Spatial and Temporal Patterns in Petrogenic Organic Carbon Mobilisation during the Paleocene-Eocene Thermal Maximum

Emily H Hollingsworth¹, Felix J Elling², Marcus Peter Sebastian Badger³, Richard Pancost⁴, Alexander Dickson⁵, Rhian L. Rees-Owen⁶, Nina Maria Papadomanolaki⁷, Ann Pearson⁸, Appy Sluijs⁹, Katherine H Freeman¹⁰, Allison A Baczynski¹¹, Gavin L Foster¹, Jessica Whiteside¹, and Gordon N. Inglis¹

¹University of Southampton
²Kiel University
³Open University
⁴r.d.pancost@bristol.ac.uk
⁵Royal Holloway University of London
⁶University of Bristol
⁷CEREGE
⁸Harvard University
⁹Utrecht University
¹⁰Pennsylvania State University
¹¹The Pennsylvania State University

October 17, 2023

Abstract

The Paleocene-Eocene Thermal Maximum (PETM) was a transient global warming event recognised in the geologic record by a prolonged negative carbon isotope excursion (CIE). The onset of the CIE was the result of a rapid influx of 13C-depleted carbon into the ocean-atmosphere system. However, the mechanisms required to sustain the negative CIE remains unclear. Previous studies have identified enhanced mobilisation of petrogenic organic carbon (OCpetro) and argued that this was likely oxidised, increasing atmospheric carbon dioxide (CO2) concentrations after the onset of the CIE. With existing evidence limited to the mid-latitudes and subtropics, we determine whether: (i) enhanced mobilisation and subsequent burial of OCpetro in marine sediments was a global phenomenon; and (ii) whether it occurred throughout the PETM. To achieve this, we utilised a lipid biomarker approach to trace and quantify OCpetro burial in a global compilation of PETM-aged shallow marine sites (n = 7, including five new sites). Our results confirm that OCpetro mass accumulation rates (MARs) increased within the subtropics and mid-latitudes sites do not exhibit distinct changes in the organic carbon source during the PETM. This may be due to the more stable hydrological regime and/or additional controls. Crucially, we also demonstrate that OCpetro MARs remained elevated during the PETM, we show that this feedback was both spatially and temporally variable.

Hosted file

975184_0_art_file_11430402_s1n4yv.docx available at https://authorea.com/users/669297/ articles/669827-spatial-and-temporal-patterns-in-petrogenic-organic-carbon-mobilisationduring-the-paleocene-eocene-thermal-maximum

Hosted file

975184_0_supp_11430415_s1n33n.docx available at https://authorea.com/users/669297/articles/ 669827-spatial-and-temporal-patterns-in-petrogenic-organic-carbon-mobilisation-duringthe-paleocene-eocene-thermal-maximum

1	
2	Spatial and Temporal Patterns in Petrogenic Organic Carbon Mobilisation
3	during the Paleocene-Eocene Thermal Maximum
4	E. H. Hollingsworth ^{1*} , F. J. Elling ^{2,3} , M. P. S. Badger ⁴ , R. D. Pancost ⁵ , A. J. Dickson ^{4,6} , R. L.
5	Rees-Owen ⁵ , N. M. Papadomanolaki ^{7,8} , A. Pearson ² , A. Sluijs ⁷ , K. H. Freeman ⁹ , A. A.
6	Baczynski ⁹ , G. L. Foster ¹ , J. H. Whiteside ^{1,10} , and G. N. Inglis ^{1*}
7	¹ School of Ocean and Earth Science, University of Southampton, Southampton, UK
8	² Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
9	³ Leibniz-Laboratory for Radiometric Dating and Isotope Research, Christian-Albrechts,
10	University of Kiel, Kiel, Germany
11	⁴ School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes,
12	UK
13	⁵ Department of Earth Sciences and School of Chemistry, University of Bristol, Bristol, UK
14	⁶ Centre of Climate, Ocean and Atmosphere, Department of Earth Sciences, Royal Holloway
15	University of London, Surrey, UK
16	⁷ Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
17	⁸ Now at Institue für Geologie and Paläontologie, Universität Münster, Münster, Germany
18	⁹ Department of Geosciences, The Pennsylvania State University, State College, PA, USA
19	¹⁰ Now at Department of Earth and Environmental Sciences, San Diego State University, San
20	Diego, CA, USA
21	*Corresponding author: Gordon N. Inglis (<u>Gordon.inglis@soton.ac.uk</u>) and Emily H.

22 Hollingsworth (<u>e.hollingsworth@soton.ac.uk</u>)

23	
24	Key Points:
25	• We assess spatial and temporal patterns in petrogenic organic carbon (OC _{petro})
26	mobilisation during the PETM
27	• Enhanced OC_{petro} mobilisation in the subtropics and mid-latitudes, likely due to an
28	increase in extreme rainfall events
29	• Mobilisation of OC _{petro} remained elevated during the recovery phase of the PETM
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 Abstract

The Paleocene-Eocene Thermal Maximum (PETM) was a transient global warming event 48 recognised in the geologic record by a prolonged negative carbon isotope excursion (CIE). The 49 onset of the CIE was the result of a rapid influx of ¹³C-depleted carbon into the ocean-50 atmosphere system. However, the mechanisms required to sustain the negative CIE remains 51 unclear. Previous studies have identified enhanced mobilisation of petrogenic organic carbon 52 (OC_{petro}) and argued that this was likely oxidised, increasing atmospheric carbon dioxide (CO₂) 53 concentrations after the onset of the CIE. With existing evidence limited to the mid-latitudes and 54 subtropics, we determine whether: (i) enhanced mobilisation and subsequent burial of OC_{petro} in 55 marine sediments was a global phenomenon; and (ii) whether it occurred throughout the PETM. 56 To achieve this, we utilised a lipid biomarker approach to trace and quantify OC_{petro} burial in a 57 global compilation of PETM-aged shallow marine sites (n = 7, including five new sites). Our 58 59 results confirm that OC_{petro} mass accumulation rates (MARs) increased within the subtropics and mid-latitudes during the PETM, consistent with evidence of higher physical erosion rates and 60 61 intense episodic rainfall events. The high-latitude sites do not exhibit distinct changes in the organic carbon source during the PETM. This may be due to the more stable hydrological regime 62 and/or additional controls. Crucially, we also demonstrate that OCpetro MARs remained elevated 63 during the recovery phase of the PETM. Although OC_{petro} oxidation was likely an important 64 positive feedback mechanism throughout the PETM, we show that this feedback was both 65 spatially and temporally variable. 66

67

68 Plain Language Summary

The Paleocene-Eocene Thermal Maximum (PETM) was the most severe global warming event 69 70 of the last 66 million years, caused by natural and rapid release of greenhouse gases into the atmosphere. However, scientists have been unable to determine why the PETM lasted for > 71 100,000 years. Several theories suggest further emission of greenhouse gases from positive 72 feedback mechanisms triggered by early onset warming. Here, we explore one such mechanism: 73 CO₂ released from the erosion, transport, and oxidation of ancient rock-derived (or petrogenic) 74 75 organic carbon, and identify if it occurred globally and/or throughout the PETM. We achieve this by looking at biomarkers (molecular fossils) and use this approach to trace the input of 76

77 petrogenic organic carbon into the marine realm. Results suggest enhanced transport of

78 petrogenic organic carbon was restricted to the subtropics and mid-latitudes, with limited

result of petrogenic changes in the high-latitudes. We also find evidence for erosion and transport of petrogenic

80 organic carbon throughout the PETM. Therefore, this process likely contributed to increasing

81 atmospheric CO₂ levels and may have been an important positive feedback mechanism in past

82 and future warm climates.

83 **1 Introduction**

Climate and tectonics have modulated the flux of carbon to and from terrestrial reservoirs 84 over geological timescales. Early studies predominantly focused on understanding the role of 85 inorganic carbon, for example, carbon dioxide (CO₂) released from solid Earth degassing versus 86 CO₂ drawdown from silicate weathering (e.g., Berner et al., 1983; Caldeira & Berner, 1997; 87 Walker et al., 1981). However, the past two decades have highlighted the importance of the 88 terrestrial organic carbon cycle as a climate feedback mechanism (Hilton & West, 2020). 89 Whether it acts as a positive or negative feedback mechanism largely depends on whether the 90 organic carbon is 'biospheric' (OC_{bio}), representing relatively recent thermally immature organic 91 carbon (10²-10⁴ years old; e.g., vegetation and soils), or 'petrogenic' (OC_{petro}), representing 92 ancient rock-derived and thermally mature organic carbon (> 10^6 years old; e.g., organic carbon-93 rich shales). Erosion, mobilisation, and the subsequent burial of OC_{bio} in marine sediments 94 sequesters CO₂ (Berhe et al., 2007; Stallard, 1998). In contrast, exhumation and oxidation of 95 96 OC_{petro} during lateral transport from land-to-sea can release CO₂ (Petsch et al., 2000). Observations on modern fluvial systems suggest that the fraction of OC_{petro} oxidised positively 97 correlates with the transit duration (Hilton & West, 2020). Up to ~90 % of OC_{petro} is oxidised in 98 large catchments, such as the Amazon and Himalayan range (e.g., Bouchez et al., 2010; Galy et 99 100 al., 2008), whereas a lower proportion (~10-40 %) of OC_{petro} is oxidised in mountain basins with steep rivers (e.g., Hilton et al., 2011, 2014). Thus, regardless of catchment dynamics, OC_{petro} has 101 102 the potential to be oxidised and increase atmospheric CO₂ concentrations.

103

104 Several studies have quantified the mobilisation and burial of OC_{petro} in modern systems (e.g.,

Blair et al., 2003; Clark et al., 2017, 2022; T. I. Eglinton et al., 2021 and references therein; Galy

106 et al., 2007, 2015 and references therein; Hilton et al., 2010, 2011; Hilton & West, 2020 and

107 references therein; Smith et al., 2013) and Holocene sediments (e.g., Hilton et al., 2015; Kao et al., 2008, 2014). While there is a bias towards environments where erosion and transport of 108 109 terrestrial organic carbon is largely controlled by geomorphic processes, climate is also seen as a strong regulator (e.g., T. I. Eglinton et al., 2021; Hilton, 2017). For example, extreme rainfall 110 events can trigger bedrock landslides (e.g., Hilton et al., 2008) and/or create deeply incised 111 gullies (e.g., Leithold et al., 2006), both of which can increase the quantity of OC_{petro} transferred 112 and exposed to atmospheric oxidation. Although, the resulting high abundance of clastic 113 sediments from hyperpychal flows and turbidites may also enhance the preservation of OC_{petro} 114 (e.g., Bouchez et al., 2014; Hilton et al., 2011). As climate model simulations indicate an 115 intensification of the hydrological cycle in response to rising atmospheric CO₂ levels and global 116 temperatures (Lee et al., 2021), the delivery of OC_{petro} to the oceans will likely be enhanced in 117 the future. However, such predictions are based on present-day observations and/or past climate 118

119 states that span a lower-than-modern atmospheric CO_2 values.

120

In contrast, the geological record enables investigations into high CO₂ states of the past, 121 122 providing unique insights on how terrestrial carbon cycle processes may operate in the future. Many studies have focused on the Paleocene-Eocene Thermal Maximum (PETM; ~56 million 123 years ago) (McInerney & Wing, 2011), a transient global warming event (e.g., mean surface 124 temperature increase of ~4-6 °C; Inglis et al., 2020; Tierney et al., 2022) associated with an 125 intensified hydrological cycle (Carmichael et al., 2017 and references therein). The PETM is 126 identified in the geologic record by a negative carbon isotope excursion (CIE) (e.g., -4 ± 0.4 %; 127 Elling et al., 2019). The onset of the PETM is on the order-of-millennia (Kirtland Turner, 2018; 128 Zeebe et al., 2014) and is followed by sustained low and stable carbon isotope (δ^{13} C) values for 129 ~94–170 thousand years (kyrs) (Zeebe & Lourens, 2019), referred to as the "body" of the CIE 130 (Bowen et al., 2006). The body is then followed by a long recovery of \sim 50–120 kyrs (Bowen, 131

132 2013; Murphy et al., 2010; Zeebe et al., 2009), which is further divided into Phase I (initial rapid

rise in δ^{13} C) and Phase II (final gradual rise in δ^{13} C) (Röhl et al., 2007).

134

135 The onset of the CIE was the result of a rapid influx of ¹³C-depleted carbon from one or more

reservoirs outside the active global exogenic carbon pool (Dickens et al., 1997). Proposed

reservoirs include submarine methane hydrates (Dickens, 2011; Dickens et al., 1995), terrestrial 137 organic carbon (Bowen, 2013; Deconto et al., 2012; Kurtz et al., 2003), and volcanic carbon 138 related to the North Atlantic Igneous Province (Gutjahr et al., 2017; Jones et al., 2019; Storey et 139 al., 2007; Svensen et al., 2004). Less explored are the mechanism responsible for the prolonged 140 body of the CIE. This feature requires continual input of ¹³C-depleted carbon (e.g., Zeebe et al., 141 2009) and several feedback mechanisms (either acting individually or in combination) have been 142 proposed. This includes a slow dissociation of oceanic methane hydrates (Zeebe, 2013) and/or 143 pulsed releases of thermogenic methane from vent complexes (e.g., Frieling et al., 2016; Kirtland 144 Turner, 2018). Alternatively, recent work suggests that CO₂ released from OC_{petro} oxidation 145 could explain the extended body of the CIE (Lyons et al., 2019). This theory is based on 146 evidence for an order-of-magnitude increase in the delivery of OC_{petro} to the oceans, ~10–20 kyrs 147 after the onset of the PETM. However, this study was limited to the mid-latitudes (Atlantic 148 Coastal Plain) and subtropics (Tanzania), and thus may not be globally representative. It is also 149 unclear whether enhanced mobilisation of OC_{petro} was a persistent feature throughout the PETM 150 or whether it was restricted to the body interval. 151

152

153 Here we use lipid biomarker thermal maturity ratios to fingerprint OC_{petro} burial in a global compilation of PETM-aged shallow marine sites (n = 7, including five new sites). Lipid 154 biomarkers undergo various structural alterations with increasing thermal maturity (e.g., 155 defunctionalisation, isomerisation, catagenesis, and aromatisation; Peters et al., 2005) and thus 156 can be used to assess the proportion of OC_{petro} in marine sediments (Lyons et al., 2019). We 157 focus on thermally immature, shallow marine sediments as they are 'hotspots' for terrestrial 158 organic carbon input (Bianchi et al., 2018). We quantify OC_{petro} burial fluxes before and during 159 the PETM, using a two-endmember mixing model. Overall, we aim to determine whether: (i) 160 161 enhanced mobilisation and subsequent burial of OC_{petro} in the ocean was a global phenomenon; and (ii) whether it occurred throughout the PETM. 162

163 **2 Methods**

164 2.1 Data compilation

New *n*-alkane- and/or hopane-based thermal maturity ratios were acquired from the following
 PETM-aged shallow marine sites: the International Ocean Drilling Program Expedition 302 Site

- 167 M0004A (or the Arctic Coring Expedition; ACEX); the Ocean Drilling Program Site 1172 Hole
- 168 D (ODP Site 1172); Kheu River; ODP Leg 174AX Ancora Site Hole A/B (Ancora); and the
- 169 Tanzania Drilling Project Site 14 Hole A (TDP Site 14) (Figure 1 and Table S1 in the supporting
- 170 information). We also compile *n*-alkane- and/or hopane-based thermal maturity ratios from the
- following published PETM-aged shallow marine sites: TDP Site 14 (Carmichael et al., 2017;
- Handley et al., 2012); South Dover Bridge (SDB) (Lyons et al., 2019); and Cambridge-
- 173 Dorchester Airport (**CamDor**) (Lyons et al., 2019).
- 174

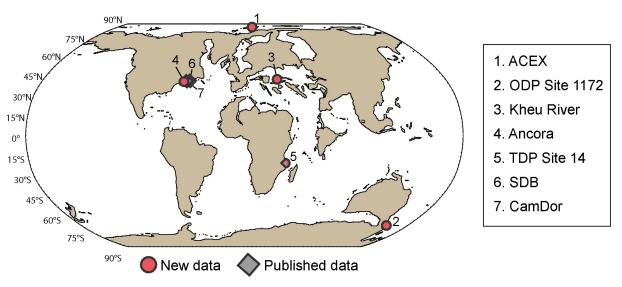


Figure 1: Location of sites with new data (1-5) and published data (5-7). Paleogeographic reconstructions of 56 million years ago, adapted from Carmichael et al., (2017)

175 2.2 Organic geochemistry

Samples from ACEX (n = 94), ODP Site 1172 (n = 41), and Ancora (n = 42) were freeze dried, 176 homogenized, and extracted using a MARS5 microwave-assisted extraction system, using: (i) 177 dichloromethane:methanol (DCM:MeOH; 1:1, v:v); (ii) DCM:MeOH (9:1, v:v); and (iii) DCM 178 (see Elling et al., 2019). Each solvent mixture was heated for 30 minutes to 100 °C, followed by 179 a hold time of 20 minutes. The extracts from the three steps were combined into a total lipid 180 extract (TLE) and further divided into five fractions (following Polik et al., 2018). When 181 required, extracted copper was added to the apolar fractions for 24 hours to remove elemental 182 sulphur. The apolar fractions were analysed using a ThermoFisher Trace 1310 GC coupled to a 183

184 Thermo TSQ8000 Triple Quadrupole MS (GC-MS). Helium was used as the carrier gas and

separation was achieved with DB-5 column (30 m x 0.25 mm i.d., 0.25 μ m film thickness). The

186 GC oven program started at 70 °C for 1 minute, increased to 130 °C at 20 °C min⁻¹, followed by

187 300 °C at 4 °C min⁻¹, which was then held for 20 minutes. MS scanning occurred between mass-

to-charge ratio (m/z) 50 to 650 Daltons, and an ionisation energy of 70 eV. Compound

identification was based on: retention times; fragmentation patterns; comparison to an in-house

190 standard; and library matches.

191

Kheu River samples (n = 39) were extracted at the University of Bristol by ultrasonicating 192 193 homogenised samples sequentially with DCM, DCM:MeOH (1:1, v:v), and MeOH. Elemental sulphur was removed from the combined TLE using activated copper turnings. An activated 194 195 silica column with saturated ammonia in chloroform and chloroform: acetic acid (100:1, v:v) was used to separate the neutral and acid fraction, respectively. The apolar fraction was split from the 196 197 neutral fraction by eluting with hexane: DCM (9:1, v:v) via separation on an alumina column. The apolar fractions were then analysed at the University of Bristol on a Thermoquest Finnigan Trace 198 199 GC interfaced with a Thermoquest Finnigan Trace MS. The GC was fitted with a fused capillary column (50 m x 0.32 mm i.d.) and the carrier gas was helium. The samples were suspended in 200 ethyl acetate and injected at 70 °C. The temperature program increased to 130 °C (20 °C min⁻¹), 201 then 300 °C (4 °C min⁻¹), and finally remained isothermal for 20 minutes. The MS operated with 202 203 an electron ionisation source at 70 eV, scanning over m/z ranges of 50 to 850 Daltons. The 204 compounds were quantified on the total ion chromatogram (TIC).

205

Additional samples (n = 12) from TDP Site 14 were homogenised and extracted at the University 206 of Bristol. Extractions were achieved via Soxhlet apparatus overnight, using DCM:MeOH (2:1 207 v:v). The apolar fraction was suspended in hexane:DCM (9:1, v:v) and separated by alumina 208 209 column chromatography. Co-eluting compounds and/or unresolved complex mixtures were 210 reduced with urea adduction (following Pancost et al., 2008). Elemental sulphur was removed using extracted copper turnings. The apolar fractions were analysed at the University of Bristol 211 212 on the same GC-MS as used for Kheu River. The GC was fitted with a CPsil-5CB column (Agilent Technologies, dimethylpolysiloxane stationary phase) and the carrier gas was helium. 213

The samples were injected in ethyl acetate at 70 °C. The temperature program increased to 130

²¹⁵ °C (20 °C min⁻¹), then 300 °C (4 °C min⁻¹), and finally held for 25 minutes. The MS operated

with an electron ionisation source at 70 eV, scanning over m/z ranges of 50 to 850 Daltons.

- 217 2.3 Lipid biomarker proxies
- 218 2.3.1 *n*-alkane-based thermal maturity ratios

Modern plants and sediments contain long-chain *n*-alkanes with an odd-over-even preference (G. 219 220 Eglinton & Hamilton, 1967), however this is progressively lost during diagenesis. The shift away from a dominance of long-chain *n*-alkanes with an odd-over-even predominance is captured by 221 the carbon preference index (CPI) (Bush & McInerney, 2013). Modern sediments exhibit high 222 CPI values (> 3-30), indicating relatively unaltered thermally immature organic matter 223 (Diefendorf & Freimuth, 2017). In contrast, mature organic matter (e.g., coal, oil) exhibits low 224 CPI values (~1). CPI values < 1 are less common, and typify low-maturity source rocks from 225 carbonates or hypersaline environments. In this study, sites with extensive post-depositional 226 diagenesis were excluded, such that CPI values closer to 1 likely suggests input of allochthonous 227 thermally mature organic matter (e.g., OC_{petro}). Here, we use the equation as originally defined 228 by Bray & Evans (1961): 229

230
$$\operatorname{CPI} = \frac{1}{2} \left[\left(\frac{\sum_{\text{odd}}(C_{25-31})}{\sum_{\text{even}}(C_{26-32})} \right) + \left(\frac{\sum_{\text{odd}}(C_{27-33})}{\sum_{\text{even}}(C_{26-32})} \right) \right]$$
 (Eq. 1)

231

2.3.2 Hopane-based thermal maturity ratios

Hopanes are the diagenetic products of biohopanoids, which are produced by a wide diversity of 232 233 bacteria and consequently ubiquitous in a range of environments (Kusch & Rush, 2022). The ratios between different hopanes and their various stereoisomers have long been utilised as a 234 thermal maturity proxy in the field of petroleum geochemistry (e.g., Farrimond et al., 1998; 235 Mackenzie et al., 1980). Most of the hopane-based thermal maturity ratios used in this study are 236 normalised (with the exception of Equation 4). Values indicating high thermal maturity likely 237 suggests allochthonous older material (e.g., pre-PETM-aged OC_{petro}), as sites with post-238 depositional diagenesis were excluded from this study. We use a multi-ratio approach as each 239 ratio corresponds to different stages of maturity relative to the oil window (i.e., from early 240 diagenesis to the generation of oil), thus enabling insight on the degree of thermal maturation 241

242 (Figure S1 in the supporting information). However, hopane distributions also vary depending on

the lithofacies and/or depositional environment (Peters et al., 2005). Therefore without

knowledge of the source rock at each locality, comparison between the sites should be

245 undertaken with caution.

246

With the exception of *Frankia* spp. (Rosa-Putra et al., 2001), all bacteria synthesise hopanoids with a 17β21β configuration. However, this changes to a more stable $\beta\alpha$ and then $\alpha\beta$ configuration during early diagenesis and then peak oil generation, respectively (Farrimond et al., 1998; Mackenzie et al., 1980). The shift from $\beta\beta$ to $\alpha\beta$ is expressed via the following equation (sometimes referred in literature as 'hopanoid isomerisation'):

252 $\alpha\beta/(\alpha\beta + \beta\beta)$ (Eq. 2)

Higher thermal maturity is marked by values closer to 1. However, caution should be taken when interpreting sediments with input from peats, as $C_{31} \alpha\beta$ isomers dominate the hopane distribution within acidic wetland environments (Inglis et al., 2018).

256

257 The shift from $\beta\alpha$ (also referred to as moretane; M) to the more stable $\alpha\beta$ (also referred to as 258 hopane; H) is assessed via the following equation (sometimes referred in literature as

259 'moretane/hopane ratio'):

260 $\beta \alpha / (\beta \alpha + \alpha \beta)$ (Eq. 3)

This equation is mostly applied using C_{30} hopane (e.g., French et al., 2012), although C_{29} hopane has also been used (Peters et al., 2005). Values closer to ~0 indicate higher thermal maturity and oil generation.

264

265 The C₂₉ $\alpha\beta$ hopane (also referred to as norhopane; N) is more thermally stable than C₃₀ $\alpha\beta$

266 hopane. This is assessed via the following equation (sometimes referred in literature as

267 'norhopane/hopane ratio'):

 $C_{29} \alpha \beta / C_{30} \alpha \beta$ (Eq. 4) 268 As well as a thermal maturity proxy, this ratio has been utilised to differentiate between anoxic 269 270 carbonate and/or marl source rocks (> 1) vs. clay-rich source rocks (< 1) (Peters et al., 2005). 271 Towards the early stages of oil generation, there is a change in stereochemistry at the C-22 272 position, from the biologically favoured R configuration to a near equal mix of R and S

(Farrimond et al., 1998; Mackenzie et al., 1980; Peters et al., 2005). This is expressed via the 274

following equation (sometimes referred in literature as 'homohopane isomerisation'): 275

S/(S + R)(Eq. 5) 276

This equation uses C₃₁₋₃₅ hopanes (also referred to as homohopanes) and approaches maximum 277 (equilibrium) values of ~0.6 as thermal maturity increases and oil is generated. 278

279

273

280 At the late stage of oil generation, C_{27} hopanes shift in the position of a D-ring methyl group,

from C-18 (17 α (H),22,29,30-trisnorhopane; T_m) to C-17 (18 α (H),22,29,30-trisnorneohopane; T_s) 281

282 (Farrimond et al., 1998; Peters et al., 2005). This is expressed via the following equation:

 $T_s/(T_s + T_m)$ 283 (Eq. 6)

 T_m refers to maturable (less stable), whereas T_s denotes stable. Values closer to 1 indicate higher 284 thermal maturity, although the oxicity of the depositional environment also has a notable 285 influence (Peters et al., 2005). 286

287

2.4 Two-endmember mixing models

The fraction of OC_{petro} (f_{petro}) was calculated for each hopane-based thermal maturity ratio (X_{mix} ; 288 289 Table 1), following the two-endmember mixing model from Lyons et al. (2019):

 $X_{\text{mix}} = f_{\text{petro}} \times X_{\text{petro}} + (1 - f_{\text{petro}}) \times X_{\text{background}}$ (Eq. 7) 290

where $X_{\text{background}}$ and X_{petro} is the defined immature and mature endmembers, respectively. The 291

endmembers for C_{31-35} S/(S+R) ratio follow the definitions in Lyons et al. (2019), where 292

 $X_{\text{background}}$ is the contemporaneous carbon value of 0 and X_{petro} is the most thermally mature value 293

- of 0.6. The endmembers for $C_{29-30} \beta \alpha / (\beta \alpha + \alpha \beta)$ ratio also follow the definitions in Lyons et al.
- 295 (2019), where $X_{\text{background}}$ is 1 and X_{petro} is 0. For this study, the endmembers of the $\alpha\beta/(\alpha\beta + \beta\beta)$
- ratio was defined as 0 for $X_{\text{background}}$ is 1 for X_{petro} . Note that C₂₉ $\alpha\beta/C_{30}$ $\alpha\beta$ and T_s/(T_s + T_m) ratios
- 297 were excluded due to their strong dependence on the source rock and/or depositional
- environment (Peters et al., 2005).
- Table 1: The hopane-based thermal maturity ratio (X_{mix}) used to calculate f_{petro} , with assumed

300	linear sedimentation rate	(LSR) and tota	l organic carbon	(TOC) reference for each site
-----	---------------------------	----------------	------------------	-------------------------------

Site	X _{mix}	LSR (cm kyr ⁻¹)			TOC	
		Pre-	Core	Recover	y PETM	references
		PETM	PETM	Phase I	Phase II	
ACEX ^a	$C_{30-31} \alpha \beta / (\alpha \beta + \beta \beta)$	1		Min: 3.8		Elling et al.
	$C_{31} S/(S+R)$			Max: 6.2		(2019)
	$C_{30} \beta \alpha / (\beta \alpha + \alpha \beta)$					
ODP Site	$C_{30-31} \alpha \beta / (\alpha \beta + \beta \beta)$	0.57	Min: 0.4	Not available		Papadomanol-
1172 ^b	$C_{31} S/(S+R)$		Max: 0.5			aki et al. (2022)
	$C_{30}\beta\alpha/(\beta\alpha+\alpha\beta)$					
Kheu	$C_{29-31} \alpha \beta / (\alpha \beta + \beta \beta)$	0.3	1.9			Dickson et al.
River ^c	$C_{29-30} \beta \alpha / (\beta \alpha + \alpha \beta)$					(2014)
Ancora ^d	$C_{30-31} \alpha \beta / (\alpha \beta + \beta \beta)$		11.2 and	1.3	8.4	Elling et al.
	$C_{31} S/(S+R)$	0.8	4.3			(2019)
	$C_{30} \beta \alpha / (\beta \alpha + \alpha \beta)$					
TDP Site	$C_{29-31} \alpha \beta / (\alpha \beta + \beta \beta)$	Min: 0.5	Min: 3.5	NA		Aze et al. (2014)
14 ^e	$C_{31-35} S/(S+R)$	Max: 2	Max: 14			
	$C_{29-30} \beta \alpha / (\beta \alpha + \alpha \beta)$					
SDB ^f	$C_{31} S/(S+R)$	Min: 1.03	14	21.3	21.3	Lyons et al.
	$C_{29}\beta\alpha/(\beta\alpha+\alpha\beta)^*$	Max: 2.4				(2019)
CamDor ^f	$C_{29}\beta\alpha/(\beta\alpha+\alpha\beta)^*$	Min: 1.03		14		Lyons et al.
	$C_{31-32} S/(S+R)*$	Max: 2.4				(2019)

^{a-f}References for LSR. ^aSluijs, Röhl, et al. (2008). ^bSluijs et al. (2011). ^cJohn et al. (2008).

^dStassen et al. (2012). ^eLyons et al. (2019). ^fDoubrawa et al. (2022).

- 303 * f_{petro} calculated in Lyons et al. (2019)
- 304 2.5 Mass accumulation rates

305 The mass accumulation rate (MAR; in gC cm² kyr⁻¹) of OC_{petro} was recalculated for all the new

and published f_{petro} data, following Lyons et al. (2019):

307 MAR = LSR × ρ × f_{petro} × $\frac{\text{TOC}}{100}$ (Eq. 8)

, where LSR is the linear sedimentation rate (cm kyr⁻¹), ρ is the dry bulk density (g cm⁻³), and 308 TOC is the total organic carbon (%). A constant ρ value of 1.8g cm⁻³ was assumed across all the 309 sites. The TOC values and LSR were acquired for each location from previously published 310 studies (Table 1). TOC records from ODP Site 1172 (Papadomanolaki et al., 2022) and TDP Site 311 14 (Aze et al., 2014) were linearly interpolated to match the depths of the biomarker data, using 312 R Package Astrochron (Meyers, 2014). LSR estimates were obtained (where possible) for three 313 key time intervals: (i) pre-PETM (Paleocene); (ii) the "core" (onset and body of the CIE) of the 314 PETM; (iii) and the recovery of the PETM (see Text S1 in the supporting information). This was 315 available for all the sites with the exception ODP Site 1172, which lacks the recovery interval. 316 Note that the recovery at Ancora and SDB was further divided into: (iiia) Phase I; and (iiib) 317 Phase II. Since Kheu River does not have LSR data, estimates were taken from the nearby 318 Aktumsuk section (Uzbekistan; John et al., 2008). Both sites comprise shallow marine deposits 319 that exhibits TOC values from ~0 % pre-PETM to a maximum of ~8.5 % during the PETM 320 (Bolle et al., 2000; Dickson et al., 2014). Similarly, LSRs from within the core interval of SDB 321 was assumed to be the same for the entire PETM section at CamDor (following Lyons et al., 322 2019). 323

324 3 Results

- 325 3.1 Thermal maturity ratios
- 326 3.1.1 ACEX

The apolar fraction contains short- (C_{15-19}) , mid- (C_{21-25}) , and long- (C_{27-33}) chain *n*-alkanes, and 327 C_{27} to C_{32} hopanes (including $\alpha\beta$, $\beta\alpha$, and $\beta\beta$ isomers). Both CPI (ranging from ~1–3) and 328 hopane-based thermal maturity ratios exhibit relatively stable trends throughout the sequence, 329 suggesting that the organic carbon source did not distinctly change (Figure 2). Note that potential 330 information may be missing due poor core recovery between \sim 388–384.5 mcd (Sluijs et al., 331 2006). However, $C_{30} \alpha\beta/(\alpha\beta + \beta\beta)$, $C_{31} S/(S + R)$, and $T_s/(T_s + T_m)$ values slightly increase (i.e., 332 higher thermal maturity) between pre-PETM and the core of the PETM, by an average of 0.01, 333 0.01, and 0.08, respectively. These indices then decline during the recovery interval. $C_{31} \alpha\beta/(\alpha\beta +$ 334 $\beta\beta$) and C₃₀ $\beta\alpha/(\beta\alpha + \alpha\beta)$ ratios exhibit the opposite trend, with lower thermal maturity during the 335 core and the $C_{30}\beta\alpha/(\beta\alpha + \alpha\beta)$ ratio continuing to decline into the recovery. 336

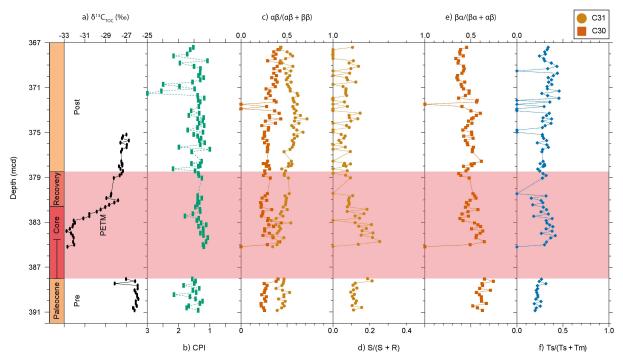


Figure 2: Thermal maturity ratios at ACEX. Note some of the axis are reversed to reflect increasing thermal maturity towards the right. a) bulk sediment $\delta^{13}C$ of total organic carbon ($\delta^{13}C_{TOC}$) (Elling et al., 2019), b) CPI (this study), c) $\alpha\beta/(\alpha\beta + \beta\beta)$ ratios (this study), d) S/(S + R) ratio (this study), e) $\beta\alpha/(\beta\alpha + \alpha\beta)$ ratio (this study), and f) T_s/(T_s + T_m) ratio (this study). The PETM interval (including the core and recovery) is highlighted by red shading, and a core gap is present from ~388 to 384.5 mcd (Sluijs et al., 2006)

337 3.1.2 ODP Site 1172

The apolar fraction contains C_{16} to C_{34} *n*-alkanes and the CPI has a mean value of 2.8. Samples 338 339 with CPI > 3 (i.e., relatively low thermal maturity), are mostly constrained to the pre-PETM interval (Figure 3). Hopanes range from C_{27} to C_{32} (including $\alpha\beta$, $\beta\alpha$, and $\beta\beta$ isomers), and the 340 341 thermal maturity ratios exhibit a relatively stable trend throughout the sequence. However, C_{31} S/(S + R) ratio slightly increases by 0.09 during the core and into the recovery of the PETM, 342 suggesting potential input of thermally mature organic carbon. $C_{30} \alpha\beta/(\alpha\beta + \beta\beta)$, $C_{31} \alpha\beta/(\alpha\beta + \beta\beta)$ 343 $\beta\beta$), and C₃₀ $\beta\alpha/(\beta\alpha + \alpha\beta)$ values present the opposite behaviour, shifting slightly towards 344 thermally immature values during the core of the PETM, by an average of 0.19, 0.22, and 0.07 345 respectively. During the recovery, all parameters return to more thermally mature values. 346

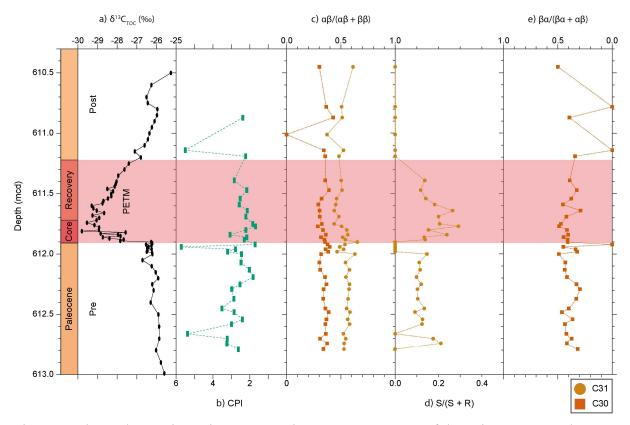


Figure 3: Thermal maturity ratios at ODP Site 1172. Note some of the axis are reversed to reflect increasing thermal maturity towards the right. a) bulk sediment $\delta^{13}C$ of total organic carbon ($\delta^{13}C_{TOC}$) (Sluijs et al., 2011), b) CPI (this study), c) $\alpha\beta/(\alpha\beta + \beta\beta)$ ratios (this study), d) S/(S + R) ratio (this study), and e) $\beta\alpha/(\beta\alpha + \alpha\beta)$ ratio (this study). The PETM interval (including the core and recovery) is highlighted by red shading

347 3.1.3 Kheu River

 C_{16} to C_{35} *n*-alkanes were identified in the apolar fraction, in addition to C_{27} to C_{31} hopanes 348 349 (including $\alpha\beta$, $\beta\alpha$, and $\beta\beta$ isomers). Prior to the PETM and during the recovery, the CPI drops below 1, which may suggest input of low-maturity source rocks from carbonates or hypersaline 350 environments. On the other hand, the CPI oscillate drastically between ~1 and ~3 within the 351 lower depths of the core of the PETM ($\sim 0-50$ cm; Figure 4). This section of high variability is 352 also reflected in the C₂₉ $\alpha\beta/C_{30}\alpha\beta$ and C₂₉ $\beta\alpha/(\beta\alpha + \alpha\beta)$ ratios, suggesting rapid changes in the 353 organic carbon source. However, part of this signal may be biased by greater sampling resolution 354 355 within the PETM. Overall, the average of all the thermal maturity ratios exhibit lower thermal maturity during the core. In addition, the C₂₉ $\alpha\beta/C_{30}\alpha\beta$ ratio present values > 1 during the 356

- 357 PETM, potentially indicating input from a clay-rich source rock. With the exception of $T_s/(T_s +$
- $T_{\rm m}$), all of the ratios increase in higher thermal maturity during the recovery to either higher than

pre-PETM (i.e., $C_{29} \alpha\beta/(C_{29} \alpha\beta + C_{30} \alpha\beta)$ and $C_{29-30} \beta\alpha/(\beta\alpha + \alpha\beta)$ ratios) or near pre-PETM values

360 (i.e., $C_{29-31} \alpha\beta/(\alpha\beta + \beta\beta)$ ratio).

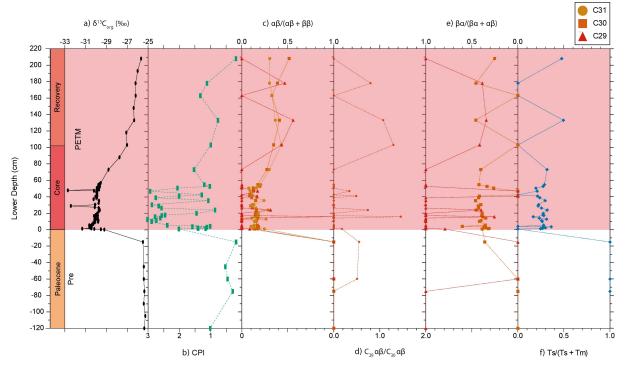


Figure 4: Thermal maturity ratios at Kheu River. Note some of the axis are reversed to reflect increasing thermal maturity towards the right. a) bulk sediment δ^{13} C of organic carbon ($\delta^{13}C_{org}$) (Dickson et al., 2014), b) CPI (this study), c) $\alpha\beta/(\alpha\beta + \beta\beta)$ ratios (this study), d) C₂₉ $\alpha\beta/C_{30} \alpha\beta$ ratio (this study), e) $\beta\alpha/(\beta\alpha + \alpha\beta)$ ratios (this study), and f) T_s/(T_s + T_m) ratio (this study). The PETM interval (including the core and recovery) is highlighted by red shading

361 3.1.4 Ancora

The apolar fraction contains C_{15} to C_{34} *n*-alkanes and C_{27} to C_{31} hopanes (including $\alpha\beta$, $\beta\alpha$, and $\beta\beta$ isomers). CPI ranges from 1–2.2 and is stable throughout the record (Figure 5). Similarly, C_{30} - $_{31}\alpha\beta/(\alpha\beta + \beta\beta)$ values remain relatively constant, albeit exhibiting a very slight decline by an

average of 0.01–0.03 (i.e., decreasing thermal maturity). On the other hand, C_{31} S/(S + R) and

- 366 $C_{30}\beta\alpha/(\beta\alpha + \alpha\beta)$ values peak towards higher thermal maturity during the core of the PETM. The
- 367 former presents a drastic shift from an absence of the S configuration to a dominance of R,

suggesting potential transient input of thermally mature organic carbon. However, the rise in the two ratios do not occur synchronously, instead C_{31} S/(S + R) values lag behind by ~1.5 mcd.

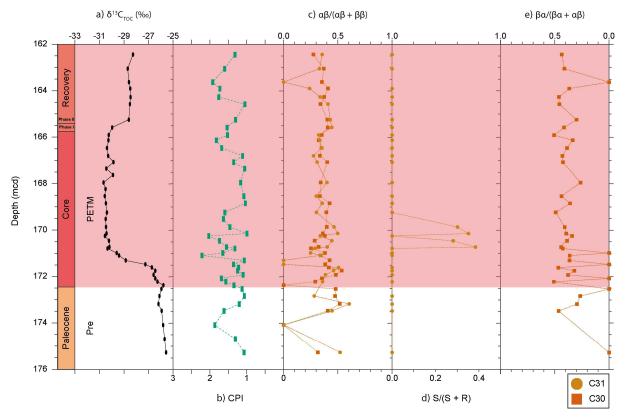
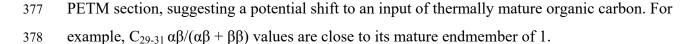



Figure 5: Thermal maturity ratios at Ancora. Note some of the axis are reversed to reflect increasing thermal maturity towards the right. a) bulk sediment $\delta^{13}C$ of total organic carbon ($\delta^{13}C_{TOC}$) (Elling et al., 2019), b) CPI (this study), c) $\alpha\beta/(\alpha\beta + \beta\beta)$ ratios (this study), d) S/(S + R) ratio (this study), and e) $\beta\alpha/(\beta\alpha + \alpha\beta)$ ratio (this study). The PETM interval (including the core and recovery) is highlighted by red shading

370 3.1.5 TDP Site 14

371 C_{16} to C_{33} *n*-alkanes and C_{27} to C_{35} hopanes (including $\alpha\beta$, $\beta\alpha$, and $\beta\beta$ isomers) were identified in 372 the apolar fraction. The CPI remains > 3 (i.e., low thermal maturity), with the exception of five 373 data points which occur during the core of the PETM (Figure 6). Most noticeable is the large 374 variability in the hopane-based thermal maturity ratios pre-PETM and for the first ~4 m of the 375 core of the PETM. In the upper ~5 m of the core of the PETM, the ratios are more stable and in 376 general agreement. This interval mostly exhibits more thermally mature values than during pre-

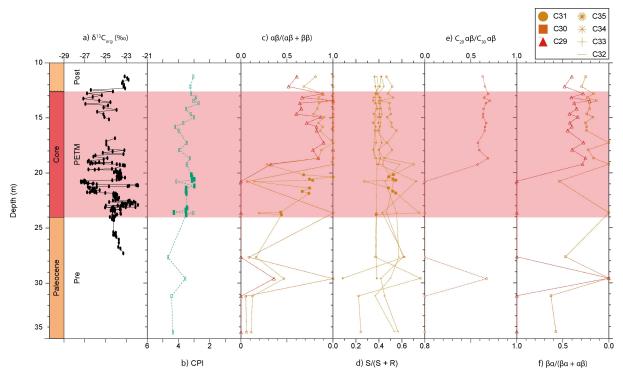


Figure 6: Thermal maturity ratios at TDP Site 14. Note some of the axis are reversed to reflect increasing thermal maturity towards the right. a) bulk sediment δ^{13} C of organic carbon ($\delta^{13}C_{org}$) (Aze et al., 2014), b) CPI (closed symbols from this study and open symbols from Handley et al., 2012), c) $\alpha\beta/(\alpha\beta + \beta\beta)$ ratios (closed symbols from this study and open symbols from Handley et al., 2012), d) S/(S + R) ratios (closed symbols from this study and open symbols from Handley et al., 2012), e) C₂₉ $\alpha\beta/C_{30}$ $\alpha\beta$ ratio (Handley et al., 2012), and f) $\beta\alpha/(\beta\alpha + \alpha\beta)$ ratios (Handley et al., 2012). The PETM interval (including the core) is highlighted by red shading, and an unconformity truncates the CIE at 12.6 m

379

3.2 OC_{petro} mass accumulation rates

380 The OC_{petro} MARs were acquired from all the sites and, following the LSRs, the OC_{petro} MARs

were grouped into the key time intervals at each site (see Text S1 in the supporting information).

382 To enable comparison between sites, we calculated the fold change in mean OC_{petro} MARs

383 between pre-PETM and during the PETM (i.e., including the core and recovery of the PETM)

- 384 (Figure 7). Overall, most of the sites (i.e., ACEX, Kheu River, Ancora, SDB, CamDor, and TDP
- 385 Site 14) display an increase in OC_{petro} MARs during the PETM. However, the sites with the

- 386 largest increase are restricted to the mid-latitudes (i.e., Kheu River, Ancora, and SDB). In
- 387 contrast, ODP Site 1172 exhibits a small decrease in OC_{petro} MAR during the PETM.

388

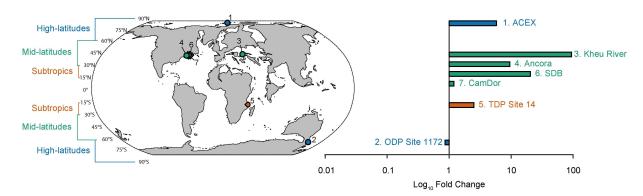


Figure 7: Log_{10} fold change in mean OC_{petro} mass accumulation rates (MARs) between pre-PETM and during the PETM (i.e., including the core and recovery of the PETM). The latitudes are defined as: high (> 60° N/S); mid- (30–60° N/S); and subtropics (15–30° N/S) (see Table S1 in the supporting information)

389 4 Discussion

4.1 Enhanced OC_{petro} mass accumulation rates in the subtropics and mid-latitudes during
 the PETM

A previous study from Tanzania (TDP Site 14) reported a relative increase in the thermally 392 mature αβ hopane during the PETM (Carmichael et al., 2017; Handley et al., 2012). Here, we 393 present new hopane-based thermal maturity data that reveals rapidly fluctuating values within the 394 first ~4 m of the core of the PETM (Figure 6). Similar patterns were observed in the chain-length 395 distributions of *n*-alkanes, the branched and isoprenoid tetraether (BIT) index, bulk sediment 396 δ^{13} C of organic carbon (δ^{13} C_{org}), and the *n*-alkane δ^{13} C record (Aze et al., 2014; Carmichael et 397 al., 2017; Handley et al., 2008, 2012). The latter two was previously suggested to reflect episodic 398 399 reworking of older (pre-PETM) material rather than changes in the atmospheric carbon reservoir (Figure 6; Aze et al., 2014; Handley et al., 2008). The hopane-based thermal maturity ratios 400 within this study confirms this variable delivery of organic carbon sources, from OC_{bio} to OC_{petro}. 401 In contrast, the upper ~ 5 m of the core of the PETM exhibits more stability in the hopane-based 402 thermal maturity ratios (Carmichael et al., 2017; Handley et al., 2012), δ^{13} Corgvalues, and *n*-403 alkane δ^{13} C values (Aze et al., 2014; Handley et al., 2008). The hopane-based thermal maturity 404

ratios also present higher thermal maturity, indicating a switch from an episodic to persistent 405 delivery of OC_{petro} (Carmichael et al., 2017; Handley et al., 2012). During the PETM, the overall 406 increase in thermally mature hopanes in addition to the LSR drives the OC_{petro} MARs to rise by 407 an average of 8×10^{-3} gC cm² kyr⁻¹ (Figure 7). This enhanced OC_{petro} MAR is consistent with 408 evidence of a shift from predominantly marine organic carbon to a terrestrial organic carbon 409 source (e.g., an increase in the abundance of long-chain *n*-alkanes produced by vascular plants 410 and brGDGTs produced by soil bacteria; Carmichael et al., 2017; Handley et al., 2008, 2012). 411 Whilst there is greater LSR and terrigenous sediment during the PETM, TOC values declined. 412 This drop was attributed to the larger contributions of clay (Handley et al., 2012). Evidence 413 includes an abundance of kaolinite, suggestive of intensified physical erosion (John et al., 2012), 414 and high Li/Al combined with low Na/Al, suggestive of exhumation of older weathered clay. 415 These additional proxies also suggest processes that support an increase the mobilisation and 416

417 accumulation of OC_{petro} during the PETM.

418

Similar to Tanzania, Ancora exhibits an increase in the average OC_{netro} MARs (by $2x10^{-2}$ gC cm² 419 kyr⁻¹) during the PETM. This value falls within the average OC_{petro} MARs estimated at two other 420 sites from the Atlantic Coastal Plain (i.e., $6x10^{-2}$ gC cm² kyr⁻¹ SDB and $8x10^{-3}$ gC cm² kyr⁻¹ 421 CamDor; Figure 7). The higher OC_{petro} MAR is largely driven by a shift in LSR from 0.8 cm kyr⁻ 422 ¹ (pre-PETM) to 11.28 cm kyr⁻¹ (PETM) (Table 1; Stassen et al., 2012). Evidence for terrestrial 423 input to the Atlantic Coastal Plain during the PETM includes a higher abundance of kaolinite 424 425 (Gibson et al., 2000), detrital magnetic minerals (Kopp et al., 2009), charcoal, seed pods, and terrestrial spores (Self-Trail et al., 2017). In addition, there is an increase in the terrestrial aquatic 426 ratio (TAR; Bourbonniere & Meyers, 1996; Lyons et al., 2019). Indirect evidence includes 427 changes in the marine microfossil assemblage towards benthic foraminifera (Self-Trail et al., 428 2017) and dinoflagellates (Sluijs & Brinkhuis, 2009) that can tolerate brackish water with high 429 sediment input (Self-Trail et al., 2017). However, with the exception of the abrupt peaks of C_{31} 430 S/(S + R) at ~169–171 mcd and C₃₀ $\beta\alpha/(\beta\alpha + \alpha\beta)$ at ~171–173 mcd, the thermal maturity ratios at 431 Ancora are relatively stable compared to SDB and CamDor (Figure 5; Lyons et al., 2019). 432 Furthermore, SDB and CamDor are characterised by a 6 % increase in $\delta^{13}C_{org}$ values during the 433 PETM (Lyons et al., 2019), which was argued to represent reworking of older (pre-PETM) 434

material and not an increase in primary production (Lyons et al., 2019) This ¹³C enrichment is
not observed at Ancora (Figure 5; Elling et al., 2019).

437

The average OC_{petro} MAR at Kheu River exhibits an increase (by $3x10^{-2}$ gC cm² kyr⁻¹) during the 438 PETM (Figure 7), driven by an order-of-magnitude rise in TOC values from an average 439 background level of ~0.1 % (pre- and post-PETM) to ~4.4 % (Dickson et al., 2014). However, in 440 contrast to the sites discussed thus far, Kheu River thermal maturity ratios shift to immature 441 442 values during the core of the PETM (Figure 4). During the PETM, the *n*-alkane distribution is dominated by long-chain homologues characteristic of vascular plants (Dickson et al., 2014). It 443 444 can therefore be argued that the shift observed in the thermal maturity ratios is mostly due to enhanced input of the OC_{bio} (i.e., immature hopanes such as $\beta\beta$ isomers) transported from land, 445 although in situ production cannot be dismissed. In addition, the $\delta^{13}C_{org}$ record does not present 446 ¹³C enrichment during the PETM (Figure 4; Dickson et al., 2014). However, an increase in the 447 Chemical Index of Alteration (CIA) and spike in Ti/Al during the PETM not only corroborates 448 terrestrial input but possibly erosion of older (pre-PETM) material (Dickson et al., 2014). As 449 such, both OC_{petro} and (to a larger extent) OC_{bio} likely contributed. Therefore, this study 450 highlights the need to quantify OC_{bio}, as any carbon sequestered via OC_{bio} burial may negate CO₂ 451 released via enhanced OC_{petro} oxidation (e.g., Bowen & Zachos, 2010; John et al., 2008; Kaya et 452 al., 2022; Papadomanolaki et al., 2022; Sluijs, Röhl, et al., 2008). Indeed, this was demonstrated 453 to have occurred during the Holocene (e.g., Galy et al., 2015; Hilton et al., 2015; Kao et al., 454 2014). In conclusion, the subtropical and mid-latitude sites all exhibit an increase in OC_{petro} 455 MAR during the PETM, and thus may provide an additional source of CO₂. However, 456 understanding whether the Kheu River region was a net carbon source or sink requires further 457 investigations. 458

459 4.2 Stable organic carbon sources in the high-latitudes during the PETM 460 In the subtropics and mid-latitudes, average OC_{petro} MAR increased between $8x10^{-3}$ to $6x10^{-2}$ gC 461 cm² kyr⁻¹ during the PETM for a given site (see Section 4.1). In the high-latitudes, OC_{petro} MARs 462 in the Arctic (ACEX) and the southwest Pacific Ocean (ODP Site 1172) either increase (by $7x10^{-2}$ 463 2 gC cm² kyr⁻¹) or decrease (by $3x10^{-4}$ gC cm² kyr⁻¹), respectively (Figure 7). The decline 464 observed at ODP Site 1172 is due to a drop in TOC values and LSRs. The marked rise at ACEX

is mostly driven by a peak in TOC values, from a minimum of 1.3 % (pre-PETM) to a maximum 465 of 4.9 % (core PETM) (Elling et al., 2019). Absolute abundances of palynomorphs from ACEX 466 suggest that the high TOC is a mixture of marine and terrestrial organic matter (Sluijs, Röhl, et 467 al., 2008). However, both sites, with the exception of the C_{31} S/(S + R) ratio at ODP Site 1172, 468 have thermal maturity ratios that are very stable throughout the record (Figure 2–3). This 469 indicates that although the supply of organic carbon increased during the PETM, the organic 470 carbon source did not distinctly change. Intriguingly, there is an antiphase between $C_{30} \alpha \beta / (\alpha \beta + \beta)$ 471 $\beta\beta$) and C₃₁ $\alpha\beta/(\alpha\beta + \beta\beta)$ at ACEX, perhaps suggesting subtle changes in the organic carbon 472 source during the PETM. Decoupling between the C_{30} and C_{31} indices could be due to a greater 473 input of acidic peats, which are dominated by $C_{31} \alpha\beta$ hopanes but lack abundant $C_{30} \alpha\beta$ isomers 474 (Inglis et al., 2018). The contribution of acidic peats at ACEX has also been inferred from 475 brGDGTs (Sluijs et al., 2020). 476

4.3 Climate exerts primary control on OC_{petro} mobilisation during the PETM 477 Various factors may explain why shallow marine sediments are characterised by enhanced 478 delivery of OC_{petro} during the PETM. Modern observations have identified a strong link between 479 rainfall and efficient erosion/transfer of organic carbon from land-to-sea (e.g., T. I. Eglinton et 480 al., 2021; Hilton, 2017). In the subtropics, evidence for changes in the hydrological cycle during 481 the PETM are scarce. Previous work at TDP Site 14 revealed that the hydrogen isotope of n-482 alkanes ($\delta^2 H_{n-alkanes}$) increased during the PETM, which was inferred to represent a shift towards 483 484 more arid climate conditions (Carmichael et al., 2017; Handley et al., 2008). Enhanced aridity could lead to minimal vegetation cover, hindering soil development, and maximising the 485 potential for erosion and mobilisation of OC_{petro} (e.g., Hilton et al., 2008; Leithold et al., 2006). 486 Furthermore, large fluctuations in $\delta^2 H_{n-alkanes}$ values may indicate oscillations between dry and 487 wet climate states and/or an increase in extreme precipitation events (Carmichael et al., 2017; 488 Handley et al., 2008). Modelling studies over subtropical Africa during the PETM further 489 490 support the latter (Carmichael et al., 2018). Episodic and intense rainfall on a landscape prone to erosion would explain the highly variable delivery of different organic carbon sources, as shown 491 by the hopane-based thermal maturity data (this study), $\delta^{13}C_{org}$ values, and *n*-alkane $\delta^{13}C$ values 492 (Aze et al., 2014; Handley et al., 2008). 493

494

495 Analogous to TDP Site 14, Kheu River also exhibits high variability in the thermal maturity ratios (e.g., CPI, C₂₉ $\alpha\beta/C_{30}\alpha\beta$, and C₂₉ $\beta\alpha/(\beta\alpha + \alpha\beta)$; this study), chain-length distributions of *n*-496 alkanes, BIT index, grain-size, and CIA during the PETM (Dickson et al., 2014). These features 497 are consistent with episodic changes in precipitation, although some of the pulses at Kheu River 498 have been argued to correlate to brief intervals of marine transgression (Shcherbinina et al., 499 2016). There are multiple lines of evidences associating other mid-latitude sites with increased 500 transient and extreme rainfall events during the PETM. For example, the deposition of 501 conglomerates in the Pyrenees (Chen et al., 2018; Schmitz & Pujalte, 2003, 2007) and changes in 502 paleosol weathering indices and/or the abundance and composition of nodules in the Bighorn 503 Basin (e.g., Kraus et al., 2013; Kraus & Riggins, 2007). There is also evidence for greater 504 freshwater runoff in the Atlantic Coastal Plain (i.e., Ancora, SDB, and CamDor) during the 505 PETM, with the development of a river-dominated shelf referred to as the "Appalachian 506 Amazon" (Doubrawa et al., 2022; Kopp et al., 2009; Self-Trail et al., 2017). This is consistent 507 with high-resolution climate models that suggest the western Atlantic region was dominated by 508 an increase in extratropical cyclones and more extreme rainfall events (Kiehl et al., 2021; Rush 509 510 et al., 2021; Shields et al., 2021). Although the hydrological cycle likely exerted a first-order control on the mobilisation of terrestrial organic carbon, other ecological and/or geologic 511 controls could have also been important. For example, the dominance of OC_{bio} at Kheu River 512 may reflect abundant vegetation cover (e.g., Goñi et al., 2013). On the other hand, the dominance 513 of OC_{petro} at TDP Site 14 may reflect greater availability of OC_{petro}-rich rock and/or exacerbated 514 erosion of OC_{petro} caused by limited soil and vegetation (e.g., Hilton et al., 2011). 515

516

517 Model simulations also indicate an increase in precipitation in the high-latitudes for a PETM-

type warming event (e.g., Carmichael et al., 2016; Cramwinckel et al., 2023; Winguth et al.,

519 2010). Proxies also reconstruct northern and southern high-latitudes to be wetter at the onset of

520 the PETM (e.g., evidence from palynomorphs (Korasidis et al., 2022; Sluijs et al., 2006),

fossilised plants (Harding et al., 2011), hydrogen isotopes of *n*-alkanes ($\delta^2 H_{n-alkanes}$; Pagani et al.,

522 2006), and clay-mineralogy (Dypvik et al., 2011; Kaiho et al., 1996; Robert & Kennett, 1994)).

523 Yet, both high-latitude sites (i.e., ACEX and ODP Site 1172) exhibit a relatively stable source of

organic carbon during the PETM. This suggests that changes in seasonality and extreme

525 precipitation events (alongside overall wetter conditions) are required to mobilise OC_{petro} (see

section 4.1) Alternatively, there may be other feedback mechanisms and/or more regional 526 controls beyond the hydrological cycle. In modern systems, local geomorphic processes play a 527 strong role in regulating OC_{petro} transport from land-to-sea (e.g., Hilton & West, 2020). However, 528 tectonic activity is hard to constrain in deep-time. Variability in OC_{petro} MARs could also be 529 attributed to changes in sea level during the PETM. Indeed, various studies have suggested 530 marine transgression during the PETM, including: ACEX (Sluijs et al., 2006); ODP Site 1172 531 (Sluijs et al., 2011); Kheu River (Shcherbinina et al., 2016); the Atlantic Coastal Plain (John et 532 al., 2008); and elsewhere (Sluijs, Brinkhuis, et al., 2008 and references therein). Although sea 533 level rise is expected to reduce the supply of terrestrial organic carbon into the marine real, this is 534 rarely observed (e.g., Sluijs et al., 2014) and most PETM sites are characterised by enhanced 535 terrigenous material during the PETM (Carmichael et al., 2017 and references therein). 536 4.4 Timing and implications for CO₂ release during the PETM 537 Enhanced OC_{petro} delivery was suggested to have occurred ~10-20 kyrs after the onset of the 538 PETM (i.e., within the body of the CIE) by Lyons et al. (2019). Here we confirm that elevated 539 OC_{petro} MARs occurred within the core of the PETM at several other sites (i.e., ACEX, Kheu 540 River, Ancora; Figure 8). However, the exact timing within the core (i.e., onset or body) cannot 541 be determined due to the lack of robust age constraints. The sites where the recovery phases were 542 defined (i.e., ACEX, Kheu River, Ancora, and SDB), enables insight into whether enhanced 543 OC_{petro} MARs continued after the body of the CIE or recovered to pre-PETM values. 544 Interestingly, at both Ancora and SDB, median OC_{petro} MARs are higher than the core of the 545 PETM in Phase II and I, respectively (Figure 8). Although an increase in OC_{petro} MAR during the 546 recovery is not observed at ACEX and Kheu River, values do not return to pre-PETM levels. 547 This suggests that at certain localities, terrestrial organic carbon cycle perturbations continued 548 549 into the recovery phase. If this OC_{petro} was oxidised, it may provide an additional source of CO₂ during the recovery. 550

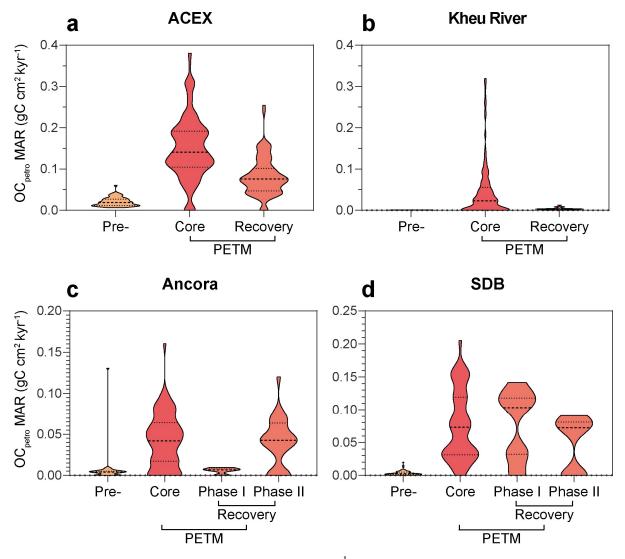


Figure 8: Violin plots of OC_{petro} MARs (gC cm⁻ kyr⁻¹) for the defined time intervals of site (a) ACEX, (b) Kheu River, (c) Ancora, and (d) SDB. The thick dashed line represents the median and the thin dashed line extends from the 25th to 75th percentiles.

Overall, Lyons et al. (2019) inferred between 10^2 and 10^4 PgC was released as CO₂ globally due 551 to oxidation of OC_{petro} during the PETM. This assumed that the study sites (i.e., SDB, CamDor, 552 553 and TDP Site 14) are globally representative. However, this study demonstrates that an increase in OC_{petro} MARs was mostly restricted to the subtropics and mid-latitudes. In addition, the 554 maximum value of 10^4 PgC assumed that 85 % of OC_{petro} is oxidised. However, increased 555 erosion of clastic sediments can aid the preservation of OC_{petro} (e.g., Bouchez et al., 2014; 556 557 Burdige, 2007). Furthermore, intense precipitation events (characteristic of the subtropics and mid-latitudes; e.g., Carmichael et al., 2017; Handley et al., 2008; Kiehl et al., 2021; Kraus et al., 558

2013; Kraus & Riggins, 2007; Rush et al., 2021; Schmitz & Pujalte, 2003, 2007; Shields et al., 559 2021) may reduce the transfer time of OC_{petro} from source to sink, thereby reducing the 560 possibility for oxidation (e.g., Hilton et al., 2011). However, it is important to consider that 561 shallow marine sites will likely integrate an expansive catchment area, which incorporate slow 562 meandering rivers as well as steep mountainous rivers. In the former system, the extent of OC_{petro} 563 oxidised could be as high as ~90 % (e.g., Bouchez et al., 2010; Galy et al., 2008). This is 564 especially likely at sites where large freshwater input was evident, such as the Atlantic Coastal 565 Plain (Doubrawa et al., 2022; Kopp et al., 2009; Self-Trail et al., 2017). Future work on paleo-566 digital elevation models may further help elucidate sediment routing systems during the PETM 567 (Lyster et al., 2020). In conclusion, this study demonstrates that although oxidation of OC_{petro} 568 likely contributed additional CO₂ during the PETM, global estimates may be lower than 569 570 previously inferred. We also demonstrate that CO₂ release may have continued into the recovery

of the PETM, suggesting that other feedback mechanisms (e.g., OC_{bio} burial) were necessary to

aid in the recovery of the Earth's climate system.

573 **5 Conclusion**

574 Here, we use a multi-biomarker approach to reconstruct the mobilisation of petrogenic organic carbon (OC_{petro}) during the PETM. We find widespread evidence for enhanced OC_{petro} mass 575 accumulation rates (MARs) in the subtropics and mid-latitudes during the PETM. In this region, 576 we argue that extreme rainfall events exacerbated erosion, mobilisation, and burial of OC_{petro} in 577 the marine realm. In addition, we demonstrate that OC_{petro} MARs persisted into the recovery 578 phase of the PETM. However, the high-latitude sites do not exhibit a strong shift in the source of 579 580 organic carbon. This may be due to a more stable hydrological regime and/or additional controls such as geomorphic processes or sea level change. Overall, OC_{petro} oxidation likely acted as an 581 582 additional source of CO₂ during the PETM. However, further work is needed to determine the exact contributions of OC_{petro} as a positive feedback mechanism during the PETM and other 583 transient warming events. 584

585 Acknowledgment

- 586 G.N. Inglis is supported by a GCRF Royal Society Dorothy Hodgkin Fellowship
- 587 (DHF\R1\191178) with additional support via the Royal Society (RF\ERE\231019,
- 588 RF\ERE\210068). E.H. Hollingsworth acknowledges funding from a NERC (Grant

589	NE/S007210).	This research use	d samples prov	vided by the Oce	ean Drilling Pro	gram (ODP) and

- 590 the International Ocean Drilling Program (IODP). F.J. Elling is supported by Deutsche
- 591 Forschungsgemeinschaft grant (441217575) and A. Pearson was supported by the US National
- 592 Science Foundation (Grant OCE-1843285). We thank Katiana Doeana and Susan Carter at
- 593 Havard University for laboratory assistance. For TDP Site 14 samples, we thank colleagues in
- 594 the Tanzanian Drilling Project, and especially those from the Tanzanian Petroleum Development
- 595 Corporation. Partial funding for M.P.S Badger was provided by NERC grant (NE/H006273/1).
- 596 For Kheu River samples, we thank E.A. Shcherbinina, Y. Gavrilov, and A.J. Dickson who is
- supported by UKRI Frontier Research Grant (EP/X022080/1). We thank the NERC Life
- 598 Sciences Mass Spectrometry Facility for technical support of the GC-MS and NERC for partial
- funding of the mass spectrometry facilities at Bristol (R8/H10/63). N.M. Papadomanolaki
- acknowledges funding from The Netherlands Earth System Science Center (NESSC), financially
- supported by the Ministry of Education, Culture and Science (OCW). We thank Arnold van Dijk
- 602 for analytical assistance.

603 Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

605 Data Availability Statement

- The processed data used in this study are available at OSF and associated with a CC-By
- 607 Attribution 4.0 International license (Hollingsworth, 2023).
- 608

609 **Author contributions:**

- 610 Conceptualization: E. H. Hollingsworth, G. N. Inglis
- 611 Investigation: E. H. Hollingsworth, F. J. Elling, M. P. S. Badger, A. J. Dickson, R. L. Rees-
- 612 Owen, N. M. Papadomanolaki, G. N. Inglis
- 613 *Resources*: F. J. Elling, A. Pearson
- 614 *Visualisation*: E. H. Hollingsworth
- 615 *Writing* original draft: E. H. Hollingsworth

- 616 Writing review & editing: F. J. Elling, M. P. S. Badger, R. D. Pancost, A. J. Dickson, N. M.
- 617 Papadomanolaki, A. Pearson, A. Sluijs, A. A. Baczynski, G. L. Foster, J. H. Whiteside, G. N.
- 618 Inglis
- 619 Project administration: E. H. Hollingsworth, G. N. Inglis
- 620 Supervision: G. L. Foster, J. H. Whiteside, G. N. Inglis
- 621

622 **References**

- Aze, T., Pearson, P. N., Dickson, A. J., Badger, M. P. S., Bown, P. R., Pancost, R. D., Gibbs, S.
- 624 J., Huber, B. T., Leng, M. J., Coe, A. L., Cohen, A. S., & Foster, G. L. (2014). Extreme
- 625 warming of tropical waters during the Paleocene Eocene Thermal Maximum. *Geology*,

626 42(9), 739–742. https://doi.org/10.1130/G35637.1

- Berhe, A. A., Harte, J., Harden, J. W., & Torn, M. S. (2007). The Significance of the Erosioninduced Terrestrial Carbon Sink. *BioScience*, *57*(4), 337–346.
- 629 https://doi.org/10.1641/B570408
- Berner, R. A., Lasaga, A. C., & Garrels, R. M. (1983). The carbonate-silicate geochemical cycle
 and its effect on atmospheric carbon dioxide over the past 100 million years. *American Journal of Science*, 283(7), 641–683. https://doi.org/10.2475/ajs.283.7.641
- Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., & Galy, V. (2018). Centers of
- organic carbon burial and oxidation at the land-ocean interface. *Organic Geochemistry*, *115*,
 138–155. https://doi.org/10.1016/j.orggeochem.2017.09.008
- 636 Blair, N. E., Leithold, E. L., Ford, S. T., Peeler, K. A., Holmes, J. C., & Perkey, D. W. (2003).
- The persistence of memory: The fate of ancient sedimentary organic carbon in a modern
- 638 sedimentary system. *Geochimica et Cosmochimica Acta*, 67(1), 63–73.
- 639 https://doi.org/10.1016/S0016-7037(02)01043-8
- Bolle, M. P., Pardo, A., Hinrichs, K. U., Adatte, T., Von Salis, K., Burns, S., Keller, G., &
- 641 Muzylev, N. (2000). The Paleocene-Eocene transition in the marginal northeastern Tethys
- 642 (Kazakhstan and Uzbekistan). *International Journal of Earth Sciences*, 89(2), 390–414.
- 643 https://doi.org/10.1007/s005310000092
- Bouchez, J., Beyssac, O., Galy, V., Gaillardet, J., France-lanord, C., Maurice, L., & Moreira-
- 645 turcq, P. (2010). Oxidation of petrogenic organic carbon in the Amazon floodplain as a

- 646 source of atmospheric CO2. *Geology*, *38*(3), 255–258. https://doi.org/10.1130/G30608.1
- 647 Bouchez, J., Galy, V., Hilton, R. G., Gaillardet, J. Ô., Moreira-Turcq, P., Pérez, M. A., France-
- Lanord, C., & Maurice, L. (2014). Source, transport and fluxes of Amazon River particulate
- 649 organic carbon: Insights from river sediment depth-profiles. *Geochimica et Cosmochimica*
- 650 Acta, 133, 280–298. https://doi.org/10.1016/j.gca.2014.02.032
- Bourbonniere, R. A., & Meyers, P. A. (1996). Sedimentary geolipid records of historical changes
- in the watersheds and productivities of Lakes Ontario and Erie. *Limnology and*
- 653 *Oceanography*, *41*(2), 352–359. https://doi.org/10.4319/lo.1996.41.2.0352
- Bowen, G. J. (2013). Up in smoke: A role for organic carbon feedbacks in Paleogene
- hyperthermals. *Global and Planetary Change*, 109, 18–29.
- 656 https://doi.org/10.1016/j.gloplacha.2013.07.001
- Bowen, G. J., Bralower, T. J., Delaney, M. L., Dickens, G. R., Kelly, D. C., Koch, P. L., Kump,
- 658 L. R., Meng, J., Sloan, L. C., Thomas, E., Wing, S. L., & Zachos, J. C. (2006). Eocene
- hyperthermal event offers insight into greenhouse warming. *Eos*, 87(17), 165–169.
 https://doi.org/10.1029/2006eo170002
- Bowen, G. J., & Zachos, J. C. (2010). Rapid carbon sequestration at the termination of the
 Palaeocene-Eocene Thermal Maximum. *Nature Geoscience*, *3*, 866–869.
- 663 https://doi.org/10.1038/ngeo1014
- Bray, E. E., & Evans, E. D. (1961). Distribution of n-paraffins as a clue to recognition of source
 beds. *Geochimica et Cosmochimica Acta*, 22(1), 2–15. https://doi.org/10.1016/00167037(61)90069-2
- Burdige, D. J. (2007). Preservation of organic matter in marine sediments: Controls,
- mechanisms, and an imbalance in sediment organic carbon budgets? *Chemical Reviews*,
 107(2), 467–485. https://doi.org/10.1021/cr050347q
- Bush, R. T., & McInerney, F. A. (2013). Leaf wax n-alkane distributions in and across modern
 plants: Implications for paleoecology and chemotaxonomy. *Geochimica et Cosmochimica*
- 672 Acta, 117, 161–179. https://doi.org/10.1016/j.gca.2013.04.016
- 673 Caldeira, K., & Berner, R. A. (1997). The need for mass balance and feedback in the
- 674 geochemical carbon. *Geology*, 25(10), 955–953. https://doi.org/10.1130/0091-
- 675 7613(1997)025<0955
- 676 Carmichael, M. J., Inglis, G. N., Badger, M. P. S., Naafs, B. D. A., Behrooz, L., Remmelzwaal,

- 677 S., Monteiro, F. M., Rohrssen, M., Farnsworth, A., Buss, H. L., Dickson, A. J., Valdes, P.
- J., Lunt, D. J., & Pancost, R. D. (2017). Hydrological and associated biogeochemical
- 679 consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum.
- 680 Global and Planetary Change, 157, 114–138.
- 681 https://doi.org/10.1016/j.gloplacha.2017.07.014
- 682 Carmichael, M. J., Lunt, D. J., Huber, M., Heinemann, M., Kiehl, J., LeGrande, A., Loptson, C.
- A., Roberts, C. D., Sagoo, N., Shields, C., Valdes, P. J., Winguth, A., Winguth, C., &
- Pancost, R. D. (2016). A model-model and data-model comparison for the early Eocene
- 685 hydrological cycle. *Climate of the Past*, *12*(2), 455–481. https://doi.org/10.5194/cp-12-455-
- 686 2016
- Carmichael, M. J., Pancost, R. D., & Lunt, D. J. (2018). Changes in the occurrence of extreme
 precipitation events at the Paleocene Eocene thermal maximum. *Earth and Planetary Science Letters*, *501*, 24–36. https://doi.org/10.1016/j.epsl.2018.08.005
- 690 Chen, C., Guerit, L., Foreman, B. Z., Hassenruck-Gudipati, H. J., Adatte, T., Honegger, L.,
- Perret, M., Sluijs, A., & Castelltort, S. (2018). Estimating regional flood discharge during
 Palaeocene-Eocene global warming. *Scientific Reports*, 8(1), 1–8.
- 693 https://doi.org/10.1038/s41598-018-31076-3
- 694 Clark, K. E., Hilton, R. G., West, A. J., Robles Caceres, A., Gröcke, D. R., Marthews, T. R.,
- Ferguson, R. I., Asner, G. P., New, M., & Malhi, Y. (2017). Erosion of organic carbon from
 the Andes and its effects on ecosystem carbon dioxide balance. *Journal of Geophysical*
- 697 *Research: Biogeosciences*, *122*(3), 449–469. https://doi.org/10.1002/2016JG003615
- 698 Clark, K. E., Stallard, R. F., Murphy, S. F., Scholl, M. A., González, G., Plante, A. F., &
- 699 McDowell, W. H. (2022). Extreme rainstorms drive exceptional organic carbon export from
- forested humid-tropical rivers in Puerto Rico. *Nature Communications*, *13*(1), 1–8.
- 701 https://doi.org/10.1038/s41467-022-29618-5
- 702 Cramwinckel, M. J., Burls, N. J., Fahad, A. A., Knapp, S., West, C. K., Reichgelt, T.,
- 703 Greenwood, D. R., Chan, W. Le, Donnadieu, Y., Hutchinson, D. K., de Boer, A. M.,
- Ladant, J. B., Morozova, P. A., Niezgodzki, I., Knorr, G., Steinig, S., Zhang, Z., Zhu, J.,
- Feng, R., ... Inglis, G. N. (2023). Global and Zonal-Mean Hydrological Response to Early
- Eocene Warmth. *Paleoceanography and Paleoclimatology*, *38*(6), 1–21.
- 707 https://doi.org/10.1029/2022PA004542

708	Deconto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang, T., Pollard, D., &
709	Beerling, D. J. (2012). Past extreme warming events linked to massive carbon release from
710	thawing permafrost. Nature, 484(7392), 87-91. https://doi.org/10.1038/nature10929
711	Dickens, G. R. (2011). Down the Rabbit Hole: Toward appropriate discussion of methane release
712	from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past
713	hyperthermal events. Climate of the Past, 7(3), 831-846. https://doi.org/10.5194/cp-7-831-
714	2011
715	Dickens, G. R., Castillo, M. M., & Walker, J. C. G. (1997). A blast of gas in the latest Paleocene:
716	Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology,
717	25(3), 259–262. https://doi.org/10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2
718	Dickens, G. R., O'Neil, J. R., Rea, D. K., & Owen, R. M. (1995). Dissociation of oceanic
719	methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene.
720	Paleoceanography, 10(6), 965–971. https://doi.org/10.1029/95PA02087
721	Dickson, A. J., Rees-owen, R. L., März, C., Coe, A. L., Cohen, A. S., Pancost, R. D., Taylor, K.,
722	& Shcherbinina, E. (2014). The spread of marine anoxia on the northern Tethys margin
723	during the Paleocene-Eocene Thermal Maximum. Paleoceanography, 29(6), 471-488.
724	https://doi.org/10.1002/2014PA002629.Received
725	Diefendorf, A. F., & Freimuth, E. J. (2017). Extracting the most from terrestrial plant-derived n-
726	alkyl lipids and their carbon isotopes from the sedimentary record: A review. Organic
727	Geochemistry, 103, 1-21. https://doi.org/10.1016/j.orggeochem.2016.10.016
728	Doubrawa, M., Stassen, P., Robinson, M. M., Babila, T. L., Zachos, J. C., & Speijer, R. P.
729	(2022). Shelf Ecosystems Along the U.S. Atlantic Coastal Plain Prior to and During the
730	Paleocene-Eocene Thermal Maximum: Insights Into the Stratigraphic Architecture.
731	Paleoceanography and Paleoclimatology, 37(10), 1–21.
732	https://doi.org/10.1029/2022PA004475
733	Dypvik, H., Riber, L., Burca, F., Rüther, D., Jargvoll, D., Nagy, J., & Jochmann, M. (2011). The
734	Paleocene-Eocene thermal maximum (PETM) in Svalbard - clay mineral and geochemical
735	signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 302(3–4), 156–169.
736	https://doi.org/10.1016/j.palaeo.2010.12.025
737	Eglinton, G., & Hamilton, R. J. (1967). Leaf epicuticular waxes. Science, 156(3780), 1322–1335.
738	https://doi.org/10.1126/science.156.3780.1322

- 739 Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A.
- 740 F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon,
- D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., ...
- 742 Zhao, M. (2021). Climate control on terrestrial biospheric carbon turnover. *Proceedings of*
- 743 *the National Academy of Sciences of the United States of America*, 118(8).
- 744 https://doi.org/10.1073/pnas.2011585118
- Elling, F. J., Gottschalk, J., Doeana, K. D., Kusch, S., Hurley, S. J., & Pearson, A. (2019).

Archaeal lipid biomarker constraints on the Paleocene-Eocene carbon isotope excursion.
 Nature Communications, *10*(1), 1–10. https://doi.org/10.1038/s41467-019-12553-3

Farrimond, P., Taylor, A., & Telnás, N. (1998). Biomarker maturity parameters : the role of

generation and thermal degradation. *Organic Geochemistry*, *29*(5–7), 1181–1197.

750 https://doi.org/10.1016/S0146-6380(98)00079-5

- French, K. L., Tosca, N. J., Cao, C., & Summons, R. E. (2012). Diagenetic and detrital origin of
 moretane anomalies through the Permian-Triassic boundary. *Geochimica et Cosmochimica Acta*, 84, 104–125. https://doi.org/10.1016/j.gca.2012.01.004
- Frieling, J., Svensen, H. H., Planke, S., Cramwinckel, M. J., Selnes, H., & Sluijs, A. (2016).
- Thermogenic methane release as a cause for the long duration of the PETM. *Proceedings of*
- *the National Academy of Sciences of the United States of America*, *113*(43), 12059–12064.
- 757 https://doi.org/10.1073/pnas.1603348113
- Galy, V., Beyssac, O., France-Lanord, C., & Eglinton, T. (2008). Recycling of Graphite During
- Himalayan Erosion: A Geological Stabilization of Carbon in the Crust. *Science*, *322*(5903),
 943–945. https://doi.org/10.1126/science.1161408
- Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., & Palhol, F. (2007). Efficient
 organic carbon burial in the Bengal fan sustained by the Himalayan erosional system.
- 763 *Nature*, *450*(7168), 407–410. https://doi.org/10.1038/nature06273
- Galy, V., Peucker-Ehrenbrink, B., & Eglinton, T. (2015). Global carbon export from the
 terrestrial biosphere controlled by erosion. *Nature*, *521*, 204–207.
- 766 https://doi.org/10.1038/nature14400
- Gibson, T. G., Bybell, L. M., & Mason, D. B. (2000). Stratigraphic and climatic implications of
- clay mineral changes around the Paleocene/Eocene boundary of the northeastern US
- 769 margin. Sedimentary Geology, 134(1–2), 65–92. https://doi.org/10.1016/S0037-

- 770 0738(00)00014-2
- Goñi, M. A., Hatten, J. A., Wheatcroft, R. A., & Borgeld, J. C. (2013). Particulate organic matter
 export by two contrasting small mountainous rivers from the Pacific Northwest, U.S.A.
- Journal of Geophysical Research: Biogeosciences, 118(1), 112–134.
- 774 https://doi.org/10.1002/jgrg.20024
- Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N., Pälike, H., Norris, R.
- D., Thomas, E., & Foster, G. L. (2017). Very large release of mostly volcanic carbon during
- the Palaeocene Eocene Thermal Maximum. *Nature*, 548, 573–577.
- 778 https://doi.org/10.1038/nature23646
- Handley, L., O'Halloran, A., Pearson, P. N., Hawkins, E., Nicholas, C. J., Schouten, S.,
- 780 McMillan, I. K., & Pancost, R. D. (2012). Changes in the hydrological cycle in tropical East
- 781 Africa during the Paleocene-Eocene Thermal Maximum. *Palaeogeography*,
- 782 *Palaeoclimatology, Palaeoecology, 329–330,* 10–21.
- 783 https://doi.org/10.1016/j.palaeo.2012.02.002
- Handley, L., Pearson, P. N., Mcmillan, I. K., & Pancost, R. D. (2008). Large terrestrial and
- marine carbon and hydrogen isotope excursions in a new Paleocene/Eocene boundary
- section from Tanzania. *Earth and Planetary Science Letters*, 275(1), 17–25.
- 787 https://doi.org/10.1016/j.epsl.2008.07.030
- Harding, I. C., Charles, A. J., Marshall, J. E. A., Pälike, H., Roberts, A. P., Wilson, P. A., Jarvis,
- E., Thorne, R., Morris, E., Moremon, R., Pearce, R. B., & Akbari, S. (2011). Sea-level and
- salinity fluctuations during the Paleocene-Eocene thermal maximum in Arctic Spitsbergen.
- *Earth and Planetary Science Letters*, *303*(1–2), 97–107.
- 792 https://doi.org/10.1016/j.epsl.2010.12.043
- Hilton, R. G. (2017). Climate regulates the erosional carbon export from the terrestrial biosphere.
 Geomorphology, 277, 118–132. https://doi.org/10.1016/j.geomorph.2016.03.028
- Hilton, R. G., Gaillardet, J., Calmels, D., & Birck, J. (2014). Geological respiration of a
- mountain belt revealed by the trace element rhenium. *Earth and Planetary Science Letters*,
 403, 27–36. https://doi.org/10.1016/j.epsl.2014.06.021
- Hilton, R. G., Galy, A., & Hovius, N. (2008). Riverine particulate organic carbon from an active
- mountain belt: Importance of landslides. *Global Biogeochemical Cycles*, 22(1), 1–12.
- 800 https://doi.org/10.1029/2006GB002905

- Hilton, R. G., Galy, A., Hovius, N., Horng, M., & Chen, H. (2011). Efficient transport of fossil
 organic carbon to the ocean by steep mountain rivers: An orogenic carbon sequestration
 mechanism. *Geology*, *39*(1), 71–74. https://doi.org/10.1130/G31352.1
- Hilton, R. G., Galy, A., Hovius, N., Horng, M. J., & Chen, H. (2010). The isotopic composition
 of particulate organic carbon in mountain rivers of Taiwan. *Geochimica et Cosmochimica Acta*, 74(11), 3164–3181. https://doi.org/10.1016/j.gca.2010.03.004
- Hilton, R. G., Galy, V., Gaillardet, J., Dellinger, M., Bryant, C., O'Regan, M., Gröcke, D. R.,
 Coxall, H., Bouchez, J., & Calmels, D. (2015). Erosion of organic carbon in the Arctic as a
 geological carbon dioxide sink. *Nature*, *524*, 84–87. https://doi.org/10.1038/nature14653

Hilton, R. G., & West, A. J. (2020). Mountains, erosion and the carbon cycle. *Nature Reviews Earth & Environment*, 1, 284–299. https://doi.org/10.1038/s43017-020-0058-6

Hollingsworth, E. H. (2023). Spatial and Temporal Patterns in Petrogenic Organic Carbon

813 Mobilisation during the Paleocene-Eocene Thermal Maximum. [Dataset].

814 https://doi.org/10.17605/OSF.IO/F8HJC

Inglis, G. N., Bragg, F., Burls, N. J., Cramwinckel, M. J., Evans, D., Foster, G. L., Huber, M.,

Lunt, D. J., Siler, N., Steinig, S., Tierney, J. E., Wilkinson, R., Anagnostou, E., de Boer, A.

- M., Dunkley Jones, T., Edgar, K. M., Hollis, C. J., Hutchinson, D. K., & Pancost, R. D.
- 818 (2020). Global mean surface temperature and climate sensitivity of the early Eocene
- 819 Climatic Optimum (EECO), Paleocene-Eocene Thermal Maximum (PETM), and latest
- Paleocene. Climate of the Past, 16(5), 1953–1968. https://doi.org/10.5194/cp-16-1953-2020
- Inglis, G. N., Naafs, B. D. A., Zheng, Y., McClymont, E. L., Evershed, R. P., & Pancost, R. D.
- 822 (2018). Distributions of geohopanoids in peat: Implications for the use of hopanoid-based
- proxies in natural archives. *Geochimica et Cosmochimica Acta*, 224, 249–261.
- 824 https://doi.org/10.1016/j.gca.2017.12.029

John, C. M., Banerjee, N. R., Longstaffe, F. J., Sica, C., Law, K. R., & Zachos, J. C. (2012). Clay

assemblage and oxygen isotopic constraints on the weathering response to the Paleocene-

- Eocene thermal maximum, East Coast of North America. *Geology*, 40(7), 591–594.
- 828 https://doi.org/10.1130/G32785.1
- John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis, H., & Bralower, T. J.
- 830 (2008). North American continental margin records of the Paleocene-Eocene thermal
- maximum: Implications for global carbon and hydrological cycling. *Paleoceanography*,

- 832 23(2), 1–20. https://doi.org/10.1029/2007PA001465
- Jones, M. T., Percival, L. M. E., Stokke, E. W., Frieling, J., Mather, T. A., Riber, L., Schubert,
 B. A., Schultz, B., Tegner, C., Planke, S., & Svensen, H. H. (2019). Mercury anomalies
- across the Palaeocene-Eocene Thermal Maximum. *Climate of the Past*, 15(1), 217–236.
 https://doi.org/10.5194/cp-15-217-2019
- Kaiho, K., Arinobu, T., Ishiwatari, R., Morgans, H. E. G., Okada, H., Takeda, N., Tazaki, K.,
- Zhou, G., Kajiwara, Y., Matsumoto, R., Hirai, A., Niitsuma, N., & Wada, H. (1996). Latest
 Paleocene benthic foraminferal extinction and environmental changes at Tawanui, New
 Zealand. *Paleoceanography*, *11*(4), 447–465. https://doi.org/10.1029/96PA01021
- Kao, S. J., Dai, M. H., Wei, K. Y., Blair, N. E., & Lyons, W. B. (2008). Enhanced supply of
- fossil organic carbon to the Okinawa trough since the last deglaciation. *Paleoceanography*, *23*(2), 1–10. https://doi.org/10.1029/2007PA001440
- 844 Kao, S. J., Hilton, R. G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J. C., Hsu, S. C., Sparkes,
- 845 R., Liu, J. T., Lee, T. Y., Yang, J. Y. T., Galy, A., Xu, X., & Hovius, N. (2014).
- 846 Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: Mountain
- building and atmospheric carbon dioxide sequestration. *Earth Surface Dynamics*, 2(1), 127–
- 848 139. https://doi.org/10.5194/esurf-2-127-2014
- Kaya, M. Y., Dupont-Nivet, G., Frieling, J., Fioroni, C., Rohrmann, A., Altıner, S. Ö., Vardar,
- E., Tanyaş, H., Mamtimin, M., & Zhaojie, G. (2022). The Eurasian epicontinental sea was
 an important carbon sink during the Palaeocene-Eocene thermal maximum.
- *Communications Earth and Environment*, *3*(1), 1–10. https://doi.org/10.1038/s43247-022 00451-4
- Kiehl, J. T., Zarzycki, C. M., Shields, C. A., & Rothstein, M. V. (2021). Simulated changes to
- tropical cyclones across the Paleocene-Eocene Thermal Maximum (PETM) boundary.
- 856 *Palaeogeography, Palaeoclimatology, Palaeoecology, 572, 110421.*
- https://doi.org/10.1016/j.palaeo.2021.110421
- Kirtland Turner, S. (2018). Constraints on the onset duration of the Paleocene-Eocene Thermal
- Maximum. *Philosophical Transactions of the Royal Society A*, *376*(2130), 1–16.
- 860 https://doi.org/10.1098/rsta.2017.0082
- Kopp, R. E., Schumann, D., Raub, T. D., Powars, D. S., Godfrey, L. V., Swanson-Hysell, N. L.,
- Maloof, A. C., & Vali, H. (2009). An Appalachian Amazon? Magnetofossil evidence for the

 beene-Eocene thermal maximum. <i>Paleoceanography</i>, <i>24</i>(4), 1–17. ://doi.org/10.1029/2009PA001783 V. A., Wing, S. L., Shields, C. A., & Kiehl, J. T. (2022). Global Changes in estrial Vegetation and Continental Climate During the Paleocene-Eocene Thermal imum. <i>Paleoceanography and Paleoclimatology</i>, <i>37</i>(4), 1–21. ://doi.org/10.1029/2021PA004325 J., McInerney, F. A., Wing, S. L., Secord, R., Baczynski, A. A., & Bloch, J. I. (2013). bydrologic response to continental warming during the Paleocene-Eocene Thermal imum, Bighorn Basin, Wyoming. <i>Palaeogeography</i>, <i>Palaeoclimatology</i>, <i>eoecology</i>, <i>370</i>, 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008 J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. <i>eogeography</i>, <i>Palaeoclimatology</i>, <i>245</i>(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography</i>, <i>18</i>(4), 1–14. ://doi.org/10.1029/2003PA000908
 V. A., Wing, S. L., Shields, C. A., & Kiehl, J. T. (2022). Global Changes in estrial Vegetation and Continental Climate During the Paleocene-Eocene Thermal imum. <i>Paleoceanography and Paleoclimatology</i>, <i>37</i>(4), 1–21. ://doi.org/10.1029/2021PA004325 J., McInerney, F. A., Wing, S. L., Secord, R., Baczynski, A. A., & Bloch, J. I. (2013). obydrologic response to continental warming during the Paleocene-Eocene Thermal imum, Bighorn Basin, Wyoming. <i>Palaeogeography, Palaeoclimatology,</i> <i>eoecology</i>, <i>370</i>, 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008 J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. <i>eogeography, Palaeoclimatology, Palaeoecology</i>, <i>245</i>(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography</i>, <i>18</i>(4), 1–14. ://doi.org/10.1029/2003PA000908
estrial Vegetation and Continental Climate During the Paleocene-Eocene Thermal imum. <i>Paleoceanography and Paleoclimatology</i> , <i>37</i> (4), 1–21. ://doi.org/10.1029/2021PA004325 J., McInerney, F. A., Wing, S. L., Secord, R., Baczynski, A. A., & Bloch, J. I. (2013). obydrologic response to continental warming during the Paleocene-Eocene Thermal imum, Bighorn Basin, Wyoming. <i>Palaeogeography, Palaeoclimatology,</i> <i>eoecology</i> , <i>370</i> , 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008 J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. <i>eogeography, Palaeoclimatology, Palaeoecology</i> , <i>245</i> (3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography</i> , <i>18</i> (4), 1–14. ://doi.org/10.1029/2003PA000908
 imum. Paleoceanography and Paleoclimatology, 37(4), 1–21. ://doi.org/10.1029/2021PA004325 J., McInerney, F. A., Wing, S. L., Secord, R., Baczynski, A. A., & Bloch, J. I. (2013). ohydrologic response to continental warming during the Paleocene-Eocene Thermal imum, Bighorn Basin, Wyoming. Palaeogeography, Palaeoclimatology, eoecology, 370, 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008 J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. eogeography, Palaeoclimatology, Palaeoecology, 245(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. Paleoceanography, 18(4), 1–14. ://doi.org/10.1029/2003PA000908
 ://doi.org/10.1029/2021PA004325 J., McInerney, F. A., Wing, S. L., Secord, R., Baczynski, A. A., & Bloch, J. I. (2013). obydrologic response to continental warming during the Paleocene-Eocene Thermal imum, Bighorn Basin, Wyoming. <i>Palaeogeography, Palaeoclimatology,</i> <i>eoecology</i>, <i>370</i>, 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008 J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. <i>eogeography, Palaeoclimatology, Palaeoecology</i>, <i>245</i>(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography, 18</i>(4), 1–14. ://doi.org/10.1029/2003PA000908
J., McInerney, F. A., Wing, S. L., Secord, R., Baczynski, A. A., & Bloch, J. I. (2013). obydrologic response to continental warming during the Paleocene-Eocene Thermal imum, Bighorn Basin, Wyoming. <i>Palaeogeography, Palaeoclimatology,</i> <i>eoecology, 370</i> , 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008 J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. <i>eogeography, Palaeoclimatology, Palaeoecology, 245</i> (3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography, 18</i> (4), 1–14. ://doi.org/10.1029/2003PA000908
 bydrologic response to continental warming during the Paleocene-Eocene Thermal imum, Bighorn Basin, Wyoming. <i>Palaeogeography, Palaeoclimatology,</i> <i>eoecology</i>, <i>370</i>, 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008 J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. <i>eogeography, Palaeoclimatology, Palaeoecology</i>, <i>245</i>(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography, 18</i>(4), 1–14. ://doi.org/10.1029/2003PA000908
 imum, Bighorn Basin, Wyoming. <i>Palaeogeography, Palaeoclimatology,</i> <i>eoecology, 370,</i> 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008 J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. <i>eogeography, Palaeoclimatology, Palaeoecology, 245</i>(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography, 18</i>(4), 1–14. ://doi.org/10.1029/2003PA000908
 eoecology, 370, 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008 J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. eogeography, Palaeoclimatology, Palaeoecology, 245(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. Paleoceanography, 18(4), 1–14. ://doi.org/10.1029/2003PA000908
J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene Thermal imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. eogeography, Palaeoclimatology, Palaeoecology, 245(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography</i> , <i>18</i> (4), 1–14. ://doi.org/10.1029/2003PA000908
 imum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. eogeography, Palaeoclimatology, Palaeoecology, 245(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography</i>, 18(4), 1–14. ://doi.org/10.1029/2003PA000908
eogeography, Palaeoclimatology, Palaeoecology, 245(3–4), 444–461. ://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography</i> , <i>18</i> (4), 1–14. ://doi.org/10.1029/2003PA000908
://doi.org/10.1016/j.palaeo.2006.09.011 C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography</i> , <i>18</i> (4), 1–14. ://doi.org/10.1029/2003PA000908
C., Kump, L. R., Arthur, M. A., Zachos, J. C., & Paytan, A. (2003). Early Cenozoic upling of the global carbon and sulfur cycles. <i>Paleoceanography</i> , <i>18</i> (4), 1–14. ://doi.org/10.1029/2003PA000908
upling of the global carbon and sulfur cycles. <i>Paleoceanography</i> , <i>18</i> (4), 1–14. ://doi.org/10.1029/2003PA000908
://doi.org/10.1029/2003PA000908
, & Rush, D. (2022). Revisiting the precursors of the most abundant natural products on
a: A look back at 30+ years of bacteriohopanepolyol (BHP) research and ahead to new
iers. Organic Geochemistry, 172, 104469.
://doi.org/10.1016/j.orggeochem.2022.104469
, Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E.,
J. C., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., & Zhou, T.
1). Future Global Climate: Scenario-based Projections and Near-term Information
dinating. In and B. Z. Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan,
erger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy,
R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu (Ed.), Climate Change
: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment
rt of the Intergovernmental Panel on Climate Change. Cambridge University Press.
://doi.org/10.1017/9781009157896.006.553

- Leithold, E. L., Blair, N. E., & Perkey, D. W. (2006). Geomorphologic controls on the age of
- particulate organic carbon from small mountainous and upland rivers. *Global*
- *Biogeochemical Cycles*, *20*(3), 1–11. https://doi.org/10.1029/2005GB002677
- 897 Lyons, S. L., Baczynski, A. A., Babila, T. L., Bralower, T. J., Hajek, E. A., Kump, L. R., Polites,
- E. G., Self-Trail, J. M., Trampush, S. M., Vornlocher, J. R., Zachos, J. C., & Freeman, K.
- H. (2019). Palaeocene–Eocene Thermal Maximum prolonged by fossil carbon oxidation.
 Nature Geoscience, *12*, 54–60. https://doi.org/10.1038/s41561-018-0277-3
- 901 Lyster, S. J., Whittaker, A. C., Allison, P. A., Lunt, D. J., & Farnsworth, A. (2020). Predicting
- sediment discharges and erosion rates in deep time—examples from the late Cretaceous
 North American continent. *Basin Research*, *32*(6), 1547–1573.
- 904 https://doi.org/10.1111/bre.12442
- Mackenzie, A. S., Patience, R. L., Maxwell, J. R., Vandenbroucke, M., & Durand, B. (1980).
- Molecular parameters of maturation in the Toarcian shales, Paris Basin, France—I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. *Geochimica et*
- 908 *Cosmochimica Acta*, 44(11), 1709–1721. https://doi.org/10.1016/0016-7037(80)90222-7
- 909 McInerney, F. A., & Wing, S. L. (2011). The Paleocene-Eocene Thermal Maximum: A
- 910 perturbation of carbon cycle, climate, and biosphere with implications for the future. *Annual*
- 911 *Review of Earth and Planetary Sciences*, 39, 489–516. https://doi.org/10.1146/annurev-
- 912 earth-040610-133431
- 913 Meyers, S. R. (2014). Astrochron: An R Package for Astrochronology https://cran.r-
- 914 *project.org/package=astrochron.*
- Murphy, B. H., Farley, K. A., & Zachos, J. C. (2010). An extraterrestrial 3He-based timescale
- 916 for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266.
- 917 *Geochimica et Cosmochimica Acta*, 74(17), 5098–5108.
- 918 https://doi.org/10.1016/j.gca.2010.03.039
- 919 Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Dickens, G. R.,
- 920 Sinninghe Damsté, J. S., & Scientists, E. 302. (2006). Arctic hydrology during global
- warming at the Palaeocene / Eocene thermal maximum. *Nature*, 442(7103), 671–675.
- 922 https://doi.org/10.1038/nature05043
- Pancost, R. D., Coleman, J. M., Love, G. D., Chatzi, A., Bouloubassi, I., & Snape, C. E. (2008).
- 924 Kerogen-bound glycerol dialkyl tetraether lipids released by hydropyrolysis of marine

- 925 sediments: A bias against incorporation of sedimentary organisms? Organic Geochemistry,
- 926 *39*(9), 1359–1371. https://doi.org/10.1016/j.orggeochem.2008.05.002
- Papadomanolaki, N. M., Sluijs, A., & Slomp, C. P. (2022). Eutrophication and Deoxygenation
 Forcing of Marginal Marine Organic Carbon Burial During the PETM. *Paleoceanography*
- 929 *and Paleoclimatology*, *37*(3), 1–23. https://doi.org/10.1029/2021PA004232
- Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). *The Biomarker Guide Vols 1*.
- 931 Cambridge University Press.
- Petsch, S. T., Berner, R. A., & Eglinton, T. I. (2000). A field study of the chemical weathering of
 ancient sedimentary organic matter. *Organic Geochemistry*, *31*(5), 475–487.
- 934 https://doi.org/10.1016/S0146-6380(00)00014-0
- Polik, C. A., Elling, F. J., & Pearson, A. (2018). Impacts of Paleoecology on the TEX 86 Sea
- 936 Surface Temperature Proxy in the Pliocene-Pleistocene Mediterranean Sea.
- Paleoceanography and Paleoclimatology, 33(12), 1472–1489.
- 938 https://doi.org/10.1029/2018PA003494
- Robert, C., & Kennett, J. P. (1994). Antarctic subtropical humid episode at the Paleocene-Eocene
 boundary: clay-mineral evidence. *Geology*, 22(3), 211–214. https://doi.org/10.1130/00917613(1994)022<0211:ASHEAT>2.3.CO;2
- 7015(1774)022 \0211.ASHEA1 > 2.5.00,2
- Röhl, U., Westerhold, T., Bralower, T. J., & Zachos, J. C. (2007). On the duration of the
- 943 Paleocene-Eocene thermal maximum (PETM). *Geochemistry, Geophysics, Geosystems*,
- 944 8(12), 1–13. https://doi.org/10.1029/2007GC001784
- 945 Rosa-Putra, S., Nalin, R., Domenach, A. M., & Rohmer, M. (2001). Novel hopanoids from
- Frankia spp. and related soil bacteria: Squalene cyclization and significance of geological
- biomarkers revisited. *European Journal of Biochemistry*, 268(15), 4300–4306.
- 948 https://doi.org/10.1046/j.1432-1327.2001.02348.x
- Rush, W. D., Kiehl, J. T., Shields, C. A., & Zachos, J. C. (2021). Increased frequency of extreme
- 950 precipitation events in the North Atlantic during the PETM: Observations and theory.
- 951 *Palaeogeography, Palaeoclimatology, Palaeoecology, 568, 110289.*
- 952 https://doi.org/10.1016/j.palaeo.2021.110289
- 953 Schmitz, B., & Pujalte, V. (2003). Sea-level , humidity , and land-erosion records across the
- 954 initial Eocene thermal maximum from a continental-marine transect in northern Spain.
- 955 *Geology*, *31*(8), 689–692. https://doi.org/10.1130/G19527.1

- Schmitz, B., & Pujalte, V. (2007). Abrupt increase in seasonal extreme precipitation at the
 Paleocene-Eocene boundary. *Geology*, 35(3), 215–218. https://doi.org/10.1130/G23261A.1
- 958 Self-Trail, J. M., Robinson, M. M., Bralower, T. J., Sessa, J. A., Hajek, E. A., Kump, L. R.,
- Trampush, S. M., Willard, D. A., Edwards, L. E., Powars, D. S., & Wandless, G. A. (2017).
- 960 Shallow marine response to global climate change during the Paleocene-Eocene Thermal
- 961 Maximum, Salisbury Embayment, USA. *Paleoceanography*, *32*(7), 710–728.
- 962 https://doi.org/10.1002/2017PA003096
- 963 Shcherbinina, E., Gavrilov, Y., Iakovleva, A., Pokrovsky, B., Golovanova, O., & Aleksandrova,
- 964 G. (2016). Environmental dynamics during the Paleocene-Eocene thermal maximum
- 965 (PETM) in the northeastern Peri-Tethys revealed by high-resolution micropalaeontological
- and geochemical studies of a Caucasian key section. *Palaeogeography, Palaeoclimatology,*

967 *Palaeoecology*, 456, 60–81. https://doi.org/10.1016/j.palaeo.2016.05.006

- 968 Shields, C. A., Kiehl, J. T., Rush, W., Rothstein, M., & Snyder, M. A. (2021). Atmospheric
- rivers in high-resolution simulations of the Paleocene Eocene Thermal Maximum (PETM).
 Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110293.
- 971 https://doi.org/10.1016/j.palaeo.2021.110293
- Sluijs, A., Bijl, P. K., Schouten, S., Röhl, U., Reichart, G.-J., & Brinkhuis, H. (2011). Southern
 ocean warming , sea level and hydrological change during the Paleocene-Eocene thermal
 maximum. *Climate of the Past*, 7(1), 47–61. https://doi.org/10.5194/cp-7-47-2011
- 975 Sluijs, A., & Brinkhuis, H. (2009). A dynamic climate and ecosystem state during the Paleocene-
- Eocene Thermal Maximum: Inferences from dinoflagellate cyst assemblages on the New
 Jersey Shelf. *Biogeosciences*, 6(8), 1755–1781. https://doi.org/10.5194/bg-6-1755-2009
- 978 Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L., Munsterman, D., Bohaty, S.
- 979 M., Zachos, J. C., Reichart, G. J., Schouten, S., Pancost, R. D., Damsté, J. S. S., Welters, N.
- 980 L. D., Lotter, A. F., & Dickens, G. R. (2008). Eustatic variations during the Paleocene-
- Eocene greenhouse world. *Paleoceanography*, 23(4), 1–18.
- 982 https://doi.org/10.1029/2008PA001615
- Sluijs, A., Frieling, J., Inglis, G. N., Nierop, K. G. J., Peterse, F., Sangiorgi, F., & Schouten, S.
- 984 (2020). Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing
- biomarker paleothermometry at Lomonosov Ridge. *Climate of the Past*, *16*(6), 2381–2400.
- 986 https://doi.org/10.5194/cp-16-2381-2020

987 Sluijs, A., Röhl, U., Schouten, S., Brumsack, H.-I., Sangiorgi, F., Sinninghe Damsté, J. S., &

Brinkhuis, H. (2008). Arctic late Paleocene–early Eocene paleoenvironments with special

- 989 emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated
- 990 Ocean Drilling Program Expedition 302). *Paleoceanography*, 23(1), 1–17.

991 https://doi.org/10.1029/2007PA001495

- 992 Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Dickens, G. R., Huber, M.,
- Reichart, G., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., &
 Moran, K. (2006). Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene
 thermal maximum. *Nature*, 441(1), 610–613. https://doi.org/10.1038/nature04668
- 996 Sluijs, A., van Roij, L., Harrington, G. J., Schouten, S., Sessa, J. A., Levay, L. J., Reichart, G.-J.,

897 & Slomp, C. P. (2014). Warming , euxinia and sea level rise during the Paleocene-Eocene

- 998 Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and
- 999 nutrient cycling. *Climate of the Past*, 10(4), 1421–1439. https://doi.org/10.5194/cp-101421-2014
- Smith, J. C., Galy, A., Hovius, N., Tye, A. M., Turowski, J. M., & Schleppi, P. (2013). Runoff driven export of particulate organic carbon from soil in temperate forested uplands. *Earth*
- 1003 and Planetary Science Letters, 365, 198–208. https://doi.org/10.1016/j.epsl.2013.01.027
- Stallard, R. F. (1998). Terrestrial sedimentation and the carbon cycle: Coupling weathering and
 erosion to carbon burial. *Global Biogeochemical Cycles*, *12*(2), 231–257.
- 1006 https://doi.org/10.1029/98GB00741
- Stassen, P., Thomas, E., & Speijer, R. P. (2012). Integrated stratigraphy of the Paleocene-Eocene
 thermal maximum in the New Jersey Coastal Plain: Toward understanding the effects of
 global warming in a shelf environment. *Paleoceanography*, 27(4), 1–17.
- 1010 https://doi.org/10.1029/2012PA002323
- 1011 Storey, M., Duncan, R. A., & Swisher, C. C. (2007). Paleocene-Eocene thermal maximum and
- 1012 the opening of the northeast Atlantic. *Science*, *316*(5824), 587–589.
- 1013 https://doi.org/10.1126/science.1135274
- 1014 Svensen, H., Planke, S., Maithe-Sørensen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., & Rey,
- 1015 S. S. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene
- 1016 global warming. *Nature*, 429, 542–545. https://doi.org/10.1038/nature02566
- 1017 Tierney, J. E., Zhu, J., Li, M., Ridgwell, A., Hakim, G. J., Poulsen, C. J., Whiteford, R. D. M.,

- 1018 Rae, J. W. B., & Kump, L. R. (2022). Spatial patterns of climate change across the
- Paleocene–Eocene Thermal Maximum. *Proceedings of the National Academy of Sciences of the United States of America*, 119(42), 1–7. https://doi.org/10.1073/pnas.2205326119
- 1021 Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981). A Negative Feedback Mechanism for the
- 1022 Long-term Stabilization of Earth's Surface Temperature. *Journal of Geophysical Research*,
- 1023 86(10), 9776–9782. https://doi.org/10.1029/JC086iC10p09776
- Winguth, A., Shellito, C., Shields, C., & Winguth, C. (2010). Climate response at the paleoceneeocene thermal maximum to greenhouse gas forcing-a model study with CCSM3. *Journal*of Climate, 23(10), 2562–2584. https://doi.org/10.1175/2009JCLI3113.1
- 1027 Zeebe, R. E. (2013). What caused the long duration of the Paleocene-Eocene Thermal
 1028 Maximum. *Paleoceanography*, 28(3), 440–452. https://doi.org/10.1002/palo.20039
- 1029 Zeebe, R. E., Dickens, G. R., Ridgwell, A., Sluijs, A., & Thomas, E. (2014). Onset of carbon
- 1030 isotope excursion at the Paleocene-Eocene thermal maximum took millennia, not 13 years.
- Proceedings of the National Academy of Sciences of the United States of America, 111(12),
 1062–1063. https://doi.org/10.1073/pnas.1321177111
- Zeebe, R. E., & Lourens, L. J. (2019). Solar System chaos and the Paleocene–Eocene boundary
 age constrained by geology and astronomy. *Science*, *929*(6456), 926–929.
- 1035 https://doi.org/10.1126/science.aax0612
- 1036 Zeebe, R. E., Zachos, J. C., & Dickens, G. R. (2009). Carbon dioxide forcing alone insufficient
- to explain Palaeocene-Eocene Thermal Maximum warming. *Nature Geoscience*, 2, 576–
 580. https://doi.org/10.1038/ngeo578

1039 **References from the Supporting Information**

- 1040 Aze, T., Pearson, P. N., Dickson, A. J., Badger, M. P. S., Bown, P. R., Pancost, R. D., Gibbs, S.
- 1041 J., Huber, B. T., Leng, M. J., Coe, A. L., Cohen, A. S., & Foster, G. L. (2014). Extreme
- 1042 warming of tropical waters during the Paleocene Eocene Thermal Maximum. *Geology*,
 1043 42(9), 739–742. https://doi.org/10.1130/G35637.1
- 1044 Bolle, M. P., Pardo, A., Hinrichs, K. U., Adatte, T., Von Salis, K., Burns, S., Keller, G., &

1045 Muzylev, N. (2000). The Paleocene-Eocene transition in the marginal northeastern Tethys

- 1046 (Kazakhstan and Uzbekistan). International Journal of Earth Sciences, 89(2), 390–414.
- 1047 https://doi.org/10.1007/s005310000092

- 1048 Bralower, T. J., Kump, L. R., Self-Trail, J. M., Robinson, M. M., Lyons, S., Babila, T., Ballaron,
- 1049 E., Freeman, K. H., Hajek, E., Rush, W., & Zachos, J. C. (2018). Evidence for Shelf
- 1050 Acidification During the Onset of the Paleocene-Eocene Thermal Maximum.
- 1051 *Paleoceanography and Paleoclimatology*, *33*(12), 1408–1426.
- 1052 https://doi.org/10.1029/2018PA003382
- 1053 Dickson, A. J., Rees-owen, R. L., März, C., Coe, A. L., Cohen, A. S., Pancost, R. D., Taylor, K.,
- 1054 & Shcherbinina, E. (2014). The spread of marine anoxia on the northern Tethys margin
- 1055 during the Paleocene-Eocene Thermal Maximum. *Paleoceanography*, 29(6), 471–488.
- 1056 https://doi.org/10.1002/2014PA002629.Received
- 1057 Doubrawa, M., Stassen, P., Robinson, M. M., Babila, T. L., Zachos, J. C., & Speijer, R. P.
- 1058 (2022). Shelf Ecosystems Along the U.S. Atlantic Coastal Plain Prior to and During the
- 1059 Paleocene-Eocene Thermal Maximum: Insights Into the Stratigraphic Architecture.
- 1060 *Paleoceanography and Paleoclimatology*, *37*(10), 1–21.
- 1061 https://doi.org/10.1029/2022PA004475
- Elling, F. J., Gottschalk, J., Doeana, K. D., Kusch, S., Hurley, S. J., & Pearson, A. (2019).
 Archaeal lipid biomarker constraints on the Paleocene-Eocene carbon isotope excursion.
- 1064 *Nature Communications*, *10*(1), 1–10. https://doi.org/10.1038/s41467-019-12553-3
- 1065 Gavrilov, Y. O., Shcherbinina, E. A., & Oberhänsli, H. (2003). Paleocene-Eocene boundary
- 1066 events in the northeastern Peri-Tethys. *Special Paper of the Geological Society of America*,
- 1067 369, 147–168. https://doi.org/10.1130/0-8137-2369-8.147
- 1068 Handley, L., O'Halloran, A., Pearson, P. N., Hawkins, E., Nicholas, C. J., Schouten, S.,
- 1069 McMillan, I. K., & Pancost, R. D. (2012). Changes in the hydrological cycle in tropical East
- 1070 Africa during the Paleocene-Eocene Thermal Maximum. Palaeogeography,
- 1071 *Palaeoclimatology, Palaeoecology, 329–330, 10–21.*
- 1072 https://doi.org/10.1016/j.palaeo.2012.02.002
- 1073 Handley, L., Pearson, P. N., Mcmillan, I. K., & Pancost, R. D. (2008). Large terrestrial and
- 1074 marine carbon and hydrogen isotope excursions in a new Paleocene/Eocene boundary
- section from Tanzania. *Earth and Planetary Science Letters*, 275(1), 17–25.
- 1076 https://doi.org/10.1016/j.epsl.2008.07.030
- 1077 Harris, A. D., Miller, K. G., Browning, J. V., Sugarman, P. J., Olsson, R. K., Cramer, B. S., &
- 1078 Wright, J. D. (2010). Integrated stratigraphic studies of Paleocene-lowermost Eocene

1079	sequences, New Jersey Coastal Plain: Evidence for glacioeustatic control.
1080	Paleoceanography, 25(3), 1-18. https://doi.org/10.1029/2009PA001800
1081	Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y.,
1082	Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N.,
1083	Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Lunt,
1084	D. J. (2019). The DeepMIP contribution to PMIP4: Methodologies for selection,
1085	compilation and analysis of latest Paleocene and early Eocene climate proxy data,
1086	incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development,
1087	12(7), 3149-3206. https://doi.org/10.5194/gmd-12-3149-2019
1088	John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis, H., & Bralower, T. J.
1089	(2008). North American continental margin records of the Paleocene-Eocene thermal
1090	maximum: Implications for global carbon and hydrological cycling. Paleoceanography,
1091	23(2), 1–20. https://doi.org/10.1029/2007PA001465
1092	Junium, C. K., Dickson, A. J., & Uveges, B. T. (2018). Perturbation to the nitrogen cycle during
1093	rapid Early Eocene global warming. Nature Communications, 9(1).
1094	https://doi.org/10.1038/s41467-018-05486-w
1095	Lyons, S. L., Baczynski, A. A., Babila, T. L., Bralower, T. J., Hajek, E. A., Kump, L. R., Polites,
1096	E. G., Self-Trail, J. M., Trampush, S. M., Vornlocher, J. R., Zachos, J. C., & Freeman, K.
1097	H. (2019). Palaeocene–Eocene Thermal Maximum prolonged by fossil carbon oxidation.
1098	Nature Geoscience, 12, 54-60. https://doi.org/10.1038/s41561-018-0277-3
1099	Self-Trail, J. M., Powars, D. S., Watkins, D. K., & Wandless, G. A. (2012). Calcareous
1100	nannofossil assemblage changes across the Paleocene-Eocene Thermal Maximum:
1101	Evidence from a shelf setting. Marine Micropaleontology, 92-93, 61-80.
1102	https://doi.org/10.1016/j.marmicro.2012.05.003
1103	Shcherbinina, E., Gavrilov, Y., Iakovleva, A., Pokrovsky, B., Golovanova, O., & Aleksandrova,
1104	G. (2016). Environmental dynamics during the Paleocene-Eocene thermal maximum
1105	(PETM) in the northeastern Peri-Tethys revealed by high-resolution micropalaeontological
1106	and geochemical studies of a Caucasian key section. Palaeogeography, Palaeoclimatology,
1107	Palaeoecology, 456, 60-81. https://doi.org/10.1016/j.palaeo.2016.05.006
1108	Sluijs, A., Bijl, P. K., Schouten, S., Röhl, U., Reichart, GJ., & Brinkhuis, H. (2011). Southern
1109	ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal

1110 maximum. Climate of the Past, 7(1), 47–61. https://doi.org/10.5194/cp-7-47-2011

- 1111 Sluijs, A., Röhl, U., Schouten, S., Brumsack, H.-I., Sangiorgi, F., Sinninghe Damsté, J. S., &
- Brinkhuis, H. (2008). Arctic late Paleocene–early Eocene paleoenvironments with special
- emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated
- 1114 Ocean Drilling Program Expedition 302). *Paleoceanography*, 23(1), 1–17.
- 1115 https://doi.org/10.1029/2007PA001495
- 1116 Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Dickens, G. R., Huber, M.,
- 1117 Reichart, G., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., &
- 1118 Moran, K. (2006). Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene
- 1119 thermal maximum. *Nature*, 441(1), 610–613. https://doi.org/10.1038/nature04668
- 1120 Stassen, P., Thomas, E., & Speijer, R. P. (2012). Integrated stratigraphy of the Paleocene-Eocene
- 1121 thermal maximum in the New Jersey Coastal Plain: Toward understanding the effects of
- 1122 global warming in a shelf environment. *Paleoceanography*, 27(4), 1–17.
- 1123 https://doi.org/10.1029/2012PA002323
- 1124
- 1125