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Abstract

The Surface Ocean CO2 Atlas (SOCAT) of CO2 fugacity (fCO2) observations is a key resource supporting annual assessments

of CO2 uptake by the ocean and its side effects on the marine ecosystem. SOCAT data are usually released with a lag of up

to 1.5 years which hampers timely quantification of recent variations of carbon fluxes between the Earth System components,

not only with the ocean. This study uses a statistical ensemble approach to analyse fCO2 with a latency of one month only

based on the previous SOCAT release and a series of predictors. A retrospective prediction for the years 2021-2022 is made

to test the model skill, followed by the generation of fCO2 and fluxes from January to August in 2023. Results indicate a

modest degradation of the model skill in prediction mode and open the possibility to provide robust information about marine

carbonate system variables with low latency.

1



manuscript submitted to Geophysical Research Letters

Global analysis of surface ocean CO2 fugacity and air-sea1

fluxes with low latency2

Thi-Tuyet-Trang Chau1, Frédéric Chevallier1, and Marion Gehlen1
3

1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université4

Paris-Saclay, F-91191 Gif-sur-Yvette, France5

Key Points:6

• We demonstrate the capacity of statistical models to generate global maps of fCO27

and air-sea flux with a latency reduced to one month.8

• A decrease in the CO2 source for January to August 2023 diagnosed in the tropical9

Pacific coheres with the retreat of the La Niña event.10

• An unusual northeastern Atlantic sink reduction diagnosed for June 2023 is linked to11

record heat and exceptionally low winds.12
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Abstract13

The Surface Ocean CO2 Atlas (SOCAT) of CO2 fugacity (fCO2) observations is a key14

resource supporting annual assessments of CO2 uptake by the ocean and its side effects on15

the marine ecosystem. SOCAT data are usually released with a lag of up to 1.5 years which16

hampers timely quantification of recent variations of carbon fluxes between the Earth System17

components, not only with the ocean. This study uses a statistical ensemble approach to18

analyse fCO2 with a latency of one month only based on the previous SOCAT release and19

a series of predictors. A retrospective prediction for the years 2021-2022 is made to test the20

model skill, followed by the generation of fCO2 and fluxes from January to August in 2023.21

Results indicate a modest degradation of the model skill in prediction mode and open the22

possibility to provide robust information about marine carbonate system variables with low23

latency.24

Plain Language Summary25

There is a growing need to monitor carbon emissions and removals over the globe in near26

real time in order to correctly interpret changes in CO2 concentrations as they unfold. For27

the oceans, the best information comes from measurements of the surface ocean CO2 fugacity28

(fCO2) by the international marine carbon research community. So far, this data is mostly29

available 6 to 18 months behind real time after collection, qualification, harmonization, and30

processing. Here, we show that a set of biological, chemical, and physical predictors available31

in near-real time, allows the information contained in the “old” fCO2 measurements to be32

transferred over time. Based on a statistical technique, we combine all these data sources33

to estimate global monthly maps of fCO2 and of CO2 fluxes at the air-sea interface within34

one month behind real time and with good accuracy.35

1 Introduction36

The ocean is a sink taking up about 26% of atmospheric carbon dioxide (CO2) and37

90% of the heat-induced largely by anthropogenic greenhouse gas emissions (Canadell et38

al., 2021; Friedlingstein et al., 2022). A side effect of the ocean’s role as a global climate39

modulator is the increase in seawater acidity, which dramatically affects marine ecosystems40

(Hopkins et al., 2020; Doney et al., 2020; Cooley et al., 2022). The global ocean carbon41

sink is proportional to CO2 human emissions only at the decadal scale. On shorter time42

scales, it varies with the climate (mostly temperature and winds), with a dependency that43
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also varies from basin to basin given their respective geographical, dynamic, and biological44

specificities (Rödenbeck et al., 2015; Landschützer et al., 2016; Gruber et al., 2023).45

Measurements of surface ocean CO2 fugacity (fCO2) from ships, drifters, moorings,46

and autonomous surface platforms are the main reference to document the actual varia-47

tion of air-sea fluxes (fgCO2) in space and time (Friedlingstein et al., 2022) because the48

two are linearly related. Long-term efforts in maintaining and expanding international ob-49

serving networks together with a coordinated data aggregation of the Surface Ocean CO250

Atlas database - SOCAT (Bakker et al., 2016, 2023) have provided millions of individual51

fCO2 observations since the 1950s and associated gridded products. However, fCO2 data52

are poorly sampled leaving out most areas for some or all of the year. Statistical data-53

based reconstructions of fCO2 (Rödenbeck et al., 2013; Landschützer et al., 2016; Gregor54

& Gruber, 2021; Chau et al., 2022b) have emerged to gap-fill the SOCAT database using55

auxiliary data, resulting in reconstructions of fCO2 global monthly maps. They are still56

the topic of active research to improve the reconstruction quality, but these maps lag be-57

hind real time by 0.5 to 1.5 years: the update of the SOCAT archive follows an annual58

pace with a public release usually in June after measurement collection, quality control,59

and processing. This lag is problematic for the documentation of the carbon cycle as it60

evolves, while the main variables of the carbon cycle are progressively integrated within op-61

erational programmes with much faster data releases. A prominent example of operational62

programmes in need of a reduced time lag is the operational observation-based anthro-63

pogenic CO2 emissions monitoring and verification support capacity (CO2MVS) that the64

European Commission is building under its Copernicus Earth Observation programme (e.g.,65

Janssens-Maenhout et al. (2020)). As its observational component relies heavily on satellite66

observations of CO2 in the atmosphere, which is affected by the ocean as well as terrestrial67

emissions and removals, better estimates of fCO2 would result in efficient estimates of air-68

sea fluxes and thence benefit air-land flux accuracy, in addition to being directly interesting69

to users. The CO2MVS fits within the Global Greenhouse Gas Watch, an even larger green-70

house gas monitoring infrastructure that the World Meteorological Organization (WMO) is71

setting up (https://public.wmo.int/en/media/press-release/world-meteorological72

-congress-approves-global-greenhouse-gas-watch, last access: 20/9/2023).73

Here, we demonstrate the capability to retrieve global monthly maps of fCO2 from74

SOCAT data and then to generate the corresponding fields of air-sea fluxes with a lag re-75

duced to one month. To do that, we extend the work of Chau et al. (2022b) who have been76
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gap-filling SOCAT gridded data within the framework of the Copernicus Marine Environ-77

ment Monitoring Service (CMEMS) based on an ensemble of feed-forward neural network78

models (also referred to as CMEMS-LSCE-FFNN) and a set of biological, chemical, and79

physical predictors. While Chau et al. (2022b) made the dates of the predictors and the80

date of the gridded SOCAT data coincide, we turn to a prediction mode in which the rela-81

tionship found between the predictors and the SOCAT data more than 6 months before is82

kept. Section 2 below describes the method. We test the approach in the years 2021-202283

by examining the retrospective prediction skill based on the available SOCAT data. Then84

we expand model prediction of fCO2 and generate fgCO2 up to present with a latency85

of 1 month: data access via the Institut Pierre-Simon Laplace (LSCE/IPSL) data center,86

https://dods.lsce.ipsl.fr/invsat/FFNN_low-latency/. The results include the find-87

ing of anomalous variations in regional CO2 uptake and release by the ocean predicted in88

January to August 2023, as described in Section 3. Section 4 draws the main conclusions of89

the study.90

2 Materials and Methods91

CMEMS-LSCE-FFNN (Chau et al., 2022b) is built on machine-learning techniques.92

It consists of an ensemble of feed-forward neural network (FFNN) models. This ensemble93

approach was developed at LSCE in order to reconstruct surface ocean carbonate system94

variables and to support the operational distribution of such datasets by CMEMS since95

2019 (Product identity: MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008,96

https://doi.org/10.48670/moi-00047, last access: 22/9/2023). The CMEMS-LSCE-97

FFNN fields cover the global ocean at a resolution of 1◦ × 1◦ currently and for the period98

since the year 1985 at monthly resolution.99

Under the hood, these FFNN models represent nonlinear mappings of fCO2 against100

a set of predictors. Monthly gridded observation-based products of fCO2 from SOCAT101

(Bakker et al., 2016) are used as the target data in model fitting. fCO2 predictors are envi-102

ronmental variables: sea surface temperature (SST), sea surface salinity (SSS), sea surface103

height (SSH), chlorophyll-a (Chl-a), mix-layer-depth (MLD), CO2 surface mole fractions104

(xCO2), climatological fCO2 (fCO2
clim), and geographical coordinates (latitude and longi-105

tude). Product resources of input datasets are detailed in Table S1. CMEMS-LSCE-FFNN106

comprises monthly adaptive FFNN models for which the fCO2 and predictor datasets avail-107

able within a time span of 3 months for all the years since 1985 (the reconstruction month108
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excepted) are used in the fitting phase. SOCAT fCO2 in the reconstruction month is only109

used in model evaluation. The ensemble of multi-FFNN models was designed by randomly110

splitting two-thirds of the 3-month sliding datasets for training and the rest for model test111

(Chau et al., 2022b). From the ensemble reconstructions, the model best estimate (ensemble112

mean) and 1σ - model uncertainty (ensemble standard deviation) of fCO2 are derived at113

the desired resolution.114

Here we revisit the two versions of CMEMS-LSCE-FFNN referred to as FFNNv2021 and115

FFNNv2022. These two models respectively used SOCATv2021 and SOCATv2022 datasets116

(Bakker et al., 2021, 2022) as the target input data of fCO2. Note that SOCAT has been117

annually published mid-June. Due to the delay mode for data collection, reprocessing, and118

qualify control, SOCAT provides gridded data up to the year before the publication date119

(see Bakker et al. (2016, 2023) for instance). For the period 1985-2021, SOCATv2022 offers120

an amount of roughly 311700 monthly 1-degree gridded data, 5000 more than SOCATv2021121

(Table S3a). The data increase in SOCATv2022 is mostly distributed within the last three122

years due to the late availability of some data sources (Figure 1). However, SOCATv2021123

has more data before 2018, up to at least 1000 more in some years (e.g., 2011 and 2012) due124

to an erroneous flagging of some data (Bakker et al., 2021). Despite this feature, the two125

corresponding FFNN reconstructions do not exhibit large systematic offsets in their fCO2126

estimates (Chau et al., 2022a).127

For all experiments in this study, the ensemble size (i.e., number of FFNN model runs)128

is set to 50. FFNN with 50 ensemble members has less computational complexity than129

with the usual size of 100 but it shows similar reconstruction skill (Chau et al. (2022b);130

Figure S2). The same input data of predictors is fed to the two FFNN model runs (Ta-131

ble S1). The FFNNv2021 (respectively FFNNv2022) model relies on SOCATv2021 (respec-132

tively SOCATv2022) and predictor datasets in 1985-2020 (respectively 1985-2021). This133

allows deriving the ensemble global reconstructions of fCO2 over the 36-year and 37-year134

periods, accordingly. The ensemble of FFNN models is then applied to predict fCO2 given135

the set of predictors in the years 2021-2022 for version 2021 and in the year 2022 for the136

latter. The quality assessments are made for (1) the two global reconstructions in the period137

1985-2020, (2) FFNNv2021 one-year prediction against FFNNv2022 one-year reconstruction138

in 2021, and (3) FFNNv2021 two-year prediction against FFNNv2022 one-year prediction in139

2022. Model performances will be qualified with the latest SOCAT data, i.e., SOCATv2023140

(Bakker et al., 2023). The number of evaluation data for prediction in the years 2021 and141
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2022 over the global ocean is 10908 and 8602, respectively (Table S3a), which is statistically142

sufficient for significant validation.143

Model skills are examined from global to sub-basin scale. Here we consider the sub-144

basins defined by the REgional Carbon Cycle Assessment and Processes2 project (https://145

github.com/RECCAP2-ocean/RECCAP2-shared-resources/tree/master/data/regions, last146

access: 20/3/2023). Due to a lack of evaluation data in several RECCAP2 biomes, we ag-147

gregate some of them, yielding 14 provinces in total (see Table S2 and Figure S1). These148

ocean provinces, therefore, differ from the original biomes proposed by Fay and McKinley149

(2014). Apart from the Northern Indian Ocean (11.NIO), the number of data for prediction150

evaluation ranges from 133 (12.SIO, i.e., Southern Indian Ocean) to 2350 (2.NA-SS, i.e.,151

North Atlantic seasonally stratified) in the year 2021 and from 73 to 2265 in the year 2022.152

For the actual prediction in 2022 and 2023, the latest model (FFNNv2022) has been153

run given monthly data of predictors (Table S1) in the year 2022 to present. We choose to154

release the maps of fCO2 and fgCO2 for the previous month on the 15th of each month.155

3 Evaluation and Discussions156

3.1 Reconstruction and Prediction of CO2 fugacity in 1985-2022157

3.1.1 Global qualification158

FFNNv2021 and FFNNv2022 share consistent global RMSD and determination coeffi-159

cient r2 (Figure 1 and Table S3). Between 1985 and 2020, the two reconstructions inherit160

the same RMSD of 19.1 µatm and r2 of 0.78 (Table S3b). Improvement in the global recon-161

struction skill of FFNNv2022 in recent years (Figure 1b) is moderate despite 5000 additional162

fCO2 data in the model training (Figure 1a). In detail, these 1.7% additional data in SO-163

CATv2022 (311694 in total) in 1985-2021 correspond to 9615 data added in 2021 and 4278164

data removed from SOCATv2021 in 1985-2020 (see the spatial distribution of removal data165

in Figure S2c).166

The RMSD variability before 2018 (Figure 1b) is likely linked to changes in the data167

sampling in regions with high spatiotemporal variability of fCO2 (see Gregor et al. (2019);168

Chau et al. (2022b) for further analysis). However, the difference between the RMSD of169

the two reconstructions is negligible then, as it fluctuates within [−0.1, 0.1] µatm. During170

the last four years, a monotonous increase in RMSD (Figure 1b) coexists with a decrease in171
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Figure 1. (a) Number of data per year in SOCATv2021 and SOCATv2022, (b) RMSD of

FFNNv2021 and FFNNv2022 against SOCATv2023 fCO2, (c) yearly global mean uncertainty (1σ).

Differences between the two versions are shown with a grey solid curve with values on the right

y-axis whereas the grey solid curve below 0 (grey dashed horizontal line). The blue and red vertical

lines mark the start of the prediction mode for FFNNv2021 and FFNNv2022, respectively.

the number of SOCAT data (Figure 1a), and the FFNNv2021 reconstruction slightly, but172

increasingly, underperforms compared to FFNNv2022. In 2021 and 2022, the FFNNv2021173

prediction RMSD is 24.3 µatm and 23.1 µatm, respectively, roughly 0.5−1 µatm higher than174

that of the FFNNv2022 reconstruction and prediction (Table S3). Likewise, the variation175

of SOCAT fCO2 is reproduced with high r2 values (0.74 and 0.75), close to the one-year176

reconstruction and prediction of FFNNv2022 (0.76) for the years 2021-2022.177

The yearly-mean uncertainty over the global ocean (Figure 1c) is computed by weighting178

the model estimated uncertainty (ensemble spread) per grid cell (σ) with the geographical179

area. The two reconstructions before the year 2015 are rather stable with an uncertainty180

about 8.5 µatm. The increase in FFNNv2021 [v2022] model uncertainty from 8.7 µatm [8.5181

µatm] to 10.8 µatm [10.4 µatm] between 2015-2020 follows a decrease in observation-based182

data from 14877 [14533] to 8482 [11217] (Figure 1a). In the year 2021, the FFNNv2021183

uncertainty of predicted fCO2 (11.4 µatm) is slightly higher than that of the FFNNv2022184

reconstruction but the offset between the two values is as small as 0.5 µatm (Figure 1c). The185
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prediction uncertainty in 2022 increases by 0.4−0.8 µatm for the two models (FFNNv2021:186

12.2 µatm, FFNNv2022: 11.3 µatm).187

3.1.2 Regional assessment188

Model reconstruction and prediction skills are assessed over 14 ocean provinces (Fig-189

ure S1 and Table S2) in the years 1985-2020 and 2021-2022 (1985-2021 and 2022) for190

FFNNv2021 (FFNNv2022). Results of the regional evaluation are summarized in Figure 2191

and Table S4. The two FFNN models perform with a similar skill in reconstruction mode192

(1985-2020) over all ocean provinces. Evidently, their reconstructions share consistent pat-193

terns in regional-mean fCO2 (Figure 2b) and in the spatial and temporal variations (Figures194

S4abc and S7) with systematic biases below 1 µatm for most of the basins (Table S4). Dif-195

ferences in uncertainty estimates and RMSD do not exceed 0.5 µatm while those in r2 are196

nearly the same (Figure 2cde and Table S4).197

Figure 2. Regional comparisons of the two FFNN reconstructions in 1985-2020 (bars) and of the

FFNNv2021 prediction versus the FFNNv2022 reconstruction [prediction] in 2021 [2022] (objects)

in terms of (a) N- number of SOCAT monthly gridded data used in model fitting, (b) µ- mean fCO2,

(c) σ-mean uncertainty, (d) RMSD model-data deviation, and (e) r2 model-data correlation.

In the years 2021-2022, RMSD (r2) of the FFNN prediction does not change from the198

full-period reconstruction by more than about 5 µatm (0.1) over many sub-basins (e.g.,199

2.NA-SS, 7.NP-PS, 8.PEQU-W, 10.SP, 12.SIO, and 13.SO-SS). As expected, FFNNv2022200

(one-year prediction) performs slightly better than FFNNv2021 (two-year prediction) in the201
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2022 prediction for many regions (Figures 2de and Table S4). However, the differences in202

regional skill scores of the two models are substantially small, i.e., below 3 µatm for RMSD203

and 0.05 for r2. These results suggest a high confidence level in FFNN prediction for a few204

years ahead. The analysis of the spatial distribution and of the time series (Figures 2, S4,205

and S7) also reveals consistent features (horizontal gradients of fCO2 and seasonality to206

long-term variations) from the reconstruction years to the prediction years. fCO2 increases207

over time (see f.i., 7.NP-PS, 8.PEQU-W, 12.SIO) following the trend in atmospheric CO2208

concentration. Among the fCO2 predictors, xCO2 stands out with its large increasing209

trend that brings some xCO2 data used in the prediction above the range of those used210

in the training. The growth of atmospheric CO2 is the primary factor driving the increase211

in sea surface fCO2 (Bates et al., 2014; Gruber et al., 2019; Landschützer et al., 2019;212

Friedlingstein et al., 2022). The prediction skill, however, does not degrade compared to the213

reconstruction as the annual increment of fCO2 is typically smaller than its intra-annual214

variability (Figure S6). The latter is dominantly driven by temperature-dependent CO2215

solubility and biological processes (Takahashi et al., 2002; Gallego et al., 2018; Rustogi et216

al., 2023). The range of the pre-2021 [pre-2022] training datasets of physical and biological217

predictors (e.g., SST, Chl-a) remains similar to that including input data in the next year,218

seasonality to multi-month variations of fCO2 in the years 2021-2022 can be, therefore,219

propagated with these covariates overall. The majority of SOCAT fCO2 data for 2021220

[2022] stays within the full range of training data which also supports FFNNs to achieve a221

skillful prediction (Figure S3). Further analysis of FFNN prediction skills over ocean basins222

is presented in the Supporting Information document.223

3.2 Prediction of air-sea CO2 fluxes in 2022-2023224

The previous results emphasize the skill and reliability of FFNN models in both re-225

construction and prediction of CO2 fugacity (fCO2). In this section, we will use the226

FFNNv2022 predicted fCO2 field to generate corresponding air-sea fluxes (fgCO2) and227

analyze preliminary results for 20 months, from January 2022 to August 2023. fgCO2 is228

given in molC.m-2.yr-1 for a flux density and in PgC.yr-1 for integration over ocean basins229

(see Supporting Information for details of flux calculation and analysis). FFNNv2022 pre-230

dicts a reduction in the global ocean uptake of CO2 for 2022 (2.25±0.5 PgC.yr-1) compared231

to the previous year (2.36± 0.43 PgC.yr-1). When adjusting the estimated global net fluxes232

with the riverine outgassing of CO2 of 0.65 PgC.yr-1 (Regnier et al., 2022) and the total233
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ocean surface area (FFNNv2022 data covers 95% of the global ocean), one obtains the esti-234

mates of anthropogenic ocean carbon uptake consistent with the 2022 projection proposed235

by Friedlingstein et al. (2022): the anthropogenic ocean sink in 2021 was 2.9± 0.4 PgC.yr-1236

remains unchanged for the year 2022. This evidence supports their hypothesis that the237

persistence of cooling climate patterns (La Niña conditions) weakened CO2 ocean uptake238

in 2021-2022 (high peaks appeared mid-2022, Figure S9). FFNNv2022 predicts a global net239

flux of 2.45 ± 0.56 PgC.yr-1 for January to August 2023, the enhancement of global ocean240

uptake compared to that in 2022 (2.17± 0.50 PgC.yr-1) is synchronous with the retreat of241

La Niña.242

The model prediction retains the seasonal to interannual variations of fCO2 and fgCO2243

in the pre-2022 reconstruction over many ocean basins (Figures S6 and S8). One of the244

remarkable changes is observed at the equatorial Atlantic (4.AEQU), where the regional245

mean fCO2 increases by 4.2 µatm from the year 2021 to 2022 (Figure S6). However,246

such a high increment in the AEQU fCO2 is negligible in terms of its contribution to247

the global net ocean sink variations between the two years (Figure S8 and Table S5). In248

Rödenbeck et al. (2015) [Figures A2 and A4], it is also illustrated that pCO2
sea ranges from249

350 µatm to 400 µatm over an 18-year period while the AEQU net flux has performed250

with nearly constant magnitude. Its low interannual variability is in contrast with the251

eastern equatorial Pacific (9.PEQU-E) showing the strong impact on temporal variations252

of the global net sink (Figure S8). The signature of fCO2 dampening (−9.4 µatm) over253

PEQU-E in Jan to August of 2022-2023 is opposed to its increasing (1.8 µatm) with re-254

spect to 2021-2022 (Figure S6). As illustrated in Figures S8 and S9, FFNNv2022 prediction255

marks an anomalous decline of CO2 source in the first eight months of 2023 (−0.30± 0.04256

PgC.yr-1) compared to that of 2022 (−0.37 ± 0.04 PgC.yr-1). This reduced source of 0.07257

PgC.yr-1 in PEQU-E contributes to 25% of the increase in the global ocean sink mentioned258

above. The reduction in the PEQU-E CO2 source marks the transition from La Niña to259

El Niño announced by e.g., WMO (https://public.wmo.int/en/media/press-release/260

world-meteorological-organization-declares-onset-of-el-ni%C3%B1o-conditions, last261

access: 05/9/2023).262

While the onset of El Niño over the tropical Pacific (Figure S9a) had been driving263

the reduction of ocean CO2 emission La Niña anomalies (Figure S8), an exceptional warm-264

ing event occurred and spread over the north Atlantic since May-June 2023 (Copernicus265

Climate Change Service: https://climate.copernicus.eu/copernicus-record-north266
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Figure 3. Top panels (a-d): anomalies observed in FFNNv2022 prediction of fCO2 and fgCO2

(c,d) follow an extreme marine heatwave event (a,b) over the northeastern Atlantic in June 2023

relative to June 2022 (top panels). Anomalies of surface temperature (SST), wind speed (U), fCO2,

and fgCO2 are computed by subtracting long-term trends and seasonal climatologies relative to the

years 1985-2022. Grey curve represents regional division (Figure S1). Bottom panels (e-g): regional

seasonal cycles of SST, U, and integrated air-sea fluxes since 2000s.

-atlantic-warmth-hottest-june-record-globally, last access: 20/9/2023). It substan-267

tially lessened the ocean CO2 uptake (Figure 3). Based on the CMEMS SST analyses268

(Table S1), June 2023 corresponds to the first marine extreme heatwave in the northeastern269

Atlantic (40◦W-12◦E, 5◦N-65◦N) with an average SST anomaly about 1.1◦C (Figure 3ae).270

As a comparison, the June anomaly had been typically in a range of −0.5◦C to 0.5◦C for271

the past three decades. In 2023, SST anomalies even exceeded 1.5◦C over the northeast-272

ern Atlantic seasonally stratified biome (NA-SS, 36◦N northward). FFNNv2022 predicts273

an enhancement in fCO2 (Figure 3c) following the anomalous warmth in the northeastern274

Atlantic which is not seen in June 2022 (Figure 3a). As other environmental factors (e.g.,275

salinity and chlorophyll-a) have no remarkable anomalies over this ocean basin (Figure S10),276

warming primarily reduces CO2 solubility and that leads to substantially high surface par-277
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tial pressure of CO2 (Figure 3c). fCO2 anomalies were mostly between 4 µatm and 12 µatm278

in the subtropics, i.e., north Altlantic permanently stratified region (NA-PS) and increased279

eastward. FFNNv2022 records the largest fCO2 anomalies in the southeast of NA-SS to-280

wards the European coast with values above 16 µatm. Consequently, the predicted air-sea281

fluxes in June 2023 (Figure 3d) suggest lower-than-average CO2 uptake capability. While282

fgCO2 slightly decreased throughout the NA-PS, an anomalous drawdown is found in the283

NA-SS exceeding −0.6 molC.m-2.yr-1 (equivalent to roughly a reduction in ocean CO2 up-284

take of 0.11 PgC.yr-1). It is noteworthy that a decline in ocean CO2 uptake is strengthened285

if surface wind speeds (U) are lowering and fCO2 increases. Accompanied by the largest286

positive SST anomaly in June 2023, there is an unusual reduction in wind intensity, i.e., U287

anomalies potentially below −1.2 m.s-1 as illustrated in Figure 3b. Overall, regional sea-288

sonal cycles plotted for each year show the 2023 SST mostly on top of those in the past289

(Figure 3e). The most striking warmth recorded in June 2023 was at 1.24◦C above that290

in June 2022. July and August 2023 followed up with SST increasing but the SST values291

are less different from 2022 then (1.06◦C and 0.59◦C respectively). Also in June 2023, wind292

speed dropped out of the lower bound of all seasonal cycles and the difference from the293

previous year was about −1.26 m.s-1 (Figure 3f). The combined anomalies in June 2023294

marine extreme heat waves set the northeastern Atlantic ocean sink from an enhanced sink295

in 2022 (0.29 PgC.yr-1) back to its magnitude in the 2000s (0.18 PgC yr-1) (Figure 3g).296

4 Conclusions and Perspectives297

This study first examined the skill of CMEMS-LSCE-FFNN, an ensemble approach of298

feed-forward neural networks (FFNN) developed by Chau et al. (2022b), in a retrospective299

prediction of CO2 fugacity (fCO2) over the global ocean. The assessment was done for two300

FFNN models. While the latest version (FFNNv2022) trained on SOCATv2022 data for the301

period 1985-2021 was used to predict fCO2 in 2022, FFNNv2021 trained on SOCATv2021 in302

1985-2020 was used to predict fCO2 in 2021-2022 allowing the qualification of the two-year303

model prediction. SOCATv2023 with data available in the prediction years was used for the304

prediction assessment. Our evaluation confirms a robust performance of the FFNN predic-305

tion in comparison to independent observation-based data and to the FFNN reconstruction.306

The retrospective prediction for the years 2021-2022 retained intra-seasonal to interannual307

variations of fCO2 as those in the reconstruction time series and no large systematic bias308

has been observed between the two across all ocean provinces. The closeness between the309
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predicted and reconstructed global net ocean budget implies that, when used as input to an310

atmospheric transport model, the prediction removes an appropriate mass of carbon from311

the simulated atmosphere: this is an important asset for greenhouse gas monitoring.312

The latest model version, FFNNv2022, was ultimately used to predict fCO2 from Jan-313

uary 2022 to August 2023, i.e., up to 20 months beyond the coverage of its training dataset.314

This study also exemplified the assessment of air-sea CO2 fluxes (fgCO2) generated from315

the predicted fCO2 in the years 2022-2023 over the eastern tropical Pacific, where regional316

CO2 gas exchanges greatly vary with El Niño-Southern Oscillation (ENSO) conditions and317

thus affect substantially on interannual variability of the global net sink. The year 2022 has318

been predicted with persistently high fCO2 (strong CO2 outgassing to the atmosphere) in319

response to the maintenance of La Niña since summer 2020. A remarkable reduction in the320

tropical Pacific CO2 source in August 2023 relative to the year before coincides with the321

weakening of the cooling phase. Recent discussions about the interaction between the ocean322

and climate have largely put attention on the El Niño revisits, their high possibility in trig-323

gering more extreme heat worldwide, and further impacts on the marine carbon cycle early324

at the end of 2023 onwards. However, already in June 2023 as exceptional surface ocean325

warming and extraordinarily low wind intensity fall out historical records over the north-326

eastern Atlantic ocean, we have found an anomalous reduction in CO2 uptake setting this327

regional sink back to its magnitude in the 2000s. These results emphasise critical needs and328

open the possibility to derive monthly predictions for global surface ocean maps of numer-329

ous variables driven by fCO2, including air-sea fluxes, seawater pH, and dissolved inorganic330

carbon, as the reconstruction quality of fCO2 drives that of the other variables (Chau et331

al., 2022a, 2022b). The new datasets for the year 2022 (January) to 2023 (August) are avail-332

able via the LSCE/IPSL data center (see Section Data availability) and are updated each333

month. This demonstration of an operational service will be extended at an increased hori-334

zontal resolution, following the current development of the reference CMEMS-LSCE-FFNN335

reconstructions (Chau et al., 2023).336

Data availability337

Data provided in this research are available for use with open access granted by the338

French LSCE/IPSL Data Center (https://dods.lsce.ipsl.fr/invsat/FFNN_low-latency/).339
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Global analysis of surface ocean CO2 fugacity and air-sea1

fluxes with low latency2
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Key Points:6

• We demonstrate the capacity of statistical models to generate global maps of fCO27

and air-sea flux with a latency reduced to one month.8

• A decrease in the CO2 source for January to August 2023 diagnosed in the tropical9

Pacific coheres with the retreat of the La Niña event.10

• An unusual northeastern Atlantic sink reduction diagnosed for June 2023 is linked to11

record heat and exceptionally low winds.12
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Abstract13

The Surface Ocean CO2 Atlas (SOCAT) of CO2 fugacity (fCO2) observations is a key14

resource supporting annual assessments of CO2 uptake by the ocean and its side effects on15

the marine ecosystem. SOCAT data are usually released with a lag of up to 1.5 years which16

hampers timely quantification of recent variations of carbon fluxes between the Earth System17

components, not only with the ocean. This study uses a statistical ensemble approach to18

analyse fCO2 with a latency of one month only based on the previous SOCAT release and19

a series of predictors. A retrospective prediction for the years 2021-2022 is made to test the20

model skill, followed by the generation of fCO2 and fluxes from January to August in 2023.21

Results indicate a modest degradation of the model skill in prediction mode and open the22

possibility to provide robust information about marine carbonate system variables with low23

latency.24

Plain Language Summary25

There is a growing need to monitor carbon emissions and removals over the globe in near26

real time in order to correctly interpret changes in CO2 concentrations as they unfold. For27

the oceans, the best information comes from measurements of the surface ocean CO2 fugacity28

(fCO2) by the international marine carbon research community. So far, this data is mostly29

available 6 to 18 months behind real time after collection, qualification, harmonization, and30

processing. Here, we show that a set of biological, chemical, and physical predictors available31

in near-real time, allows the information contained in the “old” fCO2 measurements to be32

transferred over time. Based on a statistical technique, we combine all these data sources33

to estimate global monthly maps of fCO2 and of CO2 fluxes at the air-sea interface within34

one month behind real time and with good accuracy.35

1 Introduction36

The ocean is a sink taking up about 26% of atmospheric carbon dioxide (CO2) and37

90% of the heat-induced largely by anthropogenic greenhouse gas emissions (Canadell et38

al., 2021; Friedlingstein et al., 2022). A side effect of the ocean’s role as a global climate39

modulator is the increase in seawater acidity, which dramatically affects marine ecosystems40

(Hopkins et al., 2020; Doney et al., 2020; Cooley et al., 2022). The global ocean carbon41

sink is proportional to CO2 human emissions only at the decadal scale. On shorter time42

scales, it varies with the climate (mostly temperature and winds), with a dependency that43
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also varies from basin to basin given their respective geographical, dynamic, and biological44

specificities (Rödenbeck et al., 2015; Landschützer et al., 2016; Gruber et al., 2023).45

Measurements of surface ocean CO2 fugacity (fCO2) from ships, drifters, moorings,46

and autonomous surface platforms are the main reference to document the actual varia-47

tion of air-sea fluxes (fgCO2) in space and time (Friedlingstein et al., 2022) because the48

two are linearly related. Long-term efforts in maintaining and expanding international ob-49

serving networks together with a coordinated data aggregation of the Surface Ocean CO250

Atlas database - SOCAT (Bakker et al., 2016, 2023) have provided millions of individual51

fCO2 observations since the 1950s and associated gridded products. However, fCO2 data52

are poorly sampled leaving out most areas for some or all of the year. Statistical data-53

based reconstructions of fCO2 (Rödenbeck et al., 2013; Landschützer et al., 2016; Gregor54

& Gruber, 2021; Chau et al., 2022b) have emerged to gap-fill the SOCAT database using55

auxiliary data, resulting in reconstructions of fCO2 global monthly maps. They are still56

the topic of active research to improve the reconstruction quality, but these maps lag be-57

hind real time by 0.5 to 1.5 years: the update of the SOCAT archive follows an annual58

pace with a public release usually in June after measurement collection, quality control,59

and processing. This lag is problematic for the documentation of the carbon cycle as it60

evolves, while the main variables of the carbon cycle are progressively integrated within op-61

erational programmes with much faster data releases. A prominent example of operational62

programmes in need of a reduced time lag is the operational observation-based anthro-63

pogenic CO2 emissions monitoring and verification support capacity (CO2MVS) that the64

European Commission is building under its Copernicus Earth Observation programme (e.g.,65

Janssens-Maenhout et al. (2020)). As its observational component relies heavily on satellite66

observations of CO2 in the atmosphere, which is affected by the ocean as well as terrestrial67

emissions and removals, better estimates of fCO2 would result in efficient estimates of air-68

sea fluxes and thence benefit air-land flux accuracy, in addition to being directly interesting69

to users. The CO2MVS fits within the Global Greenhouse Gas Watch, an even larger green-70

house gas monitoring infrastructure that the World Meteorological Organization (WMO) is71

setting up (https://public.wmo.int/en/media/press-release/world-meteorological72

-congress-approves-global-greenhouse-gas-watch, last access: 20/9/2023).73

Here, we demonstrate the capability to retrieve global monthly maps of fCO2 from74

SOCAT data and then to generate the corresponding fields of air-sea fluxes with a lag re-75

duced to one month. To do that, we extend the work of Chau et al. (2022b) who have been76
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gap-filling SOCAT gridded data within the framework of the Copernicus Marine Environ-77

ment Monitoring Service (CMEMS) based on an ensemble of feed-forward neural network78

models (also referred to as CMEMS-LSCE-FFNN) and a set of biological, chemical, and79

physical predictors. While Chau et al. (2022b) made the dates of the predictors and the80

date of the gridded SOCAT data coincide, we turn to a prediction mode in which the rela-81

tionship found between the predictors and the SOCAT data more than 6 months before is82

kept. Section 2 below describes the method. We test the approach in the years 2021-202283

by examining the retrospective prediction skill based on the available SOCAT data. Then84

we expand model prediction of fCO2 and generate fgCO2 up to present with a latency85

of 1 month: data access via the Institut Pierre-Simon Laplace (LSCE/IPSL) data center,86

https://dods.lsce.ipsl.fr/invsat/FFNN_low-latency/. The results include the find-87

ing of anomalous variations in regional CO2 uptake and release by the ocean predicted in88

January to August 2023, as described in Section 3. Section 4 draws the main conclusions of89

the study.90

2 Materials and Methods91

CMEMS-LSCE-FFNN (Chau et al., 2022b) is built on machine-learning techniques.92

It consists of an ensemble of feed-forward neural network (FFNN) models. This ensemble93

approach was developed at LSCE in order to reconstruct surface ocean carbonate system94

variables and to support the operational distribution of such datasets by CMEMS since95

2019 (Product identity: MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008,96

https://doi.org/10.48670/moi-00047, last access: 22/9/2023). The CMEMS-LSCE-97

FFNN fields cover the global ocean at a resolution of 1◦ × 1◦ currently and for the period98

since the year 1985 at monthly resolution.99

Under the hood, these FFNN models represent nonlinear mappings of fCO2 against100

a set of predictors. Monthly gridded observation-based products of fCO2 from SOCAT101

(Bakker et al., 2016) are used as the target data in model fitting. fCO2 predictors are envi-102

ronmental variables: sea surface temperature (SST), sea surface salinity (SSS), sea surface103

height (SSH), chlorophyll-a (Chl-a), mix-layer-depth (MLD), CO2 surface mole fractions104

(xCO2), climatological fCO2 (fCO2
clim), and geographical coordinates (latitude and longi-105

tude). Product resources of input datasets are detailed in Table S1. CMEMS-LSCE-FFNN106

comprises monthly adaptive FFNN models for which the fCO2 and predictor datasets avail-107

able within a time span of 3 months for all the years since 1985 (the reconstruction month108
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excepted) are used in the fitting phase. SOCAT fCO2 in the reconstruction month is only109

used in model evaluation. The ensemble of multi-FFNN models was designed by randomly110

splitting two-thirds of the 3-month sliding datasets for training and the rest for model test111

(Chau et al., 2022b). From the ensemble reconstructions, the model best estimate (ensemble112

mean) and 1σ - model uncertainty (ensemble standard deviation) of fCO2 are derived at113

the desired resolution.114

Here we revisit the two versions of CMEMS-LSCE-FFNN referred to as FFNNv2021 and115

FFNNv2022. These two models respectively used SOCATv2021 and SOCATv2022 datasets116

(Bakker et al., 2021, 2022) as the target input data of fCO2. Note that SOCAT has been117

annually published mid-June. Due to the delay mode for data collection, reprocessing, and118

qualify control, SOCAT provides gridded data up to the year before the publication date119

(see Bakker et al. (2016, 2023) for instance). For the period 1985-2021, SOCATv2022 offers120

an amount of roughly 311700 monthly 1-degree gridded data, 5000 more than SOCATv2021121

(Table S3a). The data increase in SOCATv2022 is mostly distributed within the last three122

years due to the late availability of some data sources (Figure 1). However, SOCATv2021123

has more data before 2018, up to at least 1000 more in some years (e.g., 2011 and 2012) due124

to an erroneous flagging of some data (Bakker et al., 2021). Despite this feature, the two125

corresponding FFNN reconstructions do not exhibit large systematic offsets in their fCO2126

estimates (Chau et al., 2022a).127

For all experiments in this study, the ensemble size (i.e., number of FFNN model runs)128

is set to 50. FFNN with 50 ensemble members has less computational complexity than129

with the usual size of 100 but it shows similar reconstruction skill (Chau et al. (2022b);130

Figure S2). The same input data of predictors is fed to the two FFNN model runs (Ta-131

ble S1). The FFNNv2021 (respectively FFNNv2022) model relies on SOCATv2021 (respec-132

tively SOCATv2022) and predictor datasets in 1985-2020 (respectively 1985-2021). This133

allows deriving the ensemble global reconstructions of fCO2 over the 36-year and 37-year134

periods, accordingly. The ensemble of FFNN models is then applied to predict fCO2 given135

the set of predictors in the years 2021-2022 for version 2021 and in the year 2022 for the136

latter. The quality assessments are made for (1) the two global reconstructions in the period137

1985-2020, (2) FFNNv2021 one-year prediction against FFNNv2022 one-year reconstruction138

in 2021, and (3) FFNNv2021 two-year prediction against FFNNv2022 one-year prediction in139

2022. Model performances will be qualified with the latest SOCAT data, i.e., SOCATv2023140

(Bakker et al., 2023). The number of evaluation data for prediction in the years 2021 and141
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2022 over the global ocean is 10908 and 8602, respectively (Table S3a), which is statistically142

sufficient for significant validation.143

Model skills are examined from global to sub-basin scale. Here we consider the sub-144

basins defined by the REgional Carbon Cycle Assessment and Processes2 project (https://145

github.com/RECCAP2-ocean/RECCAP2-shared-resources/tree/master/data/regions, last146

access: 20/3/2023). Due to a lack of evaluation data in several RECCAP2 biomes, we ag-147

gregate some of them, yielding 14 provinces in total (see Table S2 and Figure S1). These148

ocean provinces, therefore, differ from the original biomes proposed by Fay and McKinley149

(2014). Apart from the Northern Indian Ocean (11.NIO), the number of data for prediction150

evaluation ranges from 133 (12.SIO, i.e., Southern Indian Ocean) to 2350 (2.NA-SS, i.e.,151

North Atlantic seasonally stratified) in the year 2021 and from 73 to 2265 in the year 2022.152

For the actual prediction in 2022 and 2023, the latest model (FFNNv2022) has been153

run given monthly data of predictors (Table S1) in the year 2022 to present. We choose to154

release the maps of fCO2 and fgCO2 for the previous month on the 15th of each month.155

3 Evaluation and Discussions156

3.1 Reconstruction and Prediction of CO2 fugacity in 1985-2022157

3.1.1 Global qualification158

FFNNv2021 and FFNNv2022 share consistent global RMSD and determination coeffi-159

cient r2 (Figure 1 and Table S3). Between 1985 and 2020, the two reconstructions inherit160

the same RMSD of 19.1 µatm and r2 of 0.78 (Table S3b). Improvement in the global recon-161

struction skill of FFNNv2022 in recent years (Figure 1b) is moderate despite 5000 additional162

fCO2 data in the model training (Figure 1a). In detail, these 1.7% additional data in SO-163

CATv2022 (311694 in total) in 1985-2021 correspond to 9615 data added in 2021 and 4278164

data removed from SOCATv2021 in 1985-2020 (see the spatial distribution of removal data165

in Figure S2c).166

The RMSD variability before 2018 (Figure 1b) is likely linked to changes in the data167

sampling in regions with high spatiotemporal variability of fCO2 (see Gregor et al. (2019);168

Chau et al. (2022b) for further analysis). However, the difference between the RMSD of169

the two reconstructions is negligible then, as it fluctuates within [−0.1, 0.1] µatm. During170

the last four years, a monotonous increase in RMSD (Figure 1b) coexists with a decrease in171

–6–



manuscript submitted to Geophysical Research Letters

Figure 1. (a) Number of data per year in SOCATv2021 and SOCATv2022, (b) RMSD of

FFNNv2021 and FFNNv2022 against SOCATv2023 fCO2, (c) yearly global mean uncertainty (1σ).

Differences between the two versions are shown with a grey solid curve with values on the right

y-axis whereas the grey solid curve below 0 (grey dashed horizontal line). The blue and red vertical

lines mark the start of the prediction mode for FFNNv2021 and FFNNv2022, respectively.

the number of SOCAT data (Figure 1a), and the FFNNv2021 reconstruction slightly, but172

increasingly, underperforms compared to FFNNv2022. In 2021 and 2022, the FFNNv2021173

prediction RMSD is 24.3 µatm and 23.1 µatm, respectively, roughly 0.5−1 µatm higher than174

that of the FFNNv2022 reconstruction and prediction (Table S3). Likewise, the variation175

of SOCAT fCO2 is reproduced with high r2 values (0.74 and 0.75), close to the one-year176

reconstruction and prediction of FFNNv2022 (0.76) for the years 2021-2022.177

The yearly-mean uncertainty over the global ocean (Figure 1c) is computed by weighting178

the model estimated uncertainty (ensemble spread) per grid cell (σ) with the geographical179

area. The two reconstructions before the year 2015 are rather stable with an uncertainty180

about 8.5 µatm. The increase in FFNNv2021 [v2022] model uncertainty from 8.7 µatm [8.5181

µatm] to 10.8 µatm [10.4 µatm] between 2015-2020 follows a decrease in observation-based182

data from 14877 [14533] to 8482 [11217] (Figure 1a). In the year 2021, the FFNNv2021183

uncertainty of predicted fCO2 (11.4 µatm) is slightly higher than that of the FFNNv2022184

reconstruction but the offset between the two values is as small as 0.5 µatm (Figure 1c). The185
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prediction uncertainty in 2022 increases by 0.4−0.8 µatm for the two models (FFNNv2021:186

12.2 µatm, FFNNv2022: 11.3 µatm).187

3.1.2 Regional assessment188

Model reconstruction and prediction skills are assessed over 14 ocean provinces (Fig-189

ure S1 and Table S2) in the years 1985-2020 and 2021-2022 (1985-2021 and 2022) for190

FFNNv2021 (FFNNv2022). Results of the regional evaluation are summarized in Figure 2191

and Table S4. The two FFNN models perform with a similar skill in reconstruction mode192

(1985-2020) over all ocean provinces. Evidently, their reconstructions share consistent pat-193

terns in regional-mean fCO2 (Figure 2b) and in the spatial and temporal variations (Figures194

S4abc and S7) with systematic biases below 1 µatm for most of the basins (Table S4). Dif-195

ferences in uncertainty estimates and RMSD do not exceed 0.5 µatm while those in r2 are196

nearly the same (Figure 2cde and Table S4).197

Figure 2. Regional comparisons of the two FFNN reconstructions in 1985-2020 (bars) and of the

FFNNv2021 prediction versus the FFNNv2022 reconstruction [prediction] in 2021 [2022] (objects)

in terms of (a) N- number of SOCAT monthly gridded data used in model fitting, (b) µ- mean fCO2,

(c) σ-mean uncertainty, (d) RMSD model-data deviation, and (e) r2 model-data correlation.

In the years 2021-2022, RMSD (r2) of the FFNN prediction does not change from the198

full-period reconstruction by more than about 5 µatm (0.1) over many sub-basins (e.g.,199

2.NA-SS, 7.NP-PS, 8.PEQU-W, 10.SP, 12.SIO, and 13.SO-SS). As expected, FFNNv2022200

(one-year prediction) performs slightly better than FFNNv2021 (two-year prediction) in the201
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2022 prediction for many regions (Figures 2de and Table S4). However, the differences in202

regional skill scores of the two models are substantially small, i.e., below 3 µatm for RMSD203

and 0.05 for r2. These results suggest a high confidence level in FFNN prediction for a few204

years ahead. The analysis of the spatial distribution and of the time series (Figures 2, S4,205

and S7) also reveals consistent features (horizontal gradients of fCO2 and seasonality to206

long-term variations) from the reconstruction years to the prediction years. fCO2 increases207

over time (see f.i., 7.NP-PS, 8.PEQU-W, 12.SIO) following the trend in atmospheric CO2208

concentration. Among the fCO2 predictors, xCO2 stands out with its large increasing209

trend that brings some xCO2 data used in the prediction above the range of those used210

in the training. The growth of atmospheric CO2 is the primary factor driving the increase211

in sea surface fCO2 (Bates et al., 2014; Gruber et al., 2019; Landschützer et al., 2019;212

Friedlingstein et al., 2022). The prediction skill, however, does not degrade compared to the213

reconstruction as the annual increment of fCO2 is typically smaller than its intra-annual214

variability (Figure S6). The latter is dominantly driven by temperature-dependent CO2215

solubility and biological processes (Takahashi et al., 2002; Gallego et al., 2018; Rustogi et216

al., 2023). The range of the pre-2021 [pre-2022] training datasets of physical and biological217

predictors (e.g., SST, Chl-a) remains similar to that including input data in the next year,218

seasonality to multi-month variations of fCO2 in the years 2021-2022 can be, therefore,219

propagated with these covariates overall. The majority of SOCAT fCO2 data for 2021220

[2022] stays within the full range of training data which also supports FFNNs to achieve a221

skillful prediction (Figure S3). Further analysis of FFNN prediction skills over ocean basins222

is presented in the Supporting Information document.223

3.2 Prediction of air-sea CO2 fluxes in 2022-2023224

The previous results emphasize the skill and reliability of FFNN models in both re-225

construction and prediction of CO2 fugacity (fCO2). In this section, we will use the226

FFNNv2022 predicted fCO2 field to generate corresponding air-sea fluxes (fgCO2) and227

analyze preliminary results for 20 months, from January 2022 to August 2023. fgCO2 is228

given in molC.m-2.yr-1 for a flux density and in PgC.yr-1 for integration over ocean basins229

(see Supporting Information for details of flux calculation and analysis). FFNNv2022 pre-230

dicts a reduction in the global ocean uptake of CO2 for 2022 (2.25±0.5 PgC.yr-1) compared231

to the previous year (2.36± 0.43 PgC.yr-1). When adjusting the estimated global net fluxes232

with the riverine outgassing of CO2 of 0.65 PgC.yr-1 (Regnier et al., 2022) and the total233
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ocean surface area (FFNNv2022 data covers 95% of the global ocean), one obtains the esti-234

mates of anthropogenic ocean carbon uptake consistent with the 2022 projection proposed235

by Friedlingstein et al. (2022): the anthropogenic ocean sink in 2021 was 2.9± 0.4 PgC.yr-1236

remains unchanged for the year 2022. This evidence supports their hypothesis that the237

persistence of cooling climate patterns (La Niña conditions) weakened CO2 ocean uptake238

in 2021-2022 (high peaks appeared mid-2022, Figure S9). FFNNv2022 predicts a global net239

flux of 2.45 ± 0.56 PgC.yr-1 for January to August 2023, the enhancement of global ocean240

uptake compared to that in 2022 (2.17± 0.50 PgC.yr-1) is synchronous with the retreat of241

La Niña.242

The model prediction retains the seasonal to interannual variations of fCO2 and fgCO2243

in the pre-2022 reconstruction over many ocean basins (Figures S6 and S8). One of the244

remarkable changes is observed at the equatorial Atlantic (4.AEQU), where the regional245

mean fCO2 increases by 4.2 µatm from the year 2021 to 2022 (Figure S6). However,246

such a high increment in the AEQU fCO2 is negligible in terms of its contribution to247

the global net ocean sink variations between the two years (Figure S8 and Table S5). In248

Rödenbeck et al. (2015) [Figures A2 and A4], it is also illustrated that pCO2
sea ranges from249

350 µatm to 400 µatm over an 18-year period while the AEQU net flux has performed250

with nearly constant magnitude. Its low interannual variability is in contrast with the251

eastern equatorial Pacific (9.PEQU-E) showing the strong impact on temporal variations252

of the global net sink (Figure S8). The signature of fCO2 dampening (−9.4 µatm) over253

PEQU-E in Jan to August of 2022-2023 is opposed to its increasing (1.8 µatm) with re-254

spect to 2021-2022 (Figure S6). As illustrated in Figures S8 and S9, FFNNv2022 prediction255

marks an anomalous decline of CO2 source in the first eight months of 2023 (−0.30± 0.04256

PgC.yr-1) compared to that of 2022 (−0.37 ± 0.04 PgC.yr-1). This reduced source of 0.07257

PgC.yr-1 in PEQU-E contributes to 25% of the increase in the global ocean sink mentioned258

above. The reduction in the PEQU-E CO2 source marks the transition from La Niña to259

El Niño announced by e.g., WMO (https://public.wmo.int/en/media/press-release/260

world-meteorological-organization-declares-onset-of-el-ni%C3%B1o-conditions, last261

access: 05/9/2023).262

While the onset of El Niño over the tropical Pacific (Figure S9a) had been driving263

the reduction of ocean CO2 emission La Niña anomalies (Figure S8), an exceptional warm-264

ing event occurred and spread over the north Atlantic since May-June 2023 (Copernicus265

Climate Change Service: https://climate.copernicus.eu/copernicus-record-north266

–10–



manuscript submitted to Geophysical Research Letters

Figure 3. Top panels (a-d): anomalies observed in FFNNv2022 prediction of fCO2 and fgCO2

(c,d) follow an extreme marine heatwave event (a,b) over the northeastern Atlantic in June 2023

relative to June 2022 (top panels). Anomalies of surface temperature (SST), wind speed (U), fCO2,

and fgCO2 are computed by subtracting long-term trends and seasonal climatologies relative to the

years 1985-2022. Grey curve represents regional division (Figure S1). Bottom panels (e-g): regional

seasonal cycles of SST, U, and integrated air-sea fluxes since 2000s.

-atlantic-warmth-hottest-june-record-globally, last access: 20/9/2023). It substan-267

tially lessened the ocean CO2 uptake (Figure 3). Based on the CMEMS SST analyses268

(Table S1), June 2023 corresponds to the first marine extreme heatwave in the northeastern269

Atlantic (40◦W-12◦E, 5◦N-65◦N) with an average SST anomaly about 1.1◦C (Figure 3ae).270

As a comparison, the June anomaly had been typically in a range of −0.5◦C to 0.5◦C for271

the past three decades. In 2023, SST anomalies even exceeded 1.5◦C over the northeast-272

ern Atlantic seasonally stratified biome (NA-SS, 36◦N northward). FFNNv2022 predicts273

an enhancement in fCO2 (Figure 3c) following the anomalous warmth in the northeastern274

Atlantic which is not seen in June 2022 (Figure 3a). As other environmental factors (e.g.,275

salinity and chlorophyll-a) have no remarkable anomalies over this ocean basin (Figure S10),276

warming primarily reduces CO2 solubility and that leads to substantially high surface par-277
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tial pressure of CO2 (Figure 3c). fCO2 anomalies were mostly between 4 µatm and 12 µatm278

in the subtropics, i.e., north Altlantic permanently stratified region (NA-PS) and increased279

eastward. FFNNv2022 records the largest fCO2 anomalies in the southeast of NA-SS to-280

wards the European coast with values above 16 µatm. Consequently, the predicted air-sea281

fluxes in June 2023 (Figure 3d) suggest lower-than-average CO2 uptake capability. While282

fgCO2 slightly decreased throughout the NA-PS, an anomalous drawdown is found in the283

NA-SS exceeding −0.6 molC.m-2.yr-1 (equivalent to roughly a reduction in ocean CO2 up-284

take of 0.11 PgC.yr-1). It is noteworthy that a decline in ocean CO2 uptake is strengthened285

if surface wind speeds (U) are lowering and fCO2 increases. Accompanied by the largest286

positive SST anomaly in June 2023, there is an unusual reduction in wind intensity, i.e., U287

anomalies potentially below −1.2 m.s-1 as illustrated in Figure 3b. Overall, regional sea-288

sonal cycles plotted for each year show the 2023 SST mostly on top of those in the past289

(Figure 3e). The most striking warmth recorded in June 2023 was at 1.24◦C above that290

in June 2022. July and August 2023 followed up with SST increasing but the SST values291

are less different from 2022 then (1.06◦C and 0.59◦C respectively). Also in June 2023, wind292

speed dropped out of the lower bound of all seasonal cycles and the difference from the293

previous year was about −1.26 m.s-1 (Figure 3f). The combined anomalies in June 2023294

marine extreme heat waves set the northeastern Atlantic ocean sink from an enhanced sink295

in 2022 (0.29 PgC.yr-1) back to its magnitude in the 2000s (0.18 PgC yr-1) (Figure 3g).296

4 Conclusions and Perspectives297

This study first examined the skill of CMEMS-LSCE-FFNN, an ensemble approach of298

feed-forward neural networks (FFNN) developed by Chau et al. (2022b), in a retrospective299

prediction of CO2 fugacity (fCO2) over the global ocean. The assessment was done for two300

FFNN models. While the latest version (FFNNv2022) trained on SOCATv2022 data for the301

period 1985-2021 was used to predict fCO2 in 2022, FFNNv2021 trained on SOCATv2021 in302

1985-2020 was used to predict fCO2 in 2021-2022 allowing the qualification of the two-year303

model prediction. SOCATv2023 with data available in the prediction years was used for the304

prediction assessment. Our evaluation confirms a robust performance of the FFNN predic-305

tion in comparison to independent observation-based data and to the FFNN reconstruction.306

The retrospective prediction for the years 2021-2022 retained intra-seasonal to interannual307

variations of fCO2 as those in the reconstruction time series and no large systematic bias308

has been observed between the two across all ocean provinces. The closeness between the309
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predicted and reconstructed global net ocean budget implies that, when used as input to an310

atmospheric transport model, the prediction removes an appropriate mass of carbon from311

the simulated atmosphere: this is an important asset for greenhouse gas monitoring.312

The latest model version, FFNNv2022, was ultimately used to predict fCO2 from Jan-313

uary 2022 to August 2023, i.e., up to 20 months beyond the coverage of its training dataset.314

This study also exemplified the assessment of air-sea CO2 fluxes (fgCO2) generated from315

the predicted fCO2 in the years 2022-2023 over the eastern tropical Pacific, where regional316

CO2 gas exchanges greatly vary with El Niño-Southern Oscillation (ENSO) conditions and317

thus affect substantially on interannual variability of the global net sink. The year 2022 has318

been predicted with persistently high fCO2 (strong CO2 outgassing to the atmosphere) in319

response to the maintenance of La Niña since summer 2020. A remarkable reduction in the320

tropical Pacific CO2 source in August 2023 relative to the year before coincides with the321

weakening of the cooling phase. Recent discussions about the interaction between the ocean322

and climate have largely put attention on the El Niño revisits, their high possibility in trig-323

gering more extreme heat worldwide, and further impacts on the marine carbon cycle early324

at the end of 2023 onwards. However, already in June 2023 as exceptional surface ocean325

warming and extraordinarily low wind intensity fall out historical records over the north-326

eastern Atlantic ocean, we have found an anomalous reduction in CO2 uptake setting this327

regional sink back to its magnitude in the 2000s. These results emphasise critical needs and328

open the possibility to derive monthly predictions for global surface ocean maps of numer-329

ous variables driven by fCO2, including air-sea fluxes, seawater pH, and dissolved inorganic330

carbon, as the reconstruction quality of fCO2 drives that of the other variables (Chau et331

al., 2022a, 2022b). The new datasets for the year 2022 (January) to 2023 (August) are avail-332

able via the LSCE/IPSL data center (see Section Data availability) and are updated each333

month. This demonstration of an operational service will be extended at an increased hori-334

zontal resolution, following the current development of the reference CMEMS-LSCE-FFNN335

reconstructions (Chau et al., 2023).336

Data availability337

Data provided in this research are available for use with open access granted by the338

French LSCE/IPSL Data Center (https://dods.lsce.ipsl.fr/invsat/FFNN_low-latency/).339
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 1.  Evaluation and analysis for  surface ocean CO  2  fugacity and  air-sea fluxes 

 1.1. Quality assessment for regional reconstruction and prediction of  CO  2 

 fugacity  (  f  CO  2  ) 

 In  reconstruction  mode  (1985-2020),  FFNNv2021  and  FFNNv2  models  perform  with 
 good  skill  over  many  ocean  provinces  (Figures  2,  S3,  and  S5).  Subtropical  and  tropical 
 provinces  (i.e.,  3.NA-PS,  5.SA,  7.NP-PS,  8.PEQU-W,  10.SP,  and  12.SIO)  have  the  highest 
 scores  (RMSD  <  14  µatm  and  r  2  >  0.74).  Interestingly,  these  sub-basins  are  not 
 dominant  in  data  density  compared  to  subpolar  regions  (2.NA-SS  and  6.NP-SS)  for  the 
 northern  hemisphere  and  to  the  southern  ocean  (13.SO-SS)  for  the  southern 
 hemisphere  (Figure  2).  Data-rich  provinces  involve  many  observations  distributed  in 
 coastal  bands  or  in  ocean  upwelling  systems  with  substantial  f  CO  2  inter-annual 
 variations.  These  data  put  high  weight  on  the  calculated  model-data  mismatch  (Figures 
 S5  and  S6).  The  model  tends  to  get  high  biases  from  SOCAT  data  outliers  (Figure  S3), 
 i.e.,  data  beyond  the  95%  confidence  interval  ([279,  443]  µatm)  of  the  full  data  range. 
 Overestimates  of  f  CO  2  with  a  model-data  bias  greater  than  100  µatm  are  distributed 
 along  the  Arctic  (1.ARC)  and  the  subpolar-polar  regions  (2.NA-SS,  6.NP-SS,  and 
 14.SO-ICE)  (Figure  S3  and  Figure  S5).  Most  of  the  poor  estimates  of  f  CO  2  belong  to  the 
 coastal  sector  of  these  regions  (Figure  S5)  where  f  CO  2  is  characterized  with  high 
 variability  driven  by  multiple  and  complex  physical  and  biological  conditions  (Feely  et 
 al.,  2008;  Bakker  et  al.,  2016;  Chavez  et  al.,  2018;  Chau  et  al.,  2022).  RMSD  ranges  from 
 21.1  µatm  to  40  µatm  and  r  2  is  between  0.57  and  0.76  over  these  regimes.  In  contrast, 
 the  FFNN  models  underestimate  SOCAT  f  CO  2  at  the  right  tail  of  its  global  distribution. 
 Most  of  these  data  belong  to  the  coastal  sectors  of  NA-SS  and  NP-SS  or  are  found  in 
 PEQU-E  and  NIO  (see  further  analysis  in  Chau  et  al.  (2022).  Among  these  provinces,  the 
 eastern  equatorial  Pacific  (9.PEQU-E)  yields  the  largest  RMSD  (∼27  µatm).  Nevertheless, 
 the reconstruction of the interannual variability of  f  CO  2  over PEQU-E has an  r  2  of 0.71. 

 Despite  general  good  performance  as  analyzed  in  the  main  manuscript,  FFNNv2021 
 shows  the  poorest  one-year  prediction  in  2021  relative  to  the  1985-2020  reconstruction 
 skill  in  ARC  (RMSD:  49.1  µatm  vs  40  µatm;  r  2  :  0.25  vs  0.57),  in  AEQU  (RMSD:  34.2  µatm  vs 
 19.96  µatm;  r  2  :  0.36  vs  0.57),  and  in  PEQU-E  (RMSD:  37.2  µatm  vs  27  µatm;  r  2  :  0.55  vs 
 0.71).  The  FFNNv2022  model  reconstruction  in  2021  benefits  from  more  than  919 
 additional  data  (411  data  points  in  the  year  2021),  resulting  in  an  improvement  in  the 
 fCO2  estimates  in  2021  over  the  Arctic:  the  RMSD  reduces  to  41.8  µatm  and  r  2  rises  up 
 to  0.35  (Figure  S7).  In  2022,  the  FFNNv2022  model  scores  slightly  better  in  one-year 
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 prediction  (RMSD  =  37.0  µatm  and  r  2  =  0.60)  relative  to  the  FFNNv2021  two-year 
 prediction  (RMSD  =  37.7  µatm  and  r  2  =  0.56).  To  a  smaller  extent,  this  improvement 
 holds  for  the  equatorial  Atlantic  (4.AEQU)  and  the  eastern  equatorial  Pacific  (9.PEQU-E). 
 For  instance,  the  FFNNv2021  prediction  (RMSD  =  34.2  µatm  and  r  2  =  0.36)  in  AEQU  in 
 2021  shows  similar  skill  scores  compared  to  the  FFNNv2022  reconstruction  (RMSD  = 
 32.9  µatm  and  r  2  =  0.43).  By  contrast,  the  two  model  predictions  perform  well  in  2022 
 (RMSD  <  17.5  µatm  and  r  2  <  0.6),  knowing  that  the  evaluation  data  in  SOCATv2023  in 
 the  years  2021  and  2022  do  not  have  the  same  quantity  and  distribution  over  AEQU  as 
 well  as  other  ocean  provinces  (Table  S4  and  Figure  S5).  For  both  reconstruction  and 
 prediction  modes,  the  two  time  series  of  the  mean  f  CO  2  derived  from  the  two  models 
 deviate  in  interannual  variability  of  f  CO  2  in  the  equatorial  Atlantic  (Figure  S6).  Over  the 
 equatorial  Pacific  (9.PEQU-E),  FFNNv2022  predicts  f  CO  2  in  2022  with  a  high  deviation 
 from  SOCAT  data  (RMSD  =  47.1  µatm)  but  reproduces  its  temporal  variations  well  (  r  2  = 
 0.76).  FFNNv2021  makes  the  two-year  prediction  (RMSD  =  45.1  µatm  and  r  2  =  0.77) 
 marginally  more  precise  than  the  latest  model.  The  contradictory  effects  observed  in 
 the  two  FFNN  performances  over  the  tropical  regions  (4.AEQU  and  9.PEQU-E)  may 
 derive  from  the  discrepancy  in  SOCAT  data  used  for  model  fits  from  one  to  another 
 version;  e.g.,  SOCATv2022  removed  234  [164]  data  from  the  previous  version  over 
 AEQU  [PEQU-E]  for  the  period  1985-2020  (7%  [2%]  of  the  total  data  in  this  region)  and 
 added 116 [180] data for the year 2021 (Figures S2 and S7 and Table S4). 

 1.2. Computation of air-sea fluxes (  fg  CO  2  ) 

 An  air–sea  flux  density  of  CO  2  is  calculated  in  molC.m  −2  .yr  −1  by  using  the  formulation  as 
 follows, 

 fg  CO  2  =  K  × d  p  CO  2  =  k  ×  L  ×  (1 −  f  ice  ) ×  (  p  CO  2 
 air  −  p  CO  2 

 sea  ),                                            (1) 

 where  K  is  the  gas  transfer  coefficient  and  d  p  CO  2  is  the  air-sea  difference  in  partial 
 pressure  of  CO  2  (  p  CO  2  ).  K  is  the  product  of  gas  transfer  velocity  (  k  ), 
 temperature-dependent  solubility  of  CO  2  (  L  ),  and  sea  ice  coverage  ratio  (  f  ice  ).  L  is 
 estimated  with  sea  surface  temperature  (Weiss,  1974)  while  the  computation  of  k 
 replies  on  a  quadratic  dependence  of  10-m  wind  speed  (Ho  et  al.,  2006;  Wanninkhof., 
 2014)  and  a  scaling  to  match  the  global  mean  k  of  16.5  cm.h  −1  (Naegler,  2009).  The 
 derivation  of  atmospheric  partial  pressure  of  CO  2  (  p  CO  2 

 air  )  comes  from  CO  2  mole 
 fraction  multiplied  with  total  pressure  in  dry  air  conditions.  p  CO  2 

 sea  is  converted  from 
 FFNN  f  CO  2  following  Körtzinger.,  (1999).  Data  products  used  in  the  air-sea  flux 
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 calculation  are  presented  in  Table  S1.  Given  flux  density  per  grid  cell  (  fg  CO  2 
 (i)  ),  an 

 integration of CO  2  fluxes (PgC.yr  -1  ) over a region  or the global ocean derives from 

 fg  CO  2  = ∑  i=1:N  fg  CO  2 
 (i)  × A  (i)  ,  (2) 

 where A  (i)  is the area in m  2  of grid cell (i). 

 1.3. Multi-year time series of  f  CO  2  and  fg  CO  2 

 Figures  S6  and  S8  (right  sector  of  the  red  vertical  line)  respectively  show  the  time 
 series  of  mean  f  CO  2  predicted  with  FFNNv2022  models  and  of  fg  CO  2  integrated  over 
 different  provinces.  f  CO  2  predicted  for  2022  continues  to  increase  resulting  in  an 
 increment  of  the  global  average  of  sea  surface  partial  pressure  of  CO  2  (  p  CO  2 

 sea  )  of  2.9 
 μatm  relative  to  the  year  2021  (Table  S5)  and  much  higher  than  its  global  growth  rate  of 
 1.7  μatm.yr  -1  (2.0  μatm.yr  -1  )  estimated  over  the  period  1985-2022  (2010s).  The  one-year 
 increment  in  atmospheric  p  CO  2  (  p  CO  2 

 air  )  between  the  two  years  (2.5  μatm)  is  less  than 
 in  p  CO  2 

 sea  implying  a  reduction  in  the  global  ocean  uptake  of  CO  2  predicted  for  2022 
 (  2.25±0.5  PgC.yr  -1  )  compared  to  the  previous  year  (  2.36±0.43  PgC.yr  -1  ).  When  adjusting 
 the  estimated  global  net  fluxes  with  the  riverine  outgassing  of  CO  2  of  0.65  PgC.yr  -1 

 (Regnier  et  al.,  2022)  and  the  total  ocean  surface  area  (FFNNv2022  data  covers  95%  of 
 the  global  ocean),  one  obtains  the  estimates  of  anthropogenic  ocean  carbon  uptake 
 about  3.13±0.46  PgC.yr  -1  and  3.02±0.52  PgC.yr  -1  in  2021  and  2022,  respectively.  The 
 non-increasing  imprint  in  the  ocean  sink  of  anthropogenic  CO  2  found  in  this  study  is 
 consistent  with  the  2022  projection  proposed  by  Friedlingstein  et  al,  (2022):  the 
 anthropogenic  ocean  sink  in  2021  was  2.9  ±0.4  PgC.yr  -1  remains  unchanged  for  the  year 
 2022.  This  evidence  supports  the  hypothesis  that  the  persistence  of  cooling  climate 
 patterns  (La  Ni  ñ  a  conditions)  weakened  CO  2  ocean  uptake  in  2021-2022  (high  peaks 
 appeared  in  mid-2022,  Figure  S9).  For  January  to  August  in  2023,  FFNNv2022  predicts  a 
 global  net  flux  of  2.45±0.56  PgC.yr  -1  (w.r.s.t.,  3.23±0.59  PgC.yr  -1  for  anthropogenic 
 uptake  )  higher  than  the  8-month  net  flux  in  2022  of  2.17±0.50  PgC.yr  -1  (w.r.s.t., 
 2.94±0.53  PgC.yr  -1  for anthropogenic uptake  )  . 

 1.4.  S  ubstantial  intra-  to  inter-annual  changes  of  f  CO  2  and  air-sea  fluxes 
 (  fg  CO  2  )  at  the  eastern  equatorial  Pacific  (EEP)  driven  by  the  El  Niño 
 Southern Oscillation (ENSO) 

 The  ENSO  phenomenon  does  not  only  constrain  ocean  CO  2  outgassing  at  the  tropical 
 Pacific  air-sea  interface  but  also  strongly  affects  the  global  net  CO  2  uptake  (  Rödenbeck 
 et  al.,  2015;  Chau  et  al.,  2022;  Friedlingstein  et  al.,  2022).  In  El  Niño  conditions,  warmer 
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 surface  temperature  weakens  vertical  upwelling  of  subsurface  water  rich  in  dissolved 
 inorganic  carbon  (DIC)  and  nutrients,  therefore,  El  Niño  leads  to  lower  surface  partial 
 pressure  of  CO  2  (Feely  et  al.,  2006  ;  Wang  et  al.  ,  2015).  A  decrease  of  f  CO  2  reached  410 
 μatm  and  the  intra-annual  variation  of  f  CO  2  was  as  large  as  40  μatm  in  the  year  2015 
 (Figure  S6  )  as  the  strongest  El  Niño  events  of  the  last  decade  happened  (Figure  S9a). 
 The  dampening  f  CO  2  resulted  in  a  reduction  of  the  EEP  source  of  CO  2  and  thus  an 
 enhancement  in  the  global  ocean  CO  2  uptake  (Figure  S8  ).  The  net  flux  excessed 
 -0.15±0.03  PgC.yr  -1  in  2015/2016  while  the  EEP  normally  released  an  average  source  of 
 CO  2  of  -0.31±0.02  PgC.yr  -1  in  the  last  decade.  The  spatial  pattern  in  Figure  S9bc  confirms 
 that  the  El  Niño  events  spreading  until  the  2016  summer  probably  reduced  f  CO  2  below 
 400  μatm  (  fg  CO  2  <  -0.5  molC.m  -2  .yr  -1  )  around  90°W  and  150°W  westward  .  Later  in  this 
 period,  the  opposite  conditions  -  La  Niña  -  triggered  in  the  2017  summer  became 
 dominant  and  f  CO  2  was,  for  the  first  time,  rising  over  460  μatm  in  the  2018  spring.  La 
 Niña  has  turned  back  and  governed  since  the  year  2020  (Figure  S9  a  )  .  The  cooling  phase 
 persisted  in  2021  and  reached  its  maximum  in  the  2022  spring-summer.  Anomalies  in 
 f  CO  2  enhancement  have  been  found  throughout  the  year  2021  (Figure  S9(b,c)  )  . 
 Likewise,  FNNNv2022  correspondingly  projects  extremely  high  f  CO  2  exceeding  484 
 μatm  (  fg  CO  2  <  -2.5  molC.m  -2  .yr  -1  )  in  the  eastern  N  iño  3  and  N  iño  4  sectors  in  the  first  half 
 of  2022.  By  then,  a  reduction  of  f  CO  2  is  predicted  according  to  the  lessening  cooling 
 conditions. 

 2.  Tables 

 Table  S1.  Input  datasets  used  for  reconstructions  and  prediction  of  surface  ocean 
 CO  2  fugacity (  f  CO  2  ) and air-sea fluxes (  fg  CO  2  ) in  1985-2023. 

 Variables  Notati 
 on 

 Product name  References 

 Measureme 
 nts of CO  2 

 fugacity 

 f  CO  2  Surface ocean CO2 ATlas (SOCAT): 
 SOCATv2021  ,  SOCATv2022  (last  access  17/06/2022), 
 and  SOCATv2023  (last access 20/06/2023) 

 Bakker  et  al.  (2021, 
 2022, 2023) 

 Sea surface 
 temperatur 
 e 

 SST  Copernicus Marine Service (CMEMS): 
 SST_GLO_SST_L4_REP_OBSERVATIONS_010_011 
 (1985-2021) 
 SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001 
 (2022-2023) 

 Good et al. (2020) 

 Sea ice 
 fraction 

 f  ice 

 Sea surface 
 salinity 

 SSS  CMEMS: 
 MULTIOBS_GLO_PHY_S_SURFACE_MYNRT_015_013 
 (1993-2023) 

 Buongiorno  et  al. 
 (2016);  Droghei  et 
 al. (2018) 

 Sea surface 
 height 

 SSH  CMEMS: 
 SEALEVEL_GLO_PHY_L4_MY_008_047  (1993-2021) 
 SEALEVEL_GLO_PHY_L4_NRT_OBSERVATIONS_008_046 
 (2022-2023) 

 Pujol  et  al.  (2016, 
 2018) 

 5 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

https://esd.copernicus.org/articles/13/1097/2022/#bib1.bibx19
https://esd.copernicus.org/articles/13/1097/2022/#bib1.bibx86
https://www.socat.info/index.php/previous-versions/
https://www.socat.info/index.php/previous-versions/
https://socat.info/index.php/data-access/
https://doi.org/10.48670/moi-00168
https://doi.org/10.48670/moi-00165
https://doi.org/10.48670/moi-00051
https://doi.org/10.48670/moi-00148
https://doi.org/10.48670/moi-00149


 Mixed layer 
 depth 

 MLD  Estimating  the  Circulation  and  Climate  of  the  Ocean 
 project Phase II (ECCO2): 
 cube92_latlon_quart_90S90N  (1992-2022) 

 Menemenlis  et  al. 
 (2008) 

 Chlorophyll- 
 a 

 Chl-  a  CMEMS: 
 OCEANCOLOUR_GLO_BGC_L4_MY_009_104  (1998-2023) 

 Garnesson  et  al  . 
 (2019) 

 Atmospheri 
 c CO  2  mole 
 fraction 

 x  CO  2  CO  2  atmospheric inversion from the Copernicus 
 Atmosphere Monitoring Service (CAMS): 
 Surface:  v20r2  (1985-2020) 
 Satellite:  FT21r2  (2021) 

 Chevallier  et  al. 
 (2005,  2010); 
 Chevallier. (2013) 

 p  CO  2 

 climatology 
 p  CO  2 

 cli 

 m 
 Lamont Doherty Earth Observatory  (  LDEO) climatology 
 of sea surface partial pressure of CO  2 

 Takahashi et al. 
 (2009) 

 Wind speed  U  ERA5 hourly data on single levels from 1959 to present 
 (1985-2023) 

 Hersbach et al., 
 (2020)  Total 

 pressure 
 Ps 

 Notes: 

 ●  Preprocessing for missing data in the reconstruction mode (before the 2000s): 
 ○  SSS  and  CHL-  a  (MLD)  are  set  to  climatologies  computed  on  the  available 

 data (in 1992-1997). 
 ○  SSH  is  set  to  climatologies  plus  linear  trends  computed  on  the  available 

 data 
 ●  Preprocessing for missing data in the prediction mode (2022-2023): 

 Input  datasets  for  prediction  are  set  to  the  same  data  resources  as  for 
 reconstruction,  these  data  are  available  within  a  few  weeks  behind  real 
 time.  This  condition  is  not  met  for  the  x  CO  2  and  MLD  datasets  that  we 
 use  in  2023.  For  xCO  2  ,  we  extrapolated  the  original  dataset  (the 
 atmospheric  inversion  of  the  Copernicus  Atmosphere  Monitoring  Service 
 for  years  1985-  2022,  Table  S1),  knowing  the  recent  measurements  of  the 
 atmospheric  CO  2  mole  fraction  at  the  Mauna  Loa  Observatory,  Hawaii 
 (  https://gml.noaa.gov/ccgg/trends/mlo.html  ,  last  access:  11/9/2023).  For 
 MLD,  given  the  dominance  of  seasonality  in  its  variability  (Menemenlis  et 
 al.  2008,  Zhang  et  al.  2018),  we  use  the  last  5-year  climatology  of  the 
 Estimating  the  Circulation  and  Climate  of  the  Ocean  project  Phase  II 
 (ECCO2) data in the prediction mode. 

 Table S2.  Indicators of ocean provinces (Figure S1) used in this study. 

 No  Ocean provinces  Remarks 

 0  Global ocean (GLO) 
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https://ecco.jpl.nasa.gov/drive/files/ECCO2/cube92_latlon_qu
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https://gml.noaa.gov/ccgg/trends/mlo.html


 1  Arctic (ARC)  Aggregated from Arctic, North Atlantic, and North Pacific 
 ice biomes and the Barents Sea (biomes 1, 2, 3, and 4) 

 2  North Atlantic seasonally 
 stratified 
 (NA-SS) 

 Aggregated from North Atlantic subpolar and subtropical 
 seasonally stratified biomes (biomes 5 and 6) 

 3  North Atlantic permanently 
 stratified 
 (NA-PS) 

 North Atlantic subtropical permanently stratified biome 
 (biome 7) 

 4  Atlantic equatorial (AEQU)  Biome 8 

 5  South Atlantic (SA)  South Atlantic subtropical permanently stratified biome 
 (biome 9) 

 6  North Pacific seasonally stratified 
 (NP-SS) 

 Aggregated from North Pacific subpolar and subtropical 
 seasonally stratified biomes (biomes 11 and 12) 

 7  North Pacific permanently 
 stratified 
 (NP-PS) 

 North Pacific subtropical permanently stratified biome 
 (biome 13) 

 8  Pacific western equatorial 
 (PEQU-W) 

 Biome 14 

 9  Pacific eastern equatorial 
 (PEQU-E) 

 Biome 15 

 10  South Pacific (SP)  South Pacific subtropical permanently stratified biome 
 (Biome 16) 

 11  Northern Indian Ocean (NIO)  Aggregated from the Arabian Sea, Bay of Bengal, and 
 Equatorial Indian Ocean above the Equator (biomes 17, 18, 
 and 19) 

 12  Southern Indian Ocean (SIO)  Aggregated from the Equatorial Indian Ocean blow the 
 Equator and the South Indian Ocean (biomes 19 and 20) 

 13  Southern Ocean seasonally 
 stratified (SO-SS) 

 Aggregated from Southern Ocean subpolar and subtropical 
 seasonally stratified biomes (biomes 21 and 22) 

 14  Southern Ocean icea (SO-ICE)  Biome 23 

 Table S3.  Comparison of CMEMS-LSCE-FFNN models (FFNNv2021 and FFNNv2022) 

 a)  Summary of SOCAT data used for model runs and model evaluation 

 FFNN 

 Model fitting  Model evaluation 

 Target Data  Time 
 span 

 Number 
 of data 

 Target Data  Reconstruction  Prediction 

 Time 
 span 

 Number 
 of data 

 Time 
 span 

 Number 
 of data 
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 v2021  SOCATv2021  1985- 
 2020 

 306357 

 SOCATv2023 

 1985- 
 2020 

 302255  2021- 
 2022 

 10908 
 8602 

 v2022  SOCATv2022  1985- 
 2021 

 311694  1985- 
 2021 

 313163  2022  8602 

 b)  Model  evaluation  between  global  reconstructions  of  f  CO  2  [μatm]  in  1985-2020  and 
 between  FFNNv2021  prediction  and  FFNNv2022  reconstruction  (prediction)  in  2021 
 (2022).  Statistics  include  the  number  of  SOCAT  monthly  gridded  data  (N),  mean 
 f  CO  2  (μ),  mean  uncertainty  (𝓸  ),  and  model-data  misfit  (RMSD)  and  coefficient  of 
 determination (  r  2  ). 

 FFNN 

 Years 

 1985-2020  2021  2022 

 µ  σ  RMSD  r  2  µ  σ  RMSD  r  2  µ  σ  RMSD  r  2 

 v2021  361.6  8.7  19.1  0.78  395.2  11.4  24.3  0.74  397.8  12.2  23.1  0.75 

 v2022  361.5  8.5  19.1  0.78  395.7  10.9  23.3  0.76  398.5  11.3  22.6  0.76 

 Table  S4.  Regional  comparison  (a)  between  FFNN  model  reconstructions  of  f  CO  2 

 [μatm]  in  1985-2020,  (b)  between  FFNNv2021  prediction  and  FFNNv2022 
 reconstruction  in  2021,  and  (c)  between  FFNN  model  predictions  in  2022. 
 Statistics  include  1)  the  number  (N)  of  monthly  gridded  data  used  in  FFNN  fits 
 (SOCATv2021  and  SOCATv2022)  and  in  data  evaluation  (SOCATv2023,  see  values  in 
 brackets),  2)  mean  f  CO  2  (μ),  3)  mean  uncertainty  (𝓸),  and  4)  model-data  misfit 
 (RMSD), and 5) determination coefficient (  r  2  ). 

 8 

 N 
 o 

 Biome 

 FFNN 

 Years 

 1985-2020  2021  2022 

 N  µ  σ  RM 
 SD 

 r  2  N  µ  σ  RM 
 SD 

 r  2  N  µ  σ  RM 
 SD 

 r  2 

 1  ARC  v2021  5043 
 (5646) 

 320.5  30.0  40.0  0.57  0 
 (411) 

 356.3  31.3  49.1  0.25  0 
 (225) 

 351. 
 4 

 29.6  37.7  0.56 

 v2022  5551  318.0  29.3  40.0  0.57  411  348.5  29.5  41.8  0.35  0  345.  27.5  37.0  0.60 

 2  NA-SS  v2021  57808 
 (55738) 

 339.8  8.0  23.1  0.76  0 
 (2350) 

 368.8  9.0  26.0  0.76  0 
 (2265) 

 373. 
 6 

 10.1  24.6  0.74 

 v2022  55714  339.9  7.7  23.1  0.76  2167  369.1  8.3  26.2  0.75  0  374.  9.1  24.0  0.75 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 
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 (5646)  (411)  (225)  6 

 (55738)  (2350)  (2265)  8 

 3  NA-PS  v2021  37951 
 (37011) 

 364.5  5.3  13.9  0.74  0 
 (1161) 

 398.4  6.3  20.4  0.50  0 
 (1007) 

 401. 
 0 

 7.0  18.2  0.61 

 v2022  36991 
 (37011) 

 364.5  5.1  13.8  0.75  945 
 (1161) 

 399.3  5.9  20.1  0.51  0 
 (1007) 

 402. 
 7 

 6.5  17.0  0.65 

 4  AEQU  v2021  3313 
 (3179) 

 376.9  10.0  20.0  0.57  0 
 (182) 

 400.2  12.8  34.2  0.36  0 
 (144) 

 403. 
 1 

 14.2  17.3  0.64 

 v2022  3179 
 (3179) 

 376.0  10.0  19.9  0.57  116 
 (182) 

 400.5  13.2  32.9  0.43  0 
 (144) 

 404. 
 2 

 13.6  16.7  0.65 

 5  SA  v2021  6575 
 (6497) 

 369.6  7.9  13.2  0.79  0 
 (273) 

 398.5  9.5  14.3  0.55  0 
 (161) 

 401. 
 1 

 10.2  12.8  0.51 

 v2022  6497 
 (6497) 

 369.7  7.6  12.9  0.80  212 
 (273) 

 401.9  9.2  12.4  0.59  0 
 (161) 

 404. 
 3 

 9.6  12.0  0.55 

 6  NP-SS  v2021  57531 
 (58165) 

 349.1  8.2  21.1  0.73  0 
 (2334) 

 378.9  10.1  28.3  0.76  0 
 (1495) 

 383. 
 1 

 11.1  31.0  0.62 

 v2022  58161 
 (58165) 

 349.5  8.0  21.0  0.74  2147 
 (2334) 

 380.8  9.4  27.4  0.77  0 
 (1495) 

 385. 
 9 

 10.2  30.2  0.64 

 7  NP-PS  v2021  40176 
 (40300) 

 360.7  5.3  11.9  0.85  0 
 (1705) 

 397.0  7.1  16.4  0.76  0 
 (1608) 

 401. 
 3 

 8.4  13.2  0.78 

 v2022  40287 
 (40300) 

 360.6  5.1  11.8  0.85  1443 
 (1705) 

 397.1  6.5  16.1  0.77  0 
 (1608) 

 401. 
 5 

 7.3  12.4  0.81 

 8  PEQU-W  v2021  14845 
 (14821) 

 366.6  6.1  11.2  0.72  0 
 (484) 

 407.2  9.2  11.2  0.76  0 
 (326) 

 411. 
 6 

 10.7  12.0  0.73 

 v2022  14821 
 (14821) 

 366.6  6.0  11.2  0.72  430 
 (484) 

 407.8  8.2  11.1  0.74  0 
 (326) 

 411. 
 8 

 9.1  10.9  0.78 

 9  PEQU-E  v2021  9470 
 (9306) 

 415.7  9.9  27.0  0.71  0 
 (199) 

 460.0  14.4  37.2  0.55  0 
 (146) 

 462. 
 4 

 15.7  45.0  0.77 

 v2022  9306 
 (9306) 

 415.5  9.7  26.9  0.71  180 
 (199) 

 459.8 
 9 

 13.1  35.2  0.59  0 
 (146) 

 461. 
 9 

 13.8  47.1  0.76 

 10  SP  v2021  21551 
 (20968) 

 363.1  9.0  11.9  0.86  0 
 (689) 

 398.4  11.9  10.2  0.85  0 
 (592) 

 399. 
 8 

 12.6  10.1  0.80 

 v2022  20968 
 (20968) 

 363.5  8.8  11.8  0.87  605 
 (689) 

 399.3  11.3  9.8  0.86  0 
 (592) 

 400. 
 5 

 11.5  10.0  0.80 

 11  NIO  v2021  1335 
 (1335) 

 382.8  15.0  24.0  0.53  0 
 (0) 

 418.3  23.6  nan  nan  0 
 (0) 

 419. 
 8 

 24.4  nan  nan 

 v2022  1335 
 (1335) 

 382.1  14.7  23.9  0.54  0 
 (0) 

 416.8  23.7  nan  nan  0 
 (0) 

 419. 
 7 

 23.4  nan  nan 

 12  SIO  v2021  4583 
 (4562) 

 357.2  9.3  10.8  0.88  0 
 (133) 

 392.6  14.1  11.2  0.80  0 
 (73) 

 394. 
 1 

 14.8  8.8  0.43 

 v2022  4562 
 (4562) 

 356.7  9.0  10.8  0.88  133 
 (133) 

 392.8  13.8  12.0  0.81  0 
 (73) 

 394. 
 2 

 13.6  9.3  0.45 



 Table  S5  .  Area-integrated  air-sea  CO  2  fluxes  (  fg  CO  2  )  derived  from  FFNNv2022  f  CO  2 

 reconstruction  in  1985-2021  and  from  FFNNv2022  predictions  in  2022-2023.  The 
 units  of  fg  CO  2  are  in  PgC.yr  -1  .  Area-averaged  surface  temperature  (SST),  10-m  wind 
 speed  (U),  sea  surface  partial  pressure  of  CO  2  (  p  CO  2 

 sea  ),  air-sea  p  CO  2  difference 
 (d  p  CO  2  ),  and  gas  transfer  coefficient  (K)  are  provided  for  the  global  ocean  and 
 each ocean province (see province indicator in Figure S1)  . 
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 13  SO-SS  v2021  32819 
 (31424) 

 351.8  8.4  15.2  0.68  0 
 (777) 

 384.4  11.1  15.2  0.66  0 
 (400) 

 386. 
 6 

 11.7  18.1  0.42 

 v2022  31404 
 (31424) 

 351.6  8.6  15.1  0.69  624 
 (777) 

 384.7  10.6  15.2  0.67  0 
 (400) 

 386. 
 9 

 11.2  17.9  0.44 

 14  SO-ICE  v2021  12266 
 (12277) 

 362.5  10.7  28.7  0.58  0 
 (193) 

 388.6  13.4  24.4  0.44  0 
 (142) 

 388. 
 2 

 13.5  41.8  0.76 

 v2022  12277 
 (12277) 

 362.9  10.6  28.6  0.59  185 
 (193) 

 388.7  12.7  22.2  0.47  0 
 (142) 

 388. 
 2 

 13.0  40.9  0.78 

 No  Biome 

 Area 
 [10  6 

 km  2  ] 

 Years 

 Variables 

 SST 
 [°C] 

 U 
 [ms  -1  ] 

 p  CO  2 
 sea 

 [μatm] 

 d  p  CO  2 

 [μatm] 

 K 
 [  molC.m  −2  .y 
 r  −1  .  μatm  −1  ] 

 fg  CO  2 

 [  PgC.yr  −1  ] 

 0  GLO  343.3  1985-2020  18.8  7.8  362.8±10.5  2.8  0.0526  1.583±0.341 

 2021  19.0  7.9  397.1±13.0  6.0  0.0524  2.355±0.434 

 2022  19.2  7.9  400.0±13.0  5.7  0.0528  2.249±0.495 

 2023/01-08  19.1  7.8  401.5±14.1  7.0  0.0519  2.449±0.557 

 1  ARC  6.9  1985-2020  -0.5  7.3  324.9±33.3  50.3  0.0228  0.082±0.017 

 2021  -0.1  7.5  355.5±34.2  55.9  0.026  0.107±0.020 

 2022  -0.1  7.5  356.4±32.6  60.0  0.0281  0.106±0.017 

 2023/01-08  -0.5  6.5  366.0±39.9  53.8  0.0137  0.077±0.015 

 2  NA-SS  15.9  1985-2020  11.8  9.2  341.2±9.5  30.4  0.0733  0.384±0.041 

 2021  12.3  9.4  370.4±9.8  38.6  0.0750  0.503±0.045 

 2022  12.5  9.3  376.1±10.4  37.0  0.0731  0.475±0.048 

 2023/01-08  12.0  9.0  376.2±11.2  39.4  0.0697  0.467±0.052 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 
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 3  NA-PS  22.2  1985-2020  25.1  7.0  365.7±5.9  0.8  0.0397  0.042±0.025 

 2021  25.4  7.0  400.6±6.6  3.1  0.0389  0.064±0.027 

 2022  25.4  6.9  403.6±7.0  3.5  0.0383  0.073±0.031 

 2023/01-08  25.4  6.8  404.2±7.7  5.8  0.037  0.092±0.034 

 4  AEQU  8.5  1985-2020  26.9  5.5  377.2±12.5  -14.2  0.0254  -0.040±0.010 

 2021  27.4  5.5  401.8±15.5  -1.9  0.0251  -0.009±0.017 

 2022  27.2  5.5  405.9±15.5  -3.5  0.0245  -0.012±0.016 

 2023/01-08  27.6  5.4  404.0±17.1  0.6  0.0241  -0.002±0.018 

 5  SA  19.5  1985-2020  22.6  7.2  371.0±8.5  -5.2  0.0419  -0.012±0.033 

 2021  22.8  7.3  403.2±10.1  0.5  0.0423  0.049±0.048 

 2022  22.8  7.2  405.6±10.6  -0.4  0.0406  0.036±0.047 

 2023/01-08  23.5  7.1  411.0±11.8  -2.9  0.0405  0.024±0.059 

 6  NP-SS  24.7  1985-2020  12.7  8.7  350.8±10.2  21.4  0.0651  0.393±0.056 

 2021  13.3  8.5  382.2±11.8  27.6  0.0618  0.476±0.060 

 2022  13.6  8.6  387.6±12.0  26.4  0.0632  0.477±0.073 

 2023/01-08  12.6  8.3  389.1±13.0  27.8  0.0589  0.436±0.078 

 7  NP-PS  40.2  1985-2020  26.3  7.0  361.7±6.1  2.9  0.0404  0.130±0.040 

 2021  26.4  6.9  398.4±7.6  3.7  0.0388  0.152±0.053 

 2022  26.5  6.8  402.8±8.2  2.5  0.0373  0.126±0.052 

 2023/01-08  26.1  7.1  403.4±8.6  5.1  0.0412  0.176±0.069 

 8  PEQU-W  13.1  1985-2020  29.3  5.1  367.7±7.6  -7.9  0.0220  -0.023±0.010 

 2021  29.4  5.2  409.0±9.4  -12.4  0.0222  -0.040±0.013 

 2022  29.3  5.4  413.3±10.0  -14.0  0.0236  -0.052±0.016 

 2023/01-08  29.5  5.2  412.1±10.7  -10.2  0.0227  -0.036±0.016 

 9  PEQU-E  15.1  1985-2020  26.3  5.9  416.8±10.8  -54.0  0.0292  -0.294±0.023 

 2021  25.9  6.3  461.3±14.2  -60.8  0.0314  -0.350±0.030 

 2022  25.6  6.4  463.5±15.0  -60.4  0.0328  -0.370±0.037 
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 2023/01-08  27.5  5.8  460.2±15.0  -55.7  0.0277  -0.297±0.036 

 10  SP  54.8  1985-2020  22.0  7.5  364.7±9.9  0.1  0.0470  0.103±0.117 

 2021  22.1  7.6  400.6±12.4  2.6  0.0468  0.161±0.146 

 2022  22.0  7.6  401.9±12.5  3.3  0.0464  0.166±0.146 

 2023/01-08  22.8  7.5  405.0±13.3  2.2  0.0463  0.201±0.168 

 11  NIO  11.4  1985-2020  28.2  6.0  383.3±17.0  -21.7  0.0317  -0.113±0.042 

 2021  28.5  6.0  418.1±25.8  -19.8  0.0305  -0.099±0.077 

 2022  28.4  6.0  421.1±25.2  -20.1  0.0311  -0.104±0.075 

 2023/01-08  28.6  6.0  421.3±23.8  -17.4  0.0324  -0.096±0.076 

 12  SIO  32.9  1985-2020  24.8  7.1  357.8±9.6  5.8  0.0421  0.187±0.064 

 2021  25.0  7.2  394.0±14.8  7.1  0.0422  0.216±0.114 

 2022  24.9  7.2  395.4±14.5  7.6  0.0423  0.223±0.119 

 2023/01-08  25.3  7.1  397.9±13.8  8.1  0.0414  0.222±0.109 

 13  SO-SS  59.6  1985-2020  8.0  10.5  353.0±9.4  13.3  0.0951  0.721±0.185 

 2021  8.2  10.7  386.2±11.6  18.0  0.0956  1.006±0.232 

 2022  8.2  10.7  388.4±12.1  17.8  0.0955  0.980±0.269 

 2023/01-08  8.7  10.6  391.7±13.4  17.8  0.0950  1.006±0.314 

 14  SO-ICE  17.3  1985-2020  -1.1  9.1  366.1±11.9  -5.0  0.0421  0.022±0.040 

 2021  -1.0  9.1  392.3±14.0  5.2  0.0423  0.119±0.042 

 2022  -1.0  9.5  394.4±14.6  4.7  0.0525  0.122±0.054 

 2023/01-08  -0.7  9.4  392.3±14.7  11.1  0.0575  0.175±0.073 

 188 

 189 



 3.  Figures 

 Figure  S1.  Ocean  provinces  aggregated  from  the  biomes  used  in  the  RECCAP2 
 project  (source: 
 https://github.com/RECCAP2-ocean/RECCAP2-shared-resources/tree/master/data 
 /regions, last access: 20/3/2023). See Table S2 for the province indicator. 

 Figure  S2.  Number  of  fCO  2  data  (ΔN)  added  in  (red)  or  removed  from  (blue) 
 SOCATv2022 compared to SOCATv2021 for different time frames. 
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 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 



 Figure  S3.  Scatter  plots  of  FFNNv2022  versus  SOCATv2023  f  CO  2  [μatm]  for  36-year 
 reconstruction  (1985-2020:  points),  1-year  reconstruction  (2021:  stars)  and  1-year 
 prediction  (2022:  pluses).  Values  of  FFNNv2022  and  SOCATv2023  data  are  shown 
 in  y-  and  x-axis,  respectively.  Light-grey  rectangles  mark  the  95%  SOCAT  data 
 range  (i.e.,  [  279  ,  443  ]  μatm)  over  the  global  ocean  in  1985-2021.  Red  lines 
 represent  the  bisector  corresponding  to  ideal  model-data  fits:  objects  above  this 
 line  indicate  FFNN  overestimates  of  SOCAT  f  CO  2  and  vice  versa.  Metrics  for 
 reconstruction  and  prediction  in  the  legend  are  model-data  standard  deviation 
 (D: RMSD) and correlation (C:  r  2  ). 
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 208 

 209 
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 212 



 Figure  S4  .  Spatial  distribution  of  temporal  means  of  f  CO  2  derived  from  FFNNv2021 
 (left) and FFNNv2022 (middle) and their discrepancy (right)  . 
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 214 

 215 

 216 



 Figure  S5.  Spatial  distribution  of  model-data  deviation  (RMSD):  f  CO  2  derived  from 
 FFNNv2021  (left)  and  FFNNv2022  (middle)  and  their  RMSD  difference  (right). 
 SOCATv2023 is used for this evaluation. 
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 221 

 222 



 Figure  S6.  Time  series  of  f  CO  2  averaged  over  ocean  provinces.  Vertical  dashed 
 lines  mark  the  starting  date  for  model  prediction  (blue:  FFNNv2021,  red: 
 FFNNv2022). 
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 228 

 229 



 Figure  S7.  Time  series  of  differences  in  f  CO  2  (left  y-axis)  and  number  of  SOCAT 
 data  (right  y-axis).  Vertical  dashed  line  marks  the  starting  date  for  prediction 
 (FFNNv2021: blue, FFNNv2022: red)  . 
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 235 



 Figure  S8.  Time  series  of  monthly  air-sea  fluxes  integrated  over  ocean  provinces 
 [PgC.yr  -1  ].  Plain  curve  and  shaded  area  represent  model's  best  estimate  and 
 1σ-uncertainty.  Vertical  dashed  lines  mark  the  starting  date  for  FFNNv2022 
 prediction. 
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 Figure  S9.  Illustration  of  the  relationship  between  ENSO  events  (a)  and 
 FFNNv2022  f  CO  2  (air-sea  fluxes)  variations  (Hovmöller  plots  in  b  and  c)  over  the 
 eastern  Equatorial  Pacific  (9.PEQU-E).  ENSO  events  are  plotted  with  the  NOAA 
 bi-monthly  Multivariate  El  Niño/Southern  Oscillation  (ENSO)  index 
 (  https://psl.noa35.5,  50.5a.gov/enso/mei/  ,  last  access:  11/09/2023  ).  The  b  lack 
 horizontal  dotted  line  marks  the  starting  date  for  the  FFNNv2022  prediction 
 (January 2022). 

 Figure  S10.  Anomalies  of  surface  temperature  (SST),  salinity  (SSS),  Chlorophyll-  a 
 (CHL-  a  ),  air-sea  p  CO  2  difference  (d  p  CO  2  ),  gas  transfer  coefficient  (K)  over  the 
 Atlantic  in  June  2023  (top)  and  June  2022  (bottom)  are  computed  by  subtracting 
 long-term  trends  and  seasonal  climatologies  relative  to  the  years  1985-2022.  Blue 
 box  limits  the  region  of  interest  where  the  extreme  marine  heat  wave  appeared 
 in the northeastern Atlantic in June 2023. 
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