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Abstract

The concentration of chlorophyll-a (CHL) is an important proxy for autotrophic biomass and primary production in the ocean.

Quantifying trends and variability in CHL are essential to understanding how marine ecosystems are affected by climate change.

Previous analyses have focused on assessing trends in CHL mean, but little is known about observed changes in CHL extremes

and variance. Here we apply a quantile regression model to detect trends in CHL distribution over the period of 1997-2022

for several quantiles. We find that the magnitude of trends in upper quantiles of global CHL (>90th) are larger than those in

lower quantiles ([?]50th) and in the mean, suggesting a growing asymmetry in CHL distribution. On a regional scale, trends in

different quantiles are statistically significant at high latitude, equatorial, and oligotrophic regions. Assessing changes in CHL

distribution has potential to yield a more comprehensive understanding of climate change impacts on CHL.
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Key Points:5

• Long-term changes are detected in different aspects of the distribution of chlorophyll-6

a (not just the mean state).7

• Oceanic chlorophyll-a high extremes are changing faster than chlorophyll-a mean8

globally during 1997-2022.9

• On a regional scale, chlorophyll-a extremes trends are predominant at high lat-10

itude (+), equatorial (-), and oligotrophic regions (-).11
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Abstract12

The concentration of chlorophyll-a (CHL) is an important proxy for autotrophic biomass13

and primary production in the ocean. Quantifying trends and variability in CHL are es-14

sential to understanding how marine ecosystems are affected by climate change. Previ-15

ous analyses have focused on assessing trends in CHL mean, but little is known about16

observed changes in CHL extremes and variance. Here we apply a quantile regression17

model to detect trends in CHL distribution over the period of 1997-2022 for several quan-18

tiles. We find that the magnitude of trends in upper quantiles of global CHL (>90th)19

are larger than those in lower quantiles (≤50th) and in the mean, suggesting a growing20

asymmetry in CHL distribution. On a regional scale, trends in different quantiles are sta-21

tistically significant at high latitude, equatorial, and oligotrophic regions. Assessing changes22

in CHL distribution has potential to yield a more comprehensive understanding of cli-23

mate change impacts on CHL.24

Plain Language Summary25

The marine environment is essential to nature and society, as it provides food and26

other important services such as Earth’s climate regulation and habitat for species. Ma-27

rine primary productivity is increasingly stressed due to global climate change. Detect-28

ing the impact of climate change on primary producers should be a priority given their29

critical role in the climate system. Most studies focus on the impact of climate change30

by evaluating the mean state of primary productivity, but little is known about whether31

and how climate change is impacting variance and extremes. Here we assess changes in32

chlorophyll-a (CHL), which is an important proxy for primary production of marine ecosys-33

tems. We quantify long-term changes in different aspects of the CHL distribution (mean,34

variance, and extremes) using a quantile regression model. We find that CHL high ex-35

tremes and variability are slightly intensified globally during the 26 years of observational36

record. Trends in regional scales, especially in high-latitude and North Atlantic Subtrop-37

ical Gyre, show that CHL high extremes have been increasing since 1997. Our results38

suggest that more emphasis should be put into understanding the impact of climate change39

on the variance and extremes of primary productivity for climate change adaptation and40

mitigation.41

1 Introduction42

Global climate change is increasingly affecting marine ecosystems, altering the ocean’s43

biological primary productivity. Based on coupled model projections, a global decline44

in primary productivity is expected due to changes in temperature, light, nutrients, and45

grazing (Bopp et al., 2013; Kwiatkowski et al., 2020), with potential repercussions on46

marine ecosystems (Laufkötter et al., 2015), fisheries (Free et al., 2019), and the global47

carbon cycle (Sarmiento et al., 2004). Marine phytoplankton contribute nearly half of48

the global primary productivity (Field et al., 1998). Consequently, detecting the impact49

of climate change on marine phytoplankton should be a priority given the critical role50

that primary productivity play in physical and biogeochemical interactions in the ocean.51

Chlorophyll-a (CHL) is an essential climate variable and an important proxy for52

marine primary productivity (Bojinski et al., 2014; Hollmann et al., 2013). Satellite CHL53

offers high temporal and spatial resolution to support global and regional assessments54

of long-term changes in CHL (McClain, 2009; Blondeau-Patissier et al., 2014; Bindoff55

et al., 2022). To date, studies of long-term trends in CHL have focused on changes in56

the mean state (Gregg et al., 2005; Boyce et al., 2010; Henson et al., 2010; Boyce et al.,57

2010; Saulquin et al., 2013; Mélin, 2016; Henson et al., 2016; Hammond et al., 2020). Al-58

though assessing long-term trends in the mean is important for understanding how CHL59

is changing, this does not depict a complete portrait of changes. Assessing changes in60
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variability and extremes may yield a more complete understanding of climate change im-61

pacts on CHL.62

Ocean extremes and their impact on marine ecosystems have sparked a lot of at-63

tention and concern recently (Gruber et al., 2021). Marine heatwaves, low oxygen con-64

centrations, and high acidity events are expected to intensify and occur more often, with65

impacts on organisms and ecosystems, further affecting ecosystem services and human66

welfare (Gruber et al., 2021). Compound extreme events, where two or more ocean ex-67

tremes are happening synergistically (e.g., low oxygen and high temperature) are of par-68

ticular concern as they can contribute to biological and ecological impacts in different69

ways (Gruber et al., 2021; Le Grix et al., 2021; Burger et al., 2022). Several studies have70

considered how the ocean’s variance may be responding to climate change, including sea71

surface temperatures (Alexander et al., 2018), marine carbon dioxide (Landschützer et72

al., 2018), sea ice (Tareghian & Rasmussen, 2013), sea level (Barbosa, 2008), and phy-73

toplankton biomass (Elsworth et al., 2022). A recent study showed that changes in vari-74

ance are omnipresent in different aspects of Earth’s climate and span physical and ecosys-75

tem variables, and tend to be more predominant in variables that are typically not nor-76

mally distributed such as primary production (Rodgers et al., 2021). To our knowledge,77

there is no prior assessment of change in global CHL distribution over the observational78

period.79

In this study, we provide a first assessment of changes in the whole CHL distribu-80

tion, since other aspects of the CHL distribution (e.g., extremes) may be equally or even81

more important than the mean CHL. Our objective is to assess observed long-term trends82

in CHL distribution globally and regionally. Two multi-mission satellite products are uti-83

lized to expand the variety of results on global and regional scales and reduce the effect84

of the sensitivity of datasets. The impact of seasonality is also taken into account. We85

estimate long-term trends in multiple quantiles of a time series using quantile regression86

(QR), which together represent spatial and temporal changes in the distribution, includ-87

ing the tails representing extreme events (Cai & Reeve, 2013).88

2 Data and Methodology89

2.1 Data90

We use two chlorophyll-a (mg/m3) data products spanning 1997 to 2022. The first91

one is derived from the ESA’s Ocean Color Climate Change Initiative (OC-CCI) project92

version 6.0 (Sathyendranath et al., 2019). This is a satellite multi-mission data product93

computed from merging the remote-sensing reflectance of a set of sensors, including Sea-94

viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectro-95

radiometer onboard the Aqua (MODIS-A), Medium Resolution Imaging Spectrometer96

(MERIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and Ocean and Land Colour97

Instrument (OLCI). The OC-CCI product is continuously corrected for biases (Mélin et98

al., 2017). Additional analyses using the OC-CCI data product are included in the sup-99

porting information (Text S1).100

The second dataset is derived from the GlobColour Project of the Copernicus Ma-101

rine Environment Monitoring Service (CMEMS). This merged chlorophyll-a product is102

constructed by a combination of chlorophyll-a products directly computed for each sen-103

sor (SeaWiFS, MODIS-A, MERIS, VIIRS, and OLCI) (Garnesson et al., 2019), which104

provides a “cloud-free” product by space-time interpolation. While the focus of our anal-105

ysis is on the OC-CCI dataset, we include additional analyses of GlobColour in the sup-106

porting information (Text S2) as a measure of sensitivity.107

Both datasets cover from September 1997 to December 2022 and are gridded at 4108

km spatial resolution and monthly temporal resolutions. They have been regridded from109

a 1/24◦ grid to a 1◦ grid by averaging within 1 degree boxes. Before fitting the QR model,110
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the monthly data is deseasonalized in both datasets assuming a constant seasonal cy-111

cle.112

2.2 Quantile Regression Model113

To quantify changes in CHL distribution, we estimate trends in different distribu-114

tion quantiles via QR (Koenker & Bassett Jr, 1978). While assessing change in the mean115

of climate variables using ordinary least squares (OLS) provides extremely valuable in-116

formation, it does not provide insight into changing extremes and how overall variabil-117

ity is related to time-varying events (Abbas et al., 2019). The main difference with OLS118

is that QR substitutes the conditional mean function in OLS for a conditional quantile119

function (Koenker & Bassett Jr, 1978; Koenker & D’Orey, 1987). As such, instead of mod-120

eling the mean response in the regression model, QR models the response at a given quan-121

tile level. The QR model makes no assumptions about the distribution of the target vari-122

able and the residuals. Specifically, QR can identify opposite trends in statistical extremes123

(upper and lower) that would remain hidden if focusing on means (Sankarasubramanian124

& Lall, 2003). We use a QR model to assess trends of CHL in various quantile levels.125

The model is given by:126

yt = ατ + βτ t+ ϵtτ , (1)

where yt is the response variable (i.e., CHL) at time t (in months) for the condi-127

tional quantile τ , ατ and βτ denote the intercept and slope for quantile level τ , respec-128

tively. Residuals are represented by ϵτ . The quantile regression model can be expressed129

as y = f
′
(ατ , βτ , t). For given parameters ατ and βτ , they are estimated by minimiz-130

ing the sum of asymmetrically weighted absolute residuals131

n∑
t=1

ρτ (yt − f
′
(ατ , βτ , t)), (2)

where n is the data length and ρτ represents the tiled absolute value function, which132

gives different weights to positive and negative residuals (Koenker & Hallock, 2001). The133

tiled absolute value function can be expressed as:134

ρτ =

{
τ, yt ≥ (ατ + βτ t)
1− τ, yt < (ατ + βτ t)

(3)

We fit QR models at several quantile levels (5%, 10%, 50%, 90%, and 95% levels).135

As a comparison, OLS is also used here to fit trends in the mean CHL. The quantile re-136

gression model is implemented using the R package quantreg (Koenker et al., 2018).137

2.3 Serially Correlated Residuals138

Monthly chlorophyll-a concentration may exhibit serial autocorrelation in time se-139

ries, which may bias trend detection (Beaulieu et al., 2013). Here we assume that resid-140

uals in CHL may follow a first-order autocorrelation (AR1) model. The quantile regres-141

sion residuals at level τ , ϵτt, are given by:142

ϵτt = ϕτ ϵτt−1 + ν̂τt, (4)

where ϕ is the first-order autocorrelation coefficient and ν̂τ denotes white noise er-143

rors.144
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QR estimates may be biased in the presence of correlated errors (Koenker et al.,145

2017). To verify the presence of autocorrelation in the residuals of the QR, we use a residual-146

based autocorrelation test, named the QF test (Huo et al., 2017). The test statistic is147

given by:148

QFT =

∑T
t=1 ν̃

2
τt −

∑T
t=1 ν̂

2
τt∑T

t=1 ν̂
2
τt/(T − p− k)

, (5)

where ν̂2τt denotes the residuals from the AR1 model fitted on the quantile resid-149

uals in Equation 4, implying the model under the alternative hypothesis (H1 : ϕ ̸= 0),150

ν̃2τt denotes the residuals under the null hypothesis (H0 : ϕ = 0) in which all parame-151

ters for lagged residuals are joint to zero under the null hypothesis, T is the length of152

time series, p is the autocorrelation order, and k is the number of explanatory variables.153

The asymptotical distribution of the QF statistic is a chi-squared distribution with p de-154

grees of freedom. More detailed information is presented in Huo et al. (2017).155

If serial correlation is detected in the residuals from the QF test, we transform the156

time series by modifying the response variable (Cochrane & Orcutt, 1949):157

yt − ϕτyt−1 = ατ (1− ϕτ ) + βτ (t− ϕτ (t− 1)) + ντt, (6)

Where ατ and βτ are estimated from Equation 1. The autoregressive parameter158

ϕτ is estimated by first regressing the untransformed QR model and obtaining the resid-159

uals ϵ̂t, then regressing ϵ̂t on ϵ̂t−1. Note that the first data point is lost in this process,160

and there are n-1 residual terms ντt after transformation. If the transformation was suc-161

cessful, the ντt should be white noise. To account for potential sensitivity to the choice162

of transformation method, We also use the Hildreth-Lu procedure (Hildreth & Lu, 1960).163

This procedure is also a transformation based on differencing, but the Hildreth-Lu pro-164

cedure offers a simultaneous estimation of the autocorrelation of the disturbances and165

the coefficients (Dufour et al., 1980). Results using Hildreth-Lu are included in the sup-166

porting information (Text S1; Figure S1).167

3 Results168

3.1 Global Trends and Variability169

On a global scale, trend estimates vary according to quantile levels (Figure 1). The170

magnitude of trend in the upper quantile of global CHL (95th) is larger than those in171

the middle and lower quantiles (<50th) (Figure 1a and 1b). As shown in Figure 1c and172

1d, though the magnitude and uncertainty of global CHL trends differ by quantile level,173

most of the quantile levels show an increase in CHL. All trends are shown after remov-174

ing serial correlation.175

For the OC-CCI data product, all quantiles present a positive and significant trend176

(Figure 1a and 1c). The CHL trends in upper quantile (95th) is the steepest with a mag-177

nitude of 2.5 × 10−4 mg m−3 yr−1, whereas the lower and middle quantiles show trends178

with smaller magnitudes. These features suggest a slight increase in the variance of global179

CHL given a more pronounced increase in the upper quantile than in lower quantiles,180

although trend uncertainty is also larger for the 95th quantile. A positive trend of 1.2181

× 10−4 mg m−3 yr−1 is detected by applying an OLS regression model that is almost182

identical to trends in median CHL (50th quantile). It indicates that the average and me-183

dian global CHL are changing closely, and at a slightly lower pace than lower and up-184

per extreme concentrations. The 95 % confidence intervals in all quantile levels suggest185

the larger uncertainty (±0.5 and ±1.2 × 10−4 mg m−3 yr−1) in the lower and upper quan-186

tiles, compared to middle quantiles with ±0.2 × 10−4 mg m−3 yr−1.187
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(a) (b)

(c) (d)

Figure 1 Time series of monthly global mean CHL from 1997-2022 with trends fit-
ted in different quantile levels from (a) OC-CCI product and (b) GlobColour product.
Trends in different quantile levels (5th to 95th levels) with 95% confidence intervals from
(c) OC-CCI product and (d) GlobColour product. Trends were fitted to transformed data
to remove autocorrelation.

The trends and their variability in global CHL are similar for most quantiles in the188

GlobColour data product (Figure 1b and 1d). Although negative trends are detected in189

the 5th and 10th quantile levels, trends in upper and middle quantile levels are positive.190

Again, upper quantile levels have a larger uncertainty (Figure 1d). A trend in CHL mean191

is 1 × 10−4 mg m−3 yr−1 that is very similar to trends in median CHL (0.5 × 10−4 mg192

m−3 yr−1). The difference in trend sign between global CHL high and low imply an in-193

creasing variability over this period. This increase in variability is less pronounced in the194

OC-CCI dataset, with the lower and upper quantiles having the same trend sign but dif-195

ferent magnitudes (Figure 1a). The results are not sensitive to a log-transformation of196

CHL (Text S1; Figure S2 in supporting information).197

3.2 Regional Trends198

Trends estimated in each grid cell are presented in Figure 2. After a preliminary199

analysis, the presence of autocorrelation was detected in most areas of the ocean (Fig-200

ure S3 in the supporting information). As such, a Cochrane-Orcutt transformation was201

applied to remove autocorrelation from the data. It must be noted that this transfor-202

mation does not remove the trend signal, but only sieve the autocorrelation. As a com-203

parison, a different transformation procedure was used to remove autocorrelation from204

the data, the Hildreth-Lu method (Figure S1 in the supporting information). Results205

are consistent with the Cochrane-Orcutt transformation (Text S1; Figure S1 in the sup-206

porting information), suggesting that the results are robust to the choice of transforma-207

tion approach.208

At the regional scale, trends in lower quantiles are more scattered (Figure 2a and209

2b), and patterns become more apparent in the median and larger quantiles (Figure 2c,210
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(a) (b)

(c) (d)

(e) (f)

Figure 2 Maps of CHL trends from the OC-CCI data product during 1997-2022 in
(a)5th, (b) 10th, (c) 50th, (d) 90th, (e) 95th quantile levels, and (f) in CHL mean, re-
spectively. Trends were fitted to transformed data to remove autocorrelation via the
Cochrane-Orcutt procedure. The grey shadows are regions where trends are not signifi-
cant at a 5% level.
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2d, and 2e). Overall, regions with significant trends in the upper quantiles are mainly211

located at high latitudes (+), in equatorial (-), and oligotrophic regions (-) (Figure 2d212

and 2e). A few regions emerge with consistent patterns of change in North Pacific Sub-213

arctic Province, North Atlantic Drift Province, Subantarctic Province, Pacific Equato-214

rial Province, North Pacific Subtropical Gyre, and North Atlantic Subtropical Gyre, and215

are highlighted in Figure 2f. The regions are divided as defined by Longhurst (1995) (see216

supporting information, Text S3).217

In Figure 3, we further look into the regions with significant trends identified above.218

We averaged grid cells in these regions and estimated trends with their respective con-219

fidence intervals. Trends in different quantiles may vary in magnitude and sign, suggest-220

ing that the shape of the CHL distribution is varying on a regional scale. Positive trends221

dominate in the North Pacific Subarctic Province, North Atlantic Drift Province, and222

Subantarctic Province (Figure 3a, 3b, and 3c). Trends in Subantarctic Province are pos-223

itive in all quantile levels, while the North Pacific Subarctic Province and North Atlantic224

Drift Province exhibit similar patterns whereby trends in lower quantiles are not signif-225

icant and median and upper quantiles are significant and positive. In these three regions,226

trends detected in different quantiles are consistent with an increasing variability over227

the observational record. In low nutrient regions, namely the Pacific Equatorial Province228

and North Pacific Subtropical Gyre, trends in the lower quantiles are significantly in-229

creasing even if negative trends are observed in the mean/median (Figure 3d and 3e).230

It might indicate that CHL low extremes become less frequent during the recording pe-231

riod. Among these regions, Pacific Equatorial Province and North Pacific Subtropical232

Gyre present consistent trends with an overall decrease in variability. The North Atlantic233

Subtropical Gyre exhibits decreasing trends in middle quantile levels and increasing trends234

at upper quantiles, suggesting a slightly increasing variance over time. Trend estimates235

obtained by the OLS model closely follow those for the median in all of the regions (see236

supporting information, Figure S4).237

Most regions show increasing variability in CHL except Pacific Equatorial and North238

Pacific Subtropical Gyre Province. The large variance of CHL relates to climate season-239

ality and dominates at high latitudes, sub-polar, and coastal waters. December, January,240

and February (DJF) and June, July, and August (JJA) are two seasons that are com-241

monly used to analyze ocean phytoplankton blooms because they represent contrasting242

environmental conditions that affect the growth and distribution of phytoplankton in the243

ocean. The impact of regional seasonality is shown in the supporting information (Text244

S1; Figure S5).245

We also include results obtained on the GlobColour dataset in these regions to as-246

sess the sensitivity of our findings to the choice of the dataset in Text S2 (supporting247

information). In most regions, trends detected in different quantiles are consistent ex-248

cept for the North Atlantic Drift province and the North Pacific Subtropical Gyre Province249

(Figure S6, S7, and S8 in the supporting information).250

4 Discussion and Conclusion251

In this study, we provide a first assessment of changes in CHL distribution in the252

global ocean over the 1997–2022 period. At the global scale, our results suggest that dif-253

ferent quantiles are changing at different paces, with CHL high extremes changing faster254

than the rest of the distribution. This difference in pace results in an overall slight in-255

crease in CHL variability. At the regional scale, CHL high extremes are increasing at high256

latitudes and decreasing in equatorial and oligotrophic regions. These changes are con-257

sistent with Earth System Models projections whereby high latitude oceans are light-258

limited while equatorial and oligotrophic regions are limited by nutrients (Doney, 2006;259

Doney et al., 2012; Kwiatkowski et al., 2020). Furthermore, we show that changes at high260

latitudes are more pronounced during DJF season, while changes in equatorial regions261
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(a) (b)

(c) (d)

(e) (f)

Figure 3 Regional CHL trends in OC-CCI data product in different quantile levels in
regions, (a) North Pacific Subarctic Gyre Province, (b) North Atlantic Drift Province, (c)
Subantarctic Province, (d) Pacific Equatorial Province, (e) North Pacific Subtropical Gyre
Province, and (f) North Atlantic Subtropical Gyre Province. The 95% confidence intervals
for each regression are represented by the vertical lines. The red horizontal dashed line is
zero.
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dominate during JJA. This may be due to climate processes like El Niño-Southern Os-262

cillation (ENSO) that tend to start during JJA in equatorial regions.263

In a study focusing on analyzing phytoplankton carbon biomass in an Earth Sys-264

tem Model large ensemble, Elsworth et al. (2022) identified decreasing variability of global265

phytoplankton variance from 1920-2100. Our results do not show an overall decreased266

variability in CHL. This difference may be due to the differing periods of analysis. In-267

deed, our analysis focuses on the period 1997-2022, and changes detected over that pe-268

riod may be more indicative of decadal variability rather than long-term impact of cli-269

mate change over 1920-2100. Another explanation could be that the two studies are an-270

alyzing different variables. While previous studies have discussed the correlation between271

the spatial distribution of CHL (used in this study) and phytoplankton carbon biomass272

(Kostadinov et al., 2016; Mart́ınez-Vicente et al., 2017), those variables tend to decou-273

ple especially in subtropical regions (Barbieux et al., 2018). Future work should focus274

on analyzing CHL extremes and variability in models to assess whether long-term changes275

in CHL variability and extremes are consistent with observations, in order to better un-276

derstand their drivers and anticipate future changes.277

Regional trends differ from those at the global scale with mixed signs and larger278

magnitudes. Regions with significant trends in upper quantiles include the North Pa-279

cific Subarctic Province (+), North Atlantic Drift Province (+), Subantarctic Province280

(+), Pacific Equatorial Province (-), North Pacific Subtropical Gyre (-), and North At-281

lantic Subtropical Gyre (-), as shown in Figure 2f. Regional changes in upper quantiles282

described above also correspond to changes in CHL variability with increase in the North283

Pacific Subarctic Province, North Atlantic Drift Province, and Subantarctic Provinces,284

and declining variability in Pacific Equatorial and North Pacific Subtropical Gyre Province.285

Those regions are characterized by noticeable ecological and biogeochemical seasonal vari-286

ability that is closely related to strong annual cycles in light, nutrients, temperature, wind287

force, and zooplankton grazing at surface (Henson et al., 2010; Elsworth et al., 2022).288

At the regional scale, large-scale climate patterns such as El Niño Southern Oscillation289

(ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO) are290

known drivers of CHL trends and variability (Corno et al., 2007; Zhai et al., 2013; Kang291

et al., 2017; Gao et al., 2020; Le Grix et al., 2021). In the North Pacific Subarctic Gyres292

and North Atlantic Drift Provinces, warming over the last two decades has resulted in293

more phytoplankton blooming (Dunstan et al., 2018). Our results showing that CHL high294

extremes are becoming more frequent are consistent with Dunstan et al. (2018) and Kahru295

& Mitchell (2008) findings. Changes in the North Atlantic Drift region are more pronounced296

than the North Pacific Subarctic Gyre, also consistent with previous analysis on phy-297

toplankton blooms (Westberry et al., 2016). As for the Southern hemisphere, seasonal298

variation in the location of transition zones between subpolar and subtropical gyres co-299

incide with increasing CHL variance (Dunstan et al., 2018). This phenomenon may in-300

dicate that the increasing seasonal variance plays a role in the CHL distribution changes301

detected here (Thomalla et al., 2023). Trends in Subantarctic Province are significantly302

positive in all quantile levels. A possible explanation is that though iron limitation con-303

trols the Southern Ocean, sea surface warming could still be an important driver on sea-304

sonal phytoplankton blooms in this region instead of light or nutrients (Moore et al., 2013;305

Laufkötter et al., 2015), resulting in positive and similar magnitude changes in CHL dis-306

tribution and their variability over the observational period.307

Some limitations in this study may impact the validity of our results. First, the short-308

ness of the record may impact our results, as we use observations over a period that is309

slightly shorter (26 years) than the recommended 30 years for assessing climate change310

impacts (WMO, 2018). More specifically, satellite ocean color datasets require multiple311

decades to distinguish long-term climate-related trends from natural variability(Henson312

et al., 2010; Beaulieu et al., 2013; Bindoff et al., 2022), although exact detection timescales313

vary depending on regional interannual and decadal variability and magnitude of trends314
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(Henson et al., 2010). That said, previous studies aimed at estimating timescales of trend315

detection in ocean CHL (Henson et al., 2010; Beaulieu et al., 2013) focused on mean changes316

in CHL, not variability and extremes, and these detection times may be different here.317

Recent studies also suggested that long-term trends in satellite ocean color may be de-318

tectable faster in reflectance rather than CHL (Cael et al., 2023; Dutkiewicz et al., 2019).319

Assessing whether similar patterns can be detected in reflectance observations should320

be the focus of a future study.321

Second, merged time series of multimission products used here are susceptible to322

biases, which may impact the CHL trends detected (Saulquin et al., 2013; Mélin, 2016;323

Mélin et al., 2017; Hammond et al., 2018). GlobColour merges multi-sensor CHL with324

a specific flagging, but is not explicitly bias-corrected (Maritorena et al., 2010; Garnes-325

son et al., 2019; Yu et al., 2023). For the OC-CCI product, multi-sensors reflectance is326

merged before CHL derivation, which results in a more constrained approach (Sathyen-327

dranath et al., 2017). As a result, long-term CHL trends detected in OC-CCI and Glob-328

Colour products differ in some regions (e.g., North Pacific Subarctic Gyre and North At-329

lantic Drift Provinces). By utilizing the two datasets, we reduce the sensitivity of our330

results to the choice of datasets and bias correction algorithms, but we cannot entirely331

eliminate the possibility of bias in trends detected introduced from using multiple mis-332

sion data products.333

Third, few studies have used satellite-derived CHL datasets to analyze extremes334

(Le Grix et al., 2021; Woolway et al., 2021). Bias due to high solar zenith angles, clouds,335

and aerosols may affect the data (Le Grix et al., 2021; Gregg et al., 2009). Low sampling336

rates of CHL extremes may also affect our results. The majority of the surface ocean is337

characterized by low CHL levels in the Oligotrophic area, whereas high CHL levels are338

only present in a small portion (∼ 1%) primarily located in coastal zones (Sathyendranath339

et al., 2019; Van Oostende et al., 2018). Insufficient data in CHL extremes correspond-340

ing to lower and upper quantile levels result in higher uncertainties (larger confidence341

intervals) for CHL trends.342

Finally, we made assumptions when fitting the statistical model that may influence343

the results. We assume that trends in different quantiles are linear, following previous344

studies (Gregg et al., 2005; Boyce et al., 2010; Henson et al., 2010; Boyce et al., 2010;345

Saulquin et al., 2013; Mélin, 2016; Henson et al., 2016; Hammond et al., 2020). More com-346

plex time dependence such as nonlinear trends or abrupt changes were not assessed as347

linear trends can provide a first-order approximation to long-term changes and avoid over-348

fitting the data. Furthermore, the period of observations is quite short, so there is a risk349

of overfitting with more complex time dependence. A constant seasonal pattern is as-350

sumed in our study, though some studies have shown that the CHL seasonal cycle might351

vary over time (Vantrepotte & Mélin, 2009; Henson et al., 2013). A changing seasonal352

cycle over the period of observation may bias trends detected here. However, changes353

in seasonal cycle require longer time series to be detected than trends in the mean (Hen-354

son et al., 2013), and potential biases introduced here should be minimal. Quantile re-355

gression models used here assume independent errors. To deal with the presence of au-356

tocorrelation, we used pre-whitening methods. These approaches help reduce the risk357

of a false detection (i.e., detecting a trend when there is none), but are also associated358

with a reduced power of detection (Bayazit & Önöz, 2007). As such, significant trends359

may not be detected. Results may also differ based on the pre-whitening approach used.360

Here, we reduced this problem by using two different pre-whitening approaches, Cochrane-361

Orcutt and Hildreth-Lu procedures, and showed our results were not sensitive to the choice362

of pre-whitening method (see supporting information).363

To our knowledge, this is the first study assessing long-term changes in CHL dis-364

tribution on a global scale, as opposed to focusing entirely on mean CHL. More infor-365

mation related to climate variables such as seasonal changes and their variability, as well366

as extreme conditions, are revealed by assessing trends in all quantile levels of the CHL367
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distribution. We conclude that over the satellite record, trends in CHL extremes are more368

pronounced than that in the mean CHL. Henson et al. (2010) concluded that the cur-369

rent length of observation recording is insufficient to identify a climate change trend in370

mean CHL and suggested that a time series of approximately 40 years is needed to sep-371

arate a global warming trend from natural variability. Our results show that trends in372

CHL high extremes tend to have larger magnitudes and uncertainties than trends in the373

mean, both of which may impact detection times. By considering the whole distribution374

(not just the mean), we may be able to detect climate change-related trends faster and375

more holistically, and better understand the effects of anthropogenic forcing on marine376

ecosystems, which will enable us to make more effective decisions concerning socioeco-377

nomic systems that are affected by climate change (Henson et al., 2016). Future work378

should focus on quantifying detection times in different aspects of CHL distribution to379

develop the ability to formally detect the impact of climate change in marine ecosystems380

as soon as possible.381

5 Open Research382

Data Availability Statement383
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Key Points:5

• Long-term changes are detected in different aspects of the distribution of chlorophyll-6

a (not just the mean state).7

• Oceanic chlorophyll-a high extremes are changing faster than chlorophyll-a mean8

globally during 1997-2022.9

• On a regional scale, chlorophyll-a extremes trends are predominant at high lat-10

itude (+), equatorial (-), and oligotrophic regions (-).11
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Abstract12

The concentration of chlorophyll-a (CHL) is an important proxy for autotrophic biomass13

and primary production in the ocean. Quantifying trends and variability in CHL are es-14

sential to understanding how marine ecosystems are affected by climate change. Previ-15

ous analyses have focused on assessing trends in CHL mean, but little is known about16

observed changes in CHL extremes and variance. Here we apply a quantile regression17

model to detect trends in CHL distribution over the period of 1997-2022 for several quan-18

tiles. We find that the magnitude of trends in upper quantiles of global CHL (>90th)19

are larger than those in lower quantiles (≤50th) and in the mean, suggesting a growing20

asymmetry in CHL distribution. On a regional scale, trends in different quantiles are sta-21

tistically significant at high latitude, equatorial, and oligotrophic regions. Assessing changes22

in CHL distribution has potential to yield a more comprehensive understanding of cli-23

mate change impacts on CHL.24

Plain Language Summary25

The marine environment is essential to nature and society, as it provides food and26

other important services such as Earth’s climate regulation and habitat for species. Ma-27

rine primary productivity is increasingly stressed due to global climate change. Detect-28

ing the impact of climate change on primary producers should be a priority given their29

critical role in the climate system. Most studies focus on the impact of climate change30

by evaluating the mean state of primary productivity, but little is known about whether31

and how climate change is impacting variance and extremes. Here we assess changes in32

chlorophyll-a (CHL), which is an important proxy for primary production of marine ecosys-33

tems. We quantify long-term changes in different aspects of the CHL distribution (mean,34

variance, and extremes) using a quantile regression model. We find that CHL high ex-35

tremes and variability are slightly intensified globally during the 26 years of observational36

record. Trends in regional scales, especially in high-latitude and North Atlantic Subtrop-37

ical Gyre, show that CHL high extremes have been increasing since 1997. Our results38

suggest that more emphasis should be put into understanding the impact of climate change39

on the variance and extremes of primary productivity for climate change adaptation and40

mitigation.41

1 Introduction42

Global climate change is increasingly affecting marine ecosystems, altering the ocean’s43

biological primary productivity. Based on coupled model projections, a global decline44

in primary productivity is expected due to changes in temperature, light, nutrients, and45

grazing (Bopp et al., 2013; Kwiatkowski et al., 2020), with potential repercussions on46

marine ecosystems (Laufkötter et al., 2015), fisheries (Free et al., 2019), and the global47

carbon cycle (Sarmiento et al., 2004). Marine phytoplankton contribute nearly half of48

the global primary productivity (Field et al., 1998). Consequently, detecting the impact49

of climate change on marine phytoplankton should be a priority given the critical role50

that primary productivity play in physical and biogeochemical interactions in the ocean.51

Chlorophyll-a (CHL) is an essential climate variable and an important proxy for52

marine primary productivity (Bojinski et al., 2014; Hollmann et al., 2013). Satellite CHL53

offers high temporal and spatial resolution to support global and regional assessments54

of long-term changes in CHL (McClain, 2009; Blondeau-Patissier et al., 2014; Bindoff55

et al., 2022). To date, studies of long-term trends in CHL have focused on changes in56

the mean state (Gregg et al., 2005; Boyce et al., 2010; Henson et al., 2010; Boyce et al.,57

2010; Saulquin et al., 2013; Mélin, 2016; Henson et al., 2016; Hammond et al., 2020). Al-58

though assessing long-term trends in the mean is important for understanding how CHL59

is changing, this does not depict a complete portrait of changes. Assessing changes in60
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variability and extremes may yield a more complete understanding of climate change im-61

pacts on CHL.62

Ocean extremes and their impact on marine ecosystems have sparked a lot of at-63

tention and concern recently (Gruber et al., 2021). Marine heatwaves, low oxygen con-64

centrations, and high acidity events are expected to intensify and occur more often, with65

impacts on organisms and ecosystems, further affecting ecosystem services and human66

welfare (Gruber et al., 2021). Compound extreme events, where two or more ocean ex-67

tremes are happening synergistically (e.g., low oxygen and high temperature) are of par-68

ticular concern as they can contribute to biological and ecological impacts in different69

ways (Gruber et al., 2021; Le Grix et al., 2021; Burger et al., 2022). Several studies have70

considered how the ocean’s variance may be responding to climate change, including sea71

surface temperatures (Alexander et al., 2018), marine carbon dioxide (Landschützer et72

al., 2018), sea ice (Tareghian & Rasmussen, 2013), sea level (Barbosa, 2008), and phy-73

toplankton biomass (Elsworth et al., 2022). A recent study showed that changes in vari-74

ance are omnipresent in different aspects of Earth’s climate and span physical and ecosys-75

tem variables, and tend to be more predominant in variables that are typically not nor-76

mally distributed such as primary production (Rodgers et al., 2021). To our knowledge,77

there is no prior assessment of change in global CHL distribution over the observational78

period.79

In this study, we provide a first assessment of changes in the whole CHL distribu-80

tion, since other aspects of the CHL distribution (e.g., extremes) may be equally or even81

more important than the mean CHL. Our objective is to assess observed long-term trends82

in CHL distribution globally and regionally. Two multi-mission satellite products are uti-83

lized to expand the variety of results on global and regional scales and reduce the effect84

of the sensitivity of datasets. The impact of seasonality is also taken into account. We85

estimate long-term trends in multiple quantiles of a time series using quantile regression86

(QR), which together represent spatial and temporal changes in the distribution, includ-87

ing the tails representing extreme events (Cai & Reeve, 2013).88

2 Data and Methodology89

2.1 Data90

We use two chlorophyll-a (mg/m3) data products spanning 1997 to 2022. The first91

one is derived from the ESA’s Ocean Color Climate Change Initiative (OC-CCI) project92

version 6.0 (Sathyendranath et al., 2019). This is a satellite multi-mission data product93

computed from merging the remote-sensing reflectance of a set of sensors, including Sea-94

viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectro-95

radiometer onboard the Aqua (MODIS-A), Medium Resolution Imaging Spectrometer96

(MERIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and Ocean and Land Colour97

Instrument (OLCI). The OC-CCI product is continuously corrected for biases (Mélin et98

al., 2017). Additional analyses using the OC-CCI data product are included in the sup-99

porting information (Text S1).100

The second dataset is derived from the GlobColour Project of the Copernicus Ma-101

rine Environment Monitoring Service (CMEMS). This merged chlorophyll-a product is102

constructed by a combination of chlorophyll-a products directly computed for each sen-103

sor (SeaWiFS, MODIS-A, MERIS, VIIRS, and OLCI) (Garnesson et al., 2019), which104

provides a “cloud-free” product by space-time interpolation. While the focus of our anal-105

ysis is on the OC-CCI dataset, we include additional analyses of GlobColour in the sup-106

porting information (Text S2) as a measure of sensitivity.107

Both datasets cover from September 1997 to December 2022 and are gridded at 4108

km spatial resolution and monthly temporal resolutions. They have been regridded from109

a 1/24◦ grid to a 1◦ grid by averaging within 1 degree boxes. Before fitting the QR model,110
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the monthly data is deseasonalized in both datasets assuming a constant seasonal cy-111

cle.112

2.2 Quantile Regression Model113

To quantify changes in CHL distribution, we estimate trends in different distribu-114

tion quantiles via QR (Koenker & Bassett Jr, 1978). While assessing change in the mean115

of climate variables using ordinary least squares (OLS) provides extremely valuable in-116

formation, it does not provide insight into changing extremes and how overall variabil-117

ity is related to time-varying events (Abbas et al., 2019). The main difference with OLS118

is that QR substitutes the conditional mean function in OLS for a conditional quantile119

function (Koenker & Bassett Jr, 1978; Koenker & D’Orey, 1987). As such, instead of mod-120

eling the mean response in the regression model, QR models the response at a given quan-121

tile level. The QR model makes no assumptions about the distribution of the target vari-122

able and the residuals. Specifically, QR can identify opposite trends in statistical extremes123

(upper and lower) that would remain hidden if focusing on means (Sankarasubramanian124

& Lall, 2003). We use a QR model to assess trends of CHL in various quantile levels.125

The model is given by:126

yt = ατ + βτ t+ ϵtτ , (1)

where yt is the response variable (i.e., CHL) at time t (in months) for the condi-127

tional quantile τ , ατ and βτ denote the intercept and slope for quantile level τ , respec-128

tively. Residuals are represented by ϵτ . The quantile regression model can be expressed129

as y = f
′
(ατ , βτ , t). For given parameters ατ and βτ , they are estimated by minimiz-130

ing the sum of asymmetrically weighted absolute residuals131

n∑
t=1

ρτ (yt − f
′
(ατ , βτ , t)), (2)

where n is the data length and ρτ represents the tiled absolute value function, which132

gives different weights to positive and negative residuals (Koenker & Hallock, 2001). The133

tiled absolute value function can be expressed as:134

ρτ =

{
τ, yt ≥ (ατ + βτ t)
1− τ, yt < (ατ + βτ t)

(3)

We fit QR models at several quantile levels (5%, 10%, 50%, 90%, and 95% levels).135

As a comparison, OLS is also used here to fit trends in the mean CHL. The quantile re-136

gression model is implemented using the R package quantreg (Koenker et al., 2018).137

2.3 Serially Correlated Residuals138

Monthly chlorophyll-a concentration may exhibit serial autocorrelation in time se-139

ries, which may bias trend detection (Beaulieu et al., 2013). Here we assume that resid-140

uals in CHL may follow a first-order autocorrelation (AR1) model. The quantile regres-141

sion residuals at level τ , ϵτt, are given by:142

ϵτt = ϕτ ϵτt−1 + ν̂τt, (4)

where ϕ is the first-order autocorrelation coefficient and ν̂τ denotes white noise er-143

rors.144

–4–



manuscript submitted to Geophysical Research Letters

QR estimates may be biased in the presence of correlated errors (Koenker et al.,145

2017). To verify the presence of autocorrelation in the residuals of the QR, we use a residual-146

based autocorrelation test, named the QF test (Huo et al., 2017). The test statistic is147

given by:148

QFT =

∑T
t=1 ν̃

2
τt −

∑T
t=1 ν̂

2
τt∑T

t=1 ν̂
2
τt/(T − p− k)

, (5)

where ν̂2τt denotes the residuals from the AR1 model fitted on the quantile resid-149

uals in Equation 4, implying the model under the alternative hypothesis (H1 : ϕ ̸= 0),150

ν̃2τt denotes the residuals under the null hypothesis (H0 : ϕ = 0) in which all parame-151

ters for lagged residuals are joint to zero under the null hypothesis, T is the length of152

time series, p is the autocorrelation order, and k is the number of explanatory variables.153

The asymptotical distribution of the QF statistic is a chi-squared distribution with p de-154

grees of freedom. More detailed information is presented in Huo et al. (2017).155

If serial correlation is detected in the residuals from the QF test, we transform the156

time series by modifying the response variable (Cochrane & Orcutt, 1949):157

yt − ϕτyt−1 = ατ (1− ϕτ ) + βτ (t− ϕτ (t− 1)) + ντt, (6)

Where ατ and βτ are estimated from Equation 1. The autoregressive parameter158

ϕτ is estimated by first regressing the untransformed QR model and obtaining the resid-159

uals ϵ̂t, then regressing ϵ̂t on ϵ̂t−1. Note that the first data point is lost in this process,160

and there are n-1 residual terms ντt after transformation. If the transformation was suc-161

cessful, the ντt should be white noise. To account for potential sensitivity to the choice162

of transformation method, We also use the Hildreth-Lu procedure (Hildreth & Lu, 1960).163

This procedure is also a transformation based on differencing, but the Hildreth-Lu pro-164

cedure offers a simultaneous estimation of the autocorrelation of the disturbances and165

the coefficients (Dufour et al., 1980). Results using Hildreth-Lu are included in the sup-166

porting information (Text S1; Figure S1).167

3 Results168

3.1 Global Trends and Variability169

On a global scale, trend estimates vary according to quantile levels (Figure 1). The170

magnitude of trend in the upper quantile of global CHL (95th) is larger than those in171

the middle and lower quantiles (<50th) (Figure 1a and 1b). As shown in Figure 1c and172

1d, though the magnitude and uncertainty of global CHL trends differ by quantile level,173

most of the quantile levels show an increase in CHL. All trends are shown after remov-174

ing serial correlation.175

For the OC-CCI data product, all quantiles present a positive and significant trend176

(Figure 1a and 1c). The CHL trends in upper quantile (95th) is the steepest with a mag-177

nitude of 2.5 × 10−4 mg m−3 yr−1, whereas the lower and middle quantiles show trends178

with smaller magnitudes. These features suggest a slight increase in the variance of global179

CHL given a more pronounced increase in the upper quantile than in lower quantiles,180

although trend uncertainty is also larger for the 95th quantile. A positive trend of 1.2181

× 10−4 mg m−3 yr−1 is detected by applying an OLS regression model that is almost182

identical to trends in median CHL (50th quantile). It indicates that the average and me-183

dian global CHL are changing closely, and at a slightly lower pace than lower and up-184

per extreme concentrations. The 95 % confidence intervals in all quantile levels suggest185

the larger uncertainty (±0.5 and ±1.2 × 10−4 mg m−3 yr−1) in the lower and upper quan-186

tiles, compared to middle quantiles with ±0.2 × 10−4 mg m−3 yr−1.187
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(a) (b)

(c) (d)

Figure 1 Time series of monthly global mean CHL from 1997-2022 with trends fit-
ted in different quantile levels from (a) OC-CCI product and (b) GlobColour product.
Trends in different quantile levels (5th to 95th levels) with 95% confidence intervals from
(c) OC-CCI product and (d) GlobColour product. Trends were fitted to transformed data
to remove autocorrelation.

The trends and their variability in global CHL are similar for most quantiles in the188

GlobColour data product (Figure 1b and 1d). Although negative trends are detected in189

the 5th and 10th quantile levels, trends in upper and middle quantile levels are positive.190

Again, upper quantile levels have a larger uncertainty (Figure 1d). A trend in CHL mean191

is 1 × 10−4 mg m−3 yr−1 that is very similar to trends in median CHL (0.5 × 10−4 mg192

m−3 yr−1). The difference in trend sign between global CHL high and low imply an in-193

creasing variability over this period. This increase in variability is less pronounced in the194

OC-CCI dataset, with the lower and upper quantiles having the same trend sign but dif-195

ferent magnitudes (Figure 1a). The results are not sensitive to a log-transformation of196

CHL (Text S1; Figure S2 in supporting information).197

3.2 Regional Trends198

Trends estimated in each grid cell are presented in Figure 2. After a preliminary199

analysis, the presence of autocorrelation was detected in most areas of the ocean (Fig-200

ure S3 in the supporting information). As such, a Cochrane-Orcutt transformation was201

applied to remove autocorrelation from the data. It must be noted that this transfor-202

mation does not remove the trend signal, but only sieve the autocorrelation. As a com-203

parison, a different transformation procedure was used to remove autocorrelation from204

the data, the Hildreth-Lu method (Figure S1 in the supporting information). Results205

are consistent with the Cochrane-Orcutt transformation (Text S1; Figure S1 in the sup-206

porting information), suggesting that the results are robust to the choice of transforma-207

tion approach.208

At the regional scale, trends in lower quantiles are more scattered (Figure 2a and209

2b), and patterns become more apparent in the median and larger quantiles (Figure 2c,210
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(a) (b)

(c) (d)

(e) (f)

Figure 2 Maps of CHL trends from the OC-CCI data product during 1997-2022 in
(a)5th, (b) 10th, (c) 50th, (d) 90th, (e) 95th quantile levels, and (f) in CHL mean, re-
spectively. Trends were fitted to transformed data to remove autocorrelation via the
Cochrane-Orcutt procedure. The grey shadows are regions where trends are not signifi-
cant at a 5% level.
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2d, and 2e). Overall, regions with significant trends in the upper quantiles are mainly211

located at high latitudes (+), in equatorial (-), and oligotrophic regions (-) (Figure 2d212

and 2e). A few regions emerge with consistent patterns of change in North Pacific Sub-213

arctic Province, North Atlantic Drift Province, Subantarctic Province, Pacific Equato-214

rial Province, North Pacific Subtropical Gyre, and North Atlantic Subtropical Gyre, and215

are highlighted in Figure 2f. The regions are divided as defined by Longhurst (1995) (see216

supporting information, Text S3).217

In Figure 3, we further look into the regions with significant trends identified above.218

We averaged grid cells in these regions and estimated trends with their respective con-219

fidence intervals. Trends in different quantiles may vary in magnitude and sign, suggest-220

ing that the shape of the CHL distribution is varying on a regional scale. Positive trends221

dominate in the North Pacific Subarctic Province, North Atlantic Drift Province, and222

Subantarctic Province (Figure 3a, 3b, and 3c). Trends in Subantarctic Province are pos-223

itive in all quantile levels, while the North Pacific Subarctic Province and North Atlantic224

Drift Province exhibit similar patterns whereby trends in lower quantiles are not signif-225

icant and median and upper quantiles are significant and positive. In these three regions,226

trends detected in different quantiles are consistent with an increasing variability over227

the observational record. In low nutrient regions, namely the Pacific Equatorial Province228

and North Pacific Subtropical Gyre, trends in the lower quantiles are significantly in-229

creasing even if negative trends are observed in the mean/median (Figure 3d and 3e).230

It might indicate that CHL low extremes become less frequent during the recording pe-231

riod. Among these regions, Pacific Equatorial Province and North Pacific Subtropical232

Gyre present consistent trends with an overall decrease in variability. The North Atlantic233

Subtropical Gyre exhibits decreasing trends in middle quantile levels and increasing trends234

at upper quantiles, suggesting a slightly increasing variance over time. Trend estimates235

obtained by the OLS model closely follow those for the median in all of the regions (see236

supporting information, Figure S4).237

Most regions show increasing variability in CHL except Pacific Equatorial and North238

Pacific Subtropical Gyre Province. The large variance of CHL relates to climate season-239

ality and dominates at high latitudes, sub-polar, and coastal waters. December, January,240

and February (DJF) and June, July, and August (JJA) are two seasons that are com-241

monly used to analyze ocean phytoplankton blooms because they represent contrasting242

environmental conditions that affect the growth and distribution of phytoplankton in the243

ocean. The impact of regional seasonality is shown in the supporting information (Text244

S1; Figure S5).245

We also include results obtained on the GlobColour dataset in these regions to as-246

sess the sensitivity of our findings to the choice of the dataset in Text S2 (supporting247

information). In most regions, trends detected in different quantiles are consistent ex-248

cept for the North Atlantic Drift province and the North Pacific Subtropical Gyre Province249

(Figure S6, S7, and S8 in the supporting information).250

4 Discussion and Conclusion251

In this study, we provide a first assessment of changes in CHL distribution in the252

global ocean over the 1997–2022 period. At the global scale, our results suggest that dif-253

ferent quantiles are changing at different paces, with CHL high extremes changing faster254

than the rest of the distribution. This difference in pace results in an overall slight in-255

crease in CHL variability. At the regional scale, CHL high extremes are increasing at high256

latitudes and decreasing in equatorial and oligotrophic regions. These changes are con-257

sistent with Earth System Models projections whereby high latitude oceans are light-258

limited while equatorial and oligotrophic regions are limited by nutrients (Doney, 2006;259

Doney et al., 2012; Kwiatkowski et al., 2020). Furthermore, we show that changes at high260

latitudes are more pronounced during DJF season, while changes in equatorial regions261
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(a) (b)

(c) (d)

(e) (f)

Figure 3 Regional CHL trends in OC-CCI data product in different quantile levels in
regions, (a) North Pacific Subarctic Gyre Province, (b) North Atlantic Drift Province, (c)
Subantarctic Province, (d) Pacific Equatorial Province, (e) North Pacific Subtropical Gyre
Province, and (f) North Atlantic Subtropical Gyre Province. The 95% confidence intervals
for each regression are represented by the vertical lines. The red horizontal dashed line is
zero.
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dominate during JJA. This may be due to climate processes like El Niño-Southern Os-262

cillation (ENSO) that tend to start during JJA in equatorial regions.263

In a study focusing on analyzing phytoplankton carbon biomass in an Earth Sys-264

tem Model large ensemble, Elsworth et al. (2022) identified decreasing variability of global265

phytoplankton variance from 1920-2100. Our results do not show an overall decreased266

variability in CHL. This difference may be due to the differing periods of analysis. In-267

deed, our analysis focuses on the period 1997-2022, and changes detected over that pe-268

riod may be more indicative of decadal variability rather than long-term impact of cli-269

mate change over 1920-2100. Another explanation could be that the two studies are an-270

alyzing different variables. While previous studies have discussed the correlation between271

the spatial distribution of CHL (used in this study) and phytoplankton carbon biomass272

(Kostadinov et al., 2016; Mart́ınez-Vicente et al., 2017), those variables tend to decou-273

ple especially in subtropical regions (Barbieux et al., 2018). Future work should focus274

on analyzing CHL extremes and variability in models to assess whether long-term changes275

in CHL variability and extremes are consistent with observations, in order to better un-276

derstand their drivers and anticipate future changes.277

Regional trends differ from those at the global scale with mixed signs and larger278

magnitudes. Regions with significant trends in upper quantiles include the North Pa-279

cific Subarctic Province (+), North Atlantic Drift Province (+), Subantarctic Province280

(+), Pacific Equatorial Province (-), North Pacific Subtropical Gyre (-), and North At-281

lantic Subtropical Gyre (-), as shown in Figure 2f. Regional changes in upper quantiles282

described above also correspond to changes in CHL variability with increase in the North283

Pacific Subarctic Province, North Atlantic Drift Province, and Subantarctic Provinces,284

and declining variability in Pacific Equatorial and North Pacific Subtropical Gyre Province.285

Those regions are characterized by noticeable ecological and biogeochemical seasonal vari-286

ability that is closely related to strong annual cycles in light, nutrients, temperature, wind287

force, and zooplankton grazing at surface (Henson et al., 2010; Elsworth et al., 2022).288

At the regional scale, large-scale climate patterns such as El Niño Southern Oscillation289

(ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO) are290

known drivers of CHL trends and variability (Corno et al., 2007; Zhai et al., 2013; Kang291

et al., 2017; Gao et al., 2020; Le Grix et al., 2021). In the North Pacific Subarctic Gyres292

and North Atlantic Drift Provinces, warming over the last two decades has resulted in293

more phytoplankton blooming (Dunstan et al., 2018). Our results showing that CHL high294

extremes are becoming more frequent are consistent with Dunstan et al. (2018) and Kahru295

& Mitchell (2008) findings. Changes in the North Atlantic Drift region are more pronounced296

than the North Pacific Subarctic Gyre, also consistent with previous analysis on phy-297

toplankton blooms (Westberry et al., 2016). As for the Southern hemisphere, seasonal298

variation in the location of transition zones between subpolar and subtropical gyres co-299

incide with increasing CHL variance (Dunstan et al., 2018). This phenomenon may in-300

dicate that the increasing seasonal variance plays a role in the CHL distribution changes301

detected here (Thomalla et al., 2023). Trends in Subantarctic Province are significantly302

positive in all quantile levels. A possible explanation is that though iron limitation con-303

trols the Southern Ocean, sea surface warming could still be an important driver on sea-304

sonal phytoplankton blooms in this region instead of light or nutrients (Moore et al., 2013;305

Laufkötter et al., 2015), resulting in positive and similar magnitude changes in CHL dis-306

tribution and their variability over the observational period.307

Some limitations in this study may impact the validity of our results. First, the short-308

ness of the record may impact our results, as we use observations over a period that is309

slightly shorter (26 years) than the recommended 30 years for assessing climate change310

impacts (WMO, 2018). More specifically, satellite ocean color datasets require multiple311

decades to distinguish long-term climate-related trends from natural variability(Henson312

et al., 2010; Beaulieu et al., 2013; Bindoff et al., 2022), although exact detection timescales313

vary depending on regional interannual and decadal variability and magnitude of trends314
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(Henson et al., 2010). That said, previous studies aimed at estimating timescales of trend315

detection in ocean CHL (Henson et al., 2010; Beaulieu et al., 2013) focused on mean changes316

in CHL, not variability and extremes, and these detection times may be different here.317

Recent studies also suggested that long-term trends in satellite ocean color may be de-318

tectable faster in reflectance rather than CHL (Cael et al., 2023; Dutkiewicz et al., 2019).319

Assessing whether similar patterns can be detected in reflectance observations should320

be the focus of a future study.321

Second, merged time series of multimission products used here are susceptible to322

biases, which may impact the CHL trends detected (Saulquin et al., 2013; Mélin, 2016;323

Mélin et al., 2017; Hammond et al., 2018). GlobColour merges multi-sensor CHL with324

a specific flagging, but is not explicitly bias-corrected (Maritorena et al., 2010; Garnes-325

son et al., 2019; Yu et al., 2023). For the OC-CCI product, multi-sensors reflectance is326

merged before CHL derivation, which results in a more constrained approach (Sathyen-327

dranath et al., 2017). As a result, long-term CHL trends detected in OC-CCI and Glob-328

Colour products differ in some regions (e.g., North Pacific Subarctic Gyre and North At-329

lantic Drift Provinces). By utilizing the two datasets, we reduce the sensitivity of our330

results to the choice of datasets and bias correction algorithms, but we cannot entirely331

eliminate the possibility of bias in trends detected introduced from using multiple mis-332

sion data products.333

Third, few studies have used satellite-derived CHL datasets to analyze extremes334

(Le Grix et al., 2021; Woolway et al., 2021). Bias due to high solar zenith angles, clouds,335

and aerosols may affect the data (Le Grix et al., 2021; Gregg et al., 2009). Low sampling336

rates of CHL extremes may also affect our results. The majority of the surface ocean is337

characterized by low CHL levels in the Oligotrophic area, whereas high CHL levels are338

only present in a small portion (∼ 1%) primarily located in coastal zones (Sathyendranath339

et al., 2019; Van Oostende et al., 2018). Insufficient data in CHL extremes correspond-340

ing to lower and upper quantile levels result in higher uncertainties (larger confidence341

intervals) for CHL trends.342

Finally, we made assumptions when fitting the statistical model that may influence343

the results. We assume that trends in different quantiles are linear, following previous344

studies (Gregg et al., 2005; Boyce et al., 2010; Henson et al., 2010; Boyce et al., 2010;345

Saulquin et al., 2013; Mélin, 2016; Henson et al., 2016; Hammond et al., 2020). More com-346

plex time dependence such as nonlinear trends or abrupt changes were not assessed as347

linear trends can provide a first-order approximation to long-term changes and avoid over-348

fitting the data. Furthermore, the period of observations is quite short, so there is a risk349

of overfitting with more complex time dependence. A constant seasonal pattern is as-350

sumed in our study, though some studies have shown that the CHL seasonal cycle might351

vary over time (Vantrepotte & Mélin, 2009; Henson et al., 2013). A changing seasonal352

cycle over the period of observation may bias trends detected here. However, changes353

in seasonal cycle require longer time series to be detected than trends in the mean (Hen-354

son et al., 2013), and potential biases introduced here should be minimal. Quantile re-355

gression models used here assume independent errors. To deal with the presence of au-356

tocorrelation, we used pre-whitening methods. These approaches help reduce the risk357

of a false detection (i.e., detecting a trend when there is none), but are also associated358

with a reduced power of detection (Bayazit & Önöz, 2007). As such, significant trends359

may not be detected. Results may also differ based on the pre-whitening approach used.360

Here, we reduced this problem by using two different pre-whitening approaches, Cochrane-361

Orcutt and Hildreth-Lu procedures, and showed our results were not sensitive to the choice362

of pre-whitening method (see supporting information).363

To our knowledge, this is the first study assessing long-term changes in CHL dis-364

tribution on a global scale, as opposed to focusing entirely on mean CHL. More infor-365

mation related to climate variables such as seasonal changes and their variability, as well366

as extreme conditions, are revealed by assessing trends in all quantile levels of the CHL367
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distribution. We conclude that over the satellite record, trends in CHL extremes are more368

pronounced than that in the mean CHL. Henson et al. (2010) concluded that the cur-369

rent length of observation recording is insufficient to identify a climate change trend in370

mean CHL and suggested that a time series of approximately 40 years is needed to sep-371

arate a global warming trend from natural variability. Our results show that trends in372

CHL high extremes tend to have larger magnitudes and uncertainties than trends in the373

mean, both of which may impact detection times. By considering the whole distribution374

(not just the mean), we may be able to detect climate change-related trends faster and375

more holistically, and better understand the effects of anthropogenic forcing on marine376

ecosystems, which will enable us to make more effective decisions concerning socioeco-377

nomic systems that are affected by climate change (Henson et al., 2016). Future work378

should focus on quantifying detection times in different aspects of CHL distribution to379

develop the ability to formally detect the impact of climate change in marine ecosystems380

as soon as possible.381
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phytoplankton size classes retrieved via ocean color estimates of the particle size526

distribution. Ocean Science, 12 (2), 561–575.527

Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian,528

J. R., . . . others (2020). Twenty-first century ocean warming, acidification, deoxy-529

genation, and upper-ocean nutrient and primary production decline from cmip6530

model projections. Biogeosciences, 17 (13), 3439–3470.531

Landschützer, P., Gruber, N., Bakker, D. C., Stemmler, I., & Six, K. D. (2018).532

Strengthening seasonal marine co2 variations due to increasing atmospheric co2.533

Nature Climate Change, 8 (2), 146–150.534

Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L.,535

. . . others (2015). Drivers and uncertainties of future global marine primary536

production in marine ecosystem models. Biogeosciences, 12 (23), 6955–6984.537

Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S., & Frölicher, T. L.538
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Figures S7: CHL regional trends and uncertainties in GlobColour data product in differ-

ent quantile levels

Figures S8: CHL regional trends fit in GlobColour data product at different quantile levels

Text S1: Additional analysis performed on the OC-CCI data product

In this section, we provide additional analysis on the OC-CCI dataset. We provide more

details on pre-whitening and also include results using a different pre-whitening approach

and assess whether a log-transformation affects our results. We also assess the impact of

regional seasonality on trends detected in several quantiles.

S1.1 Additional details on trends and transformations

In the main text, we used the Cochrane-Orcutt transformation to remove autocorrelation

before detecting trends in different CHL quantiles. Here, we use the Hildreth-Lu procedure

(Figure S1) to deal with autocorrelation in the CHL time series. The magnitude of trends

and significance area at a 5% level on a global scale are similar. We also include trends

detected in log-transformed CHL to assess whether our results are sensitive to such a

transformation (Figure S2). Trends are similar in both CHL and log-transformed CHL,

and this transformation does not impact our results.

The autoregressive parameter ϕτ is estimated and has a similar value in two procedures

(Figure S3). Note that only the 5th percent quantile level is shown, but the first-order

autocorrelation level is similar in other quantiles. Additionally, Figure S4 shows the time
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series of regional chlorophyll-a with regional trends in multiple quantile levels obtained

with a Cochrane-Orcutt transformation.

S1.2 Impact of Regional Seasonality

To better describe the impact of seasonality on long-term trends, we apply the quantile

regression analysis on the time series of averaged CHL during DJF and JJA, respectively

(Figure S5). Though the results show positive trends in the 95th quantile in the high

latitudes of the North Pacific and North Atlantic, the area of significant trends almost

double in DJF compared to that in the JJA (Figure S5b and S5d). The trends magnify

with the increase of quantiles from the 50th to 95th quantile levels in both seasonal

periods. In addition, trends and variability of CHL in the Southern Ocean are increasing

over time in all quantile levels, particularly in the region around Antarctica, as shown in

the main text. Although CHL in the Southern Ocean reaches its maximum during the

austral spring and summer, i.e. DJF, whereas the magnitude slightly decreases during

the winter months, i.e. JJA, more significant trends are detected in JJA (Figure S5b and

S5d). These findings suggest that trends in CHL extremes high in the north hemisphere

are mainly associated with DJF, but CHL extremes high are dominated by JJA in the

southern hemisphere.

Notably, trends in the upper quantile level in the eastern Equatorial Pacific region exhibit

an opposite seasonal pattern compared to trends in high latitudes (Figure S5b and S5d).

Although negative trends are detected in the upper quantile levels in both winter and

summer time, both magnitude and area of significant trends are larger in JJA.
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Text S2: Additional analysis performed on the Globcolour data product

Here, we present comprehensive quantile regression results of the GlobColour data prod-

uct, including maps of chlorophyll-a trends from 1997-2022 after a Cochrane-Orcutt trans-

formation, trends and variability in different quantile levels estimated globally (Figure S6)

and regionally.

S2.1 Comparison of Two Data Products

Though positive trends in the upper quantile are larger than in the lower quantile in Sub-

antarctic Province, the increasing variabilities of trends are consistent in all quantile levels

in the two datasets (see main text and S7c). Trends in lower quantile are negative but are

close to zero in most quantile levels in North Pacific Subarctic Gyres, North Pacific, and

North Atlantic Subtropical Gyres (Figure S7a, S7e, and S7f). Conversely, trends in lower

quantile are positive and negative in middle and upper quantile levels in North Atlantic

Drift and Pacific Equatorial Province (Figure S7b and S7d). In these five regions, trends

in all quantile levels are consistent with decreasing variability. Larger uncertainties are

associated with low quantiles (5th and 10th), and uncertainties in the upper quantiles are

far smaller and evenly with uncertainties in middle quantiles. Similarly, trend estimates

obtained by the OLS model and median quantile level (50th) are overlapped, which is

consistent in the two datasets (Figure S8).

Text S3: Definition of regions in this study
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Regions are defined by Longhurst (1995), according to physical forcing and biogeochemi-

cal characteristics. The regions mentioned in this study are corresponding with Longhurst

Province. North Pacific Subarctic Province indicates Eastern and Western Pacific sub-

arctic gyres (PSAE and PSAW). North Atlantic Drift Province indicates North Atlantic

Drift (NADR). Subantarctic Province indicates Subantarctic water ring (SANT). Pacific

Equatorial Province indicates North Pacific equatorial counter current (PNEC) and Pa-

cific equatorial divergence (PEQD). North Pacific Subtropical Gyre indicates Northwest

Pacific subtropical (NPTW). North Atlantic Subtropical Gyre indicates Northwest and

Northeast Atlantic subtropical gyral (NASW and NASE).
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(a) (b)

(c) (d)

(e) (f)

Figure S1 Maps of CHL trends from the OC-CCI data product during 1997-2022 in (a) 5th,

(b) 10th, (c) 50th, (d) 90th, (e) 95th quantile levels, and (f) in CHL mean, respectively. Trends

were fitted to transformed data to remove autocorrelation via the Hildreth-Lu procedure. The

grey shadows are regions where trends are not significant at a 5% level.
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(a) (b)

(c) (d)

(e) (f)

Figure S2 Maps of log-transformed CHL trends from the OC-CCI data product during 1997-

2022 in (a) 5th, (b) 10th, (c) 50th, (d) 90th, (e) 95th quantile levels and (f) in CHL mean,

respectively. Trends were fitted to transformed data to remove autocorrelation via the Cochrane-

Orcutt procedure. The grey shadows are regions where trends are not significant at a 5% level.
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Figure S3 First-order autocorrelation in the residuals of the QF test in CHL from the OC-CCI

data product. The grey shadows are regions where trends are not significant at a 5% level.
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(a) (b)

(c) (d)

(e) (f)

Figure S4 CHL trends in OC-CCI data product in different quantile levels in regions, namely

(a) North Pacific Subarctic Gyre Province, (b) North Atlantic Drift Province, (c) Subantarctic

Province, (d) Pacific Equatorial Province, (e) North Pacific Subtropical Gyre Province, and (f)

North Atlantic Subtropical Gyre Province.
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(a) (b)

(c) (d)

Figure S5 CHL trends from the OC-CCI data product over 1997-2022 in (a) 50th quantile

level trends in December, January, and February (DJF) CHL means (b) 95th quantile level trends

in DJF CHL means (c) 50th quantile level trends in June, July, and August (JJA) CHL means,

and (d) 95th quantile level trends in JJA CHL means. The orange boxes are regions of interest

with trends significant in multiple quantiles. The overlapped stippling shows areas where the

trends are not significant at a 5% level.
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(a) (b)

(c) (d)

(e) (f)

Figure S6 Maps of CHL trends from the GlobColour data product during 1997-2022 in (a) 5th,

(b) 10th, (c) 50th, (d) 90th, (e) 95th quantile levels, and (f) in CHL mean, respectively. Trends

were fitted to transformed data to remove autocorrelation via the Cochrane-Orcutt procedure.

The grey shadows are regions where trends are not significant at a 5% level.

October 4, 2023, 4:25pm



X - 12 :

(a) (b)

(c) (d)

(e) (f)

Figure S7 Regional CHL trends in GlobColour data product in different quantile levels in

regions, (a) North Pacific Subarctic Gyre Province, (b) North Atlantic Drift Province, (c) Sub-

antarctic Province, (d) Pacific Equatorial Province, (e) North Pacific Subtropical Gyre Province,

and (f) North Atlantic Subtropical Gyre Province. The 95% confidence intervals for each regres-

sion are represented by the vertical lines. The red horizontal dashed line is zero.
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(a) (b)

(c) (d)

(e) (f)

Figure S8 CHL trends in GlobColour data product in different quantile levels in regions,

namely (a) North Pacific Subarctic Gyre Province, (b) North Atlantic Drift Province, (c) Sub-

antarctic Province, (d) Pacific Equatorial Province, (e) North Pacific Subtropical Gyre Province,

and (f) North Atlantic Subtropical Gyre Province.
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