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Abstract

Braided rivers easily form wide and shallow floodplains when there is no constraints on both sides of the river. During floods,

rising water level submerges the floodplain of the bifurcated channel, resulting in the Compound-Braided River. The generalized

model was established based on statistical data from the braided river reach of Heilongjiang. In this paper, the flow field of the

straight compound-braided river was measured in flume experiments, and then the effect of the interaction of floodplain and

main channel on the flow pattern, water level, flow structure and resistance force were studied under overbank flow conditions.

The split ratio variation trend is further discussed. The results show that hydraulic factors in diverge segment were mainly

related to braided reach, with high longitudinal velocity observed in inner floodplain. The exchange flow between floodplain

and main channel accelerates transverse flow and promotes sediment transport intensity laterally. Secondary flow of compound

section within the influence range of bifurcated flow was obviously inhibited. Boundary shear stress analysis showed that the

diversion ratio of the main tributary under overbank condition decreased slightly and would maintain constant values as surface

rise.
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Key Points: 11 

• The flow structure and flow field characteristics of Compound-Braided River model are 12 
studied. 13 

• The secondary flow of the compound section within the influence range of bifurcated 14 
flow was obviously inhibited. 15 

• After the bifurcated river forms the compound section, the flow resistance boundary 16 
varies, resulting in the change of the diversion ratio.  17 
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Abstract 18 

Braided rivers easily form wide and shallow floodplains when there is no constraints on both 19 
sides of the river. During floods, rising water level submerges the floodplain of the bifurcated 20 
channel, resulting in the Compound-Braided River. The generalized model was established based 21 
on statistical data from the braided river reach of Heilongjiang. In this paper, the flow field of the 22 
straight compound-braided river was measured in flume experiments, and then the effect of the 23 
interaction of floodplain and main channel on the flow pattern, water level, flow structure and 24 
resistance force were studied under overbank flow conditions. The split ratio variation trend is 25 
further discussed. The results show that hydraulic factors in diverge segment were mainly related 26 
to braided reach, with high longitudinal velocity observed in inner floodplain. The exchange 27 
flow between floodplain and main channel  accelerates transverse flow and promotes sediment 28 
transport intensity laterally. Secondary flow of compound section within the influence range of 29 
bifurcated flow was obviously inhibited. Boundary shear stress analysis showed that the 30 
diversion ratio of the main tributary under overbank condition decreased slightly and would 31 
maintain constant values as surface rise. 32 
Keywords: Compound cross section; Braided River; Flow characteristics; Boundary shear stress; Diversion ratio 33 

1 Introduction 34 

The existence of center bar and floodplain will alter the channel boundary, affecting the 35 
characteristics of flow field and river process, which will bring challenges for river related work, 36 
such as navigation engineering, river regulation engineering, land use, and the development and 37 
utilization of water resources. For both of bifurcated river and compound river, numerous studies 38 
were conducted via experiments and mathematical stimulations. 39 

For the bifurcated channel, the flow pattern at the bifurcation is the most complex and the 40 
diversion ratio affects the trend of river process. Therefore, the studies focused on the flow field 41 
characteristics of the bifurcated region, and the diversion ratio. Experimental studies of right-42 
angle bifurcation had shown that the curvature of flow increases and the streamlines became 43 
denser when closer to the bifurcation, and the bottom and near-bottom flow patterns were 44 
different from the surface(F. Luo et al., 1995). The near-bottom flow was affected by turbulence, 45 
which complicated the flow near the bottom(ZHANG et al., 2021). In the straight braided rivers, 46 
the turbulent flow was strongest in the recirculation zone at the bifurcation, and the contour line 47 
of the high turbulence zone tended to be concave bank to convex bank from the bottom to the 48 
surface. The turbulence in the confluence segment was also strong(Hua et al., 2009; Khan & 49 
Sharma, 2019), and vortex appears at the confluence and the intensity decreases as the water 50 
flows downstream(X. Liu et al., 2019; H. Tang et al., 2018). The diversion ratio is an important 51 
hydrodynamic index in the braided river. Starting from energy, Ramamurthy studied the 52 
relationship between the diversion ratio and Froude number, and proposed a theoretical 53 
calculation formula(Ramamurthy & Satish, 1988). Tong proposed a diversion ratio estimation 54 
formula based on erosion-deposition balance and momentum conservation(TONG et al., 2011). 55 
Scholars have studied the influence of different factors on the diversion ratio through theoretical 56 
analysis and model tests, such as flow, roughness, inlet angle and branch ratio(Du et al., 2016; 57 
ZHAO et al., 2022). 58 

For the compound section, scholars focus on the flow capacity of the section under the 59 
interaction between the floodplain and the main channel. Through experiments, Zheleznyakov 60 
found that the interaction between the floodplain and the main channel flow will reduce the 61 
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water capacity of the main channel and increase it in the floodplain(Г.В.Zheleznyakov, 1956). 62 
This was because the momentum exchange between the floodplain and the main channel changes 63 
the distribution of boundary shear stress, which affects the water transport capacity of the 64 
floodplain and main channel(HU & JI, 1999). From experimental studies of the flow structures, 65 
Proust found that small transverse flows can also affect the transverse shear layer at the junction 66 
of the floodplain and the main channel of the compound channel(Proust & Nikora, 2018, 2020). 67 
Abbaspour and Naik et al. proposed a model for predicting boundary shear stress based on 68 
experiments(Abbaspour, 2020; Naik et al., 2018). The traditional calculation method of flow 69 
capacity was no longer suitable for compound section(Stephenson & Kolovopoulos, 1990). 70 
Scholars have put forward a large number of compound river flow estimation models through 71 
model tests, theoretical analysis or numerical simulation(X. Tang, 2019; Yonesi et al., 2022). 72 

Wide and shallow floodplains were easy to produce in bifurcated rivers when there was 73 
poor anti-scourability and no constraints on either side of the river. During the dry season, the 74 
water flows in the main channel. During the flood season, the water level rises to submerge the 75 
floodplain and the flow section develops into the compound section(Devi et al., 2017). 76 
Heilongjiang, located in the high latitude area, is the boundary river between China and Russia. 77 
Due to the political sensitivity, there is the lack of river bank regulation projects, and has 78 
bifurcation and floodplain. During the spring flood period, the flow of the main stream increased 79 
rapidly, resulting in the water level rising to submerge the floodplain, and the formation of a 80 
compound section. The compound-braided river is controlled by the braided river type in the 81 
plane shape, and the two-dimensional flow field is affected by the interaction of the floodplain 82 
and the main channel. This type of channel has both morphological characteristics and the flow 83 
characteristics are more complicated, such as branch diversion, velocity distribution and 84 
boundary shear stress. At present, there are few studies on the superposition of these two 85 
boundary conditions, but it is likely to occur during the flood season. If there is a lack of 86 
understanding of the flow characteristics of this type of river, there will be a deviation in the 87 
judgment of the trend of river process. In this study, a generalized model of compound braided 88 
channel is established. The changes of flow characteristics and resistance distribution 89 
characteristics of braided channel after overbank flow are explored through experiments, and the 90 
influence between of the floodplain and main channel interaction on braided channel diversion is 91 
analyzed. 92 

2 Experiment overview 93 

In the experiment, three indexes (formula (1) ~ (3)) of bending coefficient Ka, width ratio 94 
K and length-width ratio M were used to statistically analyze the morphology of the compound-95 
braided river reach of the main stream of Heilongjiang River in the study area. 96 

/Ka L l=                                                                       (1) 97 

max( , ) min( , )l r l rK B B B B=                                                     (2) 98 

/c cM L B=                                                                      (3) 99 
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Where L is the length of the reach, l is the straight line length of the reach, Bl is the total 100 
width of the left branch of reach, Br is the total width of the right branch of reach, Lc is the length 101 
of the center bar, Bc is the width of the center bar. 102 

There were 144 braided reaches in the study area, of which 129 were two branches, 103 
accounting for 90%. The morphological of the two-branch reaches were analyzed by using the 104 
aforementioned indicators. As shown in Table 1, the straight bifurcation with the bending 105 
coefficient Ka of 1.0~1.2 accounted for 73%, and the width ratio K of 1 ~ 2.5 accounted for more 106 
than 50%. The length-width ratio M was used to describe the plane shape of the center bar, and 107 
the narrow center bar (M > 4) was the main type and accounted for 57%. 108 

The design of experimental model was based on the morphological characteristics of the 109 
compound-braided river reach of the Heilongjiang. The model was straight bifurcated, the center 110 
bar was narrow and long, and the width ratio of the two branches was 1: 2 (the right branch is the 111 
main branch). 112 

Table 1. Morphological statistics of bifurcated reaches in Heilongjiang River with two branches 113 
bending coefficient Ka width ratio K length-width ratio M 

Index ranges percentage Index ranges percentage Index ranges percentage
1.0～1.2 73% 1～2.5 52% 2～3 16% 
1.2～1.5 22% 2.5～5 34% 3～4 27% 
＞1.5 5% 5～11 14% ＞4 57% 
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The experiment was carried out in the State Key Laboratory of Hydraulics and Mountain 114 
River Development and Protection of Sichuan University. The layout of the test model was 115 
shown in Fig.1. Before the upstream of the flume, it was arranged with inlet pipe, triangular weir, 116 
tank and grids, and the downstream was connected with sluice gate and tailwater pool. The 117 
experiment flume is 12m long, 2m wide, 0.5m high, and 1‰ gradient. The boundary was 118 
tempered glass, and the bottom was cement plaster. The model was divided into three reaches 119 
from upstream to downstream. The length of the upstream compound river reach was 3m, and 120 
the total width of the section was 1.40m. The middle reach was the compound-braided river, 121 
which included bifurcation segment, branch segment and confluence segment. The branch 122 
segment after the diversion through the center bar was a compound section. The downstream 123 
compound river reach was 3m long, with the same shape and size as the upstream section. As 124 
shown in Fig.2, both sides of the center bar were the inner floodplain of the compound section, 125 
and the side near the wall was the outer floodplain. The junction areas of the reaches were 126 
connected by the gradient section, which was to smoothly connect from the upstream to the 127 
downstream, and the boundary of the gradient section was arc boundary.  128 

  129 

Figure 1. Plane layout of the experiment model. 130 

  131 

Figure 2. Cross section of the model. B is the width of the main channel, b is the width of the 132 
floodplain, and the subscripts 1 and 2 represent the left branch and the right branch respectively. 133 

As shown in Figure 1, five typical cross-sections CS1~CS5 were set up in the study, 134 
which were located in the bifurcation segment, the branch segment and the confluence segment 135 
of the compound-braided river reach. Because the flow pattern of the bifurcation was the most 136 
complex, three cross-sections were arranged here, which were located at the beginning position 137 
of the bifurcation (CS1), the transition position of the bifurcation (CS2) and the end position of 138 
the bifurcation (CS3). The water depth was measured by using the ultrasonic water level mete, 139 
and the flow velocity was measured by using the Acoustic Doppler Velocimeter (ADV). The 140 
coordinate system setting was shown in Figure 2. The origin was located at the junction of the 141 
left side wall of the inlet cross-section and the river bottom. The X, Y, and Z axes were parallel 142 
to the river boundary, where the X axis points to the downstream, the Y axis points to the right 143 
bank, and the Z axis points to the water surface. The longitudinal velocity u points to the 144 
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downstream was positive, the transverse velocity v points to the right bank was positive, and the 145 
vertical velocity w points to the water surface was positive. The test flow range was 10~85L•s-1, 146 
which was divided into 7 levels. At 10 and 15L•s-1, due to the small flow rate, the floodplain was 147 
not submerged by water, which was the braided river channel. Under the other flow rates, the 148 
compound section was formed because the floodplain was submerged by water, which was the 149 
compound-braided river channel. The test conditions were shown in Table 2. 150 

Table 2. Summary of experiment conditions 151 
test B0/cm b0/cm B1/cm b1/cm B2/cm b2/cm hm/cm Q/L·s-1 river pattern 
Q1 

48 36 19.2 14.4 38.4 28.8 12 

10 
braided river 

Q2 15 
Q3 30 

compound-braided 
river 

Q4 45 
Q5 65 
Q6 75 
Q7 85 

Note. Where B is the width of the main channel, b is the width of the floodplain, and the 152 
subscripts 0,1 and 2 represent the unbranched river section, the left branch and the right branch 153 
respectively. 154 

3 Results 155 

3.1 Flow pattern of water surface 156 

To observe the flow pattern change of the compound-braided river channel under the 157 
superposition influences between the center bar diversion and the interaction between the 158 
floodplain and the main channel. In Q6 condition, the light colored plastic is put into the entrance 159 
of flume. Because the density of plastic is less than that of water, it can float on the water surface 160 
and move with the water flow, which can reflect the water surface flow movements of the reach. 161 
The results are shown in Figure 3. 162 

There are ripples on the water surface in the bifurcation segment (Figure 3a) due to the 163 
jacking effect on the head of the center bar. At the junction of the bifurcation section and the 164 
branch section (Figure 3b), the water flow bypasses the head of center bar, and backflow vertical 165 
vortex appears on both sides of the center bar. The vortex of left branch is clockwise, and that of 166 
right branch is counterclockwise. The vortex moves downstream in the branch section and moves 167 
to the main channel at the same time. During the process, the vortex size continues to expand 168 
until it disappears. In the branch segment, the exposed area of water surface at the junction of the 169 
floodplain and the main channel is not covered by the plastic due to water flow mixing, as shown 170 
in Figure 3c. The exposed area of the right branch is larger than that of the left branch, indicating 171 
that the mixing of the right branch is stronger. In the confluence segment (Figure 3d), the strong 172 
mixing caused by the confluence of water flows causes the plastic to move to both sides, and an 173 
obvious mixing band appears. The exposed area in Figure 3d is the mixing band position. The 174 
mixing zone is near to the left when the water flow just confluence, and then moves to the center 175 
line of the main channel. 176 
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surface gradient between the main channel and the floodplain on both sides is significantly 203 
greater than that of Q2 after the influence of diversion and jacking of center bar is superimposed. 204 

At the end of bifurcation (Figure 4b), the bending shape of the river channel has 205 
essentially terminated, which caused by the diversion, but the water flow still has strong bending 206 
characteristics because of inertia. In Q2 group, there is high water level on the concave bank and 207 
low on the convex bank, which is consistent with the typical cross-sectional distribution of water 208 
level in curved river(Y. Liu, 2003). In Q6 condition, the water level on the concave side is still 209 
higher than that on the convex side, and the water surface is inclined to the center bar. However, 210 
the superposition of the water surface gradient of the compound section makes the gradient 211 
between the main channel and the outer floodplain (concave bank) smaller than that between the 212 
main channel and the inner floodplain (convex bank). 213 

The influence of channel diversion and bending completely disappears at the branch 214 
section (Figure 4c). In Q2 condition, the water level distribution of the two branches is basically 215 
equal, which returns to the rectangular channel state. In Q6 condition, the water level of the inner 216 
and outer floodplain is basically equal, but lower than that of the main channel, which returns to 217 
the compound channel state(Stephenson & Kolovopoulos, 1990). 218 

In the confluence segment (Figure 4d), the flow velocity of the left branch is low due to 219 
the small discharge, so the water level on the left side is higher than that on the right when the 220 
water flow confluence. In Q2 group, due to the small total discharge, the discharge difference 221 
between the two branches is small, so the water level of the section changes little. In Q6 group, 222 
the discharge difference between the two branches is large, and the water level on the left side is 223 
higher than that on the right side. At the same time, the water level of the main channel is higher 224 
than that of the floodplain due to the water surface characteristics of the compound section. The 225 
mixing and collision caused by the confluence of high and low velocity water flow (see Figure 226 
3d) and the periodic change of the vortex formed by the flow around cause the water level of the 227 
main channel to fluctuate. 228 

Comparing the water stage of typical sections in Q2 group with Q6 group, it is found that 229 
the transverse distribution of the water level is mainly controlled by the compound section before 230 
and after the flow branching (Figure 4a and Figure 4c). Within the influence reach of bifurcation 231 
and confluence (Figure 4b and Figure 4d), the transverse distribution of the water level is not 232 
only controlled by braided channel, but also affected by the flow redistribution for compound 233 
section. 234 
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 235 

Figure 4. (a) The distribution of water level in bifurcation segment (CS1). (b) The distribution of 236 
water level in bifurcation segment(CS3). (C) The distribution of water level in branch 237 
segment(CS4). (d) The distribution of water level in confluence segment(CS5). The red dotted 238 
line is the water level trend line. 239 

3.3 Secondary flow distribution 240 

The vector distribution of cross-section velocity under the Q6 condition is taken as an 241 
example. This study explores the mechanism of secondary flow generation under the 242 
superposition influence between the center bar diversion and the interaction between the 243 
floodplain and the main channel. Two vector length unit settings of 0.002 and 0.007 are used to 244 
observe the direction of the vector arrow. 245 

The velocity vector diagram of the bifurcation section is shown in Figure 5a~Figure 5c. 246 
The streamline bending on the plane is caused by the diversion effect. The cross-section velocity 247 
vector is mainly affected by the lateral extrusion of the center bar, and the interaction between 248 
the floodplain and the main channel of the compound section is weakened, there is no circulation 249 
in the CS1. At the cross-section CS2, the water flow deflects from the head of the center bar to 250 
both sides, which makes the lateral velocity increase, and the lateral water and sediment transport 251 
is enhanced. A pair of opposite vertical vortexes is formed on both sides of the central bar head 252 
as the current separates from the flume walls (see Figure 3b). From Figure 5b, the sinking flow is 253 
formed by the flow of the inner floodplain into the bottom of the main channel, which is 254 
subjected to the centrifugal force of the vortex. The streamline plane has bending characteristics, 255 
but there is still no bend circulation. At the end of the bifurcation segment (CS3), the size of the 256 
vertical vortex increases and moves laterally to the main channel, making the water flow in the 257 
main channel more obviously downward and the angle of the sinking flow increases. At the same 258 
time, upward flow is generated in the interaction area between the main channel and the outer 259 
floodplain as the curvature of the boundary plane and the centrifugal force increase. Overall, 260 
there is no closed bend circulation at the end of the bifurcation segment. The extrusion force 261 
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caused by the diversion of the center bar makes the surface water form a transverse velocity 262 
consistent with the direction of the bottom, causing in the transverse velocity distribution of the 263 
section not conform to the law of straight or curved compound section. 264 

When the water enters the branch segment (Figure 5d), the influence of the backflow 265 
caused by the bifurcation of the upstream center bar is very weak. The influence range of the 266 
backflow in the main branch is longer due to the larger discharge, and there are still some 267 
undercurrents on the inner floodplain into the main channel. The interaction between the 268 
floodplain and the main channel under the influence of compound section gradually increased 269 
and began to play a leading role. There is a pair of secondary flows with opposite directions at 270 
the junction of floodplain and main channel on both sides of the two branches, but its shape and 271 
position are still affected by the diversion. The circulation scale of the inner floodplain is always 272 
larger than that of the outer floodplain. The reverse circulation in the inner side of the main 273 
channel is affected by the undercurrent, which occurs above the bank water level. Moreover, the 274 
scale of secondary flow is limited by the free water surface. Only near the interaction area 275 
between the outer floodplain and the main channel, the secondary flow is nearly unaffected by 276 
the diversion. 277 

The velocity vector diagram of the confluence segment is shown in Figure 5e (CS5). As 278 
the river width gradually narrows, water flow from both sides converges towards the central bar, 279 
resulting in an augmentation of transverse velocity. The CS5 section has been restored to the 280 
same boundary conditions as the upstream, the cross-section velocity vector is dominated by the 281 
transverse velocity generated by the confluence, and the secondary flow generated by the 282 
interaction between the floodplain and the main channel has disappeared. The cross-sectional 283 
backflow caused by the confluence of the branch flow is located on the left side of the main 284 
channel center. 285 

In general, the velocity distribution in the branch segment located far from the diversion 286 
and confluence exhibits the typical compound cross-section characteristics. However, the 287 
strength of the secondary flow is related to the inner and outer floodplains and main channel. In 288 
the compound river reach affected by confluence, the transverse velocity is independent of the 289 
interaction between the floodplain and the main channel, and is mainly controlled by the change 290 
of the boundary plane shape. The velocity vector distribution in the bifurcation segment is also 291 
affected by center bar diversion, compound section, and plane bending, which makes more 292 
complex flow field characteristics be displayed, and the evolution of the center bar and the 293 
diversion of the branch channel are deeply affected. Therefore, the longitudinal velocity and 294 
stress distribution in the diversion segment are emphatically analyzed below. 295 
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During the diversion process, the longitudinal velocity distribution of the section transits 338 
from the compound section characteristics to the typical diversion characteristics. Before the 339 
complete bifurcation, the transverse velocity distribution is affected by the interaction between 340 
the floodplain and the main channel, which may affect the flow capacity of both branches. 341 
Compound-braided river channels exhibit variations in growth and decline patterns due to 342 
changes in flow capacity compared to a single rectangular section. In order to further analyze the 343 
change of the diversion characteristics under the influence of the compound section, the 344 
transverse distribution of the boundary shear stress τb of the CS2 section under Q2 and Q5~Q7 is 345 
calculated, and the change of the resistance characteristics before and after the overbank are 346 
compared. 347 

The boundary shear stress of compound section is generally based on the vertical average 348 
velocity Ud, which is calculated by formula (4)(LIU et al., 2012). 349 

( ) 28b dUfρτ =       (4) 350 

Where ρ is the density of water and f is the Darcy-Weisbach resistance coefficient, which 351 
is calculated by Formula (5)(Spooner，Jake, 2001). 352 

2 1 38f gn R=       (5) 353 

Where g is the acceleration of gravity, n is the comprehensive roughness of the river 354 
section, and R is the hydraulic radius. 355 

The determination of Ud is crucial in calculating the boundary shear stress of the 356 
compound channel. The SKM method is employed to obtain the analytical solution for the 357 
transverse distribution of Ud. In this paper, the vertical average flow velocity Ud is derived 358 
directly from the point flow velocity measurements obtained through flume tests. 359 

The modified vertical segmentation method was utilized to calculate the hydraulic radius 360 
R, considering the impact of flow momentum exchange between the floodplain and main 361 
channel(KANG, 2023). The cross-section composition characteristics of the left and right 362 
branches are consistent, so the right branch is used as an example to illustrate the calculation 363 
parameters of the hydraulic radius R. As shown in Figure 7, the section is divided into three parts: 364 
I, II, and III. From Figure 5b and Figure 6b, it can be observed that due to blockage at the center 365 
bar head, water flow diverts towards both left and right branches at y=0.7~0.8m, and the 366 
longitudinal velocity of the two branches is basically symmetrical to the center line of the main 367 
channel. Therefore, the water body boundary on the left side of region I is replaced by the solid 368 
side wall in this paper, and the calculation parameters of I and II are completely consistent. In 369 
order to reflect the resistance effect of the floodplain flow on the main channel, the concept of 370 
equivalent wetted perimeter is used in III to appropriately increase the wetted perimeter of the 371 
boundary section between the floodplain and the main channel. 372 
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the condition of small discharge, and the main branch flow of Q1~Q2 accounts for over 73%. 418 
Moreover, the increase of discharge makes η increase to a certain extent, which is consistent with 419 
the previous research results. After the water level rises to form a compound braided channel 420 
under the large discharge, η of Q3~Q7 is between 70% and 71%, and the diversion ratio of the 421 
main branch not only fails to increase but also decreases significantly. The result obtained is 422 
inconsistent with the evolution law of the braided channel, but it is consistent with the previous 423 
inference about the influence of the changes of the inlet resistance of the main branch on the 424 
diversion ratio. This shows that the formation of the compound section by submerging of the 425 
floodplain will indeed change the diversion law of the braided channel, which makes the river 426 
process of the compound-braided river channel show distinct characteristics from the previous 427 
braided channel. 428 

From Figure 9, there is no obvious correlation between the change of the η and the 429 
discharge after overbank condition. The boundary resistance of the main channel is sensitive to 430 
the change of discharge, but the velocity gradient in the interaction area between the floodplain 431 
and the main channel is increased due to the asynchronous changes in resistance between the 432 
floodplain and the main channel. This forms a stronger lateral momentum exchange, which 433 
maintains the flow capacity of the main branch to a certain extent. The decrease of the main 434 
branch diversion ratio caused by overbank is limited, about 3~4%. 435 

4 Conclusion 436 

In this paper, according to the investigation and statistics data from the braided river of 437 
Heilongjiang, the generalized flume model is designed. The flow field characteristics, resistance 438 
characteristics and branch diversion ratio of the compound bifurcated channel are studied 439 
through the flume experiments, and the following conclusions are obtained: 440 

(1) In the bifurcation segment of the compound-braided river channel, the water surface 441 
flow pattern and the transverse distribution characteristics of water level can be observed at the 442 
same time, which are caused by the influence of central bar diversion and interaction between the 443 
floodplain and the main channel. The velocity difference between the floodplain and the main 444 
channel aggravates the transverse water surface gradient in the diversion segment, which 445 
accelerates the transverse flow of the section and may increase the transverse sediment transport 446 
intensity. The vertical vortex caused by center bar diversion through the interaction zone 447 
between the floodplain and the main channel should be the main factor, which causes the cross-448 
section sinking flow. 449 

(2) The cross-section vector distribution of flow velocity in the diversion segment is 450 
mainly controlled by the diversion effect of the center bar, which completely suppresses the 451 
generation of secondary flow. However, the longitudinal cross-section distribution of flow 452 
velocity still retains the distribution characteristics of the compound section. Under the combined 453 
action of extrusion force and centrifugal force, the longitudinal velocity of the inner floodplain is 454 
high, and the transverse flow of the section is violent. If there is no anti-scouring protection of 455 
vegetation roots, the center bar may be scoured first, and silted up in the main channel or even 456 
the outer floodplain of the downstream. The compound section of the branch is still affected by a 457 
certain degree of diversion, and the asymmetric distribution of the secondary flow is caused. 458 

(3) The calculation results of boundary shear stress distribution, based on the interaction 459 
of floodplain and main channel, indicate that the resistance of the outer floodplain in both 460 
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branches is equivalent. However, from the perspective of the main channel and the inner 461 
floodplain, the resistance change of the main branch caused by the increase of flow rate is faster 462 
than that of the other branch. In general, after the floodplain is submerged, the section resistance 463 
growth of the main branch is significantly greater than that of the other branch. This leads to the 464 
diversion ratio of the branch not increasing but decreasing, and the range is very limited. And the 465 
diversion ratio no longer decreases with the flow rate continue to increase, basically maintaining 466 
a constant value. After the water level rises in the flood season to submerge floodplain, the flow 467 
capacity of the branch has a certain improvement, and the braided channel of the compound 468 
section may be more conducive to maintaining a relatively stable branch pattern. 469 

5 Discussion 470 

The compound-braided model used in the test is generalized according to the statistics of 471 
the braided channel in Heilongjiang. These research conclusions are applicable to the judgment 472 
of water level, flow velocity, resistance distribution, and diversion ratio of the straight and 473 
asymmetric compound-braided river. For curved braided river, if the reach where the center bar 474 
is located is curved, the diversion ratio after the water level overflows also needs to consider the 475 
changes of the curved circulation and the mainstream axis. When the tributary is located on the 476 
concave bank of the bend, due to the large discharge, the circulation intensity of the bend 477 
generated by the curved river section increases, the mainstream axis becomes straight, and the 478 
diversion ratio of the branch increases. At the same time, due to the overbank condition, the 479 
increase of the flow capacity of the branch is more than that of the main branch, the compound 480 
section will further improve the diversion ratio of the branch in the flood season. This causes 481 
more intense erosion, which may aggravate the evolution trend of the alternation of the main 482 
branch. 483 

Limited by the scope of application of the flow velocity measurement equipment, there 484 
are only two groups of bifurcation tests carried out under the condition of non-floodplain. 485 
However, even if the flow rate increase is only 5L•s-1, the main branch diversion ratio still has 486 
an increase. This is consistent with the existing research and observation conclusions of the 487 
diversion ratio of the braided channel, and can be used as a control test group for the diversion 488 
ratio data after the floodplain. However, this conclusion is still qualitative, and it is impossible to 489 
quantitatively evaluate or calculate the impact of flow or floodplain on the decrease of diversion 490 
ratio. Data under more test conditions are needed for further exploration. 491 

During the dry season, both the center bar of the braided river and the floodplain of the 492 
compound river remain unsubmerged and usually grows a certain coverage vegetation. The 493 
subterranean root system of vegetation roots provides soil consolidation effects, thereby 494 
enhancing bank slope erosion resistance. Moreover, the rhizomes and leaves on the ground can 495 
significantly increase the water flow resistance. The spatial distribution uniformity of vegetation 496 
along both sides of the floodplain and the center bar will also affect the flow velocity distribution 497 
in the bifurcation section. In this paper, the experimental conditions of vegetation are not 498 
considered, and the calculation of resistance coefficient is deviated from the actual situation. 499 
When the research results of this paper are applied or verified in natural river, the factors of 500 
vegetation should be considered, such as species, growth, coverage, and distribution uniformity, 501 
in view of its great impact on overflow capacity of channel. 502 
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