As well as a thermal maturity proxy, this ratio has been utilised to differentiate between anoxic 269 

carbonate and/or marl source rocks (> 1) vs. clay-rich source rocks (< 1) (Peters et al., 2005). 270 

 271 

Towards the early stages of oil generation, there is a change in stereochemistry at the C-22 272 

position, from the biologically favoured R configuration to a near equal mix of R and S 273 

(Farrimond et al., 1998; Mackenzie et al., 1980; Peters et al., 2005). This is expressed via the 274 

following equation (sometimes referred in literature as ‘homohopane isomerisation’): 275 S/(S +  R)  (Eq. 5) 276 

This equation uses C31-35 hopanes (also referred to as homohopanes) and approaches maximum 277 

(equilibrium) values of ~0.6 as thermal maturity increases and oil is generated. 278 

  279 

At the late stage of oil generation, C27 hopanes shift in the position of a D-ring methyl group, 280 

from C-18 (17α(H),22,29,30-trisnorhopane; Tm) to C-17 (18α(H),22,29,30-trisnorneohopane; Ts) 281 

(Farrimond et al., 1998; Peters et al., 2005). This is expressed via the following equation:  282 Tୱ/(Tୱ  +  T୫)  (Eq. 6) 283 

Tm refers to maturable (less stable), whereas Ts denotes stable. Values closer to 1 indicate higher 284 

thermal maturity, although the oxicity of the depositional environment also has a notable 285 

influence (Peters et al., 2005). 286 

2.4 Two-endmember mixing models 287 

The fraction of OCpetro (fpetro) was calculated for each hopane-based thermal maturity ratio (Xmix; 288 

Table 1), following the two-endmember mixing model from Lyons et al. (2019):   289 

𝑋୫୧୶ =  𝑓୮ୣ୲୰୭ × 𝑋୮ୣ୲୰୭ + ൫1 − 𝑓୮ୣ୲୰୭൯  ×  𝑋ୠୟୡ୩୥୰୭୳୬ୢ  (Eq. 7) 290 

where Xbackground and Xpetro is the defined immature and mature endmembers, respectively. The 291 

endmembers for C31-35 S/(S+R) ratio follow the definitions in Lyons et al. (2019), where 292 

Xbackground is the contemporaneous carbon value of 0 and Xpetro is the most thermally mature value 293 
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of 0.6. The endmembers for C29-30 βα/(βα + αβ) ratio also follow the definitions in Lyons et al. 294 

(2019), where Xbackground is 1 and Xpetro is 0. For this study, the endmembers of the αβ/(αβ + ββ) 295 

ratio was defined as 0 for Xbackground is 1 for Xpetro. Note that C29 αβ/C30 αβ and Ts/(Ts + Tm) ratios 296 

were excluded due to their strong dependence on the source rock and/or depositional 297 

environment (Peters et al., 2005). 298 

Table 1: The hopane-based thermal maturity ratio (Xmix) used to calculate fpetro, with assumed 299 

linear sedimentation rate (LSR) and total organic carbon (TOC) reference for each site  300 

Site Xmix 
 

LSR (cm kyr-1) TOC 
references 

 
 

Pre-
PETM 

Core 
PETM 

Recovery PETM 
Phase I Phase 

II 
ACEXa C30-31 αβ/(αβ + ββ) 

C31 S/(S + R) 
C30 βα/(βα + αβ) 

1 Min: 3.8 
Max: 6.2 

Elling et al. 
(2019) 

ODP Site 
1172b 

C30-31 αβ/(αβ + ββ) 
C31 S/(S + R) 

C30 βα/(βα + αβ) 

0.57 
 
 

Min: 0.4 
Max: 0.5 

 

Not available Papadomanol-
aki et al. (2022) 

Kheu 
Riverc 

C29-31 αβ/(αβ + ββ) 
C29-30 βα/(βα + αβ) 

0.3 
 

1.9  
 

Dickson et al. 
(2014) 

Ancorad 

 
C30-31 αβ/(αβ + ββ) 

C31 S/(S + R) 
C30 βα/(βα + αβ) 

 
0.8 

 

11.2 and 
4.3  

1.3 
 

8.4 
 

Elling et al. 
(2019) 

TDP Site 
14e 

 

C29-31 αβ/(αβ + ββ) 
C31-35 S/(S + R) 

C29-30 βα/(βα + αβ) 

  Min: 0.5 
Max: 2 

 

Min: 3.5 
Max: 14 

NA Aze et al. (2014) 

SDBf 
 

C31 S/(S + R) 
C29 βα/(βα + αβ)* 

Min: 1.03 
Max: 2.4 

14 
 

21.3 
 

21.3 
 

Lyons et al. 
(2019) 

CamDorf 

 
C29 βα/(βα + αβ)* 
C31-32 S/(S + R)* 

Min: 1.03 
Max: 2.4 

14 Lyons et al. 
(2019) 

a-fReferences for LSR. aSluijs, Röhl, et al. (2008). bSluijs et al. (2011). cJohn et al. (2008). 301 
dStassen et al. (2012). eLyons et al. (2019). fDoubrawa et al. (2022).       302 

*fpetro calculated in Lyons et al. (2019) 303 

2.5 Mass accumulation rates 304 

The mass accumulation rate (MAR; in gC cm2 kyr-1) of OCpetro was recalculated for all the new 305 

and published fpetro data, following Lyons et al. (2019): 306 MAR =  LSR ×  𝜌 ×  𝑓୮ୣ୲୰୭  ×  ୘୓େଵ଴଴   (Eq. 8) 307 
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, where LSR is the linear sedimentation rate (cm kyr-1), ρ is the dry bulk density (g cm-3), and 308 

TOC is the total organic carbon (%). A constant ρ value of 1.8g cm-3 was assumed across all the 309 

sites. The TOC values and LSR were acquired for each location from previously published 310 

studies (Table 1). TOC records from ODP Site 1172 (Papadomanolaki et al., 2022) and TDP Site 311 

14 (Aze et al., 2014) were linearly interpolated to match the depths of the biomarker data, using 312 

R Package Astrochron (Meyers, 2014). LSR estimates were obtained (where possible) for three 313 

key time intervals: (i) pre-PETM (Paleocene); (ii) the “core” (onset and body of the CIE) of the 314 

PETM; (iii) and the recovery of the PETM (see Text S1 in the supporting information). This was 315 

available for all the sites with the exception ODP Site 1172, which lacks the recovery interval. 316 

Note that the recovery at Ancora and SDB was further divided into: (iiia) Phase I; and (iiib) 317 

Phase II. Since Kheu River does not have LSR data, estimates were taken from the nearby 318 

Aktumsuk section (Uzbekistan; John et al., 2008). Both sites comprise shallow marine deposits 319 

that exhibits TOC values from ~0 % pre-PETM to a maximum of ~8.5 % during the PETM 320 

(Bolle et al., 2000; Dickson et al., 2014). Similarly, LSRs from within the core interval of SDB 321 

was assumed to be the same for the entire PETM section at CamDor (following Lyons et al., 322 

2019).  323 

3 Results 324 

3.1 Thermal maturity ratios 325 

3.1.1 ACEX  326 

The apolar fraction contains short- (C15-19), mid- (C21-25), and long- (C27-33) chain n-alkanes, and 327 

C27 to C32 hopanes (including αβ, βα, and ββ isomers). Both CPI (ranging from ~1–3) and 328 

hopane-based thermal maturity ratios exhibit relatively stable trends throughout the sequence, 329 

suggesting that the organic carbon source did not distinctly change (Figure 2). Note that potential 330 

information may be missing due poor core recovery between ~388–384.5 mcd (Sluijs et al., 331 

2006). However, C30 αβ/(αβ + ββ), C31 S/(S + R), and Ts/(Ts + Tm) values slightly increase (i.e., 332 

higher thermal maturity) between pre-PETM and the core of the PETM, by an average of 0.01, 333 

0.01, and 0.08, respectively. These indices then decline during the recovery interval. C31 αβ/(αβ + 334 

ββ) and C30 βα/(βα + αβ) ratios exhibit the opposite trend, with lower thermal maturity during the 335 

core and the C30 βα/(βα + αβ) ratio continuing to decline into the recovery. 336 
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Figure 2: Thermal maturity ratios at ACEX. Note some of the axis are reversed to reflect 

increasing thermal maturity towards the right. a) bulk sediment δ13C of total organic carbon 

(δ13CTOC) (Elling et al., 2019), b) CPI (this study), c) αβ/(αβ + ββ) ratios (this study), d) S/(S + 

R) ratio (this study), e) βα/(βα + αβ) ratio (this study), and f) Ts/(Ts + Tm) ratio (this study). 

The PETM interval (including the core and recovery) is highlighted by red shading, and a core 

gap is present from ~388 to 384.5 mcd (Sluijs et al., 2006) 

3.1.2 ODP Site 1172  337 

The apolar fraction contains C16 to C34 n-alkanes and the CPI has a mean value of 2.8. Samples 338 

with CPI > 3 (i.e., relatively low thermal maturity), are mostly constrained to the pre-PETM 339 

interval (Figure 3).  Hopanes range from C27 to C32 (including αβ, βα, and ββ isomers), and the 340 

thermal maturity ratios exhibit a relatively stable trend throughout the sequence. However, C31 341 

S/(S + R) ratio slightly increases by 0.09 during the core and into the recovery of the PETM, 342 

suggesting potential input of thermally mature organic carbon. C30 αβ/(αβ + ββ), C31 αβ/(αβ + 343 

ββ), and C30 βα/(βα + αβ) values present the opposite behaviour, shifting slightly towards 344 

thermally immature values during the core of the PETM, by an average of 0.19, 0.22, and 0.07 345 

respectively. During the recovery, all parameters return to more thermally mature values.  346 
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Figure 3: Thermal maturity ratios at ODP Site 1172. Note some of the axis are reversed to 

reflect increasing thermal maturity towards the right. a) bulk sediment δ13C of total organic 

carbon (δ13CTOC) (Sluijs et al., 2011), b) CPI (this study), c) αβ/(αβ + ββ) ratios (this study), d) 

S/(S + R) ratio (this study), and e) βα/(βα + αβ) ratio (this study). The PETM interval 

(including the core and recovery) is highlighted by red shading 

3.1.3 Kheu River  347 

C16 to C35 n-alkanes were identified in the apolar fraction, in addition to C27 to C31 hopanes 348 

(including αβ, βα, and ββ isomers). Prior to the PETM and during the recovery, the CPI drops 349 

below 1, which may suggest input of low-maturity source rocks from carbonates or hypersaline 350 

environments. On the other hand, the CPI oscillate drastically between ~1 and ~3 within the 351 

lower depths of the core of the PETM (~0–50 cm; Figure 4). This section of high variability is 352 

also reflected in the C29 αβ/C30 αβ and C29 βα/(βα + αβ) ratios, suggesting rapid changes in the 353 

organic carbon source. However, part of this signal may be biased by greater sampling resolution 354 

within the PETM. Overall, the average of all the thermal maturity ratios exhibit lower thermal 355 

maturity during the core. In addition, the C29 αβ/C30 αβ ratio present values > 1 during the 356 
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PETM, potentially indicating input from a clay-rich source rock. With the exception of Ts/(Ts + 357 

Tm), all of the ratios increase in higher thermal maturity during the recovery to either higher than 358 

pre-PETM (i.e., C29 αβ/(C29 αβ + C30 αβ) and C29-30 βα/(βα + αβ) ratios) or near pre-PETM values 359 

(i.e., C29-31 αβ/(αβ + ββ) ratio).  360 

Figure 4: Thermal maturity ratios at Kheu River. Note some of the axis are reversed to reflect 

increasing thermal maturity towards the right. a) bulk sediment δ13C of organic carbon 

(δ13Corg) (Dickson et al., 2014), b) CPI (this study), c) αβ/(αβ + ββ) ratios (this study), d) C29 

αβ/ C30 αβ ratio (this study), e) βα/(βα + αβ) ratios (this study), and f) Ts/(Ts + Tm) ratio (this 

study). The PETM interval (including the core and recovery) is highlighted by red shading 

3.1.4 Ancora  361 

The apolar fraction contains C15 to C34 n-alkanes and C27 to C31 hopanes (including αβ, βα, and 362 

ββ isomers). CPI ranges from 1–2.2 and is stable throughout the record (Figure 5). Similarly, C30-363 

31 αβ/(αβ + ββ) values remain relatively constant, albeit exhibiting a very slight decline by an 364 

average of 0.01–0.03 (i.e., decreasing thermal maturity). On the other hand, C31 S/(S + R) and 365 

C30 βα/(βα + αβ) values peak towards higher thermal maturity during the core of the PETM. The 366 

former presents a drastic shift from an absence of the S configuration to a dominance of R, 367 
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suggesting potential transient input of thermally mature organic carbon. However, the rise in the 368 

two ratios do not occur synchronously, instead C31 S/(S + R) values lag behind by ~1.5 mcd.  369 

Figure 5: Thermal maturity ratios at Ancora. Note some of the axis are reversed to reflect 

increasing thermal maturity towards the right. a) bulk sediment δ13C of total organic carbon 

(δ13CTOC) (Elling et al., 2019), b) CPI (this study), c) αβ/(αβ + ββ) ratios (this study), d) S/(S + 

R) ratio (this study), and e) βα/(βα + αβ) ratio (this study). The PETM interval (including the 

core and recovery) is highlighted by red shading 

3.1.5 TDP Site 14  370 

C16 to C33 n-alkanes and C27 to C35 hopanes (including αβ, βα, and ββ isomers) were identified in 371 

the apolar fraction. The CPI remains > 3 (i.e., low thermal maturity), with the exception of five 372 

data points which occur during the core of the PETM (Figure 6). Most noticeable is the large 373 

variability in the hopane-based thermal maturity ratios pre-PETM and for the first ~4 m of the 374 

core of the PETM. In the upper ~5 m of the core of the PETM, the ratios are more stable and in 375 

general agreement. This interval mostly exhibits more thermally mature values than during pre-376 
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PETM section, suggesting a potential shift to an input of thermally mature organic carbon. For 377 

example, C29-31 αβ/(αβ + ββ) values are close to its mature endmember of 1. 378 

Figure 6: Thermal maturity ratios at TDP Site 14. Note some of the axis are reversed to reflect 

increasing thermal maturity towards the right. a) bulk sediment δ13C of organic carbon 

(δ13Corg) (Aze et al., 2014), b) CPI (closed symbols from this study and open symbols from 

Handley et al., 2012), c) αβ/(αβ + ββ) ratios (closed symbols from this study and open symbols 

from Handley et al., 2012), d) S/(S + R) ratios (closed symbols from this study and open 

symbols from Handley et al., 2012), e) C29 αβ/ C30 αβ ratio (Handley et al., 2012), and f) 

βα/(βα + αβ) ratios (Handley et al., 2012). The PETM interval (including the core) is 

highlighted by red shading, and an unconformity truncates the CIE at 12.6 m 

3.2 OCpetro mass accumulation rates  379 

The OCpetro MARs were acquired from all the sites and, following the LSRs, the OCpetro MARs 380 

were grouped into the key time intervals at each site (see Text S1 in the supporting information). 381 

To enable comparison between sites, we calculated the fold change in mean OCpetro MARs 382 

between pre-PETM and during the PETM (i.e., including the core and recovery of the PETM) 383 

(Figure 7). Overall, most of the sites (i.e., ACEX, Kheu River, Ancora, SDB, CamDor, and TDP 384 

Site 14) display an increase in OCpetro MARs during the PETM. However, the sites with the 385 
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largest increase are restricted to the mid-latitudes (i.e., Kheu River, Ancora, and SDB). In 386 

contrast, ODP Site 1172 exhibits a small decrease in OCpetro MAR during the PETM.  387 

 388 

Figure 7: Log10 fold change in mean OCpetro mass accumulation rates (MARs) between pre-

PETM and during the PETM (i.e., including the core and recovery of the PETM). The 

latitudes are defined as: high (> 60° N/S); mid- (30–60° N/S); and subtropics (15–30° N/S) 

(see Table S1 in the supporting information) 

4 Discussion 389 

4.1 Enhanced OCpetro mass accumulation rates in the subtropics and mid-latitudes during 390 
the PETM 391 

A previous study from Tanzania (TDP Site 14) reported a relative increase in the thermally 392 

mature αβ hopane during the PETM (Carmichael et al., 2017; Handley et al., 2012). Here, we 393 

present new hopane-based thermal maturity data that reveals rapidly fluctuating values within the 394 

first ~4 m of the core of the PETM (Figure 6). Similar patterns were observed in the chain-length 395 

distributions of n-alkanes, the branched and isoprenoid tetraether (BIT) index, bulk sediment 396 

δ13C of organic carbon (δ13Corg), and the n-alkane δ13C record (Aze et al., 2014; Carmichael et 397 

al., 2017; Handley et al., 2008, 2012). The latter two was previously suggested to reflect episodic 398 

reworking of older (pre-PETM) material rather than changes in the atmospheric carbon reservoir 399 

(Figure 6; Aze et al., 2014; Handley et al., 2008). The hopane-based thermal maturity ratios 400 

within this study confirms this variable delivery of organic carbon sources, from OCbio to OCpetro. 401 

In contrast, the upper ~5 m of the core of the PETM exhibits more stability in the hopane-based 402 

thermal maturity ratios (Carmichael et al., 2017; Handley et al., 2012), δ13Corgvalues, and n-403 

alkane δ13C values (Aze et al., 2014; Handley et al., 2008). The hopane-based thermal maturity 404 
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ratios also present higher thermal maturity,  indicating a switch from an episodic to persistent 405 

delivery of OCpetro (Carmichael et al., 2017; Handley et al., 2012). During the PETM, the overall 406 

increase in thermally mature hopanes in addition to the LSR drives the OCpetro MARs to rise by 407 

an average of 8x10-3 gC cm2 kyr-1 (Figure 7). This enhanced OCpetro MAR is consistent with 408 

evidence of a shift from predominantly marine organic carbon to a terrestrial organic carbon 409 

source (e.g., an increase in the abundance of long-chain n-alkanes produced by vascular plants 410 

and brGDGTs produced by soil bacteria; Carmichael et al., 2017; Handley et al., 2008, 2012). 411 

Whilst there is greater LSR and terrigenous sediment during the PETM, TOC values declined. 412 

This drop was attributed to the larger contributions of clay (Handley et al., 2012). Evidence 413 

includes an abundance of kaolinite, suggestive of intensified physical erosion (John et al., 2012), 414 

and high Li/Al combined with low Na/Al, suggestive of exhumation of older weathered clay. 415 

These additional proxies also suggest processes that support an increase the mobilisation and 416 

accumulation of OCpetro during the PETM. 417 

 418 

Similar to Tanzania, Ancora exhibits an increase in the average OCpetro MARs (by 2x10-2 gC cm2 419 

kyr-1) during the PETM. This value falls within the average OCpetro MARs estimated at two other 420 

sites from the Atlantic Coastal Plain (i.e., 6x10-2 gC cm2 kyr-1 SDB and 8x10-3 gC cm2 kyr-1 421 

CamDor; Figure 7). The higher OCpetro MAR is largely driven by a shift in LSR from 0.8 cm kyr-422 
1 (pre-PETM) to 11.28 cm kyr-1 (PETM) (Table 1; Stassen et al., 2012). Evidence for terrestrial 423 

input to the Atlantic Coastal Plain during the PETM includes a higher abundance of kaolinite 424 

(Gibson et al., 2000), detrital magnetic minerals (Kopp et al., 2009), charcoal, seed pods, and 425 

terrestrial spores (Self-Trail et al., 2017). In addition, there is an increase in the terrestrial aquatic 426 

ratio (TAR; Bourbonniere & Meyers, 1996; Lyons et al., 2019). Indirect evidence includes 427 

changes in the marine microfossil assemblage towards benthic foraminifera (Self-Trail et al., 428 

2017) and dinoflagellates (Sluijs & Brinkhuis, 2009) that can tolerate brackish water with high 429 

sediment input (Self-Trail et al., 2017). However, with the exception of the abrupt peaks of C31 430 

S/(S + R) at ~169–171 mcd and C30 βα/(βα + αβ) at ~171–173 mcd, the thermal maturity ratios at 431 

Ancora are relatively stable compared to SDB and CamDor (Figure 5; Lyons et al., 2019). 432 

Furthermore, SDB and CamDor are characterised by a 6 ‰ increase in δ13Corg values during the 433 

PETM (Lyons et al., 2019), which was argued to represent reworking of older (pre-PETM) 434 
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material and not an increase in primary production (Lyons et al., 2019) This 13C enrichment is 435 

not observed at Ancora (Figure 5; Elling et al., 2019).  436 

 437 

The average OCpetro MAR at Kheu River exhibits an increase (by 3x10-2 gC cm2 kyr-1) during the 438 

PETM (Figure 7), driven by an order-of-magnitude rise in TOC values from an average 439 

background level of ~0.1 % (pre- and post-PETM) to ~4.4 % (Dickson et al., 2014). However, in 440 

contrast to the sites discussed thus far, Kheu River thermal maturity ratios shift to immature 441 

values during the core of the PETM (Figure 4). During the PETM, the n-alkane distribution is 442 

dominated by long-chain homologues characteristic of vascular plants (Dickson et al., 2014). It 443 

can therefore be argued that the shift observed in the thermal maturity ratios is mostly due to 444 

enhanced input of the OCbio (i.e., immature hopanes such as ββ isomers) transported from land, 445 

although in situ production cannot be dismissed. In addition, the δ13Corg record does not present 446 
13C enrichment during the PETM (Figure 4; Dickson et al., 2014). However, an increase in the 447 

Chemical Index of Alteration (CIA) and spike in Ti/Al during the PETM not only corroborates 448 

terrestrial input but possibly erosion of older (pre-PETM) material (Dickson et al., 2014). As 449 

such, both OCpetro and (to a larger extent) OCbio likely contributed. Therefore, this study 450 

highlights the need to quantify OCbio, as any carbon sequestered via OCbio burial may negate CO2 451 

released via enhanced OCpetro oxidation (e.g., Bowen & Zachos, 2010; John et al., 2008; Kaya et 452 

al., 2022; Papadomanolaki et al., 2022; Sluijs, Röhl, et al., 2008). Indeed, this was demonstrated 453 

to have occurred during the Holocene (e.g., Galy et al., 2015; Hilton et al., 2015; Kao et al., 454 

2014). In conclusion, the subtropical and mid-latitude sites all exhibit an increase in OCpetro 455 

MAR during the PETM, and thus may provide an additional source of CO2. However, 456 

understanding whether the Kheu River region was a net carbon source or sink requires further 457 

investigations. 458 

4.2 Stable organic carbon sources in the high-latitudes during the PETM 459 

In the subtropics and mid-latitudes, average OCpetro MAR increased between 8x10-3 to 6x10-2 gC 460 

cm2 kyr-1 during the PETM for a given site (see Section 4.1). In the high-latitudes, OCpetro MARs 461 

in the Arctic (ACEX) and the southwest Pacific Ocean (ODP Site 1172) either increase (by 7x10-462 
2 gC cm2 kyr-1) or decrease (by 3x10-4 gC cm2 kyr-1), respectively (Figure 7). The decline 463 

observed at ODP Site 1172 is due to a drop in TOC values and LSRs. The marked rise at ACEX 464 
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is mostly driven by a peak in TOC values, from a minimum of 1.3 % (pre-PETM) to a maximum 465 

of 4.9 % (core PETM) (Elling et al., 2019). Absolute abundances of palynomorphs from ACEX 466 

suggest that the high TOC is a mixture of marine and terrestrial organic matter (Sluijs, Röhl, et 467 

al., 2008). However, both sites, with the exception of the C31 S/(S + R) ratio at ODP Site 1172, 468 

have thermal maturity ratios that are very stable throughout the record (Figure 2–3). This 469 

indicates that although the supply of organic carbon increased during the PETM, the organic 470 

carbon source did not distinctly change. Intriguingly, there is an antiphase between C30 αβ/(αβ + 471 

ββ) and C31 αβ/(αβ + ββ) at ACEX, perhaps suggesting subtle changes in the organic carbon 472 

source during the PETM. Decoupling between the C30 and C31 indices could be due to a greater 473 

input of acidic peats, which are dominated by C31 αβ hopanes but lack abundant C30 αβ isomers 474 

(Inglis et al., 2018). The contribution of acidic peats at ACEX has also been inferred from 475 

brGDGTs (Sluijs et al., 2020).  476 

4.3 Climate exerts primary control on OCpetro mobilisation during the PETM 477 

Various factors may explain why shallow marine sediments are characterised by enhanced 478 

delivery of OCpetro during the PETM. Modern observations have identified a strong link between 479 

rainfall and efficient erosion/transfer of organic carbon from land-to-sea (e.g., T. I. Eglinton et 480 

al., 2021; Hilton, 2017). In the subtropics, evidence for changes in the hydrological cycle during 481 

the PETM are scarce. Previous work at TDP Site 14 revealed that the hydrogen isotope of n-482 

alkanes (δ2Hn-alkanes) increased during the PETM, which was inferred to represent a shift towards 483 

more arid climate conditions (Carmichael et al., 2017; Handley et al., 2008). Enhanced aridity 484 

could lead to minimal vegetation cover, hindering soil development, and maximising the 485 

potential for erosion and mobilisation of OCpetro (e.g., Hilton et al., 2008; Leithold et al., 2006). 486 

Furthermore, large fluctuations in δ2Hn-alkanes values may indicate oscillations between dry and 487 

wet climate states and/or an increase in extreme precipitation events (Carmichael et al., 2017; 488 

Handley et al., 2008). Modelling studies over subtropical Africa during the PETM further 489 

support the latter (Carmichael et al., 2018). Episodic and intense rainfall on a landscape prone to 490 

erosion would explain the highly variable delivery of different organic carbon sources, as shown 491 

by the hopane-based thermal maturity data (this study), δ13Corgvalues, and n-alkane δ13C values 492 

(Aze et al., 2014; Handley et al., 2008).  493 

 494 
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Analogous to TDP Site 14, Kheu River also exhibits high variability in the thermal maturity 495 

ratios (e.g., CPI, C29 αβ/C30 αβ, and C29 βα/(βα + αβ); this study), chain-length distributions of n-496 

alkanes, BIT index, grain-size, and CIA during the PETM (Dickson et al., 2014). These features 497 

are consistent with episodic changes in precipitation, although some of the pulses at Kheu River 498 

have been argued to correlate to brief intervals of marine transgression (Shcherbinina et al., 499 

2016). There are multiple lines of evidences associating other mid-latitude sites with increased 500 

transient and extreme rainfall events during the PETM. For example, the deposition of 501 

conglomerates in the Pyrenees (Chen et al., 2018; Schmitz & Pujalte, 2003, 2007) and changes in 502 

paleosol weathering indices and/or the abundance and composition of nodules in the Bighorn 503 

Basin (e.g., Kraus et al., 2013; Kraus & Riggins, 2007). There is also evidence for greater 504 

freshwater runoff in the Atlantic Coastal Plain (i.e., Ancora, SDB, and CamDor) during the 505 

PETM, with the development of a river-dominated shelf referred to as the “Appalachian 506 

Amazon” (Doubrawa et al., 2022; Kopp et al., 2009; Self-Trail et al., 2017). This is consistent 507 

with high-resolution climate models that suggest the western Atlantic region was dominated by 508 

an increase in extratropical cyclones and more extreme rainfall events (Kiehl et al., 2021; Rush 509 

et al., 2021; Shields et al., 2021). Although the hydrological cycle likely exerted a first-order 510 

control on the mobilisation of terrestrial organic carbon, other ecological and/or geologic 511 

controls could have also been important. For example, the dominance of OCbio at Kheu River 512 

may reflect abundant vegetation cover (e.g., Goñi et al., 2013). On the other hand, the dominance 513 

of OCpetro at TDP Site 14 may reflect greater availability of OCpetro-rich rock and/or exacerbated 514 

erosion of OCpetro caused by limited soil and vegetation (e.g., Hilton et al., 2011). 515 

 516 

Model simulations also indicate an increase in precipitation in the high-latitudes for a PETM-517 

type warming event (e.g., Carmichael et al., 2016; Cramwinckel et al., 2023; Winguth et al., 518 

2010). Proxies also reconstruct northern and southern high-latitudes to be wetter at the onset of 519 

the PETM (e.g., evidence from palynomorphs (Korasidis et al., 2022; Sluijs et al., 2006), 520 

fossilised plants (Harding et al., 2011), hydrogen isotopes of n-alkanes (δ2Hn-alkanes; Pagani et al., 521 

2006), and clay-mineralogy (Dypvik et al., 2011; Kaiho et al., 1996; Robert & Kennett, 1994)). 522 

Yet, both high-latitude sites (i.e., ACEX and ODP Site 1172) exhibit a relatively stable source of 523 

organic carbon during the PETM. This suggests that changes in seasonality and extreme 524 

precipitation events (alongside overall wetter conditions) are required to mobilise OCpetro (see 525 



Paleoceanography and Paleoclimatology 

 

section 4.1). Alternatively, there may be other feedback mechanisms and/or more regional 526 

controls beyond the hydrological cycle. In modern systems, local geomorphic processes play a 527 

strong role in regulating OCpetro transport from land-to-sea (e.g., Hilton & West, 2020). However, 528 

tectonic activity is hard to constrain in deep-time. Variability in OCpetro MARs could also be 529 

attributed to changes in sea level during the PETM. Indeed, various studies have suggested 530 

marine transgression during the PETM, including: ACEX (Sluijs et al., 2006); ODP Site 1172 531 

(Sluijs et al., 2011); Kheu River (Shcherbinina et al., 2016); the Atlantic Coastal Plain (John et 532 

al., 2008); and elsewhere (Sluijs, Brinkhuis, et al., 2008 and references therein). Although sea 533 

level rise is expected to reduce the supply of terrestrial organic carbon into the marine real, this is 534 

rarely observed (e.g., Sluijs et al., 2014) and most PETM sites are characterised by enhanced 535 

terrigenous material during the PETM (Carmichael et al., 2017 and references therein). 536 

4.4 Timing and implications for CO2 release during the PETM 537 

Enhanced OCpetro delivery was suggested to have occurred ~10–20 kyrs after the onset of the 538 

PETM (i.e., within the body of the CIE) by Lyons et al. (2019). Here we confirm that elevated 539 

OCpetro MARs occurred within the core of the PETM at several other sites (i.e., ACEX, Kheu 540 

River, Ancora; Figure 8). However, the exact timing within the core (i.e., onset or body) cannot 541 

be determined due to the lack of robust age constraints. The sites where the recovery phases were 542 

defined (i.e., ACEX, Kheu River, Ancora, and SDB), enables insight into whether enhanced 543 

OCpetro MARs continued after the body of the CIE or recovered to pre-PETM values. 544 

Interestingly, at both Ancora and SDB, median OCpetro MARs are higher than the core of the 545 

PETM in Phase II and I, respectively (Figure 8). Although an increase in OCpetro MAR during the 546 

recovery is not observed at ACEX and Kheu River, values do not return to pre-PETM levels. 547 

This suggests that at certain localities, terrestrial organic carbon cycle perturbations continued 548 

into the recovery phase. If this OCpetro was oxidised, it may provide an additional source of CO2 549 

during the recovery.  550 
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Figure 8: Violin plots of OCpetro MARs (gC cm- kyr-1) for the defined time intervals of site (a) 

ACEX, (b) Kheu River, (c) Ancora, and (d) SDB. The thick dashed line represents the median 

and the thin dashed line extends from the 25th to 75th percentiles. 

Overall, Lyons et al. (2019) inferred between 102 and 104 PgC was released as CO2 globally due 551 

to oxidation of OCpetro during the PETM. This assumed that the study sites (i.e., SDB, CamDor, 552 

and TDP Site 14) are globally representative. However, this study demonstrates that an increase 553 

in OCpetro MARs was mostly restricted to the subtropics and mid-latitudes. In addition, the 554 

maximum value of 104 PgC assumed that 85 % of OCpetro is oxidised. However, increased 555 

erosion of clastic sediments can aid the preservation of OCpetro (e.g., Bouchez et al., 2014; 556 

Burdige, 2007). Furthermore, intense precipitation events (characteristic of the subtropics and 557 

mid-latitudes; e.g., Carmichael et al., 2017; Handley et al., 2008; Kiehl et al., 2021; Kraus et al., 558 
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2013; Kraus & Riggins, 2007; Rush et al., 2021; Schmitz & Pujalte, 2003, 2007; Shields et al., 559 

2021) may reduce the transfer time of OCpetro from source to sink, thereby reducing the 560 

possibility for oxidation (e.g., Hilton et al., 2011). However, it is important to consider that 561 

shallow marine sites will likely integrate an expansive catchment area, which incorporate slow 562 

meandering rivers as well as steep mountainous rivers. In the former system, the extent of OCpetro 563 

oxidised could be as high as ~90 % (e.g., Bouchez et al., 2010; Galy et al., 2008). This is 564 

especially likely at sites where large freshwater input was evident, such as the Atlantic Coastal 565 

Plain (Doubrawa et al., 2022; Kopp et al., 2009; Self-Trail et al., 2017). Future work on paleo-566 

digital elevation models may further help elucidate sediment routing systems during the PETM 567 

(Lyster et al., 2020). In conclusion, this study demonstrates that although oxidation of OCpetro 568 

likely contributed additional CO2 during the PETM, global estimates may be lower than 569 

previously inferred. We also demonstrate that CO2 release may have continued into the recovery 570 

of the PETM, suggesting that other feedback mechanisms (e.g., OCbio burial) were necessary to 571 

aid in the recovery of the Earth’s climate system. 572 

5 Conclusion 573 

Here, we use a multi-biomarker approach to reconstruct the mobilisation of petrogenic organic 574 

carbon (OCpetro) during the PETM. We find widespread evidence for enhanced OCpetro mass 575 

accumulation rates (MARs) in the subtropics and mid-latitudes during the PETM. In this region, 576 

we argue that extreme rainfall events exacerbated erosion, mobilisation, and burial of OCpetro in 577 

the marine realm. In addition, we demonstrate that OCpetro MARs persisted into the recovery 578 

phase of the PETM. However, the high-latitude sites do not exhibit a strong shift in the source of 579 

organic carbon. This may be due to a more stable hydrological regime and/or additional controls 580 

such as geomorphic processes or sea level change. Overall, OCpetro oxidation likely acted as an 581 

additional source of CO2 during the PETM . However, further work is needed to determine the 582 

exact contributions of OCpetro as a positive feedback mechanism during the PETM and other 583 

transient warming events. 584 
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