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Abstract

Central America exhibits a distinct seasonal cycle of rainfall, which is objectively defined as having an onset date and a demise

date of the wet season on the first and the last day of the year when its daily rainfall exceeds and falls below the annual mean

rainfall climatology. This is defined at the granularity of the rainfall analysis dataset. Additionally, the methodology diagnoses

the onset/demise dates of the wet season from an ensemble of 1000 members per season by perturbing the original timeseries

to obtain robust probabilistic estimates. We show that both onset and demise date variations have a bearing on the seasonal

length and seasonal rainfall anomaly but impact them independently of each other. We demonstrate that a seasonal outlook

based solely on the onset date variations has useful prediction skills that portend for real-time monitoring of the onset date of

the wet season.
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Key points 13 
 14 

1. The variability of  the length of  the season has a significant influence on the seasonal rain of  15 
the wet season over Central America. 16 

2. The onset date variations influence the length and seasonal rainfall anomalies significantly 17 
over Central America. 18 

3. The probabilistic skill for the outlook of  the wet season over Central America from 19 
monitoring the onset date of  the season is promising.  20 
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Abstract 21 

 Central America exhibits a distinct seasonal cycle of  rainfall, which is objectively defined as 22 

having an onset date and a demise date of  the wet season on the first and the last day of  the year 23 

when its daily rainfall exceeds and falls below the annual mean rainfall climatology. This is defined at 24 

the granularity of  the rainfall analysis dataset. Additionally, the methodology diagnoses the 25 

onset/demise dates of  the wet season from an ensemble of  1000 members per season by perturbing 26 

the original timeseries to obtain robust probabilistic estimates. We show that both onset and demise 27 

date variations have a bearing on the seasonal length and seasonal rainfall anomaly but impact them 28 

independently of  each other. We demonstrate that a seasonal outlook based solely on the onset date 29 

variations has useful prediction skills that portend for real-time monitoring of  the onset date of  the 30 

wet season. 31 

  32 
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Plain Language Summary 33 

  The onset date and demise date of  the wet season in Central America are defined every year, 34 

precisely to a specific date from our proposed definition of  it. This is possible because the region 35 

exhibits a strong seasonality of  the rainfall. As a result, the year-to-year (interannual) variation of  the 36 

seasonal rainfall during the wet season is also determined by the variations in the length of  the 37 

season that are usually overlooked in fixed calendar seasons. We define the onset or demise date of  38 

the wet season as the first or the last day of  the year when the daily rain rate exceeds or falls below 39 

the annual mean climatological rainfall, respectively. We also find that both onset and demise date 40 

variations, independently influence the length and total seasonal rainfall of  the wet season. 41 

Consequently, we use the diagnosed onset date to provide an outlook of  the forthcoming wet 42 

season, which is shown to be an effective predictor with significant useful seasonal prediction skills. 43 

  44 
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1 Introduction 45 

 The isthmus of  Central America comprising Belize, Guatemala, El Salvador, Honduras, 46 

Nicaragua, Costa Rica, and Panama has a distinct seasonal cycle of  rainfall and a well-recognized 47 

monsoon system that serves as a bridge for a unified view of  the North and the South American 48 

Monsoon systems (Vera et al. 2006).  The seasonality of  rainfall is vital for the economy of  the 49 

region (Alfaro 2014). However, the seasonal evolution of  rainfall over Central America is rather 50 

heterogeneous given the region’s complex geography (e.g., a narrow isthmus oriented northwest-51 

southeast direction, surrounded by relatively warm oceans), topography, and in the vicinity of  52 

oceanic Inter Tropical Convergence Zone (ITCZ). For example, the region’s complex topography in 53 

the narrow isthmus and its interaction with the seasonally varying easterly trade winds gives rise to a 54 

differing seasonal precipitation cycle between its Pacific and Caribbean slopes (Magana et al. 1999; 55 

Alfaro 2002; Taylor and Alfaro 2005; Amador et al. 2006). Furthermore, the north-south contrast in 56 

the rainy seasons from Panama to Belize is also distinct owing partly to the movement and extent of  57 

the ITCZ and its associated circulations and the strength and extent of  the subtropical highs in the 58 

Pacific and the Atlantic Oceans.  Additionally, the variability of  the regional climate system forced by 59 

external factors like ENSO, tropical North Atlantic SSTs, and internal chaotic variations make 60 

anticipating or forecasting the seasonal hydroclimate over the region a challenging task (Alfaro et al. 61 

2017; Kowal et al. 2023).   62 

In this paper, we offer a simple but effective way to provide an outlook for the forthcoming 63 

wet season from just monitoring the evolution of  the rainfall in the region around the time of  the 64 

onset of  the wet season. The proposed methodology has been successfully implemented over other 65 

regions like India (Bhardwaj and Misra 2019), northern Australia (Uehling et al. 2020; Misra et al. 66 

2023), and Florida (Misra et al. 2022). But unlike some of  these other expansive monsoonal regions, 67 

the Central American region as mentioned earlier has complex evolution of  the wet seasons that 68 

evolve zonally and meridionally giving rise to mesoscale gradients of  rainfall. Therefore, 69 

understanding this complex evolution in an objective manner and then leveraging the discerned local 70 

relationships to extend the limits of  seasonal predictability is of  interest. 71 

 72 

2 Datasets and Methodology 73 

The primary dataset used in this study is the daily rainfall, which is obtained from the 74 

Integrated Multi-Satellite Retrievals for Global Precipitation Mission version 6 (IMERG; Huffman et 75 

al. 2019). The IMERG rainfall analysis is made available at 0.1° grid spacing at half-hourly temporal 76 



 5

resolution from June 2000 to the present. The IMERG data also includes the rainfall analysis that is 77 

labeled early, late, and final run products which have a latency of  ~ 4-h, 12-h, and 3.5 months, 78 

respectively. The latency of  these products is dictated by the time taken for data ingestion, pre-79 

processing the use of  the kinds of  satellite radiances collected by the Global Precipitation Mission 80 

(GPM), the adopted analysis technique, and the availability and use of  the atmospheric reanalysis 81 

products for the release of  the final gridded rainfall product. Since the methodology introduced in 82 

this study to diagnose the evolution of  the wet season is also being adapted for real-time monitoring 83 

of  the season, we chose to use the 12-h latency (late) product of  IMERG. For this study, we have 84 

computed the daily average of  12-h latency IMERG product from its half-hourly interval. 85 

The methodology adopted in this study to diagnose the onset and demise of  the wet season 86 

has been widely used for many of  the tropical regions that show strong seasonality of  rainfall 87 

(Liebmann and Marengo 2001; Misra and DiNapoli 2014; Dunning et al. 2016; Uehling and Misra 88 

2020). Essentially, this methodology diagnoses the first and the last day of  the year when the daily 89 

rain rate exceeds the corresponding climatological annual mean rainfall as the onset and the demise 90 

of  the wet season. This is achieved by isolating inflection points on the daily cumulative anomaly 91 

curve of  the rainfall (Fig. S1; Liebmann and Marengo 2001). This methodology is effective only 92 

where there is a strong seasonality of  rainfall (Fig. S2). It should be noted that our methodology 93 

ignores the mid-summer drought phenomenon in the region which gives rise to the bimodal peak of  94 

rainfall in the region (Fig. S2). Although significant importance is attached separately to the 95 

variations of  the primary peak (May-June) and secondary maximum (September-October) of  rainfall 96 

(Magana et al. 1999; Alfaro et al. 2017), there is still significant rainfall during the July-August period 97 

of  the “canicular” (> 5 mm day-1; Fig. S2) to broadly include it as part of  the wet season.  98 

Additionally, given the uncertainty of  observations, analysis techniques, and discretization of  the 99 

rainfall data, Misra et al. (2023) introduced perturbations of  the timeseries to obtain a robust 100 

ensemble of  onset and demise dates from a given daily timeseries of  rainfall. Furthermore, 101 

obtaining such an ensemble of  onset/demise dates also precludes their “definitive” diagnosis from 102 

excessive bearing of  isolated synoptic or sub-synoptic rain-bearing systems, which may be 103 

unconnected to the large-scale seasonality of  the rainfall. In a region like Central America, this may 104 

be particularly relevant where there is abundance of  mesoscale convective systems (Liu and Zipser 105 

2013, 2015). Following Misra et al. (2023), the perturbations to the timeseries are generated by 106 

shuffling the original daily timeseries of  rainfall on the timescale of  6 days (representing synoptic 107 

scales) with rain rates of  some randomly chosen days being replaced by rain rates occurring within 108 
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the sequence of  ±3 days of  the chosen date. We generate 1000 such perturbed timeseries per year 109 

per grid point. The time series plot for a sample year and for a sample grid point over Nicaragua 110 

with its perturbed 1001 timeseries (including the original timeseries) are shown in Fig. S3. The onset 111 

and demise of  the wet season are computed at every grid point of  the IMERG product (at its 0.1° 112 

grid resolution) for all 1001 ensemble members across Central America for the period of  the dataset 113 

(2001-2022).  114 

 115 

3 Results 116 

a) Climatology 117 

 Figs. 1a-d shows the climatology of  the onset, demise, length, and seasonal rainfall of  the 118 

wet season. Since an ensemble of  1001 members is generated from the methodology, we have used 119 

the median value of  the diagnosed onset, demise, length, and seasonal rain for each wet season to 120 

compute this climatology to avoid the influence of  outliers. In Fig. 1a we observe that the onset date 121 

is generally earlier on the Pacific coast than on the Atlantic coast. Furthermore, the earliest onset 122 

dates appear in Panama, and onset dates gradually occur later in the year as we proceed further 123 

north. However, this progression is not uniform with parts of  the Pacific coast of  Costa Rica, 124 

Nicaragua, and El Salvador displaying later onset dates compared to parts of  Honduras and 125 

Guatemala. The west-to-east progression of  the onset date of  the wet season is however more 126 

uniform across Central America (Fig. 1a). 127 

 Similarly, the demise date shows a meridional and a zonal gradient in Fig. 1b. For example, 128 

the later demise dates in Panama and Costa Rica to the rest of  Central America are apparent. 129 

Furthermore, the Atlantic coast of  Central America displays a later demise date than the Pacific 130 

coast, with areas between the coasts in Nicaragua, Honduras, and Guatemala showing some of  the 131 

earliest demise dates of  the wet season (Fig. 1b). 132 
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Figure 3: The correlations of the demise date with anomalies of (a) length and (b) seasonal rain 208 
of the wet season. (c) The correlations of the seasonal length with corresponding seasonal rainfall 209 
anomalies of the wet season.  The statistically significant values at a 5% significance level 210 
according to the t-test are stippled. 211 
 212 

The correlations in Figs. 2a and b and in Figs. 3a and b assume significance in the fact that 213 

other potential external forcings like the ENSO variability, the tropical northeast Pacific, and the 214 

tropical Atlantic warm pool variations have comparatively far less bearing on the seasonal variations 215 

of  the wet season of  Central America (Figs. S5-S7). In other words, the correlations in Figs. 2 and 3 216 

reflect the local relationships that dictate the seasonal evolution of  the wet season over Central 217 

America, which are not necessarily dictated by large-scale climate variations.  218 

  219 

c) Real-time monitoring 220 

 Given the comparatively weak external forcing of  large-scale climate variability on the wet 221 

season variations of  Central America (Fig. S5-S7), the relationship between the onset date and the 222 

seasonal length and seasonal rain could be exploited for real-time monitoring and outlook of  the 223 

evolution of  the forthcoming wet season. In Fig. 4 we show the area under the Relative Operating 224 

Characteristic (ROC) curve for the outlook of  seasonal length and seasonal rainfall anomalies based 225 

on anomalous early and late-onset seasons. The Area under the ROC curve (AROC) measures the 226 

probabilistic skill of  the outlook, which is obtained from the 1001-member ensemble of  the 227 

adopted methodology. The outlook at a given grid point in the domain is considered useful if  its 228 

corresponding AROC curve is (≥  0.5; Narotsky and Misra 2021). The anomalous onset dates, 229 

length of  the season, and seasonal rain are considered when they are not in the middle but extreme 230 

terciles. In Fig. 4a, we find that the outlook of  a long wet season from early onset has a very high 231 

area under the ROC, well over 0.5 across Central America, with rare exceptions in pockets over 232 

Costa Rica and along the Atlantic coasts of  Nicaragua and Honduras. Similarly, the outlook of  the 233 

short wet season from the late onset is also promising (Fig. 4b). There are however slightly more 234 

widespread regions of  low skill scores (< 0.5 area under ROC curve) along the Atlantic coasts of  235 

Nicaragua and Honduras (Fig. 4b) compared to outlook from early onset seasons (Fig. 4a).  In 236 

contrast the skills along the northwestern part of  Central America in Fig. 4b are much higher and 237 

widespread than in Fig. 4a. 238 

 The outlook of  the wetter season in early onset seasons also shows considerable 239 

probabilistic skill with widespread areas across Central America exhibiting areas under ROC curve 240 
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resolutions to resolve the impacts of  steep gradients of  orography, neighboring upper ocean 264 

processes, and air-sea interactions on the regional climate, while also having a reasonably low bias to 265 

produce useful seasonal climate forecasts.   266 

We introduce a robust and objective way of  defining the onset and the demise of  the wet 267 

season from observed daily timeseries of  rainfall. The proposed methodology includes the variations 268 

in the length of  the season in accounting for the variability of  the wet season that is otherwise 269 

ignored in the fixed calendar month definitions of  the season. We show that the variations in onset 270 

and demise dates of  the wet season over Central America influence the length and the seasonal 271 

rainfall variations of  the wet season significantly. Furthermore, the impact of  onset and demise date 272 

variations on the corresponding seasonal length and seasonal rainfall is found to be relatively 273 

independent of  each other. With the availability of  high-resolution rainfall data like IMERG, the 274 

proposed methodology can easily and effectively be adapted for real-time monitoring of  the 275 

evolution of  the wet season over this region. 276 

This study offers a very simple but effective tool to provide an outlook of  the forthcoming 277 

wet season by simply monitoring the realization of  the onset date of  the wet season. The 278 

methodology, by way of  generating an ensemble of  estimates of  onset and demise dates, allows for 279 

the generation of  a probabilistic outlook of  the wet season. We show that across most of  the region 280 

in Central America, an early or later onset date of  the wet season is closely associated with the 281 

longer and wetter or shorter and drier seasonal length and rainfall anomaly of  the wet season, 282 

respectively. The probabilistic skill scores of  such an outlook also support the effectiveness of  this 283 

local teleconnection. Therefore, the proposed monitoring of  the local onset of  the wet season 284 

would be beneficial in the presence of  stiff  challenges in seasonal prediction by numerical climate 285 

models for the region.  286 
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