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Abstract

Accurate global river discharge estimation is crucial for advancing our scientific understanding of the global water cycle and

supporting various downstream applications. In recent years, data-driven machine learning models, particularly the Long Short-

Term Memory (LSTM) model, have shown significant promise in estimating discharge. Despite this, the applicability of LSTM

models for global river discharge estimation remains largely unexplored. In this study, we diverge from the conventional basin-

lumped LSTM modeling in limited basins. For the first time, we apply an LSTM on a global 0.25° grid, coupling it with a river

routing model to estimate river discharge for every river reach worldwide. We rigorously evaluate the performance over 5332

evaluation gauges globally for the period 2000-2020, separate from the training basins and period. The grid-scale LSTM model

effectively captures the rainfall-runoff behavior, reproducing global river discharge with high accuracy and achieving a median

Kling-Gupta Efficiency (KGE) of 0.563. It outperforms an extensively bias-corrected and calibrated benchmark simulation based

on the Variable Infiltration Capacity (VIC) model, which achieved a median KGE of 0.466. Using the global grid-scale LSTM

model, we develop an improved global reach-level daily discharge dataset spanning 1980 to 2020, named GRADES-hydroDL.

This dataset is anticipated to be useful for a myriad of applications, including providing prior information for the Surface Water

and Ocean Topography (SWOT) satellite mission. The dataset is openly available via Globus.
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Key Points: 19 

• For the first time, the global applicability of LSTM model at 0.25° grid-scale and river 20 
routing for discharge estimation is explored. 21 

• Globally, the grid-scale LSTM model outperforms a calibrated and bias-corrected 22 
benchmark simulation based on the process-based VIC model. 23 

• Using the LSTM model, we create a highly accurate daily global reach-level discharge 24 
dataset covering 1980 to 2020.  25 
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Abstract 26 

Accurate global river discharge estimation is crucial for advancing our scientific understanding 27 
of the global water cycle and supporting various downstream applications. In recent years, data-28 
driven machine learning models, particularly the Long Short-Term Memory (LSTM) model, 29 
have shown significant promise in estimating discharge. Despite this, the applicability of LSTM 30 
models for global river discharge estimation remains largely unexplored. In this study, we 31 
diverge from the conventional basin-lumped LSTM modeling in limited basins. For the first 32 
time, we apply an LSTM on a global 0.25° grid, coupling it with a river routing model to 33 
estimate river discharge for every river reach worldwide. We rigorously evaluate the 34 
performance over 5332 evaluation gauges globally for the period 2000-2020, separate from the 35 
training basins and period. The grid-scale LSTM model effectively captures the rainfall-runoff 36 
behavior, reproducing global river discharge with high accuracy and achieving a median Kling-37 
Gupta Efficiency (KGE) of 0.563. It outperforms an extensively bias-corrected and calibrated 38 
benchmark simulation based on the Variable Infiltration Capacity (VIC) model, which achieved 39 
a median KGE of 0.466. Using the global grid-scale LSTM model, we develop an improved 40 
global reach-level daily discharge dataset spanning 1980 to 2020, named GRADES-hydroDL. 41 
This dataset is anticipated to be useful for a myriad of applications, including providing prior 42 
information for the Surface Water and Ocean Topography (SWOT) satellite mission. The dataset 43 
is openly available via Globus. 44 

1 Introduction 45 

River discharge, presenting the accumulation of surface water flowing into rivers and 46 
ultimately reaching the ocean or other water bodies, plays a crucial role in the global water cycle 47 
(Tuozzolo et al., 2019; Wada et al., 2017). Accurate global river discharge estimation is of vital 48 
importance across various fields, including water resources (S. Liu et al., 2020; Oki & Kanae, 49 
2006), climate change (Gerten et al., 2008; Milly & Dunne, 2020; Trabucco et al., 2008), natural 50 
hazards (Coughlan de Perez et al., 2016; Yang et al., 2021), biodiversity (Ficke et al., 2007; 51 
Vörösmarty et al., 2010) and energy production (Chen et al., 2016; Xu et al., 2023).Normally, 52 
gauging stations are deemed the most reliable data source for measuring river discharge (Fekete 53 
et al., 2002; Zaitchik et al., 2010). However, a significant proportion of the world’s rivers remain 54 
ungauged due to a combination of technical, economic, and political constraints (Gleason & 55 
Smith, 2014; Hannah et al., 2011; Riggs et al., 2023). Encouragingly, recent advancements in 56 
remote sensing (RS), exemplified by the Surface Water and Ocean Topography (SWOT) 57 
mission, the first satellite mission dedicated to discharge estimation, have opened new avenues 58 
for global river discharge monitoring, even in ungauged basins (Biancamaria et al., 2016; 59 
Bjerklie et al., 2018; Gleason & Durand, 2020; Yang et al., 2019). Nonetheless, the temporal 60 
coverage of satellite observations is largely limited to the recent two decades and RS-based 61 
discharge estimations hinge upon prior knowledge of river discharge to reduce uncertainties and 62 
improve accuracy (Durand et al., 2023; Tuozzolo et al., 2019).  63 

As a result, considerable efforts have been made by the modeling community to estimate 64 
river discharge based on various rainfall-runoff models, which use meteorological data, such as 65 
precipitation and temperature, as inputs to predict the runoff or discharge. The existing rainfall-66 
runoff modeling approaches, depending on the extent to which physical process knowledge is 67 
imposed in the simulation, can be categorized into fully data-driven and process-based 68 
approaches, and the latter further range from conceptual to physically based approaches. 69 
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Historically, thanks to the continuously improved understanding of hydrological processes, 70 
process-based models served as the preferred choice for discharge estimation. A way forward 71 
pioneered in the field of large-scale hydrology has been to utilize advanced process-based 72 
models, together with the optimal combination of in situ and satellite observations, as well as 73 
reanalysis, to reconstruct spatiotemporal seamlessly river discharge globally (Alfieri et al., 2020; 74 
Harrigan et al., 2020; Hersbach et al., 2020). For example, the European Commission’s 75 
Copernicus Emergency Management Service (CEMS) Global Flood Awareness System 76 
(GloFAS; http://www.globalfloods.eu/) employs a coupled land surface model (the Hydrology 77 
Tiled ECMWF Scheme for Surface Exchanges over Land - HTESSEL) and flow routing model 78 
(LISFLOOD) to generate long-term river discharge at daily time steps and 0.1° grid resolution 79 
(Alfieri et al., 2020; Harrigan et al., 2020). GloFAS has undergone significant upgrades, with the 80 
latest version (GloFAS v4.0) featuring an enhanced resolution of 0.05° resolution, approximately 81 
four times higher than its predecessor. Using the Variable Infiltration Capacity (VIC) model 82 
(Liang et al., 1994, 1996) that is well calibrated and bias-corrected and the Routing Application 83 
for Parallel computatIon of Discharge (RAPID) river routing model (David et al., 2011), Lin et 84 
al. (2019) produced the first reach-level naturalized daily river discharge, the Global Reach-85 
Level A Prior Discharge Estimates for SWOT (GRADES), over 2.94 million river reaches 86 
globally for 1979-2014. Building upon the GRADES legacy, Yang et al. (2021) made significant 87 
enhancements to spatial and temporal resolutions, coverage, as well as input data, and developed 88 
the global 3-hourly river discharge data record during the 40-year period of 1980-2019. This data 89 
record, referred to as Global Reach-Level Flood Reanalysis (GRFR), exhibits improved 90 
simulation capabilities, particularly for high extremes, and serves as a valuable resource for flood 91 
analysis.  92 

Recently, the availability of extensive datasets and advancements in computing 93 
technologies have facilitated the development of numerous modern data-driven techniques, 94 
predominantly based on machine learning (ML). These ML models directly learn intricate non-95 
linear response patterns from massive amounts of data, without requiring explicit knowledge of 96 
the underlying physical processes and strong structural assumptions (Feng et al., 2022; LeCun et 97 
al., 2015; Prasad et al., 2017; Schmidhuber, 2015; Shen, 2018; Shen et al., 2023). These 98 
advances have also drawn the attention of the hydrological community, inspiring new efforts to 99 
apply ML models to rainfall-runoff modeling. Among many efforts, a popular model is the Long 100 
Short-Term Memory (LSTM) neural network, a specifically designed version of recurrent neural 101 
network (RNN) for long-term sequential datasets (Greff et al., 2016; Hochreiter & Schmidhuber, 102 
1997), which has garnered significant attention from hydrologists. With long-term memory, 103 
LSTM excels in capturing both periodic and chaotic behaviors within time-series data, as well as 104 
learning their long-range dependencies with higher accuracy (Fang et al., 2017; Hu et al., 2019; 105 
Mouatadid et al., 2019). This makes LSTM particularly suitable for hydrologic modeling. The 106 
LSTM model can outperform a baseline process-based model in simulating rainfall-runoff 107 
relations and demonstrated the feasibility of employing LSTM for this task, which then sparked a 108 
proliferation of research on LSTM-based rainfall-runoff modeling. Multiple researchers have 109 
demonstrated LSTM’s seemingly incomparable performance in simulating runoff (Feng et al., 110 
2020, 2021; Frame et al., 2022; Gauch et al., 2021; Konapala et al., 2020; Kratzert et al., 2021; 111 
Kratzert, Klotz, Shalev, et al., 2019; Lees et al., 2021; J. Liu, Bian, et al., 2023; Nearing et al., 112 
2021; Reichstein et al., 2019; Sun et al., 2021). However, it is noteworthy that most of these 113 
applications focus on data-rich regions such as CONUS, and Great Britain, with regionally 114 
trained networks. Limited pilot studies attempted to explore the transferability of LSTM to other 115 
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basins beyond the CONUS. For instance, Ma et al. (2021) demonstrated that transferring the 116 
LSTM model weights trained over the CONUS to other regions, e.g., China, Chile, and Great 117 
Britain, and moderately retraining the models using local data can greatly enhance the accuracy 118 
as compared to locally trained models. Recently, two studies implemented LSTM across the 119 
globe (Koya & Roy, 2023; Tang et al., 2023). However, they tested the performance only over 120 
training basins and the performance in other regions was not explored yet. Overall, these basin-121 
lumped studies represent only limited investigations of specific regions, and are not directly 122 
applicable to global application. As discussed earlier, a globally trained LSTM model ready to be 123 
applied to any land surface on earth could serve as a powerful tool for global river discharge 124 
estimation. However, to the best of our knowledge, no such research endeavor has been 125 
conducted thus far, and the applicability of LSTM in global river discharge estimation remains 126 
unclear. 127 

Therefore, diverging from the conventional basin-lumped LSTM modeling, we stepped 128 
forward to apply an LSTM on the grid scale and coupled it with a river routing model to estimate 129 
river discharge for every river reach worldwide. We aim to evaluate the effectiveness and 130 
performance of LSTM in comparison to process-based models for global river discharge 131 
estimations. The rest of this study is organized as follows. Section 2 provides a description of the 132 
methodology, including details of experiments, dataset, training basin selection, and model 133 
evaluation. Section 3 shows the global performance of LSTM and its strengths and weaknesses 134 
compared to the baseline process-based model. Based on the optimized LSTM experiment, a 135 
new global river discharge data record is introduced in Section 4. The study concludes in Section 136 
5 with a summary of the main findings.  137 

2 Methodology 138 

2.1 Experimental design 139 

To comprehensively explore the potential of LSTM models and evaluate their strengths 140 
and weaknesses compared to process-based hydrological models, we conducted a series of four 141 
experiments (Table 1). Note that instead of using the LSTM at the basin scale to do the rainfall-142 
discharge modeling in the previous studies, here we applied the LSTM at 0.25° grid-scale to 143 
estimate global daily 0.25° runoff, which can then be routed to generate the global river 144 
discharge. We explain the four experiments as follows. 145 

1. VIC. We employed the Variable Infiltration Capacity (VIC; Liang et al., 1994, 1996) 146 
land surface model for runoff modeling. To reduce model biases, we performed grid-level 147 
parameter calibration and bias correction (postprocessing) against ML-derived, global runoff 148 
characteristic maps from the Global Streamflow Characteristics Dataset (GSCD; Beck et al., 149 
2015). More details about the VIC setup can be found in Yang et al. (2021).  We aggregated the 150 
original 0.05°, 3-hourly runoff to 0.25°, daily. To our knowledge, this is one of the best global 151 
simulations achieved based on process-based models. 152 

2. LSTM(VIC). A single LSTM model was trained against 0.25° grid-scale VIC-modeled 153 
runoff derived from the above experiment. Then, this trained LSTM model was applied to all 154 
global 0.25° land surface grids to generate global runoff. To reduce the training burden as well as 155 
assess the generalization capability of LSTM in untrained regions, we implemented a 1/82 156 
sampling density, where 1/82 represents sampling one grid-cell from each 8x8 patch, and resulted 157 
in 4153 grids for training. This experiment serves as a surrogate model to evaluate the ability of 158 
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LSTM models to reproduce the underlying processes exhibited by hydrological models (Shen et 159 
al., 2023; Tsai et al., 2021). 160 

3. LSTM(obs). We first trained a single LSTM model against discharge observations from 161 
selected training basins (see Section 2.3 for the details) and applied this trained LSTM model to 162 
global 0.25°grids. This is a classic ML strategy using observations as the training target. The 163 
evaluation of this experiment allows us to gain insights into the applicability of the LSTM model 164 
for global runoff estimation.  165 

4. LSTM(VIC+obs). A single LSTM model was first trained against VIC-modeled runoff 166 
(same as LSTM(VIC)), and then re-trained against discharge observations. The LSTM model 167 
trained twice was later applied to the global grid scale. This experiment aimed to investigate the 168 
potential benefits of incorporating hydrologic simulations generated by process-based models in 169 
improving the performance of the LSTM model. 170 

Table 1. Experiments conducted in this study.  171 

Experiment Name Model Training Data Purpose 

VIC VIC - Benchmark 

LSTM(VIC) LSTM VIC-modeled runoff from 4153 
0.25° grids 

Surrogate model 

LSTM(obs) LSTM Discharge observations from 4144 
basins 

Classic ML 

LSTM(VIC+obs) LSTM VIC-modeled runoff from 4153 
0.25° grids + discharge observations 
from 4144 basins 

Testing the added value 
of VIC 

For each LSTM experiment, a single global LSTM model was trained using training 172 
period data from all training basins or grids so that the network can learn a more general 173 
understanding of the rainfall-runoff process. The LSTM models were trained using 20 years’ 174 
worth of data from 1 January 1980 to 31 December 1999, and evaluated using another 21 years’ 175 
worth of data from 1 January 2000 to 31 December 2020. The LSTM networks were trained on 176 
sequences of 365 days of six meteorological features and 10 static basin attributes (detailed in 177 
Table 2) to simulate the discharge at each time step. The objective function was the Root-Mean-178 
Squared Error (RMSE), calculated on the transformed discharge (see Section 2.2 for more details 179 
about data pre-processing), aimed at improving low flow representation. The Adadelta algorithm 180 
(Zeiler, 2012) was used as the optimization method. Hyperparameter combinations (Table S1) 181 
from Feng et al. (2020) were utilized, and through a simple validation process, it was determined 182 
that these hyperparameters remained optimal for discharge estimation in the current study. A fast 183 
and flexible LSTM code that was capable of leveraging the optimized NVIDIA CUDA Deep 184 
Neural Network (cuDNN) library from the PyTorch Deep Learning platform was implemented. 185 
It took about 15 hours of computational time on an NVIDIA P100 Graphical Processing Unit 186 
(GPU) to train LSTM(VIC) and LSTM(obs) to convergence (300 epochs).   187 
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Table 2. Summary of the forcing and attribute variables used as the input to the LSTM model.  188 

 Variable Data Source Units 

Forcing 

Daily mean precipitation MSWEP V2.80 (Beck et al., 2019) 
(https://www.gloh2o.org/mswep/) mm/d 

Daily maximum temperature 

ERA5 (Hersbach et al., 2018) 
(https://cds.climate.copernicus.eu/cds
app#!/dataset/reanalysis-era5-
complete?tab=overview) 

℃ 

Daily minimum temperature ℃ 

Daily mean surface downwelling 
shortwave W/m2 

Daily mean 10m wind m/s 

Monthly LAI climatology 
PROBAV VITO LAI 
(https://land.copernicus.eu/global/pro
ducts/lai) 

- 

Attributes 

Mean daily precipitation 

MSWEP V2.80 

mm/d 

High precipitation duration - the 
average duration of high 
precipitation events (number of 
consecutive days ≥ 5 times mean 
daily precipitation 

days 

Fraction of precipitation falling as 
snow (i.e., on days colder than 0 ℃) 

MSWEP V2.80 and ERA5 

- 

Aridity - P/PET, where PET is 
estimated by the Hargreaves (1994) 
method 

- 

Frozen days - days colder than 0 ℃   ERA5 days 

Area basin boundary file km2

Mean elevation GMTED (Amatulli et al., 2018) 
(https://doi.pangaea.de/10.1594/PAN
GAEA.867115) 

m above 
sea level 

Mean slope ° 

Geological permeability 

GLHYMPS V2 (Huscroft et al., 
2018) 
(https://borealisdata.ca/dataset.xhtml
?persistentId=doi%3A10.5683/SP2/T
TJNIU) 

m2 

Soil sand content SoilGrids (Hengl et al., 2017) 
(https://soilgrids.org/) % 
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2.2 Datasets 189 

For the VIC model, we used the precipitation from Multi-Source Weighted-Ensemble 190 
Prediction (MSWEP) version 2.80 (Beck et al., 2019) and other meteorological fields (surface air 191 
temperature, pressure, incoming shortwave and longwave radiation, humidity, and wind speed) 192 
from ERA5 (Hersbach et al., 2018) as forcing inputs. MSWEP is a global dataset with high 193 
quality, which ingests a wide range of data sources (in situ gauges, satellite products, and 194 
reanalysis products), makes distributional bias corrections, as well as corrections of systematic 195 
terrestrial biases using river discharge observations. ERA5 is the latest climate reanalysis dataset 196 
produced by the European Centre for Medium-Range Weather Forecasts (ECWMF) and has 197 
been widely used in meteorological and hydrological applications. 198 

As input features to the LSTM models, we adopted six meteorological variables, 199 
including precipitation from MSWEP V2.80, daily maximum and minimum temperatures, 200 
downwelling shortwave radiation, mean 10-m wind from ERA5, as well as PROBAV VITO’s 201 
monthly leaf area index (LAI) climatology (Table 2).  Kratzert, Klotz, Herrnegger, et al. (2019) 202 
and Kratzert, Klotz, Shalev, et al. (2019) have shown that including basin attributes can improve 203 
overall model performance since they contain information that helps to distinguish different 204 
basin-specific rainfall-runoff behaviors. Therefore, we calcualted the top 10 sensitive attributes 205 
according to Kratzert, Klotz, Shalev, et al. (2019), including climate, topography, and soil 206 
attributes (Table 2) as additional inputs to train the LSTM model. These attributes remained 207 
constant in time throughout the simulation (training and evaluation) and were directly 208 
concatenated with the forcings and provided as inputs. 209 

Globally, we compiled daily discharge records for 19999 river gauges from multiple 210 
sources, including the United States Geological Survey (USGS) National Water Information 211 
System (NWIS), Global Runoff Data Centre (GRDC), European Water Archive (EWA) of 212 
EURO-FRIEND-Water, Water Survey of Canada Hydrometric Data, etc. (Beck et al., 2020).  213 
Figure 1a shows that North America and Europe have much higher gauge densities. It is worth 214 
mentioning that discharge records in Asia and Africa are only from GRDC gauges, most of 215 
which are located in large basins or provide only monthly data or data before 1995. This poses a 216 
challenge in terms of limited gauge availability for training and evaluation processes in these 217 
regions. 218 

To reduce the differences between basins of varying sizes and wetness levels during the 219 
calculation of the loss function, we adopted the pre-processing procedures following Feng et al. 220 
(2020). First, we normalized the daily discharge by basin area and mean daily precipitation to get 221 
a dimensionless discharge value as the target variable. For LSTM(VIC), the runoff was directly 222 
normalized by mean daily precipitation. Then we transformed the distributions of daily discharge 223 
and precipitation from Gamma to as close to Gaussian as possible by 𝑣∗ = 𝑙𝑜𝑔 (√𝑣 + 0.1) (v 224 
and 𝑣∗ are the variables before and after transformation, respectively). Finally, for efficient 225 
learning, all input features (meteorological variables and static basin attributes), as well as the 226 
output (discharge/runoff), were standardized to have zero mean and unit variance over all 4144 227 
training basins (LSTM(obs)) /4153 training grids (LSTM(VIC)) collectively.  228 
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 229 

Figure 1. Spatial distribution of (a) all basins and (b) selected training basins. The legend shows 230 
the different data sources and corresponding gauge numbers. Australia: the Australian Bureau of 231 
Meteorology(BoM), Brazil: the HidroWeb portal of the Brazilian Agência Nacional de Águas, 232 
Canada: the Water Survey of Canada Hydrometric Data (HYDAT), Chile: the Chilean Center for 233 
Climate and Resilience Research (CR2), EWA: the European Water Archive of EURO-234 
FRIEND-Water, GB: Great Britain, GRDC: the Global Runoff Data Centre, USGS: the United 235 
States Geological Survey National Water Information System. More details about the data 236 
sources can be found in Beck et al. (2020). 237 

2.3 Training basin selection 238 

We performed a screening to identify suitable training basins globally. As previously 239 
mentioned in Section 2.2, the sole data source for Asia and Africa is GRDC, which primarily 240 
consists of large basins with monthly data or data before 1995. This poses a challenge as it 241 
restricts the data availability for effective training and evaluation processes. Therefore, different 242 
thresholds were applied to non-GRDC and GRDC basins for criteria 2 and 3, allowing for the 243 



manuscript submitted to Water Resources Research 

 

inclusion of selected basins in Asia, Siberia, and Africa. The following procedure was thus 244 
implemented: 245 

1) The absolute relative difference between the area derived from the basin boundary file 246 
and reported by each data provider had to be smaller than 10%. 247 

2) Only basins within the range of 50-5,000 km2 for non-GRDC basins or 50-10,000 km2 248 
for GRDC basins were selected. This criterion was applied since channel routing effects become 249 
apparent at the daily scale in larger basins (Gericke & Smithers, 2014). 250 

3) At least 25 years of observed daily data for non-GRDC basins, or 5 years for GRDC 251 
basins had to be available (not necessarily continuous) during 1980-2020 to ensure there was 252 
sufficient data. 253 

4) To minimize artifacts and anthropogenic influence, basins were specifically chosen 254 
based on three criteria: a) reservoir influence ≤ 0.1,  b) urban area fraction ≤ 0.1, c) irrigated 255 
fraction ≤ 5%, and d) a “reference” flagged if the data source is USGS.     256 

The selection procedure described above finally produced a list of 4144 basins for LSTM 257 
training (Fig 1b), most of which were located in North America, Europe, Australia, and Brazil. 258 

2.4 Model evaluation 259 

Taking the runoff generated by the above four experiments as inputs, we implemented the 260 
Routing Application for Parallel Computation of Discharge (RAPID; David et al., 2011), a river 261 
routing model that uses a matrix-based version of the Muskingum method to calculate the flow 262 
and volume of water for each reach on a river network. The detailed setup of the RAPID model 263 
can be found in Yang et al. (2021). Notably, to our knowledge, no such global grid-scale 264 
application of LSTM models coupled with a routing model has been conducted in previous 265 
research. 266 

We did the evaluation during the period of 2000-2020, different from the training period, 267 
to test the temporal generalization ability of the developed global LSTM models. We selected the 268 
gauges meeting the following criteria: 1) < 500 m from the closest reach, 2) a small (≤ ±10%) 269 
discrepancy between the area derived from the basin boundary file and reported by each data 270 
provider, 3) a small (≤ ±10%) discrepancy between gauge area derived from the basin boundary 271 
file and upstream area of a river reach, 4) ≥ 3 years of valid data during the evaluation period 272 
2000-2020, 5) the gauges with the smallest area difference in cases where multiple gauges 273 
matched a single river reach or vice versa, 6) training gauges were excluded from the evaluation 274 
to assess the spatial generalization ability of the developed LSTM models. 5332 (daily)/ 275 
5331(monthly) gauges were selected by these six criteria. Note that our evaluation conducted 276 
over different time periods and different gauges from the training, involves not only temporal 277 
generalization, but also spatial generalization, which inevitably poses much greater challenges to 278 
the LSTM networks. 279 

Additionally, we conducted an evaluation on a subset of gauges with little anthropogenic 280 
influence. This subset of gauges satisfies not only the above-mentioned six criteria but also 281 
fulfills the criterion 4 in the training basin selection. Finally, 1123 gauges (daily) / 1128 gauges 282 
(monthly) were chosen for the evaluation, focusing on those with little anthropogenic influence.  283 

Metrics adopted to evaluate model performance include the modified Kling-Gupta 284 
Efficiency (KGE, Kling et al., 2012), Correlation Coefficient (CC), Relative variability (RV), 285 
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and Relative Bias (RB). CC measures the dynamic errors (temporal coherence). RV describes the 286 
bias in variability, and RB is widely used to indicate the magnitude of over- or under-estimations 287 
compared to the observations. KGE adds together CC, RV and RB, and is considered a more 288 
balanced metric. While all these metrics evaluated the performance over the entire time series, 289 
we also used the percent bias of the top 2% peak flow range (FHV) and the percent bias of the 290 
bottom 30% low flow range (FLV) (Yilmaz et al., 2008), to highlight the performance of the 291 
model for peak flows and baseflow, respectively. To compare with previous LSTM studies, the 292 
Nash-Sutcliffe Efficiency coefficient (NSE; Nash & Sutcliffe, 1970) was also calculated. All 293 
metrics were calculated for each evaluation basin for the period 2000-2020. 294 

3 Results and Discussions 295 

3.1 Model performance among the four experiments 296 

Figure 2 shows the performance comparison among the four experiments over the global 297 
5332 gauges for the period of 2000-2020 at the daily scale. Notably, all LSTM experiments 298 
exhibit comparable or superior results versus to the benchmark VIC model. The benchmark VIC 299 
model was already calibrated and bias-corrected against observation-based runoff characteristics, 300 
and was considered a significant advance compared to existing modeling literature (Yang et al., 301 
2021). This comparison highlights the ability of a global grid-scale LSTM model to capture and 302 
learn hydrologic behaviors across diverse basin. 303 

LSTM(obs) stands out among the four experiments for having the best overall 304 
performance, with the highest median KGE (0.563) and CC (0.811), the lowest bias (1.25%) and 305 
the closest variance (0.992). The median FHV and FLV of LSTM(obs) are 4.833%, and -4.023%, 306 
respectively, indicating its good ability to reproduce both high and low flow. LSTM(obs) 307 
performs much better than LSTM(VIC), whose median KGE is 0.471. This is expected since 308 
LSTM(obs) uses discharge observations as the training target while LSTM(VIC) uses the modeled 309 
runoff, which may already include some bias. LSTM(VIC+obs) also exhibits much better 310 
performance than LSTM(VIC), showing that imperfection and/or bias in the LSTM(VIC) are 311 
reduced through actual observations-based training and indicating the importance of using 312 
observations during the training process. However, LSTM(VIC+obs) does not produce any 313 
benefits compared to LSTM(obs) in this case, indicating that simulated data from VIC cannot 314 
provide additional added value to enhance global discharge estimation. This is partially because 315 
LSTM(obs) is already very strong, and the observations may already provide sufficient 316 
information for LSTM networks to construct gradient-like features. However, we envision future 317 
scenarios where LSTM(VIC+obs) could have value when there are not sufficient observations 318 
available for training the LSTM network (see Section 3.4). 319 
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 320 

Figure 2. Performance of the four experiments at evaluation gauges for the evaluation period of 321 
2000-2020: (a) KGE, (b) CC, (c) RV, (d) RB, (e) FHV and (f) FLV. All metrics are calculated 322 
for 5332 global gauges at the daily scale. 323 

Additionally, an evaluation was conducted on a subset of gauges with little anthropogenic 324 
influence. The median KGE of the four experiments are 0.454, 0.445, 0.599, and 0.589, 325 
respectively. LSTM(obs) exhibits superior performance again. Compared to the results of all 326 
5332 evaluation gauges, LSTM(obs) shows better performance on gauges with little 327 
anthropogenic influence (0.599 vs 0.563).  328 

Upon initial examination, the performance of LSTM(obs) across the 5332 evaluation 329 
gauges in this study (with a median KGE of 0.563 and a median NSE of 0.476) appears 330 
comparatively lower than previous global basin-lumped LSTM studies. For example,  Koya & 331 
Roy (2023) achived a median KGE of 0.647 for 2610 basins,  and Tang et al. (2023) reported a 332 
median NSE of 0.59 for 1897 basins with area large than 9,000 km2. However, it’s important to 333 
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note that these two studies applied LSTM at the basin scale, that is, they trained and tested 334 
LSTM at the same basins, thus limiting discharge generation to training basins. In contrast, this 335 
study pushed forward the application of LSTM at the grid scale and then coupled it with the 336 
RAPID river routing model to estimate the discharge everywhere globally. The evaluation 337 
conducted in this study is a comprehensive evaluation of the entire framework (grid-scale LSTM 338 
+ routing), which is inevitably more challenging than previous studies. When we conducted the 339 
similar basin-scale LSTM application globally, we achived a median KGE of 0.733 and a median 340 
NSE of 0.689 over 4144 basins for the period 2000-2020, surpassing the performance of the two 341 
aforementioned global studies. Overall, the grid-scale LSTM coupled with a river routing model 342 
trade a certain amount of performance metrics for the discharge of every river reach worldwide.  343 

3.2 Spatial pattern of LSTM(obs) performance 344 

Figure 3 maps the spatial pattern of LSTM(obs) performance over the global 5332 (daily) 345 
/ 5331(monthly) gauges for 2000-2020. The temporal dynamics are effectively simulated over 346 
most parts of the world except for complex terrains like the central CONUS. Approximately 347 
82.4% (91.3%) of the gauges exhibit CC higher than 0.6 at daily (monthly) scale. The model 348 
reproduces flow variability well, albeit with a tendency to underestimate in the central CONUS 349 
and overestimate in northern Canada. The total flow volume is also well captured by LSTM(obs), 350 
with about 54.5% (74.2%) gauges having RB within ±20% (±40%). Large overestimations (e.g., 351 
RB >100%) and large underestimations (e.g., RB<-60%) are mostly located in the central 352 
CONUS, eastern Brazil and Africa, which are mainly arid regions where a small absolute error 353 
(e.g., 0.1 m3s-1) leads to a large relative error. Overall, about 55.8% (daily) / 65.0% (monthly) 354 
gauges exhibit KGE values larger than 0.6, hence indicating that LSTM(obs) shows good 355 
performance globally. Consistent with previous hydrological model-based results (Alfieri et al., 356 
2020; Lin et al., 2019; Yang et al., 2021), LSTM also struggles with arid basins. For example, 357 
arid regions like the central CONUS, Africa, and eastern Brazil show negative KGE values. 358 
Several factors could contribute to the poor performance in arid regions, including: 1) highly 359 
non-linear response due to substantial transmission losses,  2) low quality of precipitation data 360 
due to the prevalence of short-duration, localized convective events, and  3) very low discharge 361 
volumes that cannot provide effective training samples to the LSTM network. 362 
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shown in Figure S1. The gauges with small differences (±0.1 for KGE, CC and |RV-1|,  ±10% 394 
for |RB|) are not counted and shown in Figure 5. LSTM(obs) shows overwhelming improvements 395 
in CC. 2172 gauges that have higher CC values in LSTM(obs), while only 275 gauges in VIC 396 
with small difference magnitudes. The most obvious improvement in CC is located in the Rocky 397 
Mountains across Canada and CONUS, with CC values improved from less than 0.6 (Figure 398 
S1(c) and S1(d)) to more than 0.8 over most gauges in that region. The underestimations in flow 399 
variability have been largely reduced, especially in the central CONUS, eastern Brazil, and 400 
Australia. Overall, more gauges (1890 vs 1527) witness the improvements in RV. In terms of 401 
RB, LSTM(obs) reduces the overestimation in northern Chile and eastern Brazil and the 402 
underestimation in southern Chile. The overestimation in the northern part of the central CONUS 403 
and Africa has turned into underestimation. Also, more underestimations occur in Alaska and 404 
northeastern Canada. Overall, LSTM(obs) shows better performance over more gauges than the 405 
VIC model. 2500 (about 48%) gauges experience a boost of larger than 0.1 in KGE, but there are 406 
some regions with stronger improvements, for example in the western CONUS, eastern Brazil, 407 
Chile (Figure 5(a) and 5(b)). However, it is important to acknowledge that LSTM is not a silver 408 
bullet. For example, the negative KGE values still exist in Texas, New Mexico, and Arizona, 409 
perhaps because the short time scale of runoff generation in these basins (e.g., flash flood) are 410 
not easily handled by LSTM (Ma et al., 2021). The benefits of LSTM(obs) over VIC don’t exhibit 411 
a discernible spatial pattern, nor show any correlations with topography, climate, and gauge 412 
basin area (scatter plots are omitted for brevity). The comparison between LSTM(obs) and VIC 413 
clearly shows that LSTM(obs) finds rainfall-runoff relationships in some basins that VIC cannot 414 
emulate, thus highlighting that there is substantial room to improve VIC overall. At the same 415 
time, the fact that VIC performs better in certain basins (Figure 5(b)) indicates the potential value 416 
of having physical constraints in a hydrological model. 417 
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pre-training LSTM networks by the modeled runoff from VIC can improve the model 436 
performance as evidenced by slightly higher KGE values in LSTM(VIC+obs). This result is 437 
consistent with previous research on lake temperature (Jia et al., 2018, 2021; Read et al., 2019), 438 
which showed that pretraining ML models with synthetic data can be helpful when limited 439 
observed data were available. However, when there are sufficient training data, for example, 440 
3000 or 4144 basins in this case, LSTM(VIC+obs) doesn’t surpass the LSTM(obs), which 441 
counters our intuition that model initialization using the simulated data from a process-based 442 
hydrological model could improve model performance (Jia et al., 2018; Ma et al., 2021; Read et 443 
al., 2019). Several potential explanations may be considered to account for this. First, previous 444 
studies used the same training target (e.g. lake temperature or discharge) in the same basins for 445 
both the pre-training and retraining process. In this study, although we normalized the discharge 446 
data (the training target in the retraining process) by basin area, it is still different from VIC 0.25° 447 
runoff (the training target in the pretraining process), especially for larger basins where the 448 
routing process plays a more substantial role. Additionally, the training runoff grids in the 449 
pretraining process are different from the training basins in the retraining process. Second, 450 
previous studies focused on training and testing LSTM models on a single lake or basin, while 451 
this study trained LSTM over thousands of basins, then applied the trained LSTM at grid-scale, 452 
and tested over non-training basins, which introduced large uncertainties to the performance. 453 
Third, this may be related to the limited transfer learning ability of LSTM. Other advanced ML 454 
algorithms, such as Transformer (J. Liu, Bian, et al., 2023; Vaswani et al., 2017) and its variants 455 
or physics-informed differentiable models (Feng et al., 2022, 2023; Shen et al., 2023), could be 456 
explored in the future to see whether any gains can be obtained by pre-training ML models using 457 
process-based model’s simulated data at the global scale.    458 
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 459 

Figure 6. The median values of skill metrics from the four experiments with different numbers 460 
of training gauges. The blue, purple, red, and green lines are for VIC, LSTM(VIC), LSTM(obs), 461 
and LSTM(VIC+obs). The black lines stand for the perfect values of skill metrics. 462 

4 Global daily reach-level river discharge dataset based on LSTM (GRADES-hydroDL) 463 

Given the promising performance of LSTM(obs) observed in this study, we further 464 
develop an improved global reach-level daily database of discharge records spanning the period 465 
from 1980 to 2020. The setups are the same as  LSTM(obs), with the exception that the data from 466 
1980-2020 are adopted in the training process to maximize the information learned. This updated 467 
dataset serves as an improved iteration of the previously known GRADES (Lin et al., 2019), and 468 
we now refer to it as GRADES-hydroDL. Here, hydroDL denotes a set of consistent hydrologic 469 
deep learning implementations using a specific library. The hydroDL library contains models for 470 
several versions of LSTM models for hydrologic and water quality variables, multiscale models, 471 
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physics-informed differentiable models (ecosystem, routing - so far small scale), and in the 472 
future Transformer models. Besides streamflow (Feng et al., 2020, 2021), hydroDL has been 473 
employed to simulate soil moisture (Fang & Shen, 2020; J. Liu, Hughes, et al., 2023), stream 474 
temperature (Rahmani, Lawson, et al., 2021; Rahmani, Shen, et al., 2021), dissolved oxygen (Zhi 475 
et al., 2021, 2023), sediment (Chaemchuen et al., 2023), nitrate (Saha et al., 2023), phosphorous 476 
and snow water equivalent, etc. Furthermore, the neural networks in the library are utilized to 477 
support physics-informed differentiable modeling (Shen et al., 2023), where neural networks are 478 
integrated with physical descriptions to provide physical concepts, interpretability and 479 
intermediate fluxes (Aboelyazeed et al., 2023; Bindas et al., 2022; Feng et al., 2022, 2023; Shen 480 
et al., 2023). The sequence-to-sequence nature of the model makes it quite efficient, with a 481 
CONUS-scale training job to finish typically within 2 hours on a single 2080 Ti Graphical 482 
Processing Unit (GPU). 483 

GRADES-hydroDL reproduces the global discharge very well (Figure 7). Figure 8(a) 484 
maps the mean daily river discharge from 1980 to 2020 for each river reach with a stream order 485 
larger than 5 and discharge value larger than 1 m3/s, revealing the main river arteries of the 486 
world. Generally, river reaches situated further downstream exhibit a darker blue color, which 487 
indicates larger river discharge values. Discharge is concentrated in specific regions, with 488 
quantities ranging from nearly zero in the desert areas, such as the Sahara, Gobi, and Arabian 489 
deserts, to exceeding 50,000m3/s near the river mouths of major rivers the Amazon, Mississippi, 490 
Yangtze, Congo, and Nile. The spatial pattern is similar to previous results (Harrigan et al., 2020; 491 
Lin et al., 2019). Figure 8(b) shows the inter-annual variability of global rivers, quantified by the 492 
coefficient of variation (CV) of annual flow calculated as the standard deviation divided by the 493 
mean annual discharge. The majority of rivers exhibit low inter-annual variability, with CV < 494 
0.4, indicating a steady flow pattern during the period from 1980 to 2020. However, certain 495 
regions, including the Great Plains, eastern Brazil, Argentina, Australia, southern Africa, area 496 
around 15°N in Africa, and eastern Indian Peninsula, experience substantial inter-annual 497 
variability. Matching with the Köppen-Geiger climate types (Beck et al., 2018), these least 498 
steady rivers are mostly located in arid regions that are driven by precipitation variability 499 
(Fielding et al., 2018; McMahon et al., 1987). Other rivers with large inter-annual variability can 500 
also be seen in the CONUS West Coast and northeastern China.  501 

The analysis of flood seasonality holds significant importance in enhancing our 502 
understanding of the flood generation mechanisms and hence is critical in a number of 503 
applications, from flood risk estimation and water resources management to climate change 504 
investigations (Berghuijs et al., 2019; Blöschl et al., 2017; Collins, 2019; Dickinson et al., 2019; 505 
Hall & Blöschl, 2018; Villarini, 2016; Ye et al., 2017). Based on the annual maximum flows, 506 
two seasonality metrics were calculated globally:1) average timing of river flood 𝐷, quantifying 507 
the time of the year in which flood events tend to occur and 2) concentration of floods R, 508 
quantifying how strong the seasonality is. Higher values denote a more concentrated flood 509 
season while lower values signify spread-out seasonal distributions. Detailed definitions are in 510 
Supporting Information Text S1. The mean seasonality of flood exhibits distinct regional 511 
features (Figure 8(c)). In low-latitude tropical regions, annual floods predominantly occur during 512 
the wet summer season of July-September in the Northern Hemisphere and December-February 513 
in the Southern Hemisphere. The Northern Hemisphere shows a more spatially heterogeneous 514 
pattern. High-latitudes and high-altitudes (e.g., Rockies, Alps) primarily experience late spring 515 
and summer floods due to the effect of snow storage and melt (Hall & Blöschl, 2018; Parajka et 516 
al., 2009; Villarini, 2016; Ye et al., 2017). The US West Coast is characterized by winter floods 517 
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from December to February, which are often driven by atmospheric rivers that are long and 518 
narrow atmospheric features transporting moisture from the tropics to the midlatitudes and 519 
produce potentially significant runoff in the warm, heavy rainfall events (Leung & Qian, 2009; 520 
Neiman et al., 2011; Ralph et al., 2006). As we move northward, the flood seasonality in the 521 
eastern US and China transitions from late winter to spring, and from spring to summer, 522 
respectively. Complexity arises with factors such as land-sea interactions. For example, the flood 523 
season in Europe shifts from December-January in coastal areas to April-May in the interior 524 
because of increasing continentality (away from the Atlantic) (Blöschl et al., 2017; Hall & 525 
Blöschl, 2018). The seasonal concentration of flood R is shown in Figure 8(d). Globally, the 526 
seasonality is strong with R > 0.9 in most areas. Relatively weaker seasonality is found mainly in 527 
the southeastern CONUS, the Mediterranean, southern Brazil, and equatorial regions, with R < 528 
0.5. 529 

Due to its high accuracy, GRADES-hydroDL will be tremendously valuable for making 530 
better decisions on water-related issues such as flood control, integrated water resources 531 
management, and ecological environmental assessment. Additionally, as an updated version of 532 
GRADES, it can provide better prior information in support of the SWOT mission and other 533 
scientific applications requiring spatiotemporal continuous discharge estimates.  In future 534 
studies, the updated GRADES-hydroDL shall supersede its predecessor GRADES. We highly 535 
recommend using this new data in relevant applications. 536 
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Interannual variability (CV) for river reaches of discharge value  ≥ 1 m3s-1, (c) Average timing of 542 
river floods (𝐷) for river reaches of discharge value  ≥ 1 m3s-1, (d) Concentration of floods within 543 
a year (R, if R=0, evenly distributed; if R =1, all floods occur on the same date) for river reaches 544 
of discharge value  ≥ 1 m3s-1. 545 

5 Conclusions 546 

For the first time, we implemented the LSTM model on the 0.25° grid scale to get 547 
seamless global runoff field and then coupled it with the RAPID river routing model to estimate 548 
reach-level daily discharge globally. The effectiveness and performance of LSTM in comparison 549 
to VIC for estimating global river discharge is investigated through four experiments. 550 

The results demonstrate that the grid-scale LSTM model shows great potential in global 551 
river discharge estimation. When trained on the observed discharge data from 4144 basins 552 
globally, and then applied at 0.25° grid scale, LSTM can effectively capture and learn rainfall-553 
runoff behaviors across diverse basins and accurately simulate global river discharge. Moreover, 554 
over the majority of regions, LSTM significantly outperforms the process-based VIC model, 555 
which is already calibrated and bias-corrected, highlighting the superiority of LSTM. However, 556 
LSTM is not a silver bullet that solves all problems. It still struggles with arid basins. 557 

The performance of LSTM is affected by the number of training observations, which 558 
improves as the training data increases. Pre-training the global LSTM model with the simulated 559 
data from the process-based model is hard to provide additional added value to global river 560 
discharge estimation when sufficient observed discharge data is available, while it can enhance 561 
model performance in situations where observations are limited. 562 

Based on the grid-scale LSTM model and the RAPID river routing model, an improved 563 
global reach-level daily database of discharge for the period 1980-2020 is developed. This data, 564 
referred to as GRADES-hydroDL, can serve as valuable resources for global hydrologic 565 
research. For example, this long-term data with high accuracy helps to better understand the 566 
global water resources and their variability at seasonal and long-term scales. Additionally, as an 567 
upgraded version of GRADES, GRADES-hydroDL can provide essential support to river-568 
observing satellite missions, such as SWOT, facilitating the development of accurate discharge 569 
algorithms. The GRADES-hydroDL is available at https://app.globus.org/file-570 
manager?origin_id=3380b1a4-698c-47c0-96db-e47e06b97295&origin_path=%2F. 571 
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