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Abstract

Geodetic methods can monitor changes in terrestrial water storage (TWS) across large regions in near real-time. Here, we

investigate the effect of assumed Earth structure on TWS estimates derived from Global Navigation Satellite System (GNSS)

displacement time series. Through a series of synthetic tests, we systematically explore how the spatial wavelength of water

load affects the error of TWS estimates. Large loads (e.g., >1000 km) are well recovered regardless of the assumed Earth

model. For small loads (e.g., <10 km), however, errors can exceed 75% when an incorrect model for the Earth is chosen. As a

case study, we consider the sensitivity of seasonal TWS estimates within mountainous watersheds of the western U.S., finding

estimates that differ by over 13% for a collection of common global and regional structural models. Errors in the recovered

water load generally scale with the total weight of the load; thus, long-term changes in storage can produce significant uplift

(subsidence) enhancing errors. We demonstrate that regions experiencing systematic and large-scale variations in water storage,

such as the Greenland ice sheet, exhibit significant differences in predicted displacement (over 20 mm) depending on the choice

of Earth model. Since the discrepancies exceed GNSS observational precision, an appropriate Earth model must be adopted

when inverting GNSS observations for mass changes in these regions. Furthermore, regions with large-scale mass changes that

can be quantified using independent data (e.g., altimetry, gravity) present opportunities to use geodetic observations to refine

structural deficiencies of seismologically derived models for the Earth’s interior structure.
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Key Points:6

• Estimates of water storage made at fine spatial scales are highly sensitive to the7

Earth model used to invert geodetic measurements8

• Sensitivities to Earth structure produce uncertainties in estimates of water stor-9

age that scale with the total weight of the water load10

• Predictions of uplift produced by melting of the Earth’s ice sheets over the past11

two decades can differ by over 20 mm between Earth models12
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Abstract13

Geodetic methods can monitor changes in terrestrial water storage (TWS) across large14

regions in near real-time. Here, we investigate the effect of assumed Earth structure on15

TWS estimates derived from Global Navigation Satellite System (GNSS) displacement16

time series. Through a series of synthetic tests, we systematically explore how the spa-17

tial wavelength of water load affects the error of TWS estimates. Large loads (e.g., >100018

km) are well recovered regardless of the assumed Earth model. For small loads (e.g., <1019

km), however, errors can exceed 75% when an incorrect model for the Earth is chosen.20

As a case study, we consider the sensitivity of seasonal TWS estimates within mountain-21

ous watersheds of the western U.S., finding estimates that differ by over 13% for a col-22

lection of common global and regional structural models. Errors in the recovered water23

load generally scale with the total weight of the load; thus, long-term changes in stor-24

age can produce significant uplift (subsidence), enhancing errors. We demonstrate that25

regions experiencing systematic and large-scale variations in water storage, such as the26

Greenland ice sheet, exhibit significant differences in predicted displacement (over 20 mm)27

depending on the choice of Earth model. Since the discrepancies exceed GNSS obser-28

vational precision, an appropriate Earth model must be adopted when inverting GNSS29

observations for mass changes in these regions. Furthermore, regions with large-scale mass30

changes that can be quantified using independent data (e.g., altimetry, gravity) present31

opportunities to use geodetic observations to refine structural deficiencies of seismolog-32

ically derived models for the Earth’s interior structure.33

Plain Language Summary34

In many regions of the Earth, water resources used for agriculture, domestic, and35

industrial purposes rely on stream flow and groundwater sourced from the melting of win-36

ter snowpack in adjacent mountains. Modern shifts in climate have resulted in increas-37

ingly variable precipitation patterns and temperatures during winter months, coupled38

with a rising global population, there has been a growing need for accurate estimates of39

freshwater stored above and beneath the land surface. A relatively new interdisciplinary40

approach called hydrogeodesy allows for freshwater resources to be accurately monitored41

by using satellite- and ground-based sensors to accurately measure changes in the shape42

and gravitational field of the Earth produced by the redistribution of water between nat-43

ural reservoirs. As this approach becomes increasingly utilized to inform decision-makers,44

however, we require a deeper understanding of the assumptions and uncertainties of the45

models used to translate between geodetic measurements and estimates of water stor-46

age. Here, we consider the impact of assumptions about the Earth’s interior structure47

on the error of geodetic water storage estimates. We present a set of case studies that48

display the varied influence of assumed Earth structure on water storage estimates de-49

pending on the spatial scale and amplitude of water storage variations.50

1 Introduction51

Accurate estimates of terrestrial water storage (TWS), defined as the sum of all52

storage within surface and subsurface reservoirs, are vital in the assessment and effec-53

tive long-term management of water resources. In addition, accurate assessment of TWS54

aids in our understanding of the Earth’s water cycle and interactions between individ-55

ual hydrological reservoirs, such as snowpack and groundwater (e.g. Lettenmaier & Famigli-56

etti, 2006; Enzminger et al., 2019). Recent developments in space geodesy, such as the57

Global Navigation Satellite Systems (GNSS), have become increasingly important in the58

study of freshwater resources as accurate measurement of subtle changes in the shape59

and gravitational field of the Earth produced by the redistribution of mass within sur-60

face and subsurface hydrologic reservoirs allow for spatially distributed estimates of TWS61

to be made at local and regional scales (e.g. Wahr et al., 2004; Argus et al., 2014; Milliner62
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et al., 2018; Argus et al., 2022) complimenting other datasets currently used in the as-63

sessment and management of water resources.64

Most geodetic investigations of TWS, however, have not considered the impact of65

the choice of Earth structure model on water storage estimates, which may lead to in-66

accuracies in estimated TWS and misinformed decision making by water managers and67

policy makers. The deformation response of the Earth due to variations in TWS is con-68

trolled by the spatiotemporal characteristics of the hydrologic surface mass as well as69

the material properties of the Earth’s interior. To translate between observations of sur-70

face displacement and changes in storage within natural reservoirs, prior knowledge of71

the Earth’s elastic and density structure is required to accurately predict displacement72

of the Earth’s surface to an applied load (e.g. Farrell, 1972; Martens et al., 2019). A ma-73

jority of studies using GNSS observations to estimate TWS have used globally averaged74

estimates of Earth structure, such as PREM (Dziewonski & Anderson, 1981) or Gutenberg-75

Bullen (Alterman et al., 1961), to map between observations of surface displacement and76

estimates of TWS (e.g Argus et al., 2014; Borsa et al., 2014; Argus et al., 2017; Enzminger77

et al., 2018).78

Recent studies suggest that displacements produced by changes in surface mass can79

be highly sensitive to the local material properties and structural features of the crust80

and upper mantle, especially for surface loading occurring at relatively fine spatial scales81

(e.g.<2500 km2) (e.g Martens, Simons, et al., 2016; Dill et al., 2015). For example, Martens,82

Rivera, et al. (2016) computed sensitivity kernels for the load Love number (LLNs) and83

load Green’s function (LGFs), which describe the deformation response of the Earth to84

an applied unit point load, by systematically perturbing the elastic and density struc-85

ture of PREM through the crust and upper mantle, finding the LGFs to be predominately86

sensitive to variations in elastic material properties in the upper 500 km of the Earth.87

Further, Dill et al. (2015) quantified the effect of sensitivities to local crustal structure88

on the deformation response to surface loading using grids of local LGFs, finding mag-89

nitudes of differences up to 25% for vertical displacement and 91% for horizontal displace-90

ment. Such sensitivities offer the possibility of tomographic studies to refine seismolog-91

ically derived Earth models’ structural deficiencies when the loading source is reason-92

ably constrained, such as the Earth’s ocean tides (e.g. Ito & Simons, 2011). In the in-93

terest of using GNSS observations to better manage water resources across various spa-94

tial scales (e.g., continental-scale vs. watershed-scale), assumptions about the Earth’s95

interior structure may significantly bias TWS estimates depending on the spatial scale96

of interest due to sensitivities to the shallow material properties of the Earth, which can97

differ significantly across regions.98

The uncertainty of TWS estimates associated with choice of Earth structure has99

only recently begun to be explored. For example, Wang et al. (2015) estimated the ef-100

fect of assumed Earth structure on estimates of TWS derived from synthetic displace-101

ment and gravity observations for the Tibetan Plateau. Utilizing a one-dimensional Earth102

model that reflected the regional crustal structure of the Tibetan Plateau, they produced103

forward modeled surface displacements from an input hydrologic load model. Following104

this, an inversion of the synthetic displacements revealed that only 88% of the input load105

could be recovered when using an a priori Earth model that differed from the one-dimensional106

local crustal structure of the Tibetan Plateau. However, the study was limited to a sin-107

gle load size that spanned the area of the Tibetan Plateau (∼ 2.5 million km2).108

Here, we investigate the sensitivity of surface loading to assumed Earth structure109

to assess the associated implications in using geodetic measurements to estimate changes110

in storage within natural reservoirs. We quantify the sensitivity of GNSS-inferred TWS111

estimates to assumed Earth structure through a series of synthetic tests where displace-112

ments produced by surface loads with varying spatial wavelength are inverted while as-113

suming a suite of different reference Earth models. We then present a case study for the114

western U.S., where we examine nearly two decades of seasonal TWS estimates produced115
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from a variety of global and regional Earth models. Finally, we consider the impact of116

assumed Earth structure on predicted surface displacement in regions experiencing long-117

term (i.e., interannual to decadal) changes in mass within surface and subsurface reser-118

voirs and identify regions where GNSS-inferred estimates of hydrologic and cryospheric119

loading may be significantly biased unless an appropriate model for the interior struc-120

ture of the Earth’s is adopted.121

2 Synthetic Tests122

To quantify the sensitivity of GNSS-inferred TWS estimates to assumed Earth struc-123

ture, we carry out a series of synthetic tests which closely reflect the process and under-124

lying logic applied when using real GNSS data to estimate changes in TWS. We create125

a set of synthetic surface displacements for a single spherically symmetric, non-rotataing,126

elastic, and isotropic (SNREI) Earth model, which we take to the be unknown true struc-127

ture of the Earth. We then invert the synthetic displacements for estimates of TWS, while128

assuming another SNREI Earth model in the design matrix of our inversion. By sim-129

ulating scenarios where the assumed model for Earth structure differs from the true struc-130

ture, we can the quantify the error in TWS estimates associated with the choice of an131

a priori SNREI Earth model used in the inversion. Furthermore, by systematically vary-132

ing the spatial wavelength of the loads used here, we assess the scale dependencies of the133

errors. Here, we focus on the sensitivities of TWS estimates to choice of radially sym-134

metric Earth model. To gain insight into how lateral contrasts in elasticity and density135

affect the estimates of TWS, we include both global- and regional-scale models in our136

comparisons.137

2.1 Earth Models138

To provide a broad sample of structural models for the Earth’s interior, we con-139

sider common reference Earth models: PREM (Dziewonski & Anderson, 1981), AK135f140

(Kennett et al., 1995; Montagner & Kennett, 1996), STW105 (Kustowski et al., 2008),141

and 1066A (Gilbert & Dziewonski, 1975), which represent globally averaged estimates142

of Earth structure (Fig. 1). Additionally, we consider regional Earth models: CR (Chu143

et al., 2012)(Chu et al. 2012) and SNA (Grand & Helmberger, 1984), which represent144

cratonic and stable North American structures. For SNA and CR, beneath approximately145

1000 km depth we assume the material properties of AK135f. Lastly, we consider mod-146

els derived from LITHO1.0 which reflect local crustal and upper mantle structure on a147

1◦ tessellated global grid (Pasyanos et al., 2014). We consider LITHO1.0 models within148

the western U.S. as there is a variety of geologic settings within the region (e.g., sedi-149

mentary basins, mountain ranges) and later sections of the work presented here are con-150

cerned with quantifying the effect of assumed Earth structure on GNSS-inferred TWS151

estimates within specific mountain provinces of the region.152

From LITHO1.0, three local one-dimensional Earth models were constructed to rep-153

resent the average local crust and upper mantle structure of the San Joaquin, Sacramento,154

Tulare (SST) River Basin, the Sierra Nevada, and the Cascade Range respectively. For155

each local model, we consider multiple LITHO1.0 models within the region to produce156

an estimate of the average local crustal structure. The sampling locations in which the157

local crustal models were derived from LITHO1.0 as well as the local lithosphere thick-158

nesses, below which we assume the material properties of AK135f, are displayed in Ta-159

ble S1. For models that contain an ocean layer at the surface, we average the material160

properties of the ocean layer and uppermost crustal layer to form a single homogeneous161

layer. The density of the top layer is equal to the weighted mean density of the two orig-162

inal layers, which conserves total mass, and the elastic moduli are equal to those of the163

original uppermost crustal layer (Guo et al., 2004; Martens & Simons, 2020).164
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Using LoadDef (Martens et al., 2019), we compute LLNs, LGFs, design matrices,165

and forward modeled surface displacements. LLNs were computed from spherical har-166

monic degree n = 0 to n = 1e5 to ensure that the Love Numbers of Earth models with167

relatively fine sedimentary layers in the uppermost crust converged with the asymptotic168

approximation of the LLNs. LGFs for each model considered in this manuscript are dis-169

played in the supplementary materials of this work (Fig. S1). All synthetic surface dis-170

placements are computed assuming the Earth model PREM. Thus, we assume PREM171

represents the true structure of the Earth in the synthetic tests presented here.172

2.2 Load Models173

We consider Gaussian-shaped surface loads to derive the synthetic surface displace-174

ments. The load models represent isotropic bivariate normal distributions with a stan-175

dard deviation, σ, approximately equal to the Gaussian load’s half width at half max-176

imum (HWHM). Each surface load has a maximum height of one meter of freshwater177

at its center, which smoothly decays towards zero. For distances greater than four HWHM178

lengths from the center of the load model, we truncate the load model and consider the179

load amplitude to be equal to zero. We consider input load models of varying size (HWHMs180

equivalent to 1 km, 2.5 km, ... , 750 km, 1000 km) to explore a variety of hydrologically181

relevant spatial scales.182

For each load model, surface displacements were computed for an evenly spaced183

grid of synthetic GNSS stations, (a/8) km x (a/8) km resolution, where a is the HWHM184

of the respective input load model. Synthetic displacements were computed with respect185

to the center of mass of the solid Earth, commonly referred to as the CE reference frame186

(Blewitt, 2003). Additionally, we consider the predicted displacements used in these syn-187

thetic examples to be noise free, which allows for the sensitivity of TWS estimates to188

Earth structure alone to be isolated. The input load model, distribution of synthetic GNSS189

stations, and predicted displacements for a 10 km HWHM load are shown in Figure. 2.190

2.3 Inverse Model191

For each load model and synthetic station grid, we perform an inversion of the the192

synthetic vertical displacements to estimate the input surface load. The recovered load193

height is assumed to be uniform within every grid cell of the inversion grid. We solve for194

the load within each grid cell by minimizing the damped least squares problem195

∥(Gim− d)∥22 + α2 ∥(Lm)∥22 (1)196

where Gi is the [n x m] design matrix containing the predicted elastic response of197

assumed Earth structure i at each synthetic GNSS station to 1 meter of freshwater placed198

in each grid cell of the model grid, m is the [m x 1] vector of unknown quantity of wa-199

ter distributed uniformly within each grid cell, d is the [n x 1] vector of synthetic ver-200

tical displacements at each station assuming PREM structure, L is a 2-D finite differ-201

ence Laplacian operator used to enforce smoothness between neighboring grid cells, and202

α is a regularization parameter, where higher α values result in smoother variations in203

estimated surface mass between adjacent grid cells (Aster et al., 2019).204

In order to avoid potential model bias induced by edge effects along the boundaries205

of our model domain as well as through the use of the Laplacian operator, we take two206

steps to ensure discrepancies in our final estimates of surface load are resultant of the207

differences in Earth structure between the Earth models used to produce our data vec-208

tor and design matrix respectively. To avoid bias induced by the Laplacian operator, we209

construct load-model grids of equal resolution to that of the synthetic station grid, where210

there is one synthetic GNSS station located at the center of each model grid cell. This211
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Figure 1. Depth profiles through the middle mantle of one-dimensional Earth models: PREM

(blue), AK135f (orange), STW105 (green), SNA (olive), CR (cyan), 1066A (red) as well as mod-

els derived from the LITHO1.0 for the San Joaquin, Sacramento, Tulare River Basin (purple) and

Sierra Nevada (dashed purple) of California as well as the Cascade Range (dash-dot purple) of

Washington, Oregon, and northern California. Panels (a) & (b) show P-wave (Vp) and S-wave

(Vs) velocity as a funciton of depth. Panels (c)-(e) show the shear modulus, bulk modulus, and

density profiles in log-space. Panels (f)-(h) show the maximum percentage difference between the

set of Earth models in log-space as a function of depth for the two elastic parameters and density

respectively. Adapted from Martens (2016) (cf. Fig.A1).

–6–



manuscript submitted to JGR: Solid Earth

(a) (b)

Figure 2. a) 10 km HWHM Gaussian load model used for synthetic loading tests. Black dots

represent the location of synthetic GNSS stations used to produce the synthetic vertical displace-

ments assuming the material properties of PREM as well for estimating surface mass loading

utilizing a suite of other one-dimensional Earth models described in Section 3.1. The load ampli-

tude, denoted by the left color bar, represents the height of freshwater distributed evenly within

each pixel of the input load model. Subsequent figures display estimated surface load and error

along the profile line (A - A’). b) Forward modeled vertical and horizontal displacement produced

through the convolution of the LGFs of PREM with the load model depicted in a). The magni-

tude of vertical displacement is denoted by the right color bar. Blue contour lines represent 0.5

mm intervals of vertical displacement. The magnitude and direction of horizontal displacement

produced by the load model are depicted as black vector, with a reference vector located in the

lower right corner of panel b).
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ensures that the number of observations n is equal to the number of model parameters212

m being solved for, making our linear system even-determined with a unique solution.213

As a result, eq. (1) reduces to214

∥(Gim− d)∥22 . (2)215

To address unwanted edge effects, we alter the original boundary of our model do-216

main to extend 8 half width lengths from the center of each load model. Upon solving217

eq. (2), we then only consider model grid cells within 4 half width lengths from the cen-218

ter of the load model for further analysis. Similar to previous studies, we find estimates219

of surface load to be sensitive to the location of the model domain’s boundaries (e.g. Fu220

et al., 2015). When the edge of the model domain is not extended from its original po-221

sition, we observe the value of estimated surface load within grid cells along the edge of222

the domain to be nearly 30% greater than the true value represented by the input load223

model.224

To quantify the sensitivity of GNSS-inferred TWS estimates to assumed Earth struc-225

ture, we compute the error, mi−mtrue, between the estimated surface load produced226

assuming Earth structure i and the true load model used to produce the synthetic dis-227

placements used in eq. (2). We display estimates of surface load derived from the suite228

of Earth models considered here as well as their error relative to the true load’s value229

along a profile, which crosses the center of each load model (A-A’) (Fig. 2).230

2.4 Effect of Assumed Earth Structure on Estimated Surface Loading231

Estimated surface load and error profiles for select load models are displayed in Fig-232

ure. 3. Relative error between estimates of surface load and the true load model are max-233

imized at relatively fine loading scales (e.g., <10 km HWHM), where the true load’s value234

can be incorrectly estimated by over 75% at the center of the load for select Earth mod-235

els (Fig. 3, Fig. 4). Similarly, we find for loads with relatively small spatial wavelengths,236

errors in the recovered load can span the entire area of the load model (e.g., Fig. 3b).237

In comparison, as the spatial wavelength of the surface load becomes progressively large,238

error in recovered load is primarily concentrated within one half width length from the239

center of the load and is near zero for distances beyond this (e.g., Fig. 3h).240

As the Earth’s response to surface loading occurring at relatively fine spatial scales241

is predominately controlled by the shallow material properties of the Earth (Martens,242

Rivera, et al., 2016), discrepancies in estimated surface load reported here reflect differ-243

ences in the Earth model used to construct the design matrices of our inverse problem,244

which may contain multiple sedimentary layers in the uppermost crust or a deep cratonic245

keel, and the globally averaged estimate of Earth structure used to produce the data vec-246

tor. Such discrepancies are most apparent for Earth models that represent regional es-247

timates of structure, such as CR and SNA, or those representing local crustal structure248

of specific regions within the western U.S., which differ significantly from the upper crustal249

structure of PREM (Fig. 1). Additional surface load and error profiles for surface loads250

characterized by other spatial wavelengths considered as a part of this work are provided251

in the supporting information (Fig. S2-S5).252

We therefore find that an incorrect assumption about the material properties of253

the Earth may yield highly incorrect estimates of surface load when estimating changes254

in storage within natural reservoirs occurring over short distances, and that errors as-255

sociated with assumed Earth structure diminish as the spatial wavelength of loading be-256

comes increasingly large (Fig. 4a). Errors tend to be less than 10% of the true load’s value257

when considering surface loads with a HWHM greater than 10 km and become even smaller,258

less than 2%, as the load HWHM approaches 1000 km. Such findings are consistent with259

an increasing sensitivity to Earth structure over broader depth ranges as the size of sur-260
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Figure 3. Estimated surface load and associated error for inversion estimates assuming the

SNREI Earth structures shown in Fig. 1 along the profile A-A’ in Fig. 2 for surface loads corre-

sponding to HWHMs of: (a-b) 1 km, (c-d) 10 km, (e-f) 100 km, and (g-h) 1000 km.
–9–
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face loading increases (Martens, Rivera, et al., 2016), which reduces the sensitivity to261

highly variable shallow Earth structure (Fig. 1). Errors for Earth models that differ from262

PREM over broad depth ranges, however, such as STW105 and AK135f, become increas-263

ingly large relative to the error for other models that deviate from PREM primarily in264

the crust and upper mantle (Fig. S2-S5).265

As expected, the differences between the estimated and true load’s values can be266

related to the differences in LGFs between the SNREI Earth models used to generate267

the data vector, d, and the design matrix, G, of the inverse problem. For instance, the268

LGFs for SNA exhibit smaller displacements within the range of 0.001◦−0.1◦ relative269

to PREM, which would correspond to lower amplitude displacements relative to PREM270

for distributed loads within this range (Fig. S1). When inverting the synthetic displace-271

ments that reflect PREM’s response to the input load, a design matrix corresponding272

to SNA overestimates of the true load’s value (e.g., Fig. 3a). This is the result of SNA273

producing smaller amplitude displacements relative to PREM when an identical load is274

applied to both. If the data vector, d, consists of displacements derived from a ’soft’ Earth275

model (in this case, PREM) relative to a ’hard’ Earth model described by the design ma-276

trix, G, there will be a systematic overestimation of the true load’s value. Similar rela-277

tionships are found for Earth models with LGFs that exhibit displacement amplitudes278

greater than those of PREM, such as 1066A – the true load’s value will be systemati-279

cally underestimated.280

In addition to increased sensitivity to Earth structure for relatively small surface281

loads, we find sensitivities generally follow the geometry of the Gaussian load model used282

to produce synthetic displacements, where the largest errors in estimated surface load283

are located near the center (and peak) of the load model (Fig. 4b). For example, we find284

that error in recovered water load decreases by a factor of two within one half width length285

of the center of the load. Similarly, for distances greater than two half width lengths, er-286

rors tend to be less than 5% of the load model’s true value, irrespective of the load model’s287

spatial wavelength. Such findings are consistent with previous studies that have found288

differences in predictions of surface loading between Earth models are maximized in ar-289

eas where the amplitude of surface loading is relatively large or at small observer-to-load290

distances (e.g. Ito & Simons, 2011; Martens, Simons, et al., 2016; Argus et al., 2017).291

Our findings highlight the potential impact of an incorrect assumption about the Earth’s292

interior structure on GNSS-inferred estimates of TWS made across broad regions. For293

instance, when estimating variations in storage within the region surrounding the Sierra294

Nevada of California (e.g. Enzminger et al., 2018), sensitivities to Earth structure will295

yield errors in estimated TWS concentrated within the mountains, where surface load-296

ing is particularly large as a result of the seasonal accumulation of rain and snow, with297

errors quickly decaying in adjacent regions where the amplitude of surface loading is small298

relative to the nearby mountains.299

While this appears to be generally true, we find for particular Earth model-load300

model combinations, peak sensitivity can be shifted away from the center of the load (Fig.301

S6-S8). We believe these increased sensitivities away from the center of the load model302

to be resultant of differences in the elastic and density structure of a chosen Earth model303

with that of PREM over a specific depth range. For example, an inversion assuming the304

structure of CR exhibits peak sensitivity for a 25 km HWHM load at a distance of 30305

km from the center of the load model. When comparing the elastic and density struc-306

ture of PREM and CR, we find there to be a ∼2.7% reduction in the elastic and den-307

sity parameters of CR relative to PREM between depths of 24-40 km. Similar results308

were found in Martens, Rivera, et al. (2016) where ocean tidal loading sensitivities shifted309

inland away from the coast, where displacements were maximized, as the elastic and den-310

sity structure of PREM was systematically perturbed over various depth ranges.311

In absolute terms, the results here display the impact of an incorrect assumption312

about the Earth’s interior structure when using geodetic observations of surface load-313
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(a)

(b)

Figure 4. (a) Distribution of total error between estimates of surface load derived from the

eight Earth models considered here and the true load model as a function of load HWHM size.

Load HWHM along the x-axis is displayed on a logarithmic scale. (b) Distribution of absolute

error for the Earth models considered here as function of distance from the center of the load

model for load models used in Fig. 3. As the load models used here only vary in size, but retain

their geometry, distances on the x-axis are plotted as half width lengths away from the center of

the load model. The black line represents the profile of the input Gaussian load-model used to

produce synthetic displacements.
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ing across spatial scales relevant for the effective management of freshwater resources.314

For example, an incorrect assumption about the Earth’s local crustal properties may yield315

errors nearly as large as 0.8 m when considering a one meter surface load spanning a few316

kilometers. Consequently, the synthetic tests presented here shed light on the uncertain-317

ties that arise from using observations of hydrology-induced surface loading to estimate318

TWS. Hydrogeodesists and water managers must be aware of the biases that can be in-319

troduced through assumptions about Earth structure in the modeling process, since un-320

certainties in estimated TWS can be significant, especially at small spatial scales.321

3 Western U.S. Case Study322

To build from the synthetic tests, we consider a case study for the western U.S. that323

explores the impact of Earth structure on inversions for TWS that use real geodetic data.324

When working with real data, we do not know the true structure of the Earth, yet we325

must still select an Earth model to construct the design matrix of the inverse problem.326

Furthermore, hydrologic loads can exhibit highly heterogeneous spatial patterns across327

a range of spatial and temporal scales (Skøien et al., 2003). Additionally, the distribu-328

tion of GNSS stations used to estimate variations in TWS are non-uniformly distributed,329

which can affect the ability to resolve variations in TWS occurring at relatively fine spa-330

tial scales.331

To further assess the effect of assumed Earth structure on TWS estimates derived332

from observations of surface loading and quantify the associated uncertainty using real333

data, we consider seasonal variations in TWS in the western U.S. between January 1,334

2006, and September 30, 2022. We selected the western U.S. as an illustrative and rel-335

evant example as (1) the region contains a dense network of GNSS stations allowing for336

estimates of TWS to be made at a relatively fine spatial scale (approx. 25 km); (2) many337

stations in the region have long and continuous periods of record, allowing for variations338

in TWS associated with prolonged periods of drought and precipitation to be made; and339

(3) the application of space geodetic observations to estimate changes in TWS within340

the region has been a topic of increasing interest over the past decade in light of several341

cycles of major drought and recovery (e.g. Argus et al., 2014; Borsa et al., 2014; Carl-342

son et al., 2022; Argus et al., 2022).343

3.1 Isolating Seasonal Hydrologic Loading344

For this case study, we consider vertical displacements observed within the west-345

ern U.S. (defined as 31.75◦N − 50.25◦N, 124.75◦W − 103.25◦W ) associated with sea-346

sonal fluctuations of storage within hydrologic reservoirs. We initially obtain 2961 daily347

vertical GNSS station time series estimated by the Nevada Geodetic Laboratory (NGL)348

in the IGS14 reference frame (Blewitt et al., 2018; Kreemer et al., 2018).349

To isolate the effect of seasonal changes in TWS on station positions, we carried350

out the following post-processing steps: (1) identify and discard stations with less than351

5 years of data during our period of study (January 2006 to September 2022); (2) remove352

predicted vertical displacement associated with nontidal atmospheric and nontidal oceanic353

loading using daily averaged estimates from the German Research Center for Geosciences354

Postdam (GFZ) (Dill & Dobslaw, 2013); (3) estimate and remove vertical displacement355

associated with glacial isostatic adjustment (GIA) using estimates from ICE-6GD (VM5a)356

(Peltier et al., 2018); (4) remove segments of data shorter than 60 days and separated357

by other data by at least 60 days, as these isolated segments may reflect station-specific358

equipment malfunctions; (5) remove time series offsets larger than 8 mm associated with359

known earthquakes and equipment changes using a catalog of known events and offset360

amplitudes provides by the GAGE facility (Herring et al., 2016); (6) for coseismic off-361

sets larger than 40 mm, fit and remove a logarithmic decay model to characterize post362

seismic relaxation (Kreemer et al., 2006); (7) remove outliers using a median absolution363
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deviation (MAD) filter with a running median window of 30 days and a median abso-364

lute deviation threshold factor of 10; (8) fit and remove the linear trend from each time365

series to remove secular signals such as uplift associated with periods of drought from366

the station positions; (9) convert daily position estimates into mean monthly estimates;367

(10) remove elastic deformation produced by variations in TWS occurring outside of the368

western U.S. by forward modeling displacements inferred from the Jet Propulsion Lab-369

oratory’s monthly GRACE mascon solution (version RL06.1M) (Landerer et al., 2020;370

Watkins et al., 2015; Wiese et al., 2016) using the Earth model PREM; and (11) esti-371

mate and remove each year’s mean vertical position to remove displacements associated372

with interannual variations in TWS (i.e., interannual drought and wet periods). We fol-373

low the procedure described in Argus et al. (2022) for interpolating GRACE estimates374

of TWS to periods in which GRACE or GRACE-FO estimates are unavailable.375

Following these steps, we identify stations that exhibit peak vertical uplift during376

the winter months to be exhibiting poroelastic behavior associated with the filling of lo-377

cal aquifers. We identify and remove 134 stations exhibiting poroelastic behavior. Ad-378

ditionally, we identify and remove 30 stations dominated by volcanic deformation pri-379

marily near the boundaries of the Long Valley Caldera and the Yellowstone hotspot. Fi-380

nally, we remove 16 stations predominately located near the epicenters of the Baja and381

Ridgecrest earthquakes that have been strongly biased by postseismic transients. Fol-382

lowing these steps and subsequent removals, we are left with seasonal changes in verti-383

cal position for 1685 stations within the study region. As the time series for some sta-384

tions are not continuous throughout the duration of this study, each time step in the in-385

version contains a varied number of observations in the data vector. The final list of sta-386

tions chosen to be used in this study can be found in the supplemental materials (Data387

Set S1).388

3.2 Estimating Seasonal Variations in TWS from Observed Vertical Dis-389

placement390

We performed an inversion of the observed monthly averaged elastic vertical dis-391

placements to estimate monthly changes in seasonal TWS in the western U.S. between392

January 2006 and September 2022 on a regular model grid with a resolution of 1/4◦. Fol-393

lowing a similar approach as that described in Section 2., we minimize the damped least394

squares problem where Gi represents the design matrix associated with assumed SNREI395

Earth model i. All estimates of TWS reported here are considered anomalies relative to396

the January 2006 - September 2022 temporal mean.397

Due to the uneven distribution of GPS stations in the region, particularly along398

the eastern portion of our study area, we find there can be large mass anomalies we deem399

nonphysical (Fig. S9). We believe these features to be the result of a lack of observa-400

tional constraints in these regions, as well as geophysical signals that were not removed401

or improperly removed during the post-processing steps described in Section 4.1. To pre-402

vent such features from biasing our estimates of TWS, we incorporate additional con-403

strains on the size of the model, equivalent to applying zeroth-order Tikhonov regular-404

ization (Aster et al., 2019). Thus, to estimate changes in TWS in the western U.S., we405

augment eq. (1) as follows406

∥(Gim− d)∥22 + α2 ∥(Lm)∥22 + β2 ∥(m)∥22 (3)407

where β is the added regularization parameter that controls the relative amplitude408

of the model parameters. Like many inverse problems, the problem is ill-posed and under-409

determined, thus the problem is non-unique. The regularization parameters α and β act410

to limit the number of solutions, m, that can adequately fit the data vector, d. We use411

the L-curve criterion (Hansen, 1992), to determine optimal values of α and β that min-412
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imize the residual between the best-fit model and data vector while keeping solutions smooth413

and parameter amplitudes relatively small. Through L-curve analysis, we find the op-414

timal values of α and β to be 2.5 and 1.0 respectively.415

3.3 Sensitivity of Estimated Seasonal Hydrologic Loading to SNREI Earth416

Structure417

We now compare monthly TWS estimates derived from the suite of Earth mod-418

els introduced in Section 3.1. For this case study, we omit two Earth models (SNA and419

CR) that reflect continental shield and cratonic structure respectively as they would im-420

properly describe the material properties and structural features of the western U.S. To421

develop a general understanding of the sensitivity of seasonal TWS estimates in the west-422

ern U.S., for each Earth model used here we compute monthly stacked estimates of TWS423

throughout the study period. It should be noted that while monthly stacked estimates424

of storage allow us to consider the sensitivity of TWS estimates to Earth structure dur-425

ing a ’typical’ seasonal fluctuation in storage within the region, there can be consider-426

able interannual variation in seasonal amplitude of TWS associated with years of higher/lower427

than average winter precipitation (e.g Enzminger et al., 2019), which may result in in-428

creased/decreased sensitivity to Earth structure owing to variations in seasonal ampli-429

tude (Fig. 7a).430

Figure 5. depicts the monthly stacked estimate of storage for the month of April431

assuming PREM and the direct difference between estimates derived from the other Earth432

models considered here. For the month of April, mountainous regions of the western U.S.,433

such as the Sierra Nevada and Cascade Range are estimated to have high amplitude sea-434

sonal changes in storage within surface and subsurface reservoirs as large as 300 mm of435

equivalent water thickness relative to the mean annual storage. Adjacent regions are es-436

timated to experience declines in storage during the month of April, such as the Willamette437

Valley of Oregon, or report lower amplitude changes in storage, typically less than 100438

mm of equivalent water thickness, for the month of April.439

As peaks in storage are estimated to occur primarily within mountainous regions440

during the month of April, we naturally find the largest discrepancies between estimates441

derived from different Earth models within these regions (Fig. 5b-g). For example, dif-442

ferences in estimated storage derived from PREM and other Earth models that repre-443

sent globally averaged estimates of Earth structure, such as AK135f and 1066A, can be444

as large as 40 mm in equivalent water thickness and extend across broad regions of the445

western U.S., typically spanning the entire length of mountain ranges, such as the Sierra446

Nevada (e.g., Fig. 5b). Conversely, regions estimated to have relatively small amplitude447

changes in seasonal storage exhibit differences that are typically less than 10 mm in am-448

plitude. Discrepancies between estimates derived from PREM and STW105 tend to be449

on the order of 5 mm or less extending across broad regions of the western U.S. When450

considering differences between estimates of TWS derived from PREM and LITHO1.0451

models constructed to reflect the local Earth structure of specific regions within the west-452

ern U.S., we find differences as large as 90 mm of equivalent water thickness, but such453

discrepancies are confined to relatively small areas within the study region, such as the454

area surrounding Lake Tahoe of California and Nevada (e.g., Fig. 5e).455

Figure. 6 depicts the monthly stacked estimate of seasonal storage for the month456

of October. In contrast to estimates for the month of April when storage is typically at457

its annual maximum in the western U.S., October is often characterized as the time of458

the year in which storage is at its annual minimum, as precipitation in the form of rain459

and snow is negligible in a majority of the western U.S. As such, it is expected that our460

estimates of seasonal TWS in the western U.S. for the month of October are predom-461

inately negative and nearly equal in amplitude to estimates made for the month of April.462

For example, we find most mountainous areas to exhibit average storage deficits equal463
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(a)                 April : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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Figure 5. (a) Multi-year monthly stacked estimate of seasonal change in storage for the

month of April. Sharp black lines define the boundaries of the HUC-8 watersheds within the

Sierra Nevada and Cascade Range respectively. The gray shaded region represents the area con-

stituting the SST River Basin of California. Black inverted triangles represent GNSS stations

within the western U.S. used to constrain variations in seasonal TWS. Contours represent 125

mm intervals of equivalent water thickness. Direct differences between pairs of TWS estimates for

the month of April using select Earth models: (b) PREM and AK135f, (c) PREM and STW105,

(d) PREM and 1066A, (e) PREM and LITHO1.0 model for the SST River Basin, (f) PREM and

LITHO1.0 model for the Sierra Nevada, and (g) PREM and LITHO1.0 model for the Cascade

Range. The color bars at right denotes the amplitude of the residuals between TWS estimates.

Contours represent 10 mm residual intervals of equivalent water thickness.
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to 250 mm of equivalent water thickness. Similar to the month of April, when compar-464

ing estimates made assuming different models to represent the structure of the Earth,465

the largest discrepancies are found in regions experiencing the highest amplitude changes466

in seasonal storage. Discrepancies in estimated TWS between PREM and other glob-467

ally averaged estimates of Earth structure yield differences as large as 30 mm spanning468

broad regions that align with major mountain provinces of the western U.S. Estimates469

of TWS assuming the local LITHO1.0 models can differ from estimates made assuming470

PREM within relatively small areas by over 80 mm of equivalent water thickness. Es-471

timates of seasonal TWS and direct differences between the Earth models considered here472

for other months are included in the supplemental materials (Fig. S10-19).473

As water storage dynamics in the western U.S. have been found to be closely tied474

to the annual accumulation and melting of snowpack deposited in mountains during win-475

ter months (e.g Brown et al., 2008), we find it reasonable that estimates of seasonal TWS476

would exhibit the largest sensitivities to Earth structure in mountainous areas where the477

seasonal accumulation of precipitation is relatively large. In addition, we find the dis-478

crepancies displayed in Figs 5-6 between Earth models to reflect differences in the ma-479

terial properties of each Earth model being used here. For example, the local LITHO1.0480

models used here may contain multiple sedimentary units in the uppermost crust of the481

Earth, yielding higher amplitude LGFs in the near-field compared to PREM (Fig. S1).482

As a result, estimates of TWS derived from the LITHO1.0 models tend to differ from483

estimates made with PREM at relatively high amplitude over small distances (Figs. 5-484

6). These differences may reflect GNSS stations observing localized hydrologic loading,485

such as changes in storage within a nearby lake or artificial reservoir. Although, we note486

that the estimates derived from the LITHO1.0 model for the Sierra Nevada, which lacks487

sedimentary units in its uppermost crust, differ from estimates assuming the structure488

of PREM by less than 10 mm of equivalent water thickness. In contrast, the material489

properties of the other Earth models being considered tend to differ from PREM over490

much broader depth ranges, resulting in larger sensitivities to loading occurring within491

the mid-field. Discrepancies spread across many layers yield relatively smaller amplitude492

discrepancies in estimates of TWS that span much broader regions of the western U.S.493

We now consider the effect of differences in assumed Earth structure on estimates494

of seasonal TWS within specific mountain and agricultural provinces vital for the effec-495

tive management of freshwater resources within the western U.S. Figure. 7 displays es-496

timates of seasonal TWS for the SST River Basin, Sierra Nevada of California and the497

Cascade Range of Washington, Oregon, and northern California derived from the suite498

of Earth models considered here. Boundaries for each province are depicted as black or499

shaded regions in Figs 5-6 and are defined by the boundaries of watersheds within each500

region. We find that estimates of storage can differ by up to 12.4, 13.6, and 9.8 percent501

of the annual oscillation of storage within each of these regions respectively and are max-502

imized in spring and fall months when storage within natural reservoirs is assumed to503

be at its annual maximum/minimum.504

Of the Earth models considered here, we find AK135f to yield the most discrepant505

estimates of TWS within the western U.S. When discarded from our analysis, we find506

estimates of TWS within the SST, Sierra Nevada, and Cascades to vary by 6.7, 7.2, and507

5.4 percent respectively. Inspection of the LGFs of AK135f reveal smaller displacements508

at angular distances between 0.001 and 1.0 degrees compared to the LGFs of the other509

Earth models considered here (Fig. S1). Such discrepancies between LGFs may be partly510

explained by AK135f containing a relatively rigid elastic structure in the upper 80 km511

of the Earth (Fig. 1). Furthermore, such discrepancies may indicate that hydrologic sur-512

face loading observed by GNSS stations within the western U.S. is characterized by a513

spatial wavelength on the order of tens of kilometers, increasing sensitivities to differ-514

ences in structure between a chosen a priori Earth model and the true structure of the515

Earth over these depths (Martens, Rivera, et al., 2016).516
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(a)               October : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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Figure 6. (a) Same as Fig. 5, but for the month of October.

When estimating seasonal changes in storage within individual mountain and agri-517

cultural provinces of the western U.S., we find that estimates assuming different mod-518

els for the interior structure of the Earth differ by less than 14% and differences in es-519

timates of storage remain small relative to reported formal uncertainties of GNSS-inferred520

TWS estimates within the region (e.g. Argus et al., 2017; Carlson et al., 2022). Nonethe-521

less, water managers and policy makers should be mindful of the uncertainties associ-522

ated with specific assumptions underlying the models used to convert geodetic measure-523

ments into estimates of TWS. Although, we should note that the results presented here524

only provide a sense of precision of estimated seasonal TWS within the western U.S. The525

true error in estimated TWS may be much larger if all of the Earth models considered526

here differ substantially from the true structure of the region.527

Additionally, the results of Section 3. as well the comparisons of seasonal TWS be-528

tween PREM and the local LITHO1.0 models point out that as the spatial-scale of sur-529

face loading becomes increasingly fine, sensitivity to Earth structure can have a signif-530

icant effect on estimates of TWS. As such, we find current approaches utilized to esti-531

mate TWS within mountain and agricultural provinces of the western U.S. are subject532

to minor biases associated with assumed Earth structure as many of these provinces span533

large areas within the region. However, as it becomes of interest to use geodetic meth-534

ods to constrain storage within individual watersheds and even small areas, lack of knowl-535

edge of the local crust and upper mantle structure of a region may yield estimates of TWS536

that are significantly biased by choice of Earth model. Moreover, as GNSS networks in537

the western U.S. become increasingly dense, and non-hydrologic processes that deform538

the Earth are more accurately modeled and removed from GNSS time series, uncertain-539

ties of GNSS-inferred TWS estimates associated with Earth structure may become in-540

creasingly significant.541
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(a) (b)

(c) (d)

Figure 7. Estimated change in volumetric storage (km3) between January 2006 and Septem-

ber 2022 in the (a) SST River Basin. The yellow shaded area depicts the maximum difference in

estimated storage between the Earth models used here. The solid blue line represents the maxi-

mum percentage difference between estimates of storage relative to that year’s annual amplitude

(blue shaded area). (b-d) Multi-year monthly stacked estimates of storage within the SST River

Basin, Sierra Nevada of California, and the Cascade Range of Washington, Oregon, and northern

California. The red line depicts the estimated mean seasonal fluctuation in storage within each

region considering estimates derived from the seven Earth models used here (light gray lines).

The light blue line depicts the maximum percentage difference between residuals derived from

the set of Earth models considered here relative to the estimated mean seasonal amplitude of all

models. The blue shaded area depicts the standard deviation of seasonal storage considering the

full time series of monthly TWS estimates between January 2006 and September 2022.
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4 Predicted Global Hydrologic Loading542

While the previous sections provide an awareness of the scale dependence of error543

in GNSS-inferred TWS estimates and the sensitivity of seasonal TWS estimates in the544

western U.S. to assumed Earth structure, we have only considered the effect of assumed545

Earth structure for surface loads that are invariant in time (Section 2.) or oscillate at546

an annual time scale (Section 3.). However, in many regions, hydrologic and cryospheric547

reservoirs have seen significant changes in storage over the past several decades associ-548

ated with modern shifts in climate and an increasing reliance on groundwater to meet549

human needs as the global population grows (e.g. Wada et al., 2010; Paolo et al., 2015;550

Rodell et al., 2018; Seo et al., 2023). As such, loading and unloading of the solid Earth551

associated with long-term storage variations produces measurable changes in the Earth’s552

figure and gravity field which can be used to constrain decreases in groundwater stor-553

age associated with multi-year drought (e.g. Argus et al., 2017; Liu et al., 2022; Argus554

et al., 2022), mass loss from the planet’s ice sheet’s and glaciers (e.g. Wouters et al., 2019;555

Sasgen et al., 2020), and changes in global mean sea level (e.g. Reager et al., 2016; Jeon556

et al., 2018).557

In addition to constraining variations in storage within natural reservoirs, obser-558

vations of surface displacement may be compared with predictions (typically assuming559

a radially varying Earth model) to characterize deformation of the Earth’s surface pro-560

duced by the Earth’s elastic response to modern day changes in the distribution of sur-561

face and near surface mass and the viscous response to much older loading/unloading562

events through processes such as glacial isostatic adjustment. Through such comparisons,563

it is possible to acquire unique information about the viscosity structure of the Earth’s564

mantle (Velicogna & Wahr, 2002; Nield et al., 2014; Koulali et al., 2022). Furthermore,565

by separating observations of surface displacement produced by past and present load-566

ing, area-specific sea level rise may be attributed to the unique Earth system process pro-567

ducing mass redistribution as well as motion of the Earth’s surface (Zanchettin et al.,568

2021; Ziegler et al., 2022).569

As we saw in previous sections, in areas experiencing relatively high amplitude changes570

in storage (i.e., the source of surface loading/unloading is large), there is an increased571

sensitivity to the choice of Earth model used to model displacements produced by an ap-572

plied load. As such, in regions that have experienced large-scale and systematic changes573

in storage within surface and near-surface reservoirs over the past several decades, such574

as the Greenland ice sheet, we presume that predictions of elastic displacement may be575

particularly sensitive to choice of Earth model. To explore this further, we next consider576

forward model predictions of elastic displacement produced by global variations in stor-577

age within natural reservoirs over the past two decades.578

4.1 Effect of Earth Structure on Predicted Vertical Land Motion579

Using LoadDef (Martens et al., 2019), we model surface displacements produced580

by global hydrologic loading derived from liquid water equivalent estimates of the Jet581

Propulsion Laboratory’s monthly GRACE mascon solution (version RL06.1M) (Landerer582

et al., 2020; Watkins et al., 2015; Wiese et al., 2016) over a global 1°x1° grid. We model583

vertical displacement of the Earth’s surface over the past two decades (spanning April584

2002 to September 2022) to identify regions experiencing strong multi-decadal changes585

in storage, and to estimate the discrepancies in predicted displacement that can be in-586

troduced by assuming different models for Earth structure. Predictions of global hydro-587

logic loading are computed assuming commonly used Earth models: PREM, AK135f,588

STW105, and 1066A. All predictions reported here are considered relative to April, 2002.589

Figure. 8 shows predictions of global vertical displacement for select months be-590

tween April, 2002 and September 2022. Regions that have observed considerable loss of591

mass stored within natural reservoirs over the past two decades such as the Greenland592
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ice sheet, western Antarctica, and southeastern Alaska exhibit relatively large uplift. For593

example, we find western portions of the Greenland ice sheet are predicted to have risen594

between 160 and 180 mm at a mean rate of 8.3 mm/yr since April, 2002 through the Earth’s595

elastic response to pervasive loss of ice stored within the ice sheet, consistent with pre-596

vious findings (e.g. Tapley et al., 2019). Conversely, regions that have observed increases597

in hydrologic storage relative to the start of the time series exhibit subsidence (e.g., Ama-598

zon river basin in April 2022).599

Figure. 8 b-d show vector differences between pairs of forward models using dif-600

ferent globally averaged estimates of Earth structure. The largest discrepancies between601

predictions are located in polar regions where significant unloading of the Earth’s sur-602

face has occurred over the past two decades due to the loss of ice mass and can be as603

large as 20 mm for select forward model pairs. Relatively large discrepancies between604

forward model predictions also exist in regions that have seen increases in storage within605

hydrologic reservoirs over the past two decades, such as eastern Antarctica and the west-606

ern Zambezi basin of Africa (Rodell et al., 2018). However, the increases in storage within607

these regions, and thus predicted displacement and differences between predictions de-608

rived from various Earth models, are smaller in amplitude compared to mass deficits in609

regions containing large ice sheets and glaciers. Vector differences for other pairs of Earth610

models are provided in the supplemental information (Fig. S20).611

To further investigate the effect of Earth structure on predictions of vertical dis-612

placement associated with long-term changes in storage, we focus on regions that exhibit613

the largest discrepancies between forward model predictions at the end of the study pe-614

riod (Fig. 8). Namely, we consider the Greenland ice sheet, western Antarctica, and south-615

eastern Alaska, as these regions have all experienced considerable losses of mass stored616

within ice sheets or glaciers as a result of modern changes in global climate producing617

significant uplift of the Earth’s surface. Time series of predicted vertical displacement618

for individual synthetic GPS stations (denoted by inverted triangles in Fig. 9a) located619

within our regions of interest are displayed in Figure. 9b-d.620

Predictions of vertical displacement for the Greenland ice sheet and western Antarc-621

tica demonstrate substantial linear trends over the past two decades, attributed to con-622

tinuous ice loss within these regions, with minor variability in certain years (Fig. 9b, 9c).623

Since April 2002, these regions are predicted to have experienced between 161 to 181 and624

186 to 205 mm of uplift respectively. In both regions, the largest discrepancies in pre-625

dictions are between AK135f and 1066A, which differ by over 19 and 18 mm respectively626

by September 2022 and deviate from each other at a rate of nearly 1 mm per year (Fig.627

S20a, S20b). Conversely, the smallest discrepancies in predicted displacement are found628

between PREM and STW105, which differ by less than 4 mm within both regions by Septem-629

ber 2022. Similarly, predictions in southeastern Alaska are characterized by a significant630

linear trend associated with mass loss from glaciers within the region, although there is631

also a notable seasonal oscillation in predicted displacement attributed to annual pre-632

cipitation patterns (Fig. 9d). Since April 2002, southeastern Alaska is predicted to have633

been uplifted between 79 and 85 mm over the past two decades. As with the other re-634

gions considered here, the largest discrepancies are between AK135f and 1066A, with a635

maximum difference of approximately 5 mm (Fig. S20c), while the smallest discrepan-636

cies are between PREM and AK135f, with a difference of 1 mm.637

We note two important findings depicted in Fig. 9 and their associated implica-638

tions. First, as changes in storage within hydrologic and cryospheric reservoirs are sus-639

tained over significant periods of time, acting as an increasingly large source of surface640

loading/unloading, discrepancies in predicted vertical displacement between pairs of for-641

ward models become increasingly significant. For example, differences in predicted up-642

lift of the Greenland ice sheet between forward models using PREM and AK135f increase643

from approximately 2.5 mm in April, 2009 to over 8 mm in April, 2022 (Fig. S20). As644

such, when utilizing observations of surface loading to constrain changes in storage within645
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(a) (b)

(c) (d)

Figure 9. (a) Predicted vertical displacement for the month of September 2022. Inverted

triangles represent sampling locations for the displacement time series depicted in panels (b-d).

Note: The color bar saturates beyond a value of 100 mm. Predictions between April 2002 and

September 2022 for select Earth models at : (b) 76.0° N, 58° W on the western portion of the

Greenland Ice Sheet, (c) 75° S, 112° W in western Antarctica, and (d) 61.0° N, 142° W in south-

eastern Alaska. Gaps in predicted VLM depicted here represent data gaps in the time series of

GRACE and GRACE-FO.
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natural reservoirs occurring over years to decades (e.g., deglaciation, drought, ground-646

water depletion), the choice of Earth model becomes increasingly import as the source647

of surface loading becomes progressively large. As a result, storage estimates and asso-648

ciated interpretations may differ significantly owing to choice of Earth model. Similarly,649

as many regions exhibit long-term vertical deformation produced by secular trends in650

hydrology and glacial isostatic adjustment, prediction and subsequent removal of elas-651

tic deformation produced by hydrologic loading may yield widely variable estimates of652

the Earth’s viscous deformation response to past loading.653

Second, we find that differences in predictions of long-term vertical displacement654

can be significantly larger than the current observational uncertainty of GNSS (∼ 1 mm),655

especially in regions containing large ice sheets and glaciers. While such discrepancies656

pose challenges in using observations of surface displacement to constrain variations in657

storage within such regions, immense progress has been made over the past several decades658

to provide accurate estimates of mass change within the Earth’s ice sheets and glaciers659

using satellite altimetry (e.g. Spada et al., 2012; Smith et al., 2020) and gravity field ob-660

servations (e.g. Chen et al., 2006; Sasgen et al., 2019). As such, we propose that com-661

parison of predicted and observed surface displacement within these regions, may pro-662

vide a unique opportunity to differentiate between suitable models for regional crust and663

mantle structure. Such information would not only provide an independent approach to664

constrain the interior structure of the Earth, complimenting estimates derived from seis-665

mic observations, but would also allow for better characterization of deformation pro-666

duced by glacial isostatic adjustment within these regions if deformation produced by667

modern unloading can be accurately modeled and removed.668

5 Conclusion669

Here, we explore the sensitivity of terrestrial water storage estimates derived from670

observations of surface mass loading to assumed Earth structure. Through a series of671

synthetic loading tests, we find that as the spatial scale of surface loading becomes pro-672

gressively smaller, estimates of terrestrial water storage can have errors associated with673

the choice of Earth model nearly as large as 80%. As such, it may not be possible to make674

accurate estimates of variations in storage using geodetic methods at relatively fine spa-675

tial scales (<10 km) without comprehensive knowledge of a region’s local crustal struc-676

ture, limiting the use of geodetic observations to constrain variations in storage within677

relatively small hydrologic reservoirs, such as a lake or artificial reservoir. However, our678

results indicate that surface loads on the order of tens to hundreds of kilometers in size679

are well recovered, even if the Earth model used to estimate TWS differs from the Earth’s680

interior structure.681

To determine the effect of Earth structure in a region particularly relevant in the682

field of hydrogeodesy, we estimated seasonal variations in GNSS-inferred terrestiral wa-683

ter storage within the western U.S. between January 2006 and September 2022 using mul-684

tiple global and regional models for the structure of the Earth. In general, we find the685

largest discrepancies in estimates of seasonal TWS within mountainous regions of the686

western U.S., where the seasonal accumulation of rain and snow act as a large source of687

surface loading, enhancing sensitivities to structure relative to areas with small seasonal688

fluctuations in storage. Similarly, we find sensitivities to Earth structure are maximized689

in spring and fall months when many natural reservoirs are at their annual maximum/minimum.690

Overall, we find that assumed Earth structure has a small bias on estimates of seasonal691

TWS within mountain and agricultural provinces of the western U.S., yielding estimates692

that can differ by over 13%.693

In addition, to consider the effect of assumed Earth structure on estimating stor-694

age and/or surface displacement associated with variations in storage within hydrologic695

and cryospheric reservoirs occurring over several decades, we compared predictions of696
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global hydrologic loading over the past two decades assuming globally averaged estimates697

of Earth structure. Our results indicate that estimates of surface loading are particu-698

larly sensitive to choice of Earth model in regions experiencing large-scale and system-699

atic variations in storage within natural reservoirs, such as the Earth’s ice sheets and glaciers700

where predictions of uplift associated with ice loss can differ by as much as 20 mm, sub-701

stantially larger than the current observational uncertainty of GNSS. As a result, we pos-702

tulate that observations of the Earth’s elastic response to mass loss from ice sheets and703

glaciers may provide valuable information which may be used to constrain the elastic and704

density structure of the crust and upper mantle.705

Open Research Section706

Solution files for the synthetic tests, stations used for the inversion in Section 3,707

and estimates of seasonal water storage within the western U.S. for each month from Jan-708

uary 2006 and September 2022 are publicly available at https://figshare.com/s/d191705ec826efdda812.709

Jet Propulsion Laboratory’s GRACE Mascon solution can be accessed at https://grace.jpl.nasa.gov/710

data/get-data/ jpl global mascons/. GPS positions processed at the Nevada Geodetic711

Laboratory are available at http://geodesy.unr.edu/gps timeseries/tenv3/IGS14/. The712
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Region Sampling Location Local Lithosphere Thick-
ness [km]

San Joaquin River Basin 39.792◦ N, −121.604◦ W 54.553
Sacramento River Basin 37.686◦ N, −120.475◦ W 54.679
Tulare River Basin 36.155◦ N, −119.409◦ W 76.14
Northern Sierra Nevada 39.612◦ N, −120.879◦ W 50.892
Central Sierra Nevada 38.102◦ N, −119.864◦ W 51.789
Southern Sierra Nevada 36.476◦ N, −118.496◦ W 68.309
Northern Cascades 48.404◦ N, −121.234◦ W 53.937
Central Cascades 45.399◦ N, −121.759◦ W 54.491
Southern Cascades 41.014◦ N, −122.118◦ W 61.983
Table S1. Sampling locations and local lithosphere thickness of radial profiles derived11

from LITHO1.0 used compute the average local crust and upper mantle structure of the12

SST River Basin, Sierra Nevada, and Cascade Range respectively.13
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14

Figure S1. Displacement load Green’s functions computed in the CE reference frame for PREM15

(blue), AK135f (orange), STW105 (green), SNA (olive), CR (cyan), 1066A (red), and average16

crust and upper mantle models for the San Joaquin, Sacramento, Tulare River Basin (purple),17

Sierra Nevada (dashed purple), and the Cascade Range (dash-dot purple). Panel (a) displays the18

vertical-component of the LGFs over angular distances that range from 0.001◦ to 170◦ respec-19

tively. The LGFs have been multiplied by a scaling factor 1012aθ, where a is Earth’s mean radius20

(units of meters) and θ represents the angular distance between the applied load and the point21

of observation (units of radians). Panel (b) displays the LGFs of the models considered here22

relative to the LGFs of PREM. Panels (c) and (d) depict a zoomed in version of the information23

depicted in (a) and (b).24
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25

Figure S2. Estimated surface load and associated error for inversion estimates assuming the26

SNREI Earth structures shown in Fig. 1 along the profile A-A’ in Fig. 2 for surface loads27

corresponding to HWHMs of: (a-b) 1 km, (c-d) 2.5 km, (e-f) 5 km, and (g-h) 7.5 km.28
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29

Figure S3. Estimated surface load and associated error for inversion estimates assuming the30

SNREI Earth structures shown in Fig. 1 along the profile A-A’ in Fig. 2 for surface loads31

corresponding to HWHMs of: (a-b) 10 km, (c-d) 17.5 km, (e-f) 25 km, and (g-h) 37.5 km.32
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33

Figure S4. Estimated surface load and associated error for inversion estimates assuming the34

SNREI Earth structures shown in Fig. 1 along the profile A-A’ in Fig. 2 for surface loads35

corresponding to HWHMs of: (a-b) 50 km, (c-d) 67.5 km, (e-f) 75 km, and (g-h) 100 km.36
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37

Figure S5. Estimated surface load and associated error for inversion estimates assuming the38

SNREI Earth structures shown in Fig. 1 along the profile A-A’ in Fig. 2 for surface loads39

corresponding to HWHMs of: (a-b) 175 km, (c-d) 250 km, (e-f) 500 km, and (g-h) 750 km.40
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41

Figure S6. Error is estimated surface load normalized by the misfit at the center of the load42

for surface loads corresponding to HWHMs between 1 and 37.5 km.43
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44

Figure S7. Error is estimated surface load normalized by the misfit at the center of the load45

for surface loads corresponding to HWHMs between 50 and 750 km.46
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47

Figure S8. Error is estimated surface load normalized by the misfit at the center of the load48

for a surface loads with a HWHM of 1000 km.49
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50

(a) (b)𝛼 = 2.5, β = 0.5 𝛼 = 2.5, β = 0.0

51

Figure S9. Estimated seasonal change in storage for the month of April 2017. (1) estimates52

produced using eq.2 (b) estimates produced using equation eq.1 which yield large gains/losses53

in the eastern portion of our model domain. Units are meter of equivalent water thickness.54

Contours represent 250 mm of water loss/gain.55
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56

(a)              January : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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57

Figure S10. a) Multi-year monthly stacked estimate of seasonal change in storage for the month58

of January. Contours represent 125 mm intervals of equivalent water thickness. Direct differences59

between pairs of TWS estimates for the month of April using select Earth models: (b) PREM60

and AK135f, (c) PREM and STW105, (d) PREM and 1066A, (e) PREM and LITHO1.0 model61

for the SST River Basin, (f) PREM and LITHO1.0 model for the Sierra Nevada, and (g) PREM62

and LITHO1.0 model for the Cascade Range. The color bars at right denotes the amplitude of63

the residuals between TWS estimates. Contours represent 10 mm residual intervals of equivalent64

water thickness.65
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(a)               February : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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67

Figure S11. a) Multi-year monthly stacked estimate of seasonal change in storage for the month68

of February.69
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(a)                 March : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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Figure S12. a) Multi-year monthly stacked estimate of seasonal change in storage for the month72

of March.73
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(a)                 May : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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75

Figure S13. a) Multi-year monthly stacked estimate of seasonal change in storage for the month76

of May.77
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(a)                 June : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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Figure S14. a) Multi-year monthly stacked estimate of seasonal change in storage for the month80

of June.81
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(a)                 July : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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Figure S15. a) Multi-year monthly stacked estimate of seasonal change in storage for the month84

of July.85
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(a)               August : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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Figure S16. a) Multi-year monthly stacked estimate of seasonal change in storage for the month88

of August.89
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(a)            September : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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Figure S17. a) Multi-year monthly stacked estimate of seasonal change in storage for the month92

of September.93
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(a)             November : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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Figure S18. a) Multi-year monthly stacked estimate of seasonal change in storage for the month96

of November.97
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(a)             December : PREM

(c)          PREM – STW105(b)            PREM – AK135f (d)           PREM – 1066A

(e)            PREM – SST (f)         PREM – Sierra Nevada (g)          PREM – Cascades R
es
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Figure S19. a) Multi-year monthly stacked estimate of seasonal change in storage for the month100

of December.101
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Figure S20. a) Amplitude of the difference in predicted VLM between predictions derived103

from PREM and 1066A for the month of September 2022. Inverted triangles represent sampling104

locations for the time series of VLM depicted in panels (b-d). Difference in predicted VLM105

between April 2002 and September 2022 for select Earth models at : (b) 76.0° N, 58° W on the106

western portion of the Greenland Ice Sheet, (c) 75° S, 112° W in western Antarctica, and (d)107

61.0° N, 142° W in southeastern Alaska. Gaps in predicted VLM depicted here represent data108

gaps in the time series of GRACE and GRACE-FO.109
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Dataset S1. Final stations used to invert observed vertical displacements within the western110

U.S. to estimate seasonal changes in terrestrial water storage within the region between January111

2006 and September 2022. The steps followed to determine the final set of stations used in this112

study are described in the main text of this manuscript.113

Dataset S2. Full dataset of inversion solutions (txt format) and input surface load models used114

in the synthetic tests section of this work. Each file’s name in the data set describes both the115

size of the load the solution corresponds to and the Earth model used in the design matrix of116

the inversion.117

Dataset S3. Full dataset of inversion solutions (txt format) for seasonal TWS changes in the118

western U.S. between January 2006 and September 2022. Each file’s name indicates the Earth119

model that used to construct the design matrix of the inversion.120
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