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Abstract

Using a machine learning technique called echo state network (ESN), we have developed an emulator to model the physics-

based global magnetohydrodynamic (MHD) simulation results of REPPU (REProduce Plasma Universe) code. The inputs are

the solar wind time series with date and time, and the outputs are the time series of the ionospheric auroral current system

in the form of two-dimensional (2D) patterns of field-aligned current, potential, and conductivity. We mediated a principal

component analysis for a dimensionality reduction of the 2D map time series. In this study, we report the latest upgraded

Surrogate Model for REPPU Auroral Ionosphere version 2 (SMRAI2) with significantly improved resolutions in time and space

(5 min in time, ˜1 degrees in latitude, and 4.5 degrees in longitude), where the dipole tilt angle is also newly added as one

of the input parameters to reproduce the seasonal dependence. The fundamental dependencies of the steady-state potential

and field-aligned current patterns on the interplanetary magnetic field (IMF) directions are consistent with those obtained

from empirical models. Further, we show that the ESN-based emulator can output the AE index so that we can evaluate the

performance of the dynamically changing results, comparing with the observed AE index. Since the ESN-based emulator runs a

million times faster than the REPPU simulation, it is promising that we can utilize the emulator for the real-time space weather

forecast of the auroral current system as well as to obtain large-number ensembles to achieve future data assimilation-based

forecast.

1



manuscript submitted to Space Weather 

 

Machine learning-based emulator for the physics-based simulation of auroral 1 

current system 2 

 3 

Ryuho Kataoka1,2, Aoi Nakamizo3, Shinya Nakano4,5,2, Shigeru Fujita4,5 4 

1 National Institute of Polar Research, Tachikawa, 190-8518, Japan 5 

2 SOKENDAI, Tachikawa, 190-8518, Japan 6 

3 National Institute of Information and Communications Technology, Koganei, 184-8795, Japan 7 

4 The Institute of Statistical Mathematics, Tachikawa, 190-8562, Japan 8 

5 Center for Data Assimilation Research and Applications, Joint Support Center for Data Science 9 

Research, Tachikawa, 190-8562, Japan 10 

 11 

Corresponding author: Ryuho Kataoka (kataoka.ryuho@nipr.ac.jp)  12 

 13 

Key Points: 14 

• We developed machine learning-based emulator for surrogating the ionospheric outputs 15 

of a global MHD simulation called REPPU.  16 

• The new emulator model SMRAI2 runs million times faster than the original physics-17 

based simulation.  18 

• The new emulator model SMRAI2 can be utilized for the real-time space weather 19 

forecast of auroral current system. 20 

  21 



manuscript submitted to Space Weather 

 

Abstract 22 

Using a machine learning technique called echo state network (ESN), we have developed an 23 

emulator to model the physics-based global magnetohydrodynamic (MHD) simulation results of 24 

REPPU (REProduce Plasma Universe) code. The inputs are the solar wind time series with date 25 

and time, and the outputs are the time series of the ionospheric auroral current system in the form 26 

of two-dimensional (2D) patterns of field-aligned current, potential, and conductivity. We 27 

mediated a principal component analysis for a dimensionality reduction of the 2D map time 28 

series. In this study, we report the latest upgraded Surrogate Model for REPPU Auroral 29 

Ionosphere version 2 (SMRAI2) with significantly improved resolutions in time and space (5 30 

min in time, ~1 degrees in latitude, and 4.5 degrees in longitude), where the dipole tilt angle is 31 

also newly added as one of the input parameters to reproduce the seasonal dependence. The 32 

fundamental dependencies of the steady-state potential and field-aligned current patterns on the 33 

interplanetary magnetic field (IMF) directions are consistent with those obtained from empirical 34 

models. Further, we show that the ESN-based emulator can output the AE index so that we can 35 

evaluate the performance of the dynamically changing results, comparing with the observed AE 36 

index. Since the ESN-based emulator runs a million times faster than the REPPU simulation, it is 37 

promising that we can utilize the emulator for the real-time space weather forecast of the auroral 38 

current system as well as to obtain large-number ensembles to achieve future data assimilation-39 

based forecast.  40 

Plain Language Summary 41 

Physics-based auroral simulations, such as Japanese REPPU code, are not practically fast enough 42 

for the purpose of real-time space weather forecast, even using the designated super computers. 43 

Here we developed a million-times-faster “emulator” to surrogate the outputs of the physics-44 

based simulation, using the machine-learning technique called Echo State Network. The newly 45 

developed emulator, the surrogate model for REPPU auroral Ionosphere version 2 (SMRAI2) 46 

enables us to realize the real-time forecast of the auroral current system.  47 

1 Introduction 48 

Forecasting the auroral current system in the polar regions has been one of the core parts 49 

of the operational space weather forecast because the auroral current system is the origin of the 50 

enhanced satellite drag via the Joule heat in the thermosphere. In recent years, such an 51 

importance has been especially growing, and the spacecraft operations are getting more sensitive 52 

along the heavy utilization of the low-earth orbit. For example, it was remarkable that as many as 53 

38 commercial satellites lost at the same time during moderate storms in February 2022 (e.g., 54 

Kataoka et al., 2022). The auroral current system, including auroral electrojet activities as known 55 

by the AE index, has been of fundamental importance for other various space weather aspects, 56 

including geomagnetically induced currents (GIC) flowing along the ground-based 57 

infrastructures (e.g., Kataoka and Ngwira, 2016), and satellite charging and communications 58 

malfunctions.  59 

On the other hand, there is a long history of conducting physics-based simulations to 60 

understand the variable polar ionosphere (Lyon et al., 1980; Ogino, 1986). Because of the 61 

nonlinear nature of the spatially complex evolution of auroral ovals and the magnetospheric 62 

plasma flows as driven by the time-varying solar wind conditions, a global 63 

magnetohydrodynamic (MHD) simulation with the input of the solar wind parameters is 64 
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necessary to reproduce the resultant auroral current system, as depicted by the ionospheric 65 

conductivities, potential, and field-aligned currents. Among many sophisticated MHD 66 

simulations, REPPU (REProduce Plasma Universe) has been known as one of the best models 67 

for resolving various space weather phenomena including auroral substorms (Ebihara et al., 68 

2015a; 2015b; Tanaka et al., 2017; 2018; 2022b). However, the major difficulty of REPPU and 69 

other simulation codes for the operational space weather forecast is that it is time-consuming to 70 

solve the MHD equations, even using the designated cluster computers. 71 

This study shows that the latest development in machine learning techniques can help 72 

solve this time-consuming issue. The very initial approach of such an emulator version 1.0 was 73 

proposed by Kataoka et al. (2023), using the time-dependent machine learning model called echo 74 

state network (ESN). In this study, we conducted a major upgrade of the ESN-based emulator by 75 

training the emulator model using an order of magnitude larger amount of the REPPU simulation 76 

outputs from that of ver1.0, as conducted by the long-term simulation runs (Nakamizo and 77 

Kubota, 2021) under the space weather forecast operations at National Institute of Information 78 

and Communications Technology (NICT). 79 

In Section 2 we describe the REPPU simulation code and explain the technical details of 80 

the machine-learning model, especially focusing on how to emulate the REPPU simulation’s 81 

ionospheric outputs. In Section 3, we show the primary results of the new emulator model. In 82 

Section 4, we discuss the performance and the limitation. Concluding remarks are briefly 83 

summarized in Section 5. 84 

2 Methods 85 

2.1 Magnetohydrodynamic simulation code: REPPU 86 

REPPU is an MHD simulation code developed for studying the global magnetosphere-87 

ionosphere coupling (Tanaka, 1995; Tanaka, 2015). The REPPU code is characterized by an 88 

excellent ionospheric reproduction of fundamental auroral phenomena such as substorms 89 

(Ebihara and Tanaka, 2015a; 2015b), sun-aligned arcs (Tanaka et al., 2017), and the theta aurora 90 

(Tanaka et al., 2018). In this study, we used an improved REPPU simulation code (Nakamizo 91 

and Kubota, 2021), including the effects of a tilted dipole axis and seasonal changes of solar 92 

zenith angles. The total number of grid cells in the magnetosphere is 30722 (horizontal) × 240 93 

(vertical), where the unstructured grid system (Moriguchi et al., 2008; Nakamizo et al., 2009) is 94 

employed. The number of grid cells in the ionosphere is 30722. In this study, for the training and 95 

testing data, we took only the northern polar ionosphere, i.e. 30×80 pixels in latitude and 96 

longitude, after applying the 2×4 binning in latitude and longitude. The ionospheric outputs of 97 

the field-aligned current J//, conductivities Σxx (north-south), Σxy (off-diagonal), Σyy (east-98 

west), and ionospheric potential Φ are saved every min, where the current continuity equation at 99 

the two-dimensional height-integrated ionosphere (x: north-south, y: east-west) is satisfied as: 100 

 101 

( )J ⊥= =  J E ,       (1) 102 

xx xy

xy yy

  
 =  

−  
,        (2) 103 
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,
x y

  
= − − 

  
E .        (3) 104 

The interplanetary magnetic field (IMF) Bx, By, and Bz are defined in the GSM 105 

(Geocentric Solar Magnetospheric) coordinate system. The real-time solar wind data (IMF Bx, 106 

By, Bz, solar wind speed V, proton density Np, and temperature Tp) at 1 min resolution was 107 

linearly interpolated if there was a data gap and used as the input time series to run the REPPU 108 

simulations. The real-time solar wind data can differ from the finally calibrated solar wind data, 109 

such as OMNI dataset. Nevertheless, it is essentially little problem for the machine-learning 110 

model to learn the REPPU simulation results for variable input patterns. 111 

NICT team has been operating the real-time simulation with the improved REPPU code 112 

for the space weather forecast (Nakamizo and Kubota, 2021). The REPPU simulation has been 113 

running on the High-Performance Computing System at NICT since August, 2020. The 114 

simulation-run basically works automatically. Still, it is sometimes manually stopped and 115 

restarted due to some failures of the computing system, such as the system maintenances and 116 

failures of the simulation. The saved results are, therefore, not necessarily continuous. 117 

In this study, we selected major interplanetary shock events and other large-amplitude 118 

events since 2021, including both predominantly southward and predominantly northward IMF 119 

conditions to include both storm-time and non-storm-time, respectively, as shown in Table 1. 120 

We also selected the long-term non-stop runs from December 2020 to January 2021 to 121 

compensate for the winter-time training data. Another long-term results from June to July 2021 122 

is also prepared as the testing time interval. 123 

2.2 Machine-learning model: Echo state network 124 

The basic flow of the development of Surrogate Model for REPPU Auroral Ionosphere 125 

version 2 (SMRAI2) and the relationship of REPPU simulation and ESN model is graphically 126 

summarized in Figure 1. Firstly, we adopted the dimensionality reduction for the ionospheric 127 

outputs as obtained from REPPU simulations, by applying the principal component analysis 128 

(PCA) using the Python 3 scikit-learn/pca. Very similar method was used by Licata and Mehta 129 

(2023) for different purpose (thermosphere model emulator). The time series of each parameter z 130 

= {Σxy, Φ, or J//}, at certain (latitude, longitude) position of the grid indices (i ,j), can be 131 

represented by the time averaged spatial pattern z0 and the linear combination of time-dependent 132 

PCA variables α and PCA component patterns U as follows:  133 

 134 

0 1( , , ) ( , ) ( , , )z i j t z i j z i j t= + ,       (4) 135 

1

1

( , , ) ( ) ( , )
rN

r r

r

z i j t t U i j
=

= .       (5) 136 

 137 

In this study, the numbers of PCA components Nr are selected to be 10 for Σxy and Φ, 138 

and 20 for J// to reconstruct >90% variance of the original features. 139 

To those time-dependent PCA variables α, we employed essentially the same Echo State 140 

Network model (Jaeger, 2001; Jaeger and Haas, 2004; Tanaka et al., 2019) as Kataoka et al. 141 
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(2023) documented. In this study, we used the ESN module of Python 3 as developed by Tanaka 142 

et al. (2022a) (See https://github.com/GTANAKA-LAB/DTS-ESN/). 143 

The ESN model used in this study is described by the reservoir state vector x and the 144 

model output vector y at t = n + 1 steps as follows:   145 

 146 

 ( 1) tanh ( 1) ( )inn W n W n+ = + +x u x ,     (6) 147 

( 1) ( 1)outn W n+ = +y x .       (7) 148 

 149 

Here, the weight matrices Win and W are multiplied by the input vector u (the solar wind 150 

time series) and the reservoir state vector x, respectively. We create the random and sparse node 151 

connections of Win and W, where only 10% of the matrix elements are random values between -152 

1.0 and 1.0, and the remaining 90% are zero. The weight matrices Win and W are fixed, while 153 

only Wout is trained by the ridge regression with the regularization parameter β = 10-3 to 154 

minimize the objective function F,  155 

 156 

2

1

( ) ( )
2

N
out

n

F n n W


=

= − + y d ,      (8) 157 

 158 

where d is a desired data vector consisting of the time series of the PCA variables of J//, 159 

Σxy, and Φ.  160 

As the input vectors u, the solar wind speed and density are normalized as log10 V - 2.5, 161 

and log10 Np - 1.0, respectively, before training the ESN model because both the solar wind 162 

speed and density follow log-normal distributions (Burlaga and Lazarus, 2000). The IMF By and 163 

Bz components are also used as the input parameters. Further, the dipole tilt angle is newly 164 

introduced as the input to adopt the model for all seasons. The dipole tilt angle is calculated from 165 

the date and time by Python 3 pyspedas/geopack. 166 

The emulator was trained by 107-day worth of outputs (30816 time steps) of REPPU 167 

simulation results. The testing data is 52 days, including both quiet and active months. The 168 

selection of training data and testing data was summarized in Table 1. The basic specifications 169 

of ESN-based emulators ver1.0 and ver2.0 are summarized in Table 2. 170 

We optimized the number of the nodes (elements of x) to be 400, 250, and 300 for J//, Φ, 171 

and Σxy, respectively, and the spectral radius (maximum eigenvalue of W) to be 0.99 for all J//, 172 

Φ, and Σxy, by finding the minimum values of the normalized root-mean-square errors 173 

(NRMSE) using the testing data for the first PCA variables. From these results, the constructed 174 

emulator model has NRMSE of ~0.7, ~0.5, and ~0.8 to reconstruct the first PCA variables of J//, 175 

Φ, and Σxy, respectively. 176 

In this study, we independently constructed the emulators for J//, Σxy, and Φ maps. 177 

However, the current continuity Eq. (1) relates these parameters, and any inconsistencies among 178 

these parameters can therefore give hints to evaluate the deviations in the emulation results for 179 

future applications. 180 
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It takes less than 10 s for the emulator to calculate a 1-day variation of auroral current 181 

system using a single node. In contrast, it takes ~5 days for the REPPU simulation to calculate 182 

the same 1-day variation using the 30-node cluster computer. Therefore, the computational cost 183 

of the SMRAI2 is approximately a million times more efficient than the original physics-based 184 

REPPU simulation. 185 

3 Results 186 

One of the major upgrades of SMRAI2 from the emulator ver1.0 (Kataoka et al., 2023) is 187 

the dipole tilt angle dependence by learning the simulation outputs from different seasons. From 188 

the steady state conditions for different tilt angles, Figure 2 shows that the trained model learned 189 

the tilt angle dependence of the Hall conductivity Σxy. Notably, the dayside conductivity is high 190 

in the summer season, while the nightside conductivity is low in the summer. The obtained 191 

tendency of the nightside conductivity is consistent with the results of Newell et al. (2010). 192 

Figure 3 shows the IMF clock angle dependence of the Region-1 and Region-2 field-193 

aligned current system (Iijima and Potemra, 1978). The IMF clock angle is defined as the angle 194 

made in the By-Bz space, i.e., atan(By/Bz). We picked up the steady-state conditions of 195 

SMRAI2 results for each input parameter to make this figure. The overall IMF clock angle 196 

dependence and the amplitude of J// are reasonable, and consistent with empirical models such as 197 

Weimer (2001a). Further, we can see the IMF By dependent cusp current system in the higher 198 

latitude region than the Region 1 currents (Fujii and Iijima, 1980), especially during the 199 

northward IMF conditions. 200 

Figure 4 shows the IMF clock angle dependence of the ionospheric potential, almost the 201 

same with the results from the emulator ver1.0 (Kataoka et al., 2023), consistent with empirical 202 

models such as Weimer-2K model (Weimer, 2001b) as shown in Figure 5. Comparing Figures 4 203 

and 5, the IMF By dependent appearances of the crescent- and round-shaped cells are clearly 204 

captured. However, the amplitude of cross-polar cap potential is only ~60% compared to the 205 

empirical models. Such an underestimating tendency is naturally expected, as we adopted the 206 

coarse-graining of ionospheric potential such as the binning and PCA analysis. We will come 207 

back to this point later.  208 

4 Discussions 209 

One way to examine the performance of the SMRAI2 using the open data is to calculate 210 

the AE index (https://wdc.kugi.kyoto-u.ac.jp/aedir/index.html) from the emulator and compare it 211 

with the observed values. In this study, we calculate the AU/AL indices (AE = AU - AL) from 212 

the emulator results with the electric field as estimated by the spatial derivatives of Φ map using 213 

the central difference, 214 

 215 

1 11 1, ,
2 2

j ji i

x y x y

+ −+ −
 −    − 

=   
      

,      (9) 216 

where i and j are the indices of latitude and longitude, respectively, and the Δx (north-217 

south) and Δy (east-west) are calculated from the colatitude θ, longitude φ, and the Earth radius 218 

RE as 219 

 220 
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( ),  2 ,  2 sin
360 360

E Ex y R R
 

  
  

  =  
 

.     (10) 221 

 222 

The ionospheric Hall current vectors are then calculated as 223 

 224 

( ), ,Hall xy y xy x xy xyE E
y x

  
=  − = −  

  
J .     (11) 225 

 226 

We then applied the so-called equivalent current theorem (Maeda, 1955; Fukushima, 227 

1969; 1976) where the east-west component of the Hall current in the unit of A km-1 is nearly 228 

equal to the north-south component of the magnetic field at the ground in the unit of nT to 229 

calculate the AU/AL indices from the envelopes of the emulator outputs. The magnetic latitude 230 

range for the AU/AL calculation is selected from 60o to 70o. 231 

The resultant AU and AL indices are shown in Figure 6 for the one-month time interval, 232 

using the 5-min OMNI solar wind data. The data gaps of the OMNI 5-min data were filled by the 233 

forward interpolation using the Python 3 pandas/fillna/ffill method. Figure 7 shows the 2D 234 

histogram for the 15-year results, indicating that the ESN-based emulator tends to underestimate 235 

the AE index. The cross-correlation coefficients between observed and emulated indices for the 236 

15-year data are 0.592, 0.596, 0.666 for AU, AL, and AE indices, respectively. 237 

There are multiple causes for this underestimation of the AE index. First, it is natural to 238 

expect that the coarse-graining of ionospheric potential, such as the binning and PCA analysis 239 

must give smaller values than the original simulation results, as we pointed out at the end of 240 

Section 3. Also, the finite difference of Equation 9 can further give the underestimation of the 241 

electric field, which was used to calculate the Hall current and the AE index. Therefore, having 242 

such a smaller AE index estimation by the ESN-based emulator is not surprising. Instead, we can 243 

use the SMRAI2 results as the fair values for the AE index prediction with the possible errors, as 244 

shown in Figure 7. 245 

Since the AE index roughly represents the macroscopic energy release in the polar 246 

ionosphere, we can diagnose some hidden characteristics of the new SMRAI2 via inputting the 247 

synthetic solar wind data. We prepared the synthetic solar wind data to pick up the peak values 248 

of the predicted AE index during the 80 min time interval after the southward IMF turnings from 249 

the steady state of the northward IMF Bz = 1.0 nT, changing the IMF amplitude, solar wind 250 

speed, and density. Ebihara and Tanaka (2019) showed, using the REPPU simulations, that the 251 

positive density dependence of the auroral electrojet intensity is clear during weakly southward 252 

IMF, while it is not likely the same during strongly southward IMF. Similarly complex tendency 253 

for the density appeared in the results from the emulator ver2.0, as shown in the right panel of 254 

Figure 8. In contrast to the density, the dependence of the AE peak intensity on the solar wind 255 

speed is relatively simple, as linearly correlating with the product of southward IMF Bz and solar 256 

wind speed V, which was seen in both Ebihara and Tanaka (2019) as well as in the left panel of 257 

Figure 8. 258 

Although it is improved from ver1.0 (Kataoka et al., 2023), the temporal resolution of 5 259 

min still gives the major limitation of the SMRAI2. For example, we cannot discuss the highly 260 

dynamic phenomena such as the substorm onset and sudden commencement, in which all 261 
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ionospheric parameters drastically evolve in a short time scale of less than 5 min. Those rapid 262 

variation can cause large-amplitude GIC events, which is one of the important targets of the 263 

operational space weather forecast. One of the future works, therefore, include improving of the 264 

temporal resolution to 1 min since the ESN method can be applied to diverse temporal scales 265 

(Tanaka et al., 2022a). Caveat should also be made here that it may not so simply work to solve 266 

the substorm-onset-related problems by improving the temporal resolution because there is an 267 

essential difficulty in reproducing the variation just before and after the substorm onsets, as 268 

coming from the probabilistic nature of the substorm onsets (Nakano and Kataoka, 2022; Nakano 269 

et al., 2023). 270 

Therefore, another natural next step would be the data assimilation of the SMRAI2 271 

emulator to correct the exact timing of the substorm onset and the amplitude via the observation 272 

data. The million-times faster SMRAI2 emulator has a significant advantage in this direction, 273 

compared to the physics-based simulation, because it is essential to increase the ensemble 274 

number necessary for data assimilation. For realizing the data assimilation-based forecast, it 275 

would be reasonable to use any partial data or point data which is available for real-time use via 276 

applying the cutting-edge data assimilation techniques (Nakano et al., 2020). 277 

5 Conclusions 278 

We showed that SMRAI2 emulator model is ready-to-use for the real-time space weather 279 

forecast of the auroral current system for both the northern and southern hemispheres. We 280 

developed the latest upgraded version 2.0 of the ESN-based emulator for the REPPU 281 

simulation’s ionospheric outputs of the field-aligned current, potential, and conductivity, which 282 

runs a million times faster than the REPPU code. The resolutions of the latest ESN-based 283 

emulator ver2.0 are significantly improved in time, latitude, and longitude, compared to the 284 

ver1.0, and the dipole tilt angle is also newly introduced as one of the input parameters, in 285 

addition to IMF By, Bz, V, and Np, thanks to an order of magnitude larger training dataset. We 286 

confirmed that the IMF clock-angle dependence of the auroral current system is consistent with 287 

that obtained from empirical models. New functions of the ESN-based emulator ver2.0 includes 288 

automatic OMNI solar wind data input and the AE index output by indicating the date only.  289 
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 407 

Figure 1. Block diagram of SMRAI2 development to graphically summarize the relationship 408 

among the REPPU, PCA, and ESN. 409 

 410 

Figure 2. The tilt angle dependence of Σxy. Steady-state conditions of SMRAI2 are shown, 411 

fixing the solar wind parameters By = 0.0 nT, Bz = 5.0 nT, Np = 5/cc, and Vsw = 400 km/s. 412 



manuscript submitted to Space Weather 

 

 413 

Figure 3. The IMF clock angle dependence of field-aligned current in the northern hemisphere. 414 

Steady-state conditions from the SMRAI2 are shown, fixing the tilt angle = 0.0, B = 5.0 nT, Np 415 

= 5/cc, and Vsw = 450 km/s. 416 
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 417 

Figure 4. The IMF clock angle dependence of ionospheric potential in the northern hemisphere. 418 

Steady-state conditions from the SMRAI2 are shown, fixing the tilt angle = 0.0, B = 5.0 nT, Np 419 

= 5/cc, and Vsw = 450 km/s. 420 
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 421 

Figure 5. The IMF clock angle dependence of ionospheric potential in the northern hemisphere 422 

as obtained from the Weimer2K empirical model, with the tilt angle = 0.0, B = 5.0 nT, Np = 423 

5/cc, and Vsw = 450 km/s. 424 
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 425 

Figure 6. Example of the calculation of AU/AL indices by SMRAI2, compared with the 426 

observed values, for the one-month time interval from October 1, 1999. 427 

  428 
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 429 

Figure 7. 2D histogram for the AE index as predicted by SMRAI2 against the observed AE 430 

index for the 15-year time interval from January 1, 2000. 431 

 432 

Figure 8. Heat map analysis of the SMRAI2-predicted AE peak intensity in the (left) IMF Bz-V 433 

space and in (right) IMF Bz-Np space. 434 
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Table 1. List of the selected events for training and testing the ESN model. 435 

 436 

Start End # of days Notes 

2021/05/10 2021/05/15 5 Shock, moderate storm 

2021/05/31 2021/06/03 4 Shock 

2021/07/26 2021/07/29 4 northward IMF 

2021/09/09 2021/09/12 4 northward IMF 

2021/10/11 2021/10/14 4 Shock 

2021/11/01 2021/11/06 6 Shock, intense storm 

2021/11/25 2021/11/29 5 Shock 

2022/01/30 2022/02/03 5 Shock 

2022/03/11 2022/03/15 5 Shock 

2022/03/28 2022/04/1 5 Shock 

2022/08/15 2022/08/19 5 Shock 

2021/12/01 2022/01/24 55 Long run for training 

2022/06/10 2022/07/31 52 Long run for testing 

 437 

Table 2. Specifications of SMRAI emulators version 1.0 (Kataoka et al., 2023) and version 2.0 438 

(this study). 439 

 440 

Parameters SMRAI1 SMRAI2 

Time resolution 10 min 5 min 

Latitude resolution  ~2 deg ~1 deg 

Longitude resolution 11.25 deg 4.5 deg 

Input solar wind 

parameters 
By, Bz, Np, Vsw Tilt, By, Bz, Np, Vsw 

Training dataset ~10 days worth ~100 days worth 

Hemisphere North only North and south 

 441 
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Key Points: 14 

• We developed machine learning-based emulator for surrogating the ionospheric outputs 15 

of a global MHD simulation called REPPU.  16 

• The new emulator model SMRAI2 runs million times faster than the original physics-17 

based simulation.  18 

• The new emulator model SMRAI2 can be utilized for the real-time space weather 19 

forecast of auroral current system. 20 

  21 
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Abstract 22 

Using a machine learning technique called echo state network (ESN), we have developed an 23 

emulator to model the physics-based global magnetohydrodynamic (MHD) simulation results of 24 

REPPU (REProduce Plasma Universe) code. The inputs are the solar wind time series with date 25 

and time, and the outputs are the time series of the ionospheric auroral current system in the form 26 

of two-dimensional (2D) patterns of field-aligned current, potential, and conductivity. We 27 

mediated a principal component analysis for a dimensionality reduction of the 2D map time 28 

series. In this study, we report the latest upgraded Surrogate Model for REPPU Auroral 29 

Ionosphere version 2 (SMRAI2) with significantly improved resolutions in time and space (5 30 

min in time, ~1 degrees in latitude, and 4.5 degrees in longitude), where the dipole tilt angle is 31 

also newly added as one of the input parameters to reproduce the seasonal dependence. The 32 

fundamental dependencies of the steady-state potential and field-aligned current patterns on the 33 

interplanetary magnetic field (IMF) directions are consistent with those obtained from empirical 34 

models. Further, we show that the ESN-based emulator can output the AE index so that we can 35 

evaluate the performance of the dynamically changing results, comparing with the observed AE 36 

index. Since the ESN-based emulator runs a million times faster than the REPPU simulation, it is 37 

promising that we can utilize the emulator for the real-time space weather forecast of the auroral 38 

current system as well as to obtain large-number ensembles to achieve future data assimilation-39 

based forecast.  40 

Plain Language Summary 41 

Physics-based auroral simulations, such as Japanese REPPU code, are not practically fast enough 42 

for the purpose of real-time space weather forecast, even using the designated super computers. 43 

Here we developed a million-times-faster “emulator” to surrogate the outputs of the physics-44 

based simulation, using the machine-learning technique called Echo State Network. The newly 45 

developed emulator, the surrogate model for REPPU auroral Ionosphere version 2 (SMRAI2) 46 

enables us to realize the real-time forecast of the auroral current system.  47 

1 Introduction 48 

Forecasting the auroral current system in the polar regions has been one of the core parts 49 

of the operational space weather forecast because the auroral current system is the origin of the 50 

enhanced satellite drag via the Joule heat in the thermosphere. In recent years, such an 51 

importance has been especially growing, and the spacecraft operations are getting more sensitive 52 

along the heavy utilization of the low-earth orbit. For example, it was remarkable that as many as 53 

38 commercial satellites lost at the same time during moderate storms in February 2022 (e.g., 54 

Kataoka et al., 2022). The auroral current system, including auroral electrojet activities as known 55 

by the AE index, has been of fundamental importance for other various space weather aspects, 56 

including geomagnetically induced currents (GIC) flowing along the ground-based 57 

infrastructures (e.g., Kataoka and Ngwira, 2016), and satellite charging and communications 58 

malfunctions.  59 

On the other hand, there is a long history of conducting physics-based simulations to 60 

understand the variable polar ionosphere (Lyon et al., 1980; Ogino, 1986). Because of the 61 

nonlinear nature of the spatially complex evolution of auroral ovals and the magnetospheric 62 

plasma flows as driven by the time-varying solar wind conditions, a global 63 

magnetohydrodynamic (MHD) simulation with the input of the solar wind parameters is 64 
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necessary to reproduce the resultant auroral current system, as depicted by the ionospheric 65 

conductivities, potential, and field-aligned currents. Among many sophisticated MHD 66 

simulations, REPPU (REProduce Plasma Universe) has been known as one of the best models 67 

for resolving various space weather phenomena including auroral substorms (Ebihara et al., 68 

2015a; 2015b; Tanaka et al., 2017; 2018; 2022b). However, the major difficulty of REPPU and 69 

other simulation codes for the operational space weather forecast is that it is time-consuming to 70 

solve the MHD equations, even using the designated cluster computers. 71 

This study shows that the latest development in machine learning techniques can help 72 

solve this time-consuming issue. The very initial approach of such an emulator version 1.0 was 73 

proposed by Kataoka et al. (2023), using the time-dependent machine learning model called echo 74 

state network (ESN). In this study, we conducted a major upgrade of the ESN-based emulator by 75 

training the emulator model using an order of magnitude larger amount of the REPPU simulation 76 

outputs from that of ver1.0, as conducted by the long-term simulation runs (Nakamizo and 77 

Kubota, 2021) under the space weather forecast operations at National Institute of Information 78 

and Communications Technology (NICT). 79 

In Section 2 we describe the REPPU simulation code and explain the technical details of 80 

the machine-learning model, especially focusing on how to emulate the REPPU simulation’s 81 

ionospheric outputs. In Section 3, we show the primary results of the new emulator model. In 82 

Section 4, we discuss the performance and the limitation. Concluding remarks are briefly 83 

summarized in Section 5. 84 

2 Methods 85 

2.1 Magnetohydrodynamic simulation code: REPPU 86 

REPPU is an MHD simulation code developed for studying the global magnetosphere-87 

ionosphere coupling (Tanaka, 1995; Tanaka, 2015). The REPPU code is characterized by an 88 

excellent ionospheric reproduction of fundamental auroral phenomena such as substorms 89 

(Ebihara and Tanaka, 2015a; 2015b), sun-aligned arcs (Tanaka et al., 2017), and the theta aurora 90 

(Tanaka et al., 2018). In this study, we used an improved REPPU simulation code (Nakamizo 91 

and Kubota, 2021), including the effects of a tilted dipole axis and seasonal changes of solar 92 

zenith angles. The total number of grid cells in the magnetosphere is 30722 (horizontal) × 240 93 

(vertical), where the unstructured grid system (Moriguchi et al., 2008; Nakamizo et al., 2009) is 94 

employed. The number of grid cells in the ionosphere is 30722. In this study, for the training and 95 

testing data, we took only the northern polar ionosphere, i.e. 30×80 pixels in latitude and 96 

longitude, after applying the 2×4 binning in latitude and longitude. The ionospheric outputs of 97 

the field-aligned current J//, conductivities Σxx (north-south), Σxy (off-diagonal), Σyy (east-98 

west), and ionospheric potential Φ are saved every min, where the current continuity equation at 99 

the two-dimensional height-integrated ionosphere (x: north-south, y: east-west) is satisfied as: 100 

 101 

( )J ⊥= =  J E ,       (1) 102 

xx xy

xy yy

  
 =  

−  
,        (2) 103 
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,
x y

  
= − − 

  
E .        (3) 104 

The interplanetary magnetic field (IMF) Bx, By, and Bz are defined in the GSM 105 

(Geocentric Solar Magnetospheric) coordinate system. The real-time solar wind data (IMF Bx, 106 

By, Bz, solar wind speed V, proton density Np, and temperature Tp) at 1 min resolution was 107 

linearly interpolated if there was a data gap and used as the input time series to run the REPPU 108 

simulations. The real-time solar wind data can differ from the finally calibrated solar wind data, 109 

such as OMNI dataset. Nevertheless, it is essentially little problem for the machine-learning 110 

model to learn the REPPU simulation results for variable input patterns. 111 

NICT team has been operating the real-time simulation with the improved REPPU code 112 

for the space weather forecast (Nakamizo and Kubota, 2021). The REPPU simulation has been 113 

running on the High-Performance Computing System at NICT since August, 2020. The 114 

simulation-run basically works automatically. Still, it is sometimes manually stopped and 115 

restarted due to some failures of the computing system, such as the system maintenances and 116 

failures of the simulation. The saved results are, therefore, not necessarily continuous. 117 

In this study, we selected major interplanetary shock events and other large-amplitude 118 

events since 2021, including both predominantly southward and predominantly northward IMF 119 

conditions to include both storm-time and non-storm-time, respectively, as shown in Table 1. 120 

We also selected the long-term non-stop runs from December 2020 to January 2021 to 121 

compensate for the winter-time training data. Another long-term results from June to July 2021 122 

is also prepared as the testing time interval. 123 

2.2 Machine-learning model: Echo state network 124 

The basic flow of the development of Surrogate Model for REPPU Auroral Ionosphere 125 

version 2 (SMRAI2) and the relationship of REPPU simulation and ESN model is graphically 126 

summarized in Figure 1. Firstly, we adopted the dimensionality reduction for the ionospheric 127 

outputs as obtained from REPPU simulations, by applying the principal component analysis 128 

(PCA) using the Python 3 scikit-learn/pca. Very similar method was used by Licata and Mehta 129 

(2023) for different purpose (thermosphere model emulator). The time series of each parameter z 130 

= {Σxy, Φ, or J//}, at certain (latitude, longitude) position of the grid indices (i ,j), can be 131 

represented by the time averaged spatial pattern z0 and the linear combination of time-dependent 132 

PCA variables α and PCA component patterns U as follows:  133 

 134 

0 1( , , ) ( , ) ( , , )z i j t z i j z i j t= + ,       (4) 135 

1

1

( , , ) ( ) ( , )
rN

r r

r

z i j t t U i j
=

= .       (5) 136 

 137 

In this study, the numbers of PCA components Nr are selected to be 10 for Σxy and Φ, 138 

and 20 for J// to reconstruct >90% variance of the original features. 139 

To those time-dependent PCA variables α, we employed essentially the same Echo State 140 

Network model (Jaeger, 2001; Jaeger and Haas, 2004; Tanaka et al., 2019) as Kataoka et al. 141 
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(2023) documented. In this study, we used the ESN module of Python 3 as developed by Tanaka 142 

et al. (2022a) (See https://github.com/GTANAKA-LAB/DTS-ESN/). 143 

The ESN model used in this study is described by the reservoir state vector x and the 144 

model output vector y at t = n + 1 steps as follows:   145 

 146 

 ( 1) tanh ( 1) ( )inn W n W n+ = + +x u x ,     (6) 147 

( 1) ( 1)outn W n+ = +y x .       (7) 148 

 149 

Here, the weight matrices Win and W are multiplied by the input vector u (the solar wind 150 

time series) and the reservoir state vector x, respectively. We create the random and sparse node 151 

connections of Win and W, where only 10% of the matrix elements are random values between -152 

1.0 and 1.0, and the remaining 90% are zero. The weight matrices Win and W are fixed, while 153 

only Wout is trained by the ridge regression with the regularization parameter β = 10-3 to 154 

minimize the objective function F,  155 

 156 

2

1

( ) ( )
2

N
out

n

F n n W


=

= − + y d ,      (8) 157 

 158 

where d is a desired data vector consisting of the time series of the PCA variables of J//, 159 

Σxy, and Φ.  160 

As the input vectors u, the solar wind speed and density are normalized as log10 V - 2.5, 161 

and log10 Np - 1.0, respectively, before training the ESN model because both the solar wind 162 

speed and density follow log-normal distributions (Burlaga and Lazarus, 2000). The IMF By and 163 

Bz components are also used as the input parameters. Further, the dipole tilt angle is newly 164 

introduced as the input to adopt the model for all seasons. The dipole tilt angle is calculated from 165 

the date and time by Python 3 pyspedas/geopack. 166 

The emulator was trained by 107-day worth of outputs (30816 time steps) of REPPU 167 

simulation results. The testing data is 52 days, including both quiet and active months. The 168 

selection of training data and testing data was summarized in Table 1. The basic specifications 169 

of ESN-based emulators ver1.0 and ver2.0 are summarized in Table 2. 170 

We optimized the number of the nodes (elements of x) to be 400, 250, and 300 for J//, Φ, 171 

and Σxy, respectively, and the spectral radius (maximum eigenvalue of W) to be 0.99 for all J//, 172 

Φ, and Σxy, by finding the minimum values of the normalized root-mean-square errors 173 

(NRMSE) using the testing data for the first PCA variables. From these results, the constructed 174 

emulator model has NRMSE of ~0.7, ~0.5, and ~0.8 to reconstruct the first PCA variables of J//, 175 

Φ, and Σxy, respectively. 176 

In this study, we independently constructed the emulators for J//, Σxy, and Φ maps. 177 

However, the current continuity Eq. (1) relates these parameters, and any inconsistencies among 178 

these parameters can therefore give hints to evaluate the deviations in the emulation results for 179 

future applications. 180 
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It takes less than 10 s for the emulator to calculate a 1-day variation of auroral current 181 

system using a single node. In contrast, it takes ~5 days for the REPPU simulation to calculate 182 

the same 1-day variation using the 30-node cluster computer. Therefore, the computational cost 183 

of the SMRAI2 is approximately a million times more efficient than the original physics-based 184 

REPPU simulation. 185 

3 Results 186 

One of the major upgrades of SMRAI2 from the emulator ver1.0 (Kataoka et al., 2023) is 187 

the dipole tilt angle dependence by learning the simulation outputs from different seasons. From 188 

the steady state conditions for different tilt angles, Figure 2 shows that the trained model learned 189 

the tilt angle dependence of the Hall conductivity Σxy. Notably, the dayside conductivity is high 190 

in the summer season, while the nightside conductivity is low in the summer. The obtained 191 

tendency of the nightside conductivity is consistent with the results of Newell et al. (2010). 192 

Figure 3 shows the IMF clock angle dependence of the Region-1 and Region-2 field-193 

aligned current system (Iijima and Potemra, 1978). The IMF clock angle is defined as the angle 194 

made in the By-Bz space, i.e., atan(By/Bz). We picked up the steady-state conditions of 195 

SMRAI2 results for each input parameter to make this figure. The overall IMF clock angle 196 

dependence and the amplitude of J// are reasonable, and consistent with empirical models such as 197 

Weimer (2001a). Further, we can see the IMF By dependent cusp current system in the higher 198 

latitude region than the Region 1 currents (Fujii and Iijima, 1980), especially during the 199 

northward IMF conditions. 200 

Figure 4 shows the IMF clock angle dependence of the ionospheric potential, almost the 201 

same with the results from the emulator ver1.0 (Kataoka et al., 2023), consistent with empirical 202 

models such as Weimer-2K model (Weimer, 2001b) as shown in Figure 5. Comparing Figures 4 203 

and 5, the IMF By dependent appearances of the crescent- and round-shaped cells are clearly 204 

captured. However, the amplitude of cross-polar cap potential is only ~60% compared to the 205 

empirical models. Such an underestimating tendency is naturally expected, as we adopted the 206 

coarse-graining of ionospheric potential such as the binning and PCA analysis. We will come 207 

back to this point later.  208 

4 Discussions 209 

One way to examine the performance of the SMRAI2 using the open data is to calculate 210 

the AE index (https://wdc.kugi.kyoto-u.ac.jp/aedir/index.html) from the emulator and compare it 211 

with the observed values. In this study, we calculate the AU/AL indices (AE = AU - AL) from 212 

the emulator results with the electric field as estimated by the spatial derivatives of Φ map using 213 

the central difference, 214 

 215 

1 11 1, ,
2 2

j ji i

x y x y

+ −+ −
 −    − 

=   
      

,      (9) 216 

where i and j are the indices of latitude and longitude, respectively, and the Δx (north-217 

south) and Δy (east-west) are calculated from the colatitude θ, longitude φ, and the Earth radius 218 

RE as 219 

 220 
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360 360
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 
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 

.     (10) 221 

 222 

The ionospheric Hall current vectors are then calculated as 223 

 224 

( ), ,Hall xy y xy x xy xyE E
y x

  
=  − = −  

  
J .     (11) 225 

 226 

We then applied the so-called equivalent current theorem (Maeda, 1955; Fukushima, 227 

1969; 1976) where the east-west component of the Hall current in the unit of A km-1 is nearly 228 

equal to the north-south component of the magnetic field at the ground in the unit of nT to 229 

calculate the AU/AL indices from the envelopes of the emulator outputs. The magnetic latitude 230 

range for the AU/AL calculation is selected from 60o to 70o. 231 

The resultant AU and AL indices are shown in Figure 6 for the one-month time interval, 232 

using the 5-min OMNI solar wind data. The data gaps of the OMNI 5-min data were filled by the 233 

forward interpolation using the Python 3 pandas/fillna/ffill method. Figure 7 shows the 2D 234 

histogram for the 15-year results, indicating that the ESN-based emulator tends to underestimate 235 

the AE index. The cross-correlation coefficients between observed and emulated indices for the 236 

15-year data are 0.592, 0.596, 0.666 for AU, AL, and AE indices, respectively. 237 

There are multiple causes for this underestimation of the AE index. First, it is natural to 238 

expect that the coarse-graining of ionospheric potential, such as the binning and PCA analysis 239 

must give smaller values than the original simulation results, as we pointed out at the end of 240 

Section 3. Also, the finite difference of Equation 9 can further give the underestimation of the 241 

electric field, which was used to calculate the Hall current and the AE index. Therefore, having 242 

such a smaller AE index estimation by the ESN-based emulator is not surprising. Instead, we can 243 

use the SMRAI2 results as the fair values for the AE index prediction with the possible errors, as 244 

shown in Figure 7. 245 

Since the AE index roughly represents the macroscopic energy release in the polar 246 

ionosphere, we can diagnose some hidden characteristics of the new SMRAI2 via inputting the 247 

synthetic solar wind data. We prepared the synthetic solar wind data to pick up the peak values 248 

of the predicted AE index during the 80 min time interval after the southward IMF turnings from 249 

the steady state of the northward IMF Bz = 1.0 nT, changing the IMF amplitude, solar wind 250 

speed, and density. Ebihara and Tanaka (2019) showed, using the REPPU simulations, that the 251 

positive density dependence of the auroral electrojet intensity is clear during weakly southward 252 

IMF, while it is not likely the same during strongly southward IMF. Similarly complex tendency 253 

for the density appeared in the results from the emulator ver2.0, as shown in the right panel of 254 

Figure 8. In contrast to the density, the dependence of the AE peak intensity on the solar wind 255 

speed is relatively simple, as linearly correlating with the product of southward IMF Bz and solar 256 

wind speed V, which was seen in both Ebihara and Tanaka (2019) as well as in the left panel of 257 

Figure 8. 258 

Although it is improved from ver1.0 (Kataoka et al., 2023), the temporal resolution of 5 259 

min still gives the major limitation of the SMRAI2. For example, we cannot discuss the highly 260 

dynamic phenomena such as the substorm onset and sudden commencement, in which all 261 
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ionospheric parameters drastically evolve in a short time scale of less than 5 min. Those rapid 262 

variation can cause large-amplitude GIC events, which is one of the important targets of the 263 

operational space weather forecast. One of the future works, therefore, include improving of the 264 

temporal resolution to 1 min since the ESN method can be applied to diverse temporal scales 265 

(Tanaka et al., 2022a). Caveat should also be made here that it may not so simply work to solve 266 

the substorm-onset-related problems by improving the temporal resolution because there is an 267 

essential difficulty in reproducing the variation just before and after the substorm onsets, as 268 

coming from the probabilistic nature of the substorm onsets (Nakano and Kataoka, 2022; Nakano 269 

et al., 2023). 270 

Therefore, another natural next step would be the data assimilation of the SMRAI2 271 

emulator to correct the exact timing of the substorm onset and the amplitude via the observation 272 

data. The million-times faster SMRAI2 emulator has a significant advantage in this direction, 273 

compared to the physics-based simulation, because it is essential to increase the ensemble 274 

number necessary for data assimilation. For realizing the data assimilation-based forecast, it 275 

would be reasonable to use any partial data or point data which is available for real-time use via 276 

applying the cutting-edge data assimilation techniques (Nakano et al., 2020). 277 

5 Conclusions 278 

We showed that SMRAI2 emulator model is ready-to-use for the real-time space weather 279 

forecast of the auroral current system for both the northern and southern hemispheres. We 280 

developed the latest upgraded version 2.0 of the ESN-based emulator for the REPPU 281 

simulation’s ionospheric outputs of the field-aligned current, potential, and conductivity, which 282 

runs a million times faster than the REPPU code. The resolutions of the latest ESN-based 283 

emulator ver2.0 are significantly improved in time, latitude, and longitude, compared to the 284 

ver1.0, and the dipole tilt angle is also newly introduced as one of the input parameters, in 285 

addition to IMF By, Bz, V, and Np, thanks to an order of magnitude larger training dataset. We 286 

confirmed that the IMF clock-angle dependence of the auroral current system is consistent with 287 

that obtained from empirical models. New functions of the ESN-based emulator ver2.0 includes 288 

automatic OMNI solar wind data input and the AE index output by indicating the date only.  289 
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 407 

Figure 1. Block diagram of SMRAI2 development to graphically summarize the relationship 408 

among the REPPU, PCA, and ESN. 409 

 410 

Figure 2. The tilt angle dependence of Σxy. Steady-state conditions of SMRAI2 are shown, 411 

fixing the solar wind parameters By = 0.0 nT, Bz = 5.0 nT, Np = 5/cc, and Vsw = 400 km/s. 412 
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 413 

Figure 3. The IMF clock angle dependence of field-aligned current in the northern hemisphere. 414 

Steady-state conditions from the SMRAI2 are shown, fixing the tilt angle = 0.0, B = 5.0 nT, Np 415 

= 5/cc, and Vsw = 450 km/s. 416 
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 417 

Figure 4. The IMF clock angle dependence of ionospheric potential in the northern hemisphere. 418 

Steady-state conditions from the SMRAI2 are shown, fixing the tilt angle = 0.0, B = 5.0 nT, Np 419 

= 5/cc, and Vsw = 450 km/s. 420 
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 421 

Figure 5. The IMF clock angle dependence of ionospheric potential in the northern hemisphere 422 

as obtained from the Weimer2K empirical model, with the tilt angle = 0.0, B = 5.0 nT, Np = 423 

5/cc, and Vsw = 450 km/s. 424 
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 425 

Figure 6. Example of the calculation of AU/AL indices by SMRAI2, compared with the 426 

observed values, for the one-month time interval from October 1, 1999. 427 

  428 
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 429 

Figure 7. 2D histogram for the AE index as predicted by SMRAI2 against the observed AE 430 

index for the 15-year time interval from January 1, 2000. 431 

 432 

Figure 8. Heat map analysis of the SMRAI2-predicted AE peak intensity in the (left) IMF Bz-V 433 

space and in (right) IMF Bz-Np space. 434 
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Table 1. List of the selected events for training and testing the ESN model. 435 

 436 

Start End # of days Notes 

2021/05/10 2021/05/15 5 Shock, moderate storm 

2021/05/31 2021/06/03 4 Shock 

2021/07/26 2021/07/29 4 northward IMF 

2021/09/09 2021/09/12 4 northward IMF 

2021/10/11 2021/10/14 4 Shock 

2021/11/01 2021/11/06 6 Shock, intense storm 

2021/11/25 2021/11/29 5 Shock 

2022/01/30 2022/02/03 5 Shock 

2022/03/11 2022/03/15 5 Shock 

2022/03/28 2022/04/1 5 Shock 

2022/08/15 2022/08/19 5 Shock 

2021/12/01 2022/01/24 55 Long run for training 

2022/06/10 2022/07/31 52 Long run for testing 

 437 

Table 2. Specifications of SMRAI emulators version 1.0 (Kataoka et al., 2023) and version 2.0 438 

(this study). 439 

 440 

Parameters SMRAI1 SMRAI2 

Time resolution 10 min 5 min 

Latitude resolution  ~2 deg ~1 deg 

Longitude resolution 11.25 deg 4.5 deg 

Input solar wind 

parameters 
By, Bz, Np, Vsw Tilt, By, Bz, Np, Vsw 

Training dataset ~10 days worth ~100 days worth 

Hemisphere North only North and south 

 441 


