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Abstract

Atmospheric nitrogen (N) deposition and climate change are transforming the way N moves through dryland watersheds. For

example, N deposition is increasing N export to streams, which may be exacerbated by changes in the magnitude, timing, and

intensity of precipitation (i.e., the precipitation regime). While deposition controls the amount of N entering a watershed, the

precipitation regime influences rates of internal cycling; when and where soil N, plant roots, and microbes are hydrologically

connected; how quickly plants and microbes assimilate N; and rates of denitrification, runoff, and leaching. We used the

ecohydrological model RHESSys to investigate (1) how N dynamics differ between N-limited and N-saturated conditions in a

dryland watershed, and (2) how total precipitation and its intra-annual intermittency (i.e., the time between storms in a year),

interannual intermittency (i.e., the duration of dry months across multiple years), and interannual variability (i.e., variance in the

amount of precipitation among years) modify N dynamics. Streamflow N export was more sensitive to increasing intermittency

and variability in N-limited vs. N-saturated model scenarios, particularly when total precipitation was lower—the opposite was

true for denitrification. N export and denitrification increased or decreased the most with increasing interannual intermittency

compared to other changes in precipitation timing. This suggests that under future climate change, prolonged droughts that

are followed by more intense storms may pose a major threat to water quality in dryland watersheds.
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Abstract  21 

 Atmospheric nitrogen (N) deposition and climate change are transforming the way N 22 

moves through dryland watersheds. For example, N deposition is increasing N export to streams, 23 

which may be exacerbated by changes in the magnitude, timing, and intensity of precipitation 24 

(i.e., the precipitation regime). While deposition controls the amount of N entering a watershed, 25 

the precipitation regime influences rates of internal cycling; when and where soil N, plant roots, 26 

and microbes are hydrologically connected; how quickly plants and microbes assimilate N; and 27 

rates of denitrification, runoff, and leaching. We used the ecohydrological model RHESSys to 28 

investigate (1) how N dynamics differ between N-limited and N-saturated conditions in a 29 

dryland watershed, and (2) how total precipitation and its intra-annual intermittency (i.e., the 30 

time between storms in a year), interannual intermittency (i.e., the duration of dry months across 31 

multiple years), and interannual variability (i.e., variance in the amount of precipitation among 32 

years) modify N dynamics. Streamflow N export was more sensitive to increasing intermittency 33 

and variability in N-limited vs. N-saturated model scenarios, particularly when total precipitation 34 

was lower—the opposite was true for denitrification. N export and denitrification increased or 35 

decreased the most with increasing interannual intermittency compared to other changes in 36 

precipitation amount. This suggests that under future climate change, prolonged droughts that are 37 

followed by more intense storms may pose a major threat to water quality in dryland watersheds.  38 

Key points: 39 

 We developed a new metric for identifying when a dryland watershed becomes “capacity 40 

N-saturated”. 41 

 Streamflow N export was more sensitive to precipitation regime changes in N-limited 42 

than N-saturated watersheds. 43 
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 N export increased or decreased the most with increasing interannual intermittency than 44 

other changes in precipitation amount.  45 

1 Introduction 46 

Atmospheric N deposition has been increasing in dryland watersheds of the western US 47 

since the 1860s, largely due to human population growth and concomitant increases in both 48 

fossil fuel consumption and industrial agriculture (Galloway et al., 2008; Kanakidou et al., 49 

2016). In many populated regions around the globe, N deposition is already around 20 times 50 

higher than the natural rate of 0.05 g N g m-2 year-1 (Dentener et al., 2006; Galloway et al., 51 

2008). For example, in dryland chaparral watersheds near Los Angeles, California, the N 52 

deposition rate is more than 3 g N m-2 year -1 (Benish et al., 2022). By 2050, rates are likely to 53 

reach 5 g N m-2 year-1 (Sutton et al., 2007). Given these dramatic increases in N inputs, there is 54 

an urgent need to understand (1) the point at which dryland watersheds will no longer be able to 55 

assimilate additional N (i.e., the threshold of N deposition at which they become N-saturated) 56 

and (2) how deposited N will be transformed and exported from watersheds through both 57 

hydrologic and gaseous pathways (i.e., denitrification) under both N saturated and unsaturated 58 

conditions. Precipitation plays an important role in driving N cycling, uptake, and export. 59 

However, in drylands, these processes can act on different timescales and high precipitation 60 

variability can complicate our ability to predict the fate of atmospherically deposited N (Homyak 61 

et al., 2014; Howarth et al., 2006; Krichels et al., 2022; Ren et al., 2023, submitted). 62 

Conceptual models used to assess N saturation and N export were developed in temperate 63 

systems where relatively high and consistent rainfall maintains hydrologically connected soils 64 

throughout the year, allowing substrates to diffuse to plant roots and be taken up (Homyak et al., 65 

2014). As a result, these models assume that N export occurs once a watershed exceeds the 66 
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capacity of plants and other ecosystem components to assimilate N and becomes N-saturated 67 

(Aber et al., 1989). In drylands however, summer aridity can keep soils dry for months without 68 

rain, limiting subsurface N transport and allowing it to accumulate in hydrologically 69 

disconnected microsites (i.e., hotspots; Parker & Schimel, 2011). At the onset of the wet season 70 

when rains return, N can be rapidly exported before plants and soil microbes can assimilate it—71 

this can produce large stream N losses (known as “pulses”) that under traditional conceptual 72 

models would suggest N saturation (Zhu et al., 2018). However, such hydrologic losses regularly 73 

occur in drylands even when plants remain N-limited (Homyak et al., 2014).  74 

To better account for asynchronies between N availability and uptake, Lovett & Goodale. 75 

(2011) introduced the concept of kinetic N saturation, where available N can exceed demand 76 

over short timescales (e.g., when a storm follows a long dry period). This contrasts with capacity 77 

N-saturation, where an ecosystem or watershed can no longer assimilate N over longer 78 

timescales, resulting in consistent increases in N export that correspond with increasing 79 

atmospheric N inputs. Because both N saturation statuses can increase N export, it is difficult to 80 

identify the threshold at which dryland watersheds shift from kinetic to capacity saturation. As a 81 

result, it also remains difficult to predict the fate of atmospherically deposited N and how it 82 

changes along a gradient from kinetic to capacity saturation. 83 

Further complicating our understanding of N saturation and export, general circulation 84 

models project changes in the both the total amount and timing of precipitation in drylands 85 

(Fischer et al., 2013). These changes can occur on both intra- and interannual scales (Knapp et 86 

al., 2002; Trenberth et al., 2003). On intra-annual time scales, a higher water-holding capacity in 87 

a warming atmosphere can give rise to larger precipitation events with longer dry periods 88 

between storms (i.e., higher intra-annual intermittency, Allen & Ingram, 2002). At interannual 89 
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scales, climate change can alter atmospheric circulation and moisture transport to promote 90 

extreme wet months with a longer duration of dry months across multiple years (i.e., higher 91 

interannual intermittency (Allen & Ingram, 2002; Trenberth et al., 2003). Alternatively, some 92 

models project that climate change will enhance interannual variability, making dry years drier 93 

and wet years wetter, while still retaining the intra-annual storm event characteristics (Pörtner et 94 

al., 2022). Higher precipitation intermittency and variability can both affect N export, but 95 

increases in intermittency, which change both the timing and magnitude of storms (i.e., fewer, 96 

more intense storms), may have a different effect than changes in variability alone (which only 97 

influences storm size without changing timing (Homyak et al., 2017; Winter et al., 2023). Recent 98 

studies have shown that enhanced precipitation variability and intermittency can increase both 99 

nitric oxide (NO) emissions and stream N export (Krichels et al., 2022; Winter et al., 2023), 100 

however, most of these studies are event-based and the long-term, and cumulative effects of 101 

altered precipitation regimes and their interactions with N deposition remain poorly understood.  102 

A simulation modeling approach should be useful for identifying the threshold of 103 

atmospheric N deposition at which a watershed transitions from kinetic to capacity saturation, 104 

which would enable us to better project future N export. With this approach, we can directly 105 

investigate how N export responds to temporal asynchrony between N availability and uptake; 106 

for example, when the first rain event of a wet season flushes N while plants are not actively 107 

growing (in a Mediterranean climate) vs. when the activation of rainy season overlaps with the 108 

peak growing season in early spring (in a continental climate). We expect that when a watershed 109 

only experiences kinetic saturation, there will be pronounced differences between these two 110 

scenarios. Conversely, when a watershed is capacity N-saturated due to high N-deposition, total 111 

N export will not change in response to the timing of precipitation.   112 
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 Using a simulation modeling approach, we developed and tested our proposed metric for 113 

identifying when a dryland watershed becomes “capacity N-saturated.” Then using the new 114 

metric, we developed N-limited and N-saturated scenarios to address two questions: (1) How do 115 

changes in the precipitation regime, including the total amount of precipitation, its intra-annual 116 

intermittency, interannual intermittency, and interannual variability influence watershed-scale N 117 

export, and (2) How do these responses differ between N-limited and N-saturated watersheds? 118 

These scenarios were conducted using the coupled ecohydrological-biogeochemical model 119 

RHESSys (Tague & Band, 2004) in a dryland, chaparral-dominated watershed downwind of Los 120 

Angeles, California that experiences high rates of N-deposition.  121 

2 Methods 122 

2.1 Study site 123 

We developed modeling scenarios for the chaparral-dominated Bell 4 watershed in the 124 

San Dimas Experimental Forest, located 50 km northeast of Los Angeles, California (34°12´N, 125 

117°47´W). This is a small watershed (0.14 km2) with elevations ranging from 700 to 1024 126 

meters. The soils are shallow, coarse-textured sandy loams weathered from granitic parent 127 

material (Chaney et al., 2016; Dunn et al., 1988); they classify as Typic or Lithic Xerorthents 128 

(Hubbert et al., 2006; Ryan, 1991). The climate is characterized by hot and dry summers and 129 

cool-humid winters. Mean annual precipitation is approximately 700 mm, with daily 130 

temperatures ranging from -8°C in winter to 40 °C in summer. Vegetation on south-facing slopes 131 

includes chamise (Adenostoma fasciculatum), California lilac (Ceanothus spp.), and black sage 132 

(Salvia mellifera), while north-facing slopes are covered by ceanothus spp. and California laurel 133 

(Umbellularia californica). Riparian areas are dominated by live oak (Quercus agrifolia). Being 134 
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downwind from a major metropolitan area, Bell 4 experiences high N deposition rates, which 135 

exceed 30 kg ha-1 year-1 (Benish et al., 2022; Bytnerowicz & Fenn, 1996).  136 

2.2 RHESSys model  137 

To investigate how precipitation regime changes affect N cycling and export in drylands 138 

and how they are different between N-limited and N-saturated watersheds, we used the regional 139 

hydro-ecologic simulation system (RHESSys). RHESSys is a spatially distributed model that 140 

fully couples hydrological processes with biogeochemical processes, allowing it to simulate the 141 

effects of climate and environmental change on C and N cycling and hydrologic conditions 142 

(Garcia et al., 2016; Lin et al., 2015; Tague & Band, 2004). Recent model improvements have 143 

enabled RHESSys to better-represent N cycling and transport in dryland watersheds (Burke et 144 

al., 2021; Hanan et al., 2017, Ren et al., 2023, submitted). This includes refining nitrification 145 

processes after wildfire in chaparral (Hanan et al., 2017), and representing biogeochemical 146 

hotspots explicitly across a landscape (Ren et al., 2023, submitted). RHESSys has been 147 

extensively evaluated in several dryland watersheds across the western US (Burke et al., 2021; 148 

Chen et al., 2020; E. S. Garcia & Tague, 2015; Elizabeth S. Garcia et al., 2016; Hanan et al., 149 

2017, 2021; Ren et al., 2021, 2022; Reyes et al., 2017; Stephens et al., 2022).  150 

C and N cycling among vegetation, litter, and soil layers are simulated at a patch scale 151 

(the smallest spatial unit; 3-meter resolution in this study). Photosynthesis is calculated using the 152 

Farquhar model which is a function of stomatal conductance, radiation, nitrogen and carbon 153 

dioxide concentration, air temperature and atmospheric pressure (Farquhar & von Caemmerer, 154 

1982). Plant respiration includes maintenance and growth respiration, which is estimated using 155 

Ryan. (1991) model. Carbon is then allocated to roots, stems, and leaves using an architecture (or 156 

age) based method (Dickinson et al., 1998). RHESSys has four litter pools and four soil pools 157 
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with different C:N ratios and decomposition rates. Decomposition is estimated based on a 158 

defined maximum decomposition rate and constrained by soil moisture, soil temperature, and 159 

nitrogen availability. N mineralization and immobilization are estimated using the C:N ratios of 160 

the litter and soil pools when materials decompose from one pool to another (Hanan et al., 2017; 161 

Tague & Band, 2004). 162 

 RHESSys calculates nitrification rates based on the CENTURYNGAS model which is a 163 

function of soil pH, soil moisture, soil temperature, and available soil ammonium (Parton, 1996). 164 

A maximum denitrification rate is calculated as a function of the total available nitrate (NO3
-) in 165 

soil, and total soil carbon and nitrogen, and then the maximum rate is modified based on soil 166 

moisture and soil respiration as a proxy for microbial abundance.  167 

Soil moisture processes include four vertical layers, a surface detention store, a root zone 168 

store, an unsaturated store, and a saturated store. At a daily timestep, the surface detention store 169 

receives water from canopy throughfall and snowmelt (when present), and infiltrates into the soil 170 

based on the Phillip (1957) infiltration equation. Overland flow is generated when the ponded 171 

water is above the detention storage capacity. Water can percolate into a deeper ground water 172 

store through bypass flow. Water drains from the unsaturated zone or root zone to the saturated 173 

zone based on hydraulic conductivity and moves from the saturated zone to the unsaturated zone 174 

or root zone based on the Eagleson (1978) equation. Subsurface lateral flow between patches 175 

follows topographic gradients and soil hydraulic parameters such as saturation deficit and 176 

transmissivity. N moves with these water fluxes based on its concentration (Tague & Band, 177 

2004). Atmospherically deposited N enters the soil through infiltration from the surface 178 

detention store. In the unsaturated zone, soil nitrate decreases exponentially with depth. In the 179 
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saturated zone, nitrate export follows a flushing hypothesis, where more soil N becomes 180 

available for flushing to streams as the water table rises (Chen et al., 2020).  181 

To account for sub-grid scale heterogeneity in vegetation cover, RHESSys can be run 182 

using a new aspatial framework (Burke et al., 2021). In this new framework, “patch families” are 183 

the smallest spatially explicit model unit, and “aspatial patches” nested within a patch family are 184 

the smallest aspatial model unit. Aspatial patches do not have physical locations, but instead 185 

represent a distribution of vegetation types based on observed or hypothetical distributions. 186 

Local routing of water between aspatial patches within a patch family is based on the relative 187 

moisture differences among aspatial patches in the rooting and unsaturated zones and mediated 188 

by user-defined gaining and losing coefficients for each patch type (Burke et al., 2021). Local 189 

routing in the saturated zone is based on the differences in the groundwater table and it carries 190 

nitrate when exchanging water.  191 

 We also recently expanded the aspatial patch framework to incorporate the role of fine-192 

scale biogeochemical “hotspots,” represented as aspatial patches within each patch family—193 

these represent a distribution of microsites (e.g., soil aggregates) where biogeochemical cycling 194 

can be hydrologically disconnected, as soils dry out, from other aspatial patches that contain 195 

plant roots (Ren et al. 2023, submitted). Hotspots help drive kinetic N saturation by enabling N 196 

to accumulate and subsequently be flushed from the system when soils are rewetted. To model 197 

hotspot dynamics, the framework includes: (1) model algorithms that enable hotspots to access 198 

soil and litter C and N from neighboring non-hotspot patches for decomposition and 199 

biogeochemical cycling, and (2) algorithms and parameters that control the moisture conditions 200 

under which hotspots are hydrologically disconnected from other aspatial patches in the saturated 201 

zone, (3) parameters that control water diffusion in the unsaturated and/or root zone between 202 



 10

hotspot and non-hotspot patches as soils dry out. For detailed descriptions of the RHESSys 203 

model and the new hotspot framework, refer to Tague & Band, (2004) and Ren. et al (2023, 204 

under review).   205 

2.3 Data 206 

To represent topography across the watershed, we used a 1-meter resolution digital 207 

elevation model (DEM) from LiDAR aggregated to 10-meters (Ren et al., 2023, submitted). Soil 208 

texture was delineated across the watershed using the POLARIS database (Chaney et al., 2016). 209 

To map landcover across Bell 4, we aggregated 1-meter resolution land cover data from the 210 

National Agriculture Imagery Program (NAIP; collected on June 5, 2016) to 3-meters. We then 211 

classified three land cover types across the watershed: chaparral, live oak, and bare ground 212 

(Maxwell et al., 2017). RHESSys patch families were established based on the 10-meter DEM, 213 

while the aspatial patch vegetation distributions were classified based on the 3-meter NAIP data 214 

(Ren et al., 2023, submitted). The Bell 4 basin contained 1259 patch families, with each patch 215 

family having approximately 11 aspatial patches. We acquired meteorological forcing data from 216 

1979 to 2020 from the gridMET, including daily maximum and minimum temperatures, 217 

precipitation, relative humidity, radiation, and wind speed (Abatzoglou, 2013). Daily streamflow 218 

data from 1980 to 2002 and stream N data from 1988 to 2000 were provided by U.S. Forest 219 

Service (USFS).  220 

2.4 Model initialization and calibration 221 

 To initialize soil C and N pools to steady state, we spun RHESSys up for three hundred 222 

years. Then to initialize vegetation C and N pools, we used a target-driven spin-up approach, 223 

which leverages remotely sensed LAI calculated from NAIP (at April 24, 2010) to set target 224 

values for each patch across the watershed; this enables us to spin the model up mechanistically 225 
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while still capturing landscape heterogeneity (Hanan et al., 2018). We then calibrated six soil 226 

parameters using observed streamflow data: saturated hydraulic conductivity (Ksat), the decay of 227 

Ksat with depth (m), pore size index (b), air entry pressure (ϕ), bypass flow to deeper 228 

groundwater storage (gw1), and deep groundwater drainage rates to stream (gw2). We selected 229 

the best parameters by comparing the observed and modeled streamflow using the monthly 230 

Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970) and percent error of annual streamflow. 231 

We used eight years of streamflow data from 1993 to 2002 for calibration and three years from 232 

1980 to 1983 for validation. Following calibration, we designated one aspatial patch in each 233 

patch family to represent hotspots, assuming that hotspots were evenly distributed across the 234 

landscape. We then optimized the hotspot-related parameters (i.e., the water sharing coefficient 235 

between aspatial patches and subsurface flow threshold) by comparing modeled and observed 236 

streamflow N from 1988 to 2000. During the calibration, the monthly NSE of simulated 237 

streamflow reached 0.88 with a percent error of 5.45%, while for the validation period, the 238 

monthly NSE was 0.80 with a percent error of -3.92%. This suggests a close match between 239 

modeled and measured streamflow timing and volume. By including hotspots in the model, we 240 

also improved our ability to capture the timing of peak streamflow nitrate observations (NSE = 241 

0.40). A more detailed description of initialization and calibration results can be found in Ren et 242 

al. (2023, submitted). 243 

2.4 Scenarios 244 

2.4.1 Developing better metrics for N-saturation in dryland watersheds. 245 

Because seasonal N export to streams is characteristic in dryland watersheds, even when 246 

they are not N-polluted (Homyak et al., 2014), we need to develop metrics that can identify when 247 

a watershed shifts from kinetic to capacity saturation (Lovett & Goodale, 2011). This requires 248 
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understanding how N deposition interacts with the timing of precipitation. To determine the N 249 

deposition threshold at which a watershed becomes N-saturated, we built scenarios considering 250 

interactions between the N deposition rate and precipitation seasonality over a period of 60 251 

years. Because the observed meteorological forcing data spans only 40 years (water years 1980 252 

to 2020), we repeated this data to construct the additional 20 years. This included three scenarios 253 

for precipitation seasonality: a dry summer scenario (to match observations), a wet summer 254 

scenario (to represent a more continental climate), and an evenly distributed scenario (Figure 1a). 255 

The wet summer and evenly distributed scenarios were reconstructed from the observed 256 

precipitation data by manipulating the duration of dry days and the timing of precipitation using 257 

a method from Rodriguez-Iturbe et al. (1999) which will be introduced in detail in section 2.4.2. 258 

We also included 12 dry N deposition scenarios (including 0.05, 0.25, and 0.5 to 5 g m-2 year-1 at 259 

an increment of 0.5 g m-2 year-1). This resulted in 36 scenarios for precipitation and N deposition 260 

in a factorial design.  261 

To determine the level of N deposition at which our watershed becomes N-saturated, we 262 

examined N export for each scenario and determined the magnitude of N deposition where 263 

export no longer varied under different precipitation seasonality scenarios. This approach 264 

assumes that under kinetic saturation, dry summers would promote more N export because 265 

rainfall occurs when plants are less active. We define the N deposition threshold above which the 266 

watershed is capacity N saturated as the amount of N deposition required for mean normalized 267 

streamflow N (i.e., annual streamflow N divided by the N deposition rate) in both the dry 268 

summer and the evenly distributed scenarios to be above 90% of the mean normalized 269 

streamflow in the dry winter scenario. Using this threshold, we then built two scenarios for N 270 

saturation status: N-saturated and N-limited. This involved scaling N deposition up or down such 271 
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that the N saturated scenario had 100 times higher N deposition than the N-limited scenario. We 272 

then used these scenarios for the following sensitivity analysis to examine how precipitation 273 

intermittency and variability influence N export under saturated and unsaturated conditions.  274 

2.4.2 Effects of intra-annual precipitation intermittency on N export 275 

To understand the how intra-annual precipitation intermittency influence N export, we 276 

used a stochastic precipitation generator, based on Rodriguez-Iturbe et al. (1999). Within a given 277 

year, the occurrence and amount of total daily precipitation can be viewed as a stochastic 278 

process. Specifically, the occurrence of rainfall is modeled as a Poisson process with a rate λ 279 

(average rainfall frequency), and the amount of rainfall for each event is determined by a 280 

random exponential distribution. As our model operates on a daily timestep, we did not consider 281 

the temporal structure of rainfall within each event and instead assumed the precipitation 282 

occurred instantaneously. 283 

Based on these assumptions, the distribution of the length of dry days (𝜏 ) between precipitation 284 

events is an exponential distribution with a mean 1/ λ (the unit of λ is 1/day).  285 

 𝑓ఛ(𝜏) =  λ 𝑒ି஛ఛ , 𝑓𝑜𝑟 𝜏 ≥ 0     Eq (1) 286 

The amount of precipitation is an independent random variable h (mm/day), calculated by an 287 

exponential probability density function: 288 

𝑓ு(ℎ) =  
ଵ

ఈ
𝑒ି

೓

ഀ, 𝑓𝑜𝑟 ℎ ≥ 0     Eq (2) 289 

Where α is the mean of daily rainfall amount (mm/day) when precipitation occurs for a certain 290 

year and can be estimated from the observed data.  291 

The total amount of precipitation R (mm year-1) for a given year can therefore be calculated as  292 
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𝑅 = ℎ ×  𝑇/𝜏        Eq (3) 293 

Where T is the total days for a rainy season.  294 

We estimated the two parameters (λ_0 and α) for the stochastic model based on observed 295 

precipitation. Then we adjusted the rainfall frequency parameter 1/λ_0 by a factor of 2 to 4 to 296 

increase the duration of dry days between rainfall events. Additionally, we adjusted the mean 297 

daily rainfall amount α to maintain consistent total precipitation amounts across different 298 

scenarios. In total, we developed five distinct intra-annual intermittency scenarios (Figure 1b). 299 

 To summarize, within one year, this method determines the number of dry days across a 300 

rainy season and uses rainfall intensity and the number of days with precipitation (from 301 

observations) to determine the size and timing of storms that occur between dry days. This 302 

enables us to vary rainfall intermittency, while maintaining a fixed amount of precipitation for 303 

each year. Then, to examine how precipitation intermittency interacts with the total amount of 304 

precipitation (e.g., under drier vs. wetter futures), we developed five precipitation scalers for 305 

each intermittency scenario (ranging from 0.6 to 1.4 at an increment of 0.2). Hereafter, we refer 306 

to scenarios with precipitation scaling factors less than one as “drier future” scenarios and greater 307 

than one as “wetter future” scenarios.  By combing five precipitation scaling factor scenarios, 308 

two N saturation scenarios, and five intra-annual intermittency scenarios, we generated a total of 309 

40 different scenarios in a factorial design and ran the model for 60 years (Figure 2).  310 

2.4.3 The effect of interannual intermittency on N export 311 

To investigate the effects of interannual precipitation intermittency on N export, we used 312 

a stochastic precipitation generator that was similar to the one used for the intra-annual 313 

precipitation intermittency analysis. Specifically, we examined monthly precipitation data for a 314 
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period of 40 years (in total 480 months) and modeled both the amount of monthly precipitation 315 

and duration of dry months as stochastic processes. We initially ignored the temporal structure of 316 

precipitation within each month and calculated the two parameters λ_0 (unit is 1/month) and α 317 

(mm/month). We then downscaled the modeled monthly precipitation to a daily timestep based 318 

on observed precipitation considering the temporal structure of rainfall events within a month. 319 

To increase the interannual intermittency, we then manipulate the two parameters (λ and α) to 320 

increase both the duration and the mean amount of monthly precipitation while maintaining 321 

consistent total precipitation levels over the 40-year period (Figure 1d). Again, we built 40 322 

scenarios by combining the five interannual intermittency scenarios with the previous four 323 

precipitation scaling factors and the two N saturation scenarios and ran RHESSys for 60 years by 324 

looping the 40 years reconstructed data.  325 

2.4.4 Effect of interannual precipitation variability on N export  326 

To understand the effects of interannual precipitation variability on N export, we adapted 327 

methodology proposed by Gherardi & Sala (2015). We generated different scenarios for 328 

interannual precipitation variability by manipulating the observed precipitation data. To increase 329 

variability, we increased the annual precipitation amount in wet years and decreased it in dry 330 

years (by 20%, 40%, 60% relative to the observed amounts). To decrease variability, we lessened 331 

the amount of annual precipitation in wet years and increased it in dry years (by 20%, 40%, 60% 332 

and 80%). This approach enabled us to create scenarios with varying coefficients of variation 333 

(CV) while keeping the total precipitation the same throughout the simulation period. This 334 

resulted in eight interannual variability scenarios including a baseline scenario (Figure 1c). By 335 

combing them with five total precipitation scaling factors, and two levels of N saturation (N-336 

limited vs. N-saturated), we generated 80 factorial scenarios.   337 
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 338 

Figure 1. A summary of reconstructed precipitation data used. Panel a represents the 339 
precipitation seasonality scenarios: dry summer, evenly distributed across the year, and wet 340 
summer. The dry summer scenarios used observed precipitation data. Total precipitation and 341 
inter-annual intermittency over the 40 years was consistent across three scenarios. Panel b 342 
represents the reconstructed precipitation data with different intra-annual intermittencies for a 343 
period of 40 years, including the distribution of daily precipitation and dry days duration. The 344 
total amount of precipitation over 40 years was the same for all four precipitation intermittency 345 
scenarios. Lambda (λ_0) is the frequency of observed rain events, and the x-axis shows an 346 
increase in intermittency. The comparison between observed and reconstructed precipitation of 347 
1/ λ_0 is shown in Figure S1. Panel c represents reconstructed and observed precipitation for 348 
different levels of interannual variability. The green horizontal line is the mean annual 349 
precipitation from the observation data and the black dots are the observed annual precipitation. 350 
Blue lines correspond with lower variability relative to observation, red lines correspond with 351 
higher variability relative to observation. Panel d represents reconstructed precipitation data 352 
with different interannual intermittencies for a period of 40 years, including the distribution of 353 
daily precipitation amounts and the distribution of duration of dry days. The total amount of 354 
precipitation over 40 years was the same for all five precipitation scenarios at a given 355 
precipitation scaling factor. Lambda (λ_0) is the frequency of reconstructed baseline rain events, 356 
and the x-axis shows an increase in intermittency. Note that the y axis is in log2 scale to better 357 
show extreme values.  358 

 To summarize, we developed two scenarios for N saturation status (N-saturated vs N-359 

limited), five precipitation scaling factors (0.6, 0.8, 1, 1.2, 1.4), and three sets of scenarios for 360 

changes in precipitation timing. These changes include four intra-annual intermittency scenarios, 361 

four interannual intermittency scenarios, and eight interannual variability scenarios. This resulted 362 
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in 160 factorial scenarios (Figure 2). We then calculated the normalized differences in N fluxes 363 

for each precipitation regime relative to its baseline, defined as the lowest variability or 364 

intermittency scenario for each precipitation scaling factor and N saturation status. For example, 365 

in the N-limited scenarios, to compare N export among intra-annual intermittency scenarios at a 366 

given precipitation scaling factor, we calculated differences between a given intermittency 367 

scenario and the baseline (1/λ_0). This resulted in 5 baseline intermittency scenarios (two drier, 368 

two wetter, and a scenario with the baseline precipitation variability and total amount). The 369 

combination of high precipitation scaling factors and high intermittency/variability can interact 370 

to create some extreme storms that are historically unprecedented, though within the range of 371 

possible future projections (Knapp et al., 2015). However, median storm sizes are well within the 372 

range of historical variability for these semiarid systems; we focus on median values in our 373 

discussion. 374 
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 375 

Figure 2. Summary of the scenarios developed to examine how interactions between N 376 
deposition and changes in precipitation regime affect N export. The number inside the 377 
parenthesis indicates the number of corresponding scenarios.  378 

3 Results 379 

3.1 A better metric for N saturation in drylands 380 

In scenarios with relatively low atmospheric N deposition (i.e., smaller than 1 g m-2 year-381 

1), the mean and distribution of annual streamflow N (over 60 years) varied depending on the 382 

seasonality of precipitation, with the dry summer scenario resulting in the highest export and the 383 

wet summer scenario resulting in the lowest (Figure 3 and Figure S2). However, as N deposition 384 

increased, the watershed became less N-limited, leading to similar mean values and streamflow 385 

N distributions across different precipitation seasonality scenarios. This can be attributed to the 386 

fact that in a watershed with dry summers, the wet winter period can flush N to streams before 387 

plants begin to take it up, whereas in watersheds with wet summers, N is consumed by plants 388 

prior to leaching, resulting in less streamflow N export. Consequently, it can be inferred that 389 
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when the watershed is N-limited, the dry summer scenario would yield higher streamflow N 390 

export than the dry winter scenario. Conversely, in an N-saturated watershed, the consumption of 391 

N by plants and microbes would have a much smaller effect on streamflow N export. Using this 392 

logic, we identify an N deposition threshold of approximately 2 g m-2 year-1 above which the 393 

watershed becomes N-saturated. At this threshold, the ratio of the normalized mean annual 394 

streamflow N for the wet summer:dry summer scenarios was no smaller than 0.9 (the same was 395 

true for the evenly distributed scenario; Figure 3). For the following scenarios, we selected 0.05 396 

g m-2 year-1 and 5 g m-2 year-1 to represent extremes of N-limited and N-saturated systems, 397 

respectively.  398 

 399 

Figure 3. Ratio of the normalized mean annual streamflow N export between scenarios 400 
(calculated as wet summer/dry summer (blue line) or even/dry summer (green line); values are 401 
normalized by the N deposition rate). We selected an N saturated threshold where normalized 402 
streamflow N in the wet summer scenario was no smaller than 90% of that observed in the dry 403 
summer scenario. We used mean, rather than median values to account for extreme values. 404 
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3.2 The effect of changing precipitation regimes on N export. 405 

3.2.1 The effect of intra-annual precipitation intermittency on N export. 406 

Streamflow N export increased with higher intra-annual intermittency, which alters both 407 

the timing and magnitude of storms (Figure 4). Moreover, in N-limited scenarios, a higher total 408 

precipitation scaling factor generally increased streamflow N export (Figure 4). However, in N-409 

saturated scenarios, baseline conditions can lead to more streamflow N export (Figure 4a). 410 

Higher intermittency implies longer dry periods and greater differences in precipitation amount 411 

between dry and wet periods, despite the same total precipitation among scenarios over the 60-412 

year simulation. This can increase soil N accumulation during dry periods while reducing 413 

denitrification and N uptake (model estimates of plant carbon declined from 6 kg m-2 to around 4 414 

kg m-2 between the highest and lowest intermittency scenario, Figure S4b). As a result, more N is 415 

flushed to streams during the wet periods. For both N-limited and N-saturated scenarios, 416 

denitrification decreased with higher levels of intermittency (Figure 4 b and e), primarily due to 417 

slower rates of decomposition caused by decreases in plant growth and litter production (Figure 418 

S4a).  419 
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 420 

Figure 4. Sensitivity of cumulative N fluxes over 60 years (absolute value) to intra-annual 421 
precipitation intermittency for N-saturated and N-limited scenarios. The x axis is the duration of 422 
dry days between rainfall event, larger values represent higher intra-annual intermittencies.  423 

Streamflow N export and denitrification were more sensitive to intra-annual precipitation 424 

intermittency in N-limited scenarios than in N-saturated scenarios, while plant N uptake was 425 

more sensitive to intra-annual intermittency in N saturated scenarios (Figure 5). For example, 426 

plant C declined 12% (from 3.9 to 3.4 kg m-2) in N-limited scenarios but declined 27.5% (from 427 

5.8 to 4.2 kg m-2) in N-saturated ones (Figure S4a). The declines in plant carbon with higher 428 

intra-annual intermittency were smaller in N-limited scenarios because plants can be limited by 429 

both N and water, and changing water availability does not matter as much in N-limited as it 430 

does in N saturated scenarios, where once N limitation was alleviated, vegetation growth became 431 

more limited by water availability. In addition, streamflow N export increased with higher levels 432 

of intra-annual intermittency, while denitrification decreased (Figure 5a, b). This suggests 433 
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increases in intra-annual intermittency can increase N export to streams while decreasing N 434 

losses to the atmosphere.  435 

In N-saturated scenarios, streamflow N export was most sensitive to variation in intra-436 

annual intermittency under a precipitation scaling factor of 0.8, while in N-limited scenarios, 437 

scaling factors of 0.6 or 1 were the most sensitive (Figure 5a, b). In N-limited scenarios, the 0.6 438 

scaling factor showed the strongest exponential increases in streamflow N export with increasing 439 

intermittency, indicating that the drier future scenarios have the largest sensitivity to 440 

intermittency changes.  441 

Denitrification in the wetter future scenarios decreased more with increasing intra-annual 442 

precipitation variability than in the drier future scenarios because total denitrification was higher 443 

in wetter baseline intermittency scenarios (1/λ_0). With greater intra-annual intermittency, these 444 

decreases were larger (Figure 5b, e). By contrast, in dry scenarios, plant N uptake decreased 445 

slightly more with increasing intra-annual intermittency than in wetter scenarios, but the 446 

magnitude was relatively small compared to streamflow N export and denitrification ((Figure 5c, 447 

f).  448 
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 449 

Figure 5. Sensitivity of cumulative N fluxes over 60 years to intra-annual precipitation 450 
intermittency for N-saturated and N-limited scenarios (normalized differences relative to 451 
baseline (1/λ_0). The x-axis is intermittency, the y-axis is normalized change of other 452 
intermittencies relative to their baseline intermittency scenarios (1/λ_0) for every precipitation 453 
scaling factor (different precipitation scaling factor scenarios have different baseline 454 
intermittency scenarios). The top panels are N-saturated and bottom panels are N-limited 455 
scenarios. 456 

3.2.2 The effects of interannual precipitation intermittency on N export. 457 

Greater interannual intermittency and higher levels of precipitation increased streamflow 458 

N export and this effect was consistent across both N-limited and N-saturated scenarios (Figure 459 

6). Denitrification exhibited two distinct responses to interannual intermittency. First, when the 460 

intermittency exceeded 2/ λ_0, there was a significant increase in denitrification, which occurred 461 

because higher interannual intermittency corresponded with more precipitation per rainfall event, 462 

resulting in higher soil moisture levels across the landscape and triggering denitrification in non-463 

hotspot patches (Figure 6b, e). However, denitrification started decreasing once interannual 464 

intermittency was larger than 3/ λ_0.  At the highest interannual intermittency levels, increasing 465 

the duration of dry months decreased denitrification to a greater extent than larger storms 466 
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increased it. Plant uptake generally decreased with higher levels of interannual intermittency, 467 

which occurred because long-term drought slowed plant growth (Figure S4b). It is worth noting 468 

that the magnitude of streamflow N and denitrification in interannual intermittency scenarios is 469 

much larger than that of the scenarios for intra-annual intermittency (Figure 4 and Figure 6).  470 

 471 

Figure 6. Sensitivity of cumulative N fluxes over 60 years (absolute value) to interannual 472 
precipitation intermittency for N-saturated and N-limited scenarios. The x-axis is the duration of 473 
dry days between rainfall events. Interannual intermittency increases from left to right. 474 

Denitrification and plant N uptake were slightly more sensitive to interannual 475 

intermittency in N-saturated scenarios than in N-limited scenarios (Figure 7). This occurred 476 

because changes in denitrification and plant growth were constrained by N availability in N-477 

limited scenarios and therefore less responsive to precipitation changes. Streamflow N export 478 

was more sensitive to interannual intermittency in N-limited scenarios compared to N-saturated 479 

scenarios (Figure 7a, d). In N-limited scenarios, drier scenarios showed greater changes to 480 

interannual intermittency than wetter scenarios, while in N-saturated scenarios wetter scenarios 481 
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showed greater changes. This occurred because in N-limited scenarios, drier scenarios had less 482 

denitrification and plant uptake, resulting in more N available to be flushed to the stream. It 483 

worth noting that in the N-limited scenario, interannual precipitation intermittency caused the 484 

largest changes in streamflow N export compared to intra-annual intermittency and interannual 485 

variability. 486 

 487 

Figure 7. Sensitivity of cumulative N fluxes over 60 years to interannual precipitation 488 
intermittency for N-saturated and N-limited scenarios (differences are relative to baseline 489 
intermittency; 1/λ_0).  The x-axis is intermittency, the y-axis is normalized change of other 490 
intermittencies relative to their baseline intermittency scenarios (1/λ_0) for every precipitation 491 
scaling factor. The top panels are N limited and the bottom panels are N saturated scenarios. 492 
Note that the scale of y-axis for changes in streamflow N is different for N-saturated and N-493 
limited scenarios.  494 

3.2.3 The effect of interannual precipitation variability on N export 495 

In general, scenarios with higher precipitation variance and wetter scaling factors resulted 496 

in more streamflow N export (Figure 8). However, for wetter future scenarios, a precipitation 497 

scaling factor of 1.2 (rather than 1.4) resulted in the highest streamflow N export (Figure 8a, d). 498 
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This suggests there is a threshold of precipitation increase above which higher flushing capacity 499 

is compensated by less available N for flushing with higher denitrification and plant uptake. This 500 

can occur because more precipitation can cause higher denitrification and plant N uptake, which 501 

can reduce the amount of N available for flushing. Moreover, denitrification rates increased with 502 

higher precipitation variance and a higher precipitation scaling factor (Figure 8b, e). Notably, 503 

both streamflow N export and denitrification rates were higher in N-saturated compared to N-504 

limited scenarios, due to greater nitrate inputs in N-saturated scenarios.   505 

 506 

Figure 8. Cumulative N fluxes over 60 years (absolute value) relative to interannual 507 
precipitation variability and scaling factors for N-limited and N-saturated scenarios. The x axis 508 
is the coefficient of variation for annual precipitation, the y axis is the cumulative N fluxes over 509 
60 years.  510 

 The sensitivity of N fluxes to precipitation variability differed between N-limited and N-511 

saturated scenarios and was also affected by the precipitation scaling factors (i.e., drier vs. wetter 512 

futures; Figure 9). Streamflow N export was more sensitive to precipitation variability in N-513 

limited than in N-saturated scenarios, particularly for the drier future scenarios (Figure 9a, d), 514 
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while denitrification showed the opposite trend (Figure 9b, e). The magnitude of sensitivity for 515 

plant N uptake was similar between N-limited and N-saturated scenarios, but the direction of 516 

effects (i.e., increases or decreases) differed and was affected by the precipitation scaling factor. 517 

In the N-limited scenarios, plant N uptake decreased with precipitation variability in drier future 518 

scenarios but increased in wetter future scenarios, suggesting that higher precipitation variability 519 

can increase plant growth when there is more water available, even if the watershed is N-limited. 520 

On the other hand, higher precipitation variability and water stress will suppress plant growth. In 521 

N-saturated scenarios, plant N uptake generally decreased with higher precipitation variability, 522 

except in some drier scenarios with smaller variability. This suggests that in N-saturated 523 

watersheds, less precipitation combined with moderately higher variability can promote plant 524 

growth to some extent.  525 

 526 

Figure 9. Sensitivity of cumulative N fluxes over 60 years to interannual precipitation variability 527 
for N-saturated and N-limited scenarios (differences are relative to the baseline variability 528 
scenario which is 0.11). The x axis is the coefficient of variation for annual precipitation. The y 529 
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axis is the normalized change in other variances relative to the baseline variability scenario (CV 530 
is 0.11) for every precipitation scaling factor (different precipitation scaling factor scenarios 531 
have different 0.1 variance baseline scenario). The top panels are N-saturated and the bottom 532 
panels are N-limited scenarios.  533 

4 Discussion 534 

Over the last century, atmospheric N deposition and climate change have increased both 535 

greenhouse gas emissions (e.g., NO and nitrous oxide; N2O) and stream nitrate export from 536 

many dryland watersheds in western North America (Groffman, 2012; Homyak et al., 2016; 537 

Krichels et al., 2022). Because these gaseous and hydrologic N fluxes can exacerbate global 538 

climate change, decrease aquatic biodiversity, and harm human health (Galloway et al., 2003; 539 

Gustine et al., 2022; Meyer et al., 2022), it is important to be able to predict how they will 540 

change in the future. In drylands, N export is highly sensitive to both N deposition rates and 541 

precipitation variability (Welter et al., 2005; Ye & Grimm, 2013); interannual precipitation 542 

variability and intermittency are both projected to increase in drylands under future climate 543 

change (Pörtner et al., 2022). However, our ability to model and predict future N export remains 544 

limited, particularly in response to these interacting drivers. 545 

 Previous research has mainly focused on how the amount of precipitation in storm events 546 

can affect ecosystem function (e.g., Jarvis et al., 2007; Kennedy et al., 2021; Stephens et al., 547 

2020; Ye & Grimm, 2013); fewer studies have also explored the cumulative effects of 548 

precipitation variability across multiple decades (D’Odorico et al., 2003; Gherardi & Sala, 2015; 549 

Jiang et al., 2019; Porporato et al., 2003). Further research is needed to examine how different 550 

types of precipitation intensification (e.g., increasing intermittency vs. variability) will influence 551 

biogeochemical cycling, and to investigate how these effects can differ between N-limited and 552 

N-saturated watersheds. In this study, we conducted a modeling analysis to understand how N 553 

saturation status, precipitation intermittency, variability, and the total amount of precipitation can 554 
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interact to influence N export in a dryland watershed in California. We found that streamflow N 555 

was more sensitive to intensification of the precipitation regime in N-limited than N-limited 556 

scenarios, whereas the opposite was true for denitrification. Furthermore, changes in interannual 557 

precipitation intermittency had the largest effect on streamflow N and denitrification, suggesting 558 

that N export may become an even greater threat to water quality when prolonged drought is 559 

followed by more intense storm events. 560 

4.1 Identifying N deposition thresholds for capacity saturation 561 

 To distinguish between kinetic (i.e., seasonal) and capacity (i.e., long-term) N saturation 562 

(Lovett & Goodale 2011), we developed a simulation modeling approach that quantifies 563 

watershed responses to N deposition under different rainfall seasonality regimes. By identifying 564 

the amount of N deposition required for precipitation regimes to no longer modify N export, we 565 

can approximate when N deposition has truly exceeded the capacity for plants and microbes to 566 

take it up. This approach assumes that kinetic N saturation is more sensitive to precipitation 567 

seasonality and timing, which affects plant and microbial N assimilation, while capacity N 568 

saturation is less sensitive. 569 

We found that the Bell 4 watershed can become capacity saturated when N deposition 570 

reaches 2 g m-2 year-1 over about 40 years (Figure 3). This suggests that the watershed—which 571 

has a current mean N deposition rate greater than 2 g m-2 year-1—has already approached 572 

capacity saturation. It is important to note that the threshold we identified is location-specific and 573 

is likely to vary with the size, vegetation cover, and climate of a given watershed (Dijkstra et al., 574 

2004; Yu et al., 2018). On average, N deposition is around 0.7 g m-2 year-1 in dryland watersheds 575 

globally and rates are expected to double by 2050 (Benish et al., 2022; Galloway et al., 2008; 576 

Kanakidou et al., 2016). Given these increases, many other dryland watersheds could begin to 577 
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exceed the N deposition thresholds required to shift from a kinetic to capacity saturation in the 578 

coming decades. These shifts can pose a major threat to water quality, aquatic ecosystems, and 579 

human health. Our study provides a useful modeling approach that can be applied to other 580 

watersheds to determine N deposition thresholds for establishing capacity N saturation.  581 

4.2 The role of N saturation status  582 

 Does an increase in N deposition lead to greater N export or N uptake? It is essential to 583 

distinguish between N-saturated and N-limited watersheds to unravel how changes in the total 584 

amount of precipitation  and its intermittency or variability will influence watershed processes 585 

(Rudgers et al., 2023). In our model setup, N deposition was 100 times higher in N-saturated 586 

than in N-limited scenarios. However, the N-saturated/N-limited ratios for various N fluxes (i.e., 587 

streamflow N, denitrification, N uptake) were all smaller than 100 and varied among scenarios 588 

(Figure S5). This suggests that N partitioning and soil N storage also changed in response to N-589 

deposition. Not surprisingly, streamflow N had the highest N-saturated/N-limited ratios, ranging 590 

from 15 to 80. Denitrification and N uptake, on the other hand, only experienced modest 1-2-fold 591 

increases in response to N saturation (Figure S5). Because most atmospherically deposited N is 592 

exported to streams, projected decreases in streamflow (Ficklin et al., 2022; Stephens et al., 593 

2020) could lead to even higher streamflow nitrate concentrations, particularly under increased 594 

interannual precipitation variability (Gallo et al., 2015; Ye & Grimm, 2013).  595 

 As precipitation regimes become more intermittent and/or variable, N-limited watersheds 596 

can retain less N in soil  (Winter et al., 2023) and N saturated watershed can become more 597 

saturated or retain more N in soil . In N-limited scenarios, total N export was 25 times higher 598 

than the rate of atmospheric N deposition over the 60-year simulation period. This occurred in 599 

large part due to declines in plant productivity and N uptake. In N-saturated scenarios, on the 600 
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other hand, the ratio between N inputs and outputs was consistently less than one, with 601 

approximately 20% to 60% of the atmospheric N deposition being exported over the 60-year 602 

simulation period (Figure 10). The highest N export transfer efficiencies (calculated as the ratio 603 

between total N export and N deposition) occurred with high interannual intermittency, while 604 

high intra-annual intermittency produced the lowest. Additionally, transfer efficiency can 605 

become even higher in a wetter future due to increases in streamflow. Thus, in N-limited 606 

scenarios (particularly in a wetter future), increases in precipitation interannual intermittency can 607 

increase N export efficiency, thereby reducing N retention capacity in soil. However, our result 608 

should be interpreted with care since 25 times higher N transfer efficiency will eventually 609 

deplete the N in soil. Conversely, in N-saturated scenarios, a drier future will have lower transfer 610 

efficiencies, which can intensify N saturation. This is corroborated by a recent meta-analysis 611 

globally, which found that reduced precipitation can increase soil N storage over long-term 612 

studies, particularly precipitation decreases by more than 25% (Wu et al., 2022). 613 

 614 
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Figure 10. The ratio of total N export (streamflow N and denitrification) to N deposition and its 615 
response to precipitation regime changes. For N-saturated scenarios, the N deposition rate was 616 
5 g m-2 year-1, for N-limited scenarios, it was 0.05 g m-2 year-1. Ratios larger than 1 indicates N 617 
outputs are larger than N inputs and vice versa.  618 

4.3 The role of changing precipitation regimes  619 

 Recent studies have found that precipitation amount and variability both play an 620 

important role in driving ecosystem responses to climate change (Gherardi & Sala, 2015, 2019; 621 

Jiang et al., 2019; Rudgers et al., 2023). Here we extend those studies to also examine the role of 622 

precipitation intermittency and focus on how it affects streamflow N export. In our experimental 623 

setup, we ensured water balance among all scenarios (e.g., scenarios with high vs. low 624 

interannual intermittency at a given amount of total precipitation had the same total rainfall over 625 

the 60-year simulation period). Thus, longer droughts were followed by more precipitation after 626 

drought. Thus interannual intermittency scenarios varied both the timing of storms and their 627 

magnitude, whereas interannual precipitation variability scenarios only varied the relative 628 

magnitude of storms (e.g., some become larger and some become smaller with increasing 629 

variability; Figure 1c). We found that increases in interannual intermittency produced the largest 630 

increases (with the greatest variance) in streamflow N among precipitation regime scenarios 631 

(Figure 11a). Conversely, interannual variability had the smallest effect on streamflow N. These 632 

findings suggest that prolonged drought followed by larger, more intense storms can have the 633 

strongest effect on streamflow N. This occurs because multi-year droughts that occur with 634 

greater intermittency can reduce N uptake by plants and enable N to accumulate in soils 635 

(Krichels et al., 2022; Winter et al., 2023). Subsequent storms then flush accumulated N to 636 

streams before plants can take it up.  637 

 Denitrification exhibited the most substantial increases with increasing interannual 638 

intermittency, whereas it slightly decreased with increasing intra-annual intermittency (Figure 639 
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11b). This pattern arose because denitrification is strongly influenced by soil moisture and 640 

therefore the amount of precipitation in storm events (Homyak et al., 2016). Increases in both 641 

interannual intermittency and variability had large effects on the size of individual storms, while 642 

increases in intra-annual intermittency had relatively smaller effects.  643 

Higher precipitation intra-annual and interannual intermittency and variability can both 644 

reduce plant growth and corresponding N uptake, but increases in interannual intermittency, 645 

which lead to fewer, more intense storms, exert a stronger influence than changes in variability 646 

alone (which only affects the relative size of storms without changing their timing). These 647 

findings have important implications for designing field and laboratory experiments aimed at 648 

understanding plant responses to changing precipitation regimes. Such experiments should not 649 

only consider the important roles of storm size and variance (as identified by Gherardi & Sala 650 

(2015) and Rudgers et al. (2023)), but should also incorporate intermittency as a key driver. 651 
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  652 

Figure 11. The distribution of ratios of highest intermittency/variability to lowest for different N 653 
fluxes. For intermittency this is the ratio between 4/lambda_0 and 1/lambda_0, for variability 654 
this is the ratio between 0.89 CV and 0.11 CV. The distribution consists of outputs from all N 655 
saturation and precipitation scaling factor scenarios and the variance of distribution indicates 656 
how sensitive these N fluxes were to intra-annual intermittency, interannual intermittency, and 657 
interannual variability. Note that the y-axis for panel a is on a different scale than for panels b 658 
and c. The red dashed line represents a ratio of 1, above which N fluxes increases with 659 
intensified precipitation regime and below 1 indicates a decrease. 660 

4.4 The role of total precipitation amount in N-limited systems 661 

 Does more total precipitation result in higher N export? When transitioning from drier to 662 

wetter future scenarios, denitrification was the most affected, followed by streamflow N, while 663 

plant N uptake was least affected (Figure 12 d, e, and f). With a 2.3 fold increase of precipitation 664 

(from a 0.6 to a 1.4 scaling factor), median denitrification increased approximately 5 to 7 fold, 665 

and this response was slightly greater in N saturated scenarios compared to N-limited scenarios 666 

(Figure 12e). This finding aligns with the fact that denitrification is strongly influenced by soil 667 

moisture and available nitrate (Poblador et al., 2017). Denitrification is also strongly influenced 668 

by soil C (represented as a function of soil respiration in RHESSys), which was higher in wetter 669 
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future and N-saturated scenarios. Conversely, streamflow N in N-limited scenarios was more 670 

responsive to changes in the precipitation scaling factor than in N-saturated scenarios (Figure 671 

12d). In N-limited scenarios, streamflow N increased the precipitation scaling factor, reaching 672 

approximately 3.5 times higher than baseline in scenarios with a scaling factor of 1.2. However, 673 

it reached an asymptote once the scaling factor exceeded 1.2. This suggests that, for N-limited 674 

scenarios, increases in total precipitation do not necessarily translate into higher streamflow N 675 

because additional water can enhance denitrification, plant N uptake, and reduce nitrification. 676 

Because the effects of total precipitation on streamflow N export are non-linear, it can be 677 

challenging to predict N export as precipitation regimes continue to change, particularly in N-678 

limited watersheds (Harms & Grimm, 2008; Homyak et al., 2016).  679 

 Changes in the amount of precipitation can also interact with N saturation status to 680 

modify various N fluxes. For example, a higher precipitation scaling factor enhanced the N 681 

saturation effect on denitrification and its variability (Figure 12h). Alternatively, in drier future 682 

scenarios the ratio between N-saturated to N-limited denitrification was smaller than 1 (Figure 683 

12h), suggesting that a drier future can largely inhibit (or even reverse) the N saturation effect, 684 

even with 100 times higher N deposition (Wu et al., 2022). With respect to streamflow N, a 685 

higher precipitation scaling factor reduced the effects of N saturation and its variability (Figure 686 

12g). This aligns with predictions that a drier future would lead to greater N export to streams 687 

and a lower flux to the atmosphere through denitrification (Cregger et al., 2014). Our findings 688 

also corroborate recent studies showing that interactions between N deposition and the total 689 

amount of precipitation drive N export in drylands (Li et al., 2022).  690 

 Although increases or decreases in the total amount of precipitation had smaller effects 691 

on N fluxes than increases in intermittency and/or variability, they interacted with precipitation 692 
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timing to amplify or attenuate their effects. In N-limited scenarios, streamflow N export 693 

increased with higher intermittency and variability, but a drier future exaggerated this response 694 

whereas a wetter future dampened it (e.g., Figure 5d, Figure 7d, and Figure 9d). Although a 695 

wetter future may lead to greater overall streamflow N export (e.g., Figure 8d), a drier future can 696 

result in more substantial increases in streamflow N export (Figure 9d). Furthermore, even minor 697 

decreases in the precipitation scaling factor could substantially increase streamflow N (e.g., 698 

Figure 9d and Figure 12g; 0.8 and 0.6 precipitation scaling factors). Thus, the total amount of 699 

precipitation can play a critical threshold role in driving how N fluxes respond to increases in 700 

precipitation variability and timing (Ficklin et al., 2022).   701 
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 702 

Figure 12. The effect of drier or wetter conditions on N fluxes. The top panels a, b, and c 703 
represent how cumulative N fluxes over 60 years change with precipitation scaling factor. Each 704 
distribution contains both N saturation statuses and all precipitation regime changes. The 705 
middle panels of d, e, and f represent the ratio of fluxes between precipitation scaling factors 706 
larger than 0.6 and the driest scaling factor (i.e., 0.6). The bottom panels g, h and i represent the 707 
ratio of fluxes in N-saturated and N-limited conditions and how they vary with the precipitation 708 
scaling factor. The dashed blue line denotes a ratio equal to 1.   709 

4.5 Study implications 710 

 Predicting future N export in drylands requires considering interaction between hotspots 711 

(defined as wetter microsites in the soil that have disproportionately high rates of 712 
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biogeochemical cycling) and hot moments (defined as wet periods after a prolonged dry spell) 713 

rather than treating them as separate entities (Groffman et al., 2009; Kuzyakov & Blagodatskaya, 714 

2015; Pinay et al., 2015). Our study revealed that the interannual intermittency exhibited the 715 

largest influence on streamflow N and denitrification. Interannual intermittency scenarios 716 

incorporated increases in both the timing and magnitude of storms (with the same total 717 

precipitation over the simulation period for a given precipitation multiplier). Following 718 

prolonged drought, large storms can be viewed as hot moments. Once the amount of 719 

precipitation during these hot moments surpassed a certain threshold (e.g., 2/ λ in Figure 7e), 720 

denitrification was activated in patches across the basin that were not designated as microscale 721 

hotspots. This generated a more dynamic distribution of “hotspots” due to the timing of hot 722 

moments. To better account for the interdependence between hotspots and hot moments, 723 

Bernhardt et al. (2017) proposed a new term more comprehensive term: “ecosystem control 724 

points.” This new term incorporates both spatial and temporal dynamics instead of addressing 725 

them independently (Bernhardt et al., 2017). Our research in a dryland chaparral watershed 726 

illustrates how ecosystem control points drive N export under a range of future scenarios. 727 

 Our modeling framework considered interactions between N saturation status and several 728 

ways that precipitation regimes can change. This framework can serve as a tool for 729 

understanding the specific mechanisms driving future N export under climate change. For 730 

example, our model framework highlights the importance of considering the role of interannual 731 

intermittency (not just variability) when examining how future precipitation will influence N 732 

fluxes. This approach can help researcher determine the interannual intermittency thresholds that 733 

trigger substantial increases in denitrification, which can in turn help them design precipitation 734 

manipulation experiments with appropriate intermittency levels.   735 
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5 Conclusion 736 

 We developed a comprehensive modeling framework that incorporates the role of both N 737 

deposition and intensification of the precipitation regime (i.e., the total amount, intermittency, 738 

and variability) in driving N export in dryland ecosystems. We identified a critical N deposition 739 

threshold of around 2 g m-2 year-1 beyond which the watershed shifts from N-limited to N-740 

saturated. Our findings reveal that streamflow N export in N-limited watersheds is more sensitive 741 

to changes in the timing of precipitation compared to N-saturated watersheds, whereas 742 

denitrification in N-saturated watersheds was more responsive to changes in precipitation timing 743 

in N-saturated watersheds. Additionally, we found that a drier future exaggerated the effects of 744 

precipitation timing on N export, while there was no uniform response under a wetter future. 745 

Notably, among the various precipitation regime changes, interannual intermittency caused the 746 

largest changes in N export compared to other characteristics of the precipitation regime. Our 747 

modeling framework helps disentangle the key drivers of N fluxes amid complex interactions 748 

between N saturation and precipitation in dryland watersheds. We found that interannual rainfall 749 

intermittency enables solutes like nitrate to build up in hotspots and then be flushed to streams 750 

with subsequent intense storms—thus as rainfall intermittency and associated droughts continue 751 

to increase, N export will become an even greater threat to water security. 752 
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Abstract  21 

 Atmospheric nitrogen (N) deposition and climate change are transforming the way N 22 

moves through dryland watersheds. For example, N deposition is increasing N export to streams, 23 

which may be exacerbated by changes in the magnitude, timing, and intensity of precipitation 24 

(i.e., the precipitation regime). While deposition controls the amount of N entering a watershed, 25 

the precipitation regime influences rates of internal cycling; when and where soil N, plant roots, 26 

and microbes are hydrologically connected; how quickly plants and microbes assimilate N; and 27 

rates of denitrification, runoff, and leaching. We used the ecohydrological model RHESSys to 28 

investigate (1) how N dynamics differ between N-limited and N-saturated conditions in a 29 

dryland watershed, and (2) how total precipitation and its intra-annual intermittency (i.e., the 30 

time between storms in a year), interannual intermittency (i.e., the duration of dry months across 31 

multiple years), and interannual variability (i.e., variance in the amount of precipitation among 32 

years) modify N dynamics. Streamflow N export was more sensitive to increasing intermittency 33 

and variability in N-limited vs. N-saturated model scenarios, particularly when total precipitation 34 

was lower—the opposite was true for denitrification. N export and denitrification increased or 35 

decreased the most with increasing interannual intermittency compared to other changes in 36 

precipitation amount. This suggests that under future climate change, prolonged droughts that are 37 

followed by more intense storms may pose a major threat to water quality in dryland watersheds.  38 

Key points: 39 

 We developed a new metric for identifying when a dryland watershed becomes “capacity 40 

N-saturated”. 41 

 Streamflow N export was more sensitive to precipitation regime changes in N-limited 42 

than N-saturated watersheds. 43 
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 N export increased or decreased the most with increasing interannual intermittency than 44 

other changes in precipitation amount.  45 

1 Introduction 46 

Atmospheric N deposition has been increasing in dryland watersheds of the western US 47 

since the 1860s, largely due to human population growth and concomitant increases in both 48 

fossil fuel consumption and industrial agriculture (Galloway et al., 2008; Kanakidou et al., 49 

2016). In many populated regions around the globe, N deposition is already around 20 times 50 

higher than the natural rate of 0.05 g N g m-2 year-1 (Dentener et al., 2006; Galloway et al., 51 

2008). For example, in dryland chaparral watersheds near Los Angeles, California, the N 52 

deposition rate is more than 3 g N m-2 year -1 (Benish et al., 2022). By 2050, rates are likely to 53 

reach 5 g N m-2 year-1 (Sutton et al., 2007). Given these dramatic increases in N inputs, there is 54 

an urgent need to understand (1) the point at which dryland watersheds will no longer be able to 55 

assimilate additional N (i.e., the threshold of N deposition at which they become N-saturated) 56 

and (2) how deposited N will be transformed and exported from watersheds through both 57 

hydrologic and gaseous pathways (i.e., denitrification) under both N saturated and unsaturated 58 

conditions. Precipitation plays an important role in driving N cycling, uptake, and export. 59 

However, in drylands, these processes can act on different timescales and high precipitation 60 

variability can complicate our ability to predict the fate of atmospherically deposited N (Homyak 61 

et al., 2014; Howarth et al., 2006; Krichels et al., 2022; Ren et al., 2023, submitted). 62 

Conceptual models used to assess N saturation and N export were developed in temperate 63 

systems where relatively high and consistent rainfall maintains hydrologically connected soils 64 

throughout the year, allowing substrates to diffuse to plant roots and be taken up (Homyak et al., 65 

2014). As a result, these models assume that N export occurs once a watershed exceeds the 66 
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capacity of plants and other ecosystem components to assimilate N and becomes N-saturated 67 

(Aber et al., 1989). In drylands however, summer aridity can keep soils dry for months without 68 

rain, limiting subsurface N transport and allowing it to accumulate in hydrologically 69 

disconnected microsites (i.e., hotspots; Parker & Schimel, 2011). At the onset of the wet season 70 

when rains return, N can be rapidly exported before plants and soil microbes can assimilate it—71 

this can produce large stream N losses (known as “pulses”) that under traditional conceptual 72 

models would suggest N saturation (Zhu et al., 2018). However, such hydrologic losses regularly 73 

occur in drylands even when plants remain N-limited (Homyak et al., 2014).  74 

To better account for asynchronies between N availability and uptake, Lovett & Goodale. 75 

(2011) introduced the concept of kinetic N saturation, where available N can exceed demand 76 

over short timescales (e.g., when a storm follows a long dry period). This contrasts with capacity 77 

N-saturation, where an ecosystem or watershed can no longer assimilate N over longer 78 

timescales, resulting in consistent increases in N export that correspond with increasing 79 

atmospheric N inputs. Because both N saturation statuses can increase N export, it is difficult to 80 

identify the threshold at which dryland watersheds shift from kinetic to capacity saturation. As a 81 

result, it also remains difficult to predict the fate of atmospherically deposited N and how it 82 

changes along a gradient from kinetic to capacity saturation. 83 

Further complicating our understanding of N saturation and export, general circulation 84 

models project changes in the both the total amount and timing of precipitation in drylands 85 

(Fischer et al., 2013). These changes can occur on both intra- and interannual scales (Knapp et 86 

al., 2002; Trenberth et al., 2003). On intra-annual time scales, a higher water-holding capacity in 87 

a warming atmosphere can give rise to larger precipitation events with longer dry periods 88 

between storms (i.e., higher intra-annual intermittency, Allen & Ingram, 2002). At interannual 89 
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scales, climate change can alter atmospheric circulation and moisture transport to promote 90 

extreme wet months with a longer duration of dry months across multiple years (i.e., higher 91 

interannual intermittency (Allen & Ingram, 2002; Trenberth et al., 2003). Alternatively, some 92 

models project that climate change will enhance interannual variability, making dry years drier 93 

and wet years wetter, while still retaining the intra-annual storm event characteristics (Pörtner et 94 

al., 2022). Higher precipitation intermittency and variability can both affect N export, but 95 

increases in intermittency, which change both the timing and magnitude of storms (i.e., fewer, 96 

more intense storms), may have a different effect than changes in variability alone (which only 97 

influences storm size without changing timing (Homyak et al., 2017; Winter et al., 2023). Recent 98 

studies have shown that enhanced precipitation variability and intermittency can increase both 99 

nitric oxide (NO) emissions and stream N export (Krichels et al., 2022; Winter et al., 2023), 100 

however, most of these studies are event-based and the long-term, and cumulative effects of 101 

altered precipitation regimes and their interactions with N deposition remain poorly understood.  102 

A simulation modeling approach should be useful for identifying the threshold of 103 

atmospheric N deposition at which a watershed transitions from kinetic to capacity saturation, 104 

which would enable us to better project future N export. With this approach, we can directly 105 

investigate how N export responds to temporal asynchrony between N availability and uptake; 106 

for example, when the first rain event of a wet season flushes N while plants are not actively 107 

growing (in a Mediterranean climate) vs. when the activation of rainy season overlaps with the 108 

peak growing season in early spring (in a continental climate). We expect that when a watershed 109 

only experiences kinetic saturation, there will be pronounced differences between these two 110 

scenarios. Conversely, when a watershed is capacity N-saturated due to high N-deposition, total 111 

N export will not change in response to the timing of precipitation.   112 
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 Using a simulation modeling approach, we developed and tested our proposed metric for 113 

identifying when a dryland watershed becomes “capacity N-saturated.” Then using the new 114 

metric, we developed N-limited and N-saturated scenarios to address two questions: (1) How do 115 

changes in the precipitation regime, including the total amount of precipitation, its intra-annual 116 

intermittency, interannual intermittency, and interannual variability influence watershed-scale N 117 

export, and (2) How do these responses differ between N-limited and N-saturated watersheds? 118 

These scenarios were conducted using the coupled ecohydrological-biogeochemical model 119 

RHESSys (Tague & Band, 2004) in a dryland, chaparral-dominated watershed downwind of Los 120 

Angeles, California that experiences high rates of N-deposition.  121 

2 Methods 122 

2.1 Study site 123 

We developed modeling scenarios for the chaparral-dominated Bell 4 watershed in the 124 

San Dimas Experimental Forest, located 50 km northeast of Los Angeles, California (34°12´N, 125 

117°47´W). This is a small watershed (0.14 km2) with elevations ranging from 700 to 1024 126 

meters. The soils are shallow, coarse-textured sandy loams weathered from granitic parent 127 

material (Chaney et al., 2016; Dunn et al., 1988); they classify as Typic or Lithic Xerorthents 128 

(Hubbert et al., 2006; Ryan, 1991). The climate is characterized by hot and dry summers and 129 

cool-humid winters. Mean annual precipitation is approximately 700 mm, with daily 130 

temperatures ranging from -8°C in winter to 40 °C in summer. Vegetation on south-facing slopes 131 

includes chamise (Adenostoma fasciculatum), California lilac (Ceanothus spp.), and black sage 132 

(Salvia mellifera), while north-facing slopes are covered by ceanothus spp. and California laurel 133 

(Umbellularia californica). Riparian areas are dominated by live oak (Quercus agrifolia). Being 134 
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downwind from a major metropolitan area, Bell 4 experiences high N deposition rates, which 135 

exceed 30 kg ha-1 year-1 (Benish et al., 2022; Bytnerowicz & Fenn, 1996).  136 

2.2 RHESSys model  137 

To investigate how precipitation regime changes affect N cycling and export in drylands 138 

and how they are different between N-limited and N-saturated watersheds, we used the regional 139 

hydro-ecologic simulation system (RHESSys). RHESSys is a spatially distributed model that 140 

fully couples hydrological processes with biogeochemical processes, allowing it to simulate the 141 

effects of climate and environmental change on C and N cycling and hydrologic conditions 142 

(Garcia et al., 2016; Lin et al., 2015; Tague & Band, 2004). Recent model improvements have 143 

enabled RHESSys to better-represent N cycling and transport in dryland watersheds (Burke et 144 

al., 2021; Hanan et al., 2017, Ren et al., 2023, submitted). This includes refining nitrification 145 

processes after wildfire in chaparral (Hanan et al., 2017), and representing biogeochemical 146 

hotspots explicitly across a landscape (Ren et al., 2023, submitted). RHESSys has been 147 

extensively evaluated in several dryland watersheds across the western US (Burke et al., 2021; 148 

Chen et al., 2020; E. S. Garcia & Tague, 2015; Elizabeth S. Garcia et al., 2016; Hanan et al., 149 

2017, 2021; Ren et al., 2021, 2022; Reyes et al., 2017; Stephens et al., 2022).  150 

C and N cycling among vegetation, litter, and soil layers are simulated at a patch scale 151 

(the smallest spatial unit; 3-meter resolution in this study). Photosynthesis is calculated using the 152 

Farquhar model which is a function of stomatal conductance, radiation, nitrogen and carbon 153 

dioxide concentration, air temperature and atmospheric pressure (Farquhar & von Caemmerer, 154 

1982). Plant respiration includes maintenance and growth respiration, which is estimated using 155 

Ryan. (1991) model. Carbon is then allocated to roots, stems, and leaves using an architecture (or 156 

age) based method (Dickinson et al., 1998). RHESSys has four litter pools and four soil pools 157 
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with different C:N ratios and decomposition rates. Decomposition is estimated based on a 158 

defined maximum decomposition rate and constrained by soil moisture, soil temperature, and 159 

nitrogen availability. N mineralization and immobilization are estimated using the C:N ratios of 160 

the litter and soil pools when materials decompose from one pool to another (Hanan et al., 2017; 161 

Tague & Band, 2004). 162 

 RHESSys calculates nitrification rates based on the CENTURYNGAS model which is a 163 

function of soil pH, soil moisture, soil temperature, and available soil ammonium (Parton, 1996). 164 

A maximum denitrification rate is calculated as a function of the total available nitrate (NO3
-) in 165 

soil, and total soil carbon and nitrogen, and then the maximum rate is modified based on soil 166 

moisture and soil respiration as a proxy for microbial abundance.  167 

Soil moisture processes include four vertical layers, a surface detention store, a root zone 168 

store, an unsaturated store, and a saturated store. At a daily timestep, the surface detention store 169 

receives water from canopy throughfall and snowmelt (when present), and infiltrates into the soil 170 

based on the Phillip (1957) infiltration equation. Overland flow is generated when the ponded 171 

water is above the detention storage capacity. Water can percolate into a deeper ground water 172 

store through bypass flow. Water drains from the unsaturated zone or root zone to the saturated 173 

zone based on hydraulic conductivity and moves from the saturated zone to the unsaturated zone 174 

or root zone based on the Eagleson (1978) equation. Subsurface lateral flow between patches 175 

follows topographic gradients and soil hydraulic parameters such as saturation deficit and 176 

transmissivity. N moves with these water fluxes based on its concentration (Tague & Band, 177 

2004). Atmospherically deposited N enters the soil through infiltration from the surface 178 

detention store. In the unsaturated zone, soil nitrate decreases exponentially with depth. In the 179 



 9

saturated zone, nitrate export follows a flushing hypothesis, where more soil N becomes 180 

available for flushing to streams as the water table rises (Chen et al., 2020).  181 

To account for sub-grid scale heterogeneity in vegetation cover, RHESSys can be run 182 

using a new aspatial framework (Burke et al., 2021). In this new framework, “patch families” are 183 

the smallest spatially explicit model unit, and “aspatial patches” nested within a patch family are 184 

the smallest aspatial model unit. Aspatial patches do not have physical locations, but instead 185 

represent a distribution of vegetation types based on observed or hypothetical distributions. 186 

Local routing of water between aspatial patches within a patch family is based on the relative 187 

moisture differences among aspatial patches in the rooting and unsaturated zones and mediated 188 

by user-defined gaining and losing coefficients for each patch type (Burke et al., 2021). Local 189 

routing in the saturated zone is based on the differences in the groundwater table and it carries 190 

nitrate when exchanging water.  191 

 We also recently expanded the aspatial patch framework to incorporate the role of fine-192 

scale biogeochemical “hotspots,” represented as aspatial patches within each patch family—193 

these represent a distribution of microsites (e.g., soil aggregates) where biogeochemical cycling 194 

can be hydrologically disconnected, as soils dry out, from other aspatial patches that contain 195 

plant roots (Ren et al. 2023, submitted). Hotspots help drive kinetic N saturation by enabling N 196 

to accumulate and subsequently be flushed from the system when soils are rewetted. To model 197 

hotspot dynamics, the framework includes: (1) model algorithms that enable hotspots to access 198 

soil and litter C and N from neighboring non-hotspot patches for decomposition and 199 

biogeochemical cycling, and (2) algorithms and parameters that control the moisture conditions 200 

under which hotspots are hydrologically disconnected from other aspatial patches in the saturated 201 

zone, (3) parameters that control water diffusion in the unsaturated and/or root zone between 202 
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hotspot and non-hotspot patches as soils dry out. For detailed descriptions of the RHESSys 203 

model and the new hotspot framework, refer to Tague & Band, (2004) and Ren. et al (2023, 204 

under review).   205 

2.3 Data 206 

To represent topography across the watershed, we used a 1-meter resolution digital 207 

elevation model (DEM) from LiDAR aggregated to 10-meters (Ren et al., 2023, submitted). Soil 208 

texture was delineated across the watershed using the POLARIS database (Chaney et al., 2016). 209 

To map landcover across Bell 4, we aggregated 1-meter resolution land cover data from the 210 

National Agriculture Imagery Program (NAIP; collected on June 5, 2016) to 3-meters. We then 211 

classified three land cover types across the watershed: chaparral, live oak, and bare ground 212 

(Maxwell et al., 2017). RHESSys patch families were established based on the 10-meter DEM, 213 

while the aspatial patch vegetation distributions were classified based on the 3-meter NAIP data 214 

(Ren et al., 2023, submitted). The Bell 4 basin contained 1259 patch families, with each patch 215 

family having approximately 11 aspatial patches. We acquired meteorological forcing data from 216 

1979 to 2020 from the gridMET, including daily maximum and minimum temperatures, 217 

precipitation, relative humidity, radiation, and wind speed (Abatzoglou, 2013). Daily streamflow 218 

data from 1980 to 2002 and stream N data from 1988 to 2000 were provided by U.S. Forest 219 

Service (USFS).  220 

2.4 Model initialization and calibration 221 

 To initialize soil C and N pools to steady state, we spun RHESSys up for three hundred 222 

years. Then to initialize vegetation C and N pools, we used a target-driven spin-up approach, 223 

which leverages remotely sensed LAI calculated from NAIP (at April 24, 2010) to set target 224 

values for each patch across the watershed; this enables us to spin the model up mechanistically 225 
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while still capturing landscape heterogeneity (Hanan et al., 2018). We then calibrated six soil 226 

parameters using observed streamflow data: saturated hydraulic conductivity (Ksat), the decay of 227 

Ksat with depth (m), pore size index (b), air entry pressure (ϕ), bypass flow to deeper 228 

groundwater storage (gw1), and deep groundwater drainage rates to stream (gw2). We selected 229 

the best parameters by comparing the observed and modeled streamflow using the monthly 230 

Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970) and percent error of annual streamflow. 231 

We used eight years of streamflow data from 1993 to 2002 for calibration and three years from 232 

1980 to 1983 for validation. Following calibration, we designated one aspatial patch in each 233 

patch family to represent hotspots, assuming that hotspots were evenly distributed across the 234 

landscape. We then optimized the hotspot-related parameters (i.e., the water sharing coefficient 235 

between aspatial patches and subsurface flow threshold) by comparing modeled and observed 236 

streamflow N from 1988 to 2000. During the calibration, the monthly NSE of simulated 237 

streamflow reached 0.88 with a percent error of 5.45%, while for the validation period, the 238 

monthly NSE was 0.80 with a percent error of -3.92%. This suggests a close match between 239 

modeled and measured streamflow timing and volume. By including hotspots in the model, we 240 

also improved our ability to capture the timing of peak streamflow nitrate observations (NSE = 241 

0.40). A more detailed description of initialization and calibration results can be found in Ren et 242 

al. (2023, submitted). 243 

2.4 Scenarios 244 

2.4.1 Developing better metrics for N-saturation in dryland watersheds. 245 

Because seasonal N export to streams is characteristic in dryland watersheds, even when 246 

they are not N-polluted (Homyak et al., 2014), we need to develop metrics that can identify when 247 

a watershed shifts from kinetic to capacity saturation (Lovett & Goodale, 2011). This requires 248 



 12

understanding how N deposition interacts with the timing of precipitation. To determine the N 249 

deposition threshold at which a watershed becomes N-saturated, we built scenarios considering 250 

interactions between the N deposition rate and precipitation seasonality over a period of 60 251 

years. Because the observed meteorological forcing data spans only 40 years (water years 1980 252 

to 2020), we repeated this data to construct the additional 20 years. This included three scenarios 253 

for precipitation seasonality: a dry summer scenario (to match observations), a wet summer 254 

scenario (to represent a more continental climate), and an evenly distributed scenario (Figure 1a). 255 

The wet summer and evenly distributed scenarios were reconstructed from the observed 256 

precipitation data by manipulating the duration of dry days and the timing of precipitation using 257 

a method from Rodriguez-Iturbe et al. (1999) which will be introduced in detail in section 2.4.2. 258 

We also included 12 dry N deposition scenarios (including 0.05, 0.25, and 0.5 to 5 g m-2 year-1 at 259 

an increment of 0.5 g m-2 year-1). This resulted in 36 scenarios for precipitation and N deposition 260 

in a factorial design.  261 

To determine the level of N deposition at which our watershed becomes N-saturated, we 262 

examined N export for each scenario and determined the magnitude of N deposition where 263 

export no longer varied under different precipitation seasonality scenarios. This approach 264 

assumes that under kinetic saturation, dry summers would promote more N export because 265 

rainfall occurs when plants are less active. We define the N deposition threshold above which the 266 

watershed is capacity N saturated as the amount of N deposition required for mean normalized 267 

streamflow N (i.e., annual streamflow N divided by the N deposition rate) in both the dry 268 

summer and the evenly distributed scenarios to be above 90% of the mean normalized 269 

streamflow in the dry winter scenario. Using this threshold, we then built two scenarios for N 270 

saturation status: N-saturated and N-limited. This involved scaling N deposition up or down such 271 
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that the N saturated scenario had 100 times higher N deposition than the N-limited scenario. We 272 

then used these scenarios for the following sensitivity analysis to examine how precipitation 273 

intermittency and variability influence N export under saturated and unsaturated conditions.  274 

2.4.2 Effects of intra-annual precipitation intermittency on N export 275 

To understand the how intra-annual precipitation intermittency influence N export, we 276 

used a stochastic precipitation generator, based on Rodriguez-Iturbe et al. (1999). Within a given 277 

year, the occurrence and amount of total daily precipitation can be viewed as a stochastic 278 

process. Specifically, the occurrence of rainfall is modeled as a Poisson process with a rate λ 279 

(average rainfall frequency), and the amount of rainfall for each event is determined by a 280 

random exponential distribution. As our model operates on a daily timestep, we did not consider 281 

the temporal structure of rainfall within each event and instead assumed the precipitation 282 

occurred instantaneously. 283 

Based on these assumptions, the distribution of the length of dry days (𝜏 ) between precipitation 284 

events is an exponential distribution with a mean 1/ λ (the unit of λ is 1/day).  285 

 𝑓ఛ(𝜏) =  λ 𝑒ି஛ఛ , 𝑓𝑜𝑟 𝜏 ≥ 0     Eq (1) 286 

The amount of precipitation is an independent random variable h (mm/day), calculated by an 287 

exponential probability density function: 288 

𝑓ு(ℎ) =  
ଵ

ఈ
𝑒ି

೓

ഀ, 𝑓𝑜𝑟 ℎ ≥ 0     Eq (2) 289 

Where α is the mean of daily rainfall amount (mm/day) when precipitation occurs for a certain 290 

year and can be estimated from the observed data.  291 

The total amount of precipitation R (mm year-1) for a given year can therefore be calculated as  292 
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𝑅 = ℎ ×  𝑇/𝜏        Eq (3) 293 

Where T is the total days for a rainy season.  294 

We estimated the two parameters (λ_0 and α) for the stochastic model based on observed 295 

precipitation. Then we adjusted the rainfall frequency parameter 1/λ_0 by a factor of 2 to 4 to 296 

increase the duration of dry days between rainfall events. Additionally, we adjusted the mean 297 

daily rainfall amount α to maintain consistent total precipitation amounts across different 298 

scenarios. In total, we developed five distinct intra-annual intermittency scenarios (Figure 1b). 299 

 To summarize, within one year, this method determines the number of dry days across a 300 

rainy season and uses rainfall intensity and the number of days with precipitation (from 301 

observations) to determine the size and timing of storms that occur between dry days. This 302 

enables us to vary rainfall intermittency, while maintaining a fixed amount of precipitation for 303 

each year. Then, to examine how precipitation intermittency interacts with the total amount of 304 

precipitation (e.g., under drier vs. wetter futures), we developed five precipitation scalers for 305 

each intermittency scenario (ranging from 0.6 to 1.4 at an increment of 0.2). Hereafter, we refer 306 

to scenarios with precipitation scaling factors less than one as “drier future” scenarios and greater 307 

than one as “wetter future” scenarios.  By combing five precipitation scaling factor scenarios, 308 

two N saturation scenarios, and five intra-annual intermittency scenarios, we generated a total of 309 

40 different scenarios in a factorial design and ran the model for 60 years (Figure 2).  310 

2.4.3 The effect of interannual intermittency on N export 311 

To investigate the effects of interannual precipitation intermittency on N export, we used 312 

a stochastic precipitation generator that was similar to the one used for the intra-annual 313 

precipitation intermittency analysis. Specifically, we examined monthly precipitation data for a 314 
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period of 40 years (in total 480 months) and modeled both the amount of monthly precipitation 315 

and duration of dry months as stochastic processes. We initially ignored the temporal structure of 316 

precipitation within each month and calculated the two parameters λ_0 (unit is 1/month) and α 317 

(mm/month). We then downscaled the modeled monthly precipitation to a daily timestep based 318 

on observed precipitation considering the temporal structure of rainfall events within a month. 319 

To increase the interannual intermittency, we then manipulate the two parameters (λ and α) to 320 

increase both the duration and the mean amount of monthly precipitation while maintaining 321 

consistent total precipitation levels over the 40-year period (Figure 1d). Again, we built 40 322 

scenarios by combining the five interannual intermittency scenarios with the previous four 323 

precipitation scaling factors and the two N saturation scenarios and ran RHESSys for 60 years by 324 

looping the 40 years reconstructed data.  325 

2.4.4 Effect of interannual precipitation variability on N export  326 

To understand the effects of interannual precipitation variability on N export, we adapted 327 

methodology proposed by Gherardi & Sala (2015). We generated different scenarios for 328 

interannual precipitation variability by manipulating the observed precipitation data. To increase 329 

variability, we increased the annual precipitation amount in wet years and decreased it in dry 330 

years (by 20%, 40%, 60% relative to the observed amounts). To decrease variability, we lessened 331 

the amount of annual precipitation in wet years and increased it in dry years (by 20%, 40%, 60% 332 

and 80%). This approach enabled us to create scenarios with varying coefficients of variation 333 

(CV) while keeping the total precipitation the same throughout the simulation period. This 334 

resulted in eight interannual variability scenarios including a baseline scenario (Figure 1c). By 335 

combing them with five total precipitation scaling factors, and two levels of N saturation (N-336 

limited vs. N-saturated), we generated 80 factorial scenarios.   337 
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 338 

Figure 1. A summary of reconstructed precipitation data used. Panel a represents the 339 
precipitation seasonality scenarios: dry summer, evenly distributed across the year, and wet 340 
summer. The dry summer scenarios used observed precipitation data. Total precipitation and 341 
inter-annual intermittency over the 40 years was consistent across three scenarios. Panel b 342 
represents the reconstructed precipitation data with different intra-annual intermittencies for a 343 
period of 40 years, including the distribution of daily precipitation and dry days duration. The 344 
total amount of precipitation over 40 years was the same for all four precipitation intermittency 345 
scenarios. Lambda (λ_0) is the frequency of observed rain events, and the x-axis shows an 346 
increase in intermittency. The comparison between observed and reconstructed precipitation of 347 
1/ λ_0 is shown in Figure S1. Panel c represents reconstructed and observed precipitation for 348 
different levels of interannual variability. The green horizontal line is the mean annual 349 
precipitation from the observation data and the black dots are the observed annual precipitation. 350 
Blue lines correspond with lower variability relative to observation, red lines correspond with 351 
higher variability relative to observation. Panel d represents reconstructed precipitation data 352 
with different interannual intermittencies for a period of 40 years, including the distribution of 353 
daily precipitation amounts and the distribution of duration of dry days. The total amount of 354 
precipitation over 40 years was the same for all five precipitation scenarios at a given 355 
precipitation scaling factor. Lambda (λ_0) is the frequency of reconstructed baseline rain events, 356 
and the x-axis shows an increase in intermittency. Note that the y axis is in log2 scale to better 357 
show extreme values.  358 

 To summarize, we developed two scenarios for N saturation status (N-saturated vs N-359 

limited), five precipitation scaling factors (0.6, 0.8, 1, 1.2, 1.4), and three sets of scenarios for 360 

changes in precipitation timing. These changes include four intra-annual intermittency scenarios, 361 

four interannual intermittency scenarios, and eight interannual variability scenarios. This resulted 362 
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in 160 factorial scenarios (Figure 2). We then calculated the normalized differences in N fluxes 363 

for each precipitation regime relative to its baseline, defined as the lowest variability or 364 

intermittency scenario for each precipitation scaling factor and N saturation status. For example, 365 

in the N-limited scenarios, to compare N export among intra-annual intermittency scenarios at a 366 

given precipitation scaling factor, we calculated differences between a given intermittency 367 

scenario and the baseline (1/λ_0). This resulted in 5 baseline intermittency scenarios (two drier, 368 

two wetter, and a scenario with the baseline precipitation variability and total amount). The 369 

combination of high precipitation scaling factors and high intermittency/variability can interact 370 

to create some extreme storms that are historically unprecedented, though within the range of 371 

possible future projections (Knapp et al., 2015). However, median storm sizes are well within the 372 

range of historical variability for these semiarid systems; we focus on median values in our 373 

discussion. 374 
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 375 

Figure 2. Summary of the scenarios developed to examine how interactions between N 376 
deposition and changes in precipitation regime affect N export. The number inside the 377 
parenthesis indicates the number of corresponding scenarios.  378 

3 Results 379 

3.1 A better metric for N saturation in drylands 380 

In scenarios with relatively low atmospheric N deposition (i.e., smaller than 1 g m-2 year-381 

1), the mean and distribution of annual streamflow N (over 60 years) varied depending on the 382 

seasonality of precipitation, with the dry summer scenario resulting in the highest export and the 383 

wet summer scenario resulting in the lowest (Figure 3 and Figure S2). However, as N deposition 384 

increased, the watershed became less N-limited, leading to similar mean values and streamflow 385 

N distributions across different precipitation seasonality scenarios. This can be attributed to the 386 

fact that in a watershed with dry summers, the wet winter period can flush N to streams before 387 

plants begin to take it up, whereas in watersheds with wet summers, N is consumed by plants 388 

prior to leaching, resulting in less streamflow N export. Consequently, it can be inferred that 389 
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when the watershed is N-limited, the dry summer scenario would yield higher streamflow N 390 

export than the dry winter scenario. Conversely, in an N-saturated watershed, the consumption of 391 

N by plants and microbes would have a much smaller effect on streamflow N export. Using this 392 

logic, we identify an N deposition threshold of approximately 2 g m-2 year-1 above which the 393 

watershed becomes N-saturated. At this threshold, the ratio of the normalized mean annual 394 

streamflow N for the wet summer:dry summer scenarios was no smaller than 0.9 (the same was 395 

true for the evenly distributed scenario; Figure 3). For the following scenarios, we selected 0.05 396 

g m-2 year-1 and 5 g m-2 year-1 to represent extremes of N-limited and N-saturated systems, 397 

respectively.  398 

 399 

Figure 3. Ratio of the normalized mean annual streamflow N export between scenarios 400 
(calculated as wet summer/dry summer (blue line) or even/dry summer (green line); values are 401 
normalized by the N deposition rate). We selected an N saturated threshold where normalized 402 
streamflow N in the wet summer scenario was no smaller than 90% of that observed in the dry 403 
summer scenario. We used mean, rather than median values to account for extreme values. 404 
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3.2 The effect of changing precipitation regimes on N export. 405 

3.2.1 The effect of intra-annual precipitation intermittency on N export. 406 

Streamflow N export increased with higher intra-annual intermittency, which alters both 407 

the timing and magnitude of storms (Figure 4). Moreover, in N-limited scenarios, a higher total 408 

precipitation scaling factor generally increased streamflow N export (Figure 4). However, in N-409 

saturated scenarios, baseline conditions can lead to more streamflow N export (Figure 4a). 410 

Higher intermittency implies longer dry periods and greater differences in precipitation amount 411 

between dry and wet periods, despite the same total precipitation among scenarios over the 60-412 

year simulation. This can increase soil N accumulation during dry periods while reducing 413 

denitrification and N uptake (model estimates of plant carbon declined from 6 kg m-2 to around 4 414 

kg m-2 between the highest and lowest intermittency scenario, Figure S4b). As a result, more N is 415 

flushed to streams during the wet periods. For both N-limited and N-saturated scenarios, 416 

denitrification decreased with higher levels of intermittency (Figure 4 b and e), primarily due to 417 

slower rates of decomposition caused by decreases in plant growth and litter production (Figure 418 

S4a).  419 
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 420 

Figure 4. Sensitivity of cumulative N fluxes over 60 years (absolute value) to intra-annual 421 
precipitation intermittency for N-saturated and N-limited scenarios. The x axis is the duration of 422 
dry days between rainfall event, larger values represent higher intra-annual intermittencies.  423 

Streamflow N export and denitrification were more sensitive to intra-annual precipitation 424 

intermittency in N-limited scenarios than in N-saturated scenarios, while plant N uptake was 425 

more sensitive to intra-annual intermittency in N saturated scenarios (Figure 5). For example, 426 

plant C declined 12% (from 3.9 to 3.4 kg m-2) in N-limited scenarios but declined 27.5% (from 427 

5.8 to 4.2 kg m-2) in N-saturated ones (Figure S4a). The declines in plant carbon with higher 428 

intra-annual intermittency were smaller in N-limited scenarios because plants can be limited by 429 

both N and water, and changing water availability does not matter as much in N-limited as it 430 

does in N saturated scenarios, where once N limitation was alleviated, vegetation growth became 431 

more limited by water availability. In addition, streamflow N export increased with higher levels 432 

of intra-annual intermittency, while denitrification decreased (Figure 5a, b). This suggests 433 
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increases in intra-annual intermittency can increase N export to streams while decreasing N 434 

losses to the atmosphere.  435 

In N-saturated scenarios, streamflow N export was most sensitive to variation in intra-436 

annual intermittency under a precipitation scaling factor of 0.8, while in N-limited scenarios, 437 

scaling factors of 0.6 or 1 were the most sensitive (Figure 5a, b). In N-limited scenarios, the 0.6 438 

scaling factor showed the strongest exponential increases in streamflow N export with increasing 439 

intermittency, indicating that the drier future scenarios have the largest sensitivity to 440 

intermittency changes.  441 

Denitrification in the wetter future scenarios decreased more with increasing intra-annual 442 

precipitation variability than in the drier future scenarios because total denitrification was higher 443 

in wetter baseline intermittency scenarios (1/λ_0). With greater intra-annual intermittency, these 444 

decreases were larger (Figure 5b, e). By contrast, in dry scenarios, plant N uptake decreased 445 

slightly more with increasing intra-annual intermittency than in wetter scenarios, but the 446 

magnitude was relatively small compared to streamflow N export and denitrification ((Figure 5c, 447 

f).  448 
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 449 

Figure 5. Sensitivity of cumulative N fluxes over 60 years to intra-annual precipitation 450 
intermittency for N-saturated and N-limited scenarios (normalized differences relative to 451 
baseline (1/λ_0). The x-axis is intermittency, the y-axis is normalized change of other 452 
intermittencies relative to their baseline intermittency scenarios (1/λ_0) for every precipitation 453 
scaling factor (different precipitation scaling factor scenarios have different baseline 454 
intermittency scenarios). The top panels are N-saturated and bottom panels are N-limited 455 
scenarios. 456 

3.2.2 The effects of interannual precipitation intermittency on N export. 457 

Greater interannual intermittency and higher levels of precipitation increased streamflow 458 

N export and this effect was consistent across both N-limited and N-saturated scenarios (Figure 459 

6). Denitrification exhibited two distinct responses to interannual intermittency. First, when the 460 

intermittency exceeded 2/ λ_0, there was a significant increase in denitrification, which occurred 461 

because higher interannual intermittency corresponded with more precipitation per rainfall event, 462 

resulting in higher soil moisture levels across the landscape and triggering denitrification in non-463 

hotspot patches (Figure 6b, e). However, denitrification started decreasing once interannual 464 

intermittency was larger than 3/ λ_0.  At the highest interannual intermittency levels, increasing 465 

the duration of dry months decreased denitrification to a greater extent than larger storms 466 
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increased it. Plant uptake generally decreased with higher levels of interannual intermittency, 467 

which occurred because long-term drought slowed plant growth (Figure S4b). It is worth noting 468 

that the magnitude of streamflow N and denitrification in interannual intermittency scenarios is 469 

much larger than that of the scenarios for intra-annual intermittency (Figure 4 and Figure 6).  470 

 471 

Figure 6. Sensitivity of cumulative N fluxes over 60 years (absolute value) to interannual 472 
precipitation intermittency for N-saturated and N-limited scenarios. The x-axis is the duration of 473 
dry days between rainfall events. Interannual intermittency increases from left to right. 474 

Denitrification and plant N uptake were slightly more sensitive to interannual 475 

intermittency in N-saturated scenarios than in N-limited scenarios (Figure 7). This occurred 476 

because changes in denitrification and plant growth were constrained by N availability in N-477 

limited scenarios and therefore less responsive to precipitation changes. Streamflow N export 478 

was more sensitive to interannual intermittency in N-limited scenarios compared to N-saturated 479 

scenarios (Figure 7a, d). In N-limited scenarios, drier scenarios showed greater changes to 480 

interannual intermittency than wetter scenarios, while in N-saturated scenarios wetter scenarios 481 
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showed greater changes. This occurred because in N-limited scenarios, drier scenarios had less 482 

denitrification and plant uptake, resulting in more N available to be flushed to the stream. It 483 

worth noting that in the N-limited scenario, interannual precipitation intermittency caused the 484 

largest changes in streamflow N export compared to intra-annual intermittency and interannual 485 

variability. 486 

 487 

Figure 7. Sensitivity of cumulative N fluxes over 60 years to interannual precipitation 488 
intermittency for N-saturated and N-limited scenarios (differences are relative to baseline 489 
intermittency; 1/λ_0).  The x-axis is intermittency, the y-axis is normalized change of other 490 
intermittencies relative to their baseline intermittency scenarios (1/λ_0) for every precipitation 491 
scaling factor. The top panels are N limited and the bottom panels are N saturated scenarios. 492 
Note that the scale of y-axis for changes in streamflow N is different for N-saturated and N-493 
limited scenarios.  494 

3.2.3 The effect of interannual precipitation variability on N export 495 

In general, scenarios with higher precipitation variance and wetter scaling factors resulted 496 

in more streamflow N export (Figure 8). However, for wetter future scenarios, a precipitation 497 

scaling factor of 1.2 (rather than 1.4) resulted in the highest streamflow N export (Figure 8a, d). 498 
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This suggests there is a threshold of precipitation increase above which higher flushing capacity 499 

is compensated by less available N for flushing with higher denitrification and plant uptake. This 500 

can occur because more precipitation can cause higher denitrification and plant N uptake, which 501 

can reduce the amount of N available for flushing. Moreover, denitrification rates increased with 502 

higher precipitation variance and a higher precipitation scaling factor (Figure 8b, e). Notably, 503 

both streamflow N export and denitrification rates were higher in N-saturated compared to N-504 

limited scenarios, due to greater nitrate inputs in N-saturated scenarios.   505 

 506 

Figure 8. Cumulative N fluxes over 60 years (absolute value) relative to interannual 507 
precipitation variability and scaling factors for N-limited and N-saturated scenarios. The x axis 508 
is the coefficient of variation for annual precipitation, the y axis is the cumulative N fluxes over 509 
60 years.  510 

 The sensitivity of N fluxes to precipitation variability differed between N-limited and N-511 

saturated scenarios and was also affected by the precipitation scaling factors (i.e., drier vs. wetter 512 

futures; Figure 9). Streamflow N export was more sensitive to precipitation variability in N-513 

limited than in N-saturated scenarios, particularly for the drier future scenarios (Figure 9a, d), 514 
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while denitrification showed the opposite trend (Figure 9b, e). The magnitude of sensitivity for 515 

plant N uptake was similar between N-limited and N-saturated scenarios, but the direction of 516 

effects (i.e., increases or decreases) differed and was affected by the precipitation scaling factor. 517 

In the N-limited scenarios, plant N uptake decreased with precipitation variability in drier future 518 

scenarios but increased in wetter future scenarios, suggesting that higher precipitation variability 519 

can increase plant growth when there is more water available, even if the watershed is N-limited. 520 

On the other hand, higher precipitation variability and water stress will suppress plant growth. In 521 

N-saturated scenarios, plant N uptake generally decreased with higher precipitation variability, 522 

except in some drier scenarios with smaller variability. This suggests that in N-saturated 523 

watersheds, less precipitation combined with moderately higher variability can promote plant 524 

growth to some extent.  525 

 526 

Figure 9. Sensitivity of cumulative N fluxes over 60 years to interannual precipitation variability 527 
for N-saturated and N-limited scenarios (differences are relative to the baseline variability 528 
scenario which is 0.11). The x axis is the coefficient of variation for annual precipitation. The y 529 
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axis is the normalized change in other variances relative to the baseline variability scenario (CV 530 
is 0.11) for every precipitation scaling factor (different precipitation scaling factor scenarios 531 
have different 0.1 variance baseline scenario). The top panels are N-saturated and the bottom 532 
panels are N-limited scenarios.  533 

4 Discussion 534 

Over the last century, atmospheric N deposition and climate change have increased both 535 

greenhouse gas emissions (e.g., NO and nitrous oxide; N2O) and stream nitrate export from 536 

many dryland watersheds in western North America (Groffman, 2012; Homyak et al., 2016; 537 

Krichels et al., 2022). Because these gaseous and hydrologic N fluxes can exacerbate global 538 

climate change, decrease aquatic biodiversity, and harm human health (Galloway et al., 2003; 539 

Gustine et al., 2022; Meyer et al., 2022), it is important to be able to predict how they will 540 

change in the future. In drylands, N export is highly sensitive to both N deposition rates and 541 

precipitation variability (Welter et al., 2005; Ye & Grimm, 2013); interannual precipitation 542 

variability and intermittency are both projected to increase in drylands under future climate 543 

change (Pörtner et al., 2022). However, our ability to model and predict future N export remains 544 

limited, particularly in response to these interacting drivers. 545 

 Previous research has mainly focused on how the amount of precipitation in storm events 546 

can affect ecosystem function (e.g., Jarvis et al., 2007; Kennedy et al., 2021; Stephens et al., 547 

2020; Ye & Grimm, 2013); fewer studies have also explored the cumulative effects of 548 

precipitation variability across multiple decades (D’Odorico et al., 2003; Gherardi & Sala, 2015; 549 

Jiang et al., 2019; Porporato et al., 2003). Further research is needed to examine how different 550 

types of precipitation intensification (e.g., increasing intermittency vs. variability) will influence 551 

biogeochemical cycling, and to investigate how these effects can differ between N-limited and 552 

N-saturated watersheds. In this study, we conducted a modeling analysis to understand how N 553 

saturation status, precipitation intermittency, variability, and the total amount of precipitation can 554 
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interact to influence N export in a dryland watershed in California. We found that streamflow N 555 

was more sensitive to intensification of the precipitation regime in N-limited than N-limited 556 

scenarios, whereas the opposite was true for denitrification. Furthermore, changes in interannual 557 

precipitation intermittency had the largest effect on streamflow N and denitrification, suggesting 558 

that N export may become an even greater threat to water quality when prolonged drought is 559 

followed by more intense storm events. 560 

4.1 Identifying N deposition thresholds for capacity saturation 561 

 To distinguish between kinetic (i.e., seasonal) and capacity (i.e., long-term) N saturation 562 

(Lovett & Goodale 2011), we developed a simulation modeling approach that quantifies 563 

watershed responses to N deposition under different rainfall seasonality regimes. By identifying 564 

the amount of N deposition required for precipitation regimes to no longer modify N export, we 565 

can approximate when N deposition has truly exceeded the capacity for plants and microbes to 566 

take it up. This approach assumes that kinetic N saturation is more sensitive to precipitation 567 

seasonality and timing, which affects plant and microbial N assimilation, while capacity N 568 

saturation is less sensitive. 569 

We found that the Bell 4 watershed can become capacity saturated when N deposition 570 

reaches 2 g m-2 year-1 over about 40 years (Figure 3). This suggests that the watershed—which 571 

has a current mean N deposition rate greater than 2 g m-2 year-1—has already approached 572 

capacity saturation. It is important to note that the threshold we identified is location-specific and 573 

is likely to vary with the size, vegetation cover, and climate of a given watershed (Dijkstra et al., 574 

2004; Yu et al., 2018). On average, N deposition is around 0.7 g m-2 year-1 in dryland watersheds 575 

globally and rates are expected to double by 2050 (Benish et al., 2022; Galloway et al., 2008; 576 

Kanakidou et al., 2016). Given these increases, many other dryland watersheds could begin to 577 
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exceed the N deposition thresholds required to shift from a kinetic to capacity saturation in the 578 

coming decades. These shifts can pose a major threat to water quality, aquatic ecosystems, and 579 

human health. Our study provides a useful modeling approach that can be applied to other 580 

watersheds to determine N deposition thresholds for establishing capacity N saturation.  581 

4.2 The role of N saturation status  582 

 Does an increase in N deposition lead to greater N export or N uptake? It is essential to 583 

distinguish between N-saturated and N-limited watersheds to unravel how changes in the total 584 

amount of precipitation  and its intermittency or variability will influence watershed processes 585 

(Rudgers et al., 2023). In our model setup, N deposition was 100 times higher in N-saturated 586 

than in N-limited scenarios. However, the N-saturated/N-limited ratios for various N fluxes (i.e., 587 

streamflow N, denitrification, N uptake) were all smaller than 100 and varied among scenarios 588 

(Figure S5). This suggests that N partitioning and soil N storage also changed in response to N-589 

deposition. Not surprisingly, streamflow N had the highest N-saturated/N-limited ratios, ranging 590 

from 15 to 80. Denitrification and N uptake, on the other hand, only experienced modest 1-2-fold 591 

increases in response to N saturation (Figure S5). Because most atmospherically deposited N is 592 

exported to streams, projected decreases in streamflow (Ficklin et al., 2022; Stephens et al., 593 

2020) could lead to even higher streamflow nitrate concentrations, particularly under increased 594 

interannual precipitation variability (Gallo et al., 2015; Ye & Grimm, 2013).  595 

 As precipitation regimes become more intermittent and/or variable, N-limited watersheds 596 

can retain less N in soil  (Winter et al., 2023) and N saturated watershed can become more 597 

saturated or retain more N in soil . In N-limited scenarios, total N export was 25 times higher 598 

than the rate of atmospheric N deposition over the 60-year simulation period. This occurred in 599 

large part due to declines in plant productivity and N uptake. In N-saturated scenarios, on the 600 
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other hand, the ratio between N inputs and outputs was consistently less than one, with 601 

approximately 20% to 60% of the atmospheric N deposition being exported over the 60-year 602 

simulation period (Figure 10). The highest N export transfer efficiencies (calculated as the ratio 603 

between total N export and N deposition) occurred with high interannual intermittency, while 604 

high intra-annual intermittency produced the lowest. Additionally, transfer efficiency can 605 

become even higher in a wetter future due to increases in streamflow. Thus, in N-limited 606 

scenarios (particularly in a wetter future), increases in precipitation interannual intermittency can 607 

increase N export efficiency, thereby reducing N retention capacity in soil. However, our result 608 

should be interpreted with care since 25 times higher N transfer efficiency will eventually 609 

deplete the N in soil. Conversely, in N-saturated scenarios, a drier future will have lower transfer 610 

efficiencies, which can intensify N saturation. This is corroborated by a recent meta-analysis 611 

globally, which found that reduced precipitation can increase soil N storage over long-term 612 

studies, particularly precipitation decreases by more than 25% (Wu et al., 2022). 613 

 614 
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Figure 10. The ratio of total N export (streamflow N and denitrification) to N deposition and its 615 
response to precipitation regime changes. For N-saturated scenarios, the N deposition rate was 616 
5 g m-2 year-1, for N-limited scenarios, it was 0.05 g m-2 year-1. Ratios larger than 1 indicates N 617 
outputs are larger than N inputs and vice versa.  618 

4.3 The role of changing precipitation regimes  619 

 Recent studies have found that precipitation amount and variability both play an 620 

important role in driving ecosystem responses to climate change (Gherardi & Sala, 2015, 2019; 621 

Jiang et al., 2019; Rudgers et al., 2023). Here we extend those studies to also examine the role of 622 

precipitation intermittency and focus on how it affects streamflow N export. In our experimental 623 

setup, we ensured water balance among all scenarios (e.g., scenarios with high vs. low 624 

interannual intermittency at a given amount of total precipitation had the same total rainfall over 625 

the 60-year simulation period). Thus, longer droughts were followed by more precipitation after 626 

drought. Thus interannual intermittency scenarios varied both the timing of storms and their 627 

magnitude, whereas interannual precipitation variability scenarios only varied the relative 628 

magnitude of storms (e.g., some become larger and some become smaller with increasing 629 

variability; Figure 1c). We found that increases in interannual intermittency produced the largest 630 

increases (with the greatest variance) in streamflow N among precipitation regime scenarios 631 

(Figure 11a). Conversely, interannual variability had the smallest effect on streamflow N. These 632 

findings suggest that prolonged drought followed by larger, more intense storms can have the 633 

strongest effect on streamflow N. This occurs because multi-year droughts that occur with 634 

greater intermittency can reduce N uptake by plants and enable N to accumulate in soils 635 

(Krichels et al., 2022; Winter et al., 2023). Subsequent storms then flush accumulated N to 636 

streams before plants can take it up.  637 

 Denitrification exhibited the most substantial increases with increasing interannual 638 

intermittency, whereas it slightly decreased with increasing intra-annual intermittency (Figure 639 
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11b). This pattern arose because denitrification is strongly influenced by soil moisture and 640 

therefore the amount of precipitation in storm events (Homyak et al., 2016). Increases in both 641 

interannual intermittency and variability had large effects on the size of individual storms, while 642 

increases in intra-annual intermittency had relatively smaller effects.  643 

Higher precipitation intra-annual and interannual intermittency and variability can both 644 

reduce plant growth and corresponding N uptake, but increases in interannual intermittency, 645 

which lead to fewer, more intense storms, exert a stronger influence than changes in variability 646 

alone (which only affects the relative size of storms without changing their timing). These 647 

findings have important implications for designing field and laboratory experiments aimed at 648 

understanding plant responses to changing precipitation regimes. Such experiments should not 649 

only consider the important roles of storm size and variance (as identified by Gherardi & Sala 650 

(2015) and Rudgers et al. (2023)), but should also incorporate intermittency as a key driver. 651 
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  652 

Figure 11. The distribution of ratios of highest intermittency/variability to lowest for different N 653 
fluxes. For intermittency this is the ratio between 4/lambda_0 and 1/lambda_0, for variability 654 
this is the ratio between 0.89 CV and 0.11 CV. The distribution consists of outputs from all N 655 
saturation and precipitation scaling factor scenarios and the variance of distribution indicates 656 
how sensitive these N fluxes were to intra-annual intermittency, interannual intermittency, and 657 
interannual variability. Note that the y-axis for panel a is on a different scale than for panels b 658 
and c. The red dashed line represents a ratio of 1, above which N fluxes increases with 659 
intensified precipitation regime and below 1 indicates a decrease. 660 

4.4 The role of total precipitation amount in N-limited systems 661 

 Does more total precipitation result in higher N export? When transitioning from drier to 662 

wetter future scenarios, denitrification was the most affected, followed by streamflow N, while 663 

plant N uptake was least affected (Figure 12 d, e, and f). With a 2.3 fold increase of precipitation 664 

(from a 0.6 to a 1.4 scaling factor), median denitrification increased approximately 5 to 7 fold, 665 

and this response was slightly greater in N saturated scenarios compared to N-limited scenarios 666 

(Figure 12e). This finding aligns with the fact that denitrification is strongly influenced by soil 667 

moisture and available nitrate (Poblador et al., 2017). Denitrification is also strongly influenced 668 

by soil C (represented as a function of soil respiration in RHESSys), which was higher in wetter 669 
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future and N-saturated scenarios. Conversely, streamflow N in N-limited scenarios was more 670 

responsive to changes in the precipitation scaling factor than in N-saturated scenarios (Figure 671 

12d). In N-limited scenarios, streamflow N increased the precipitation scaling factor, reaching 672 

approximately 3.5 times higher than baseline in scenarios with a scaling factor of 1.2. However, 673 

it reached an asymptote once the scaling factor exceeded 1.2. This suggests that, for N-limited 674 

scenarios, increases in total precipitation do not necessarily translate into higher streamflow N 675 

because additional water can enhance denitrification, plant N uptake, and reduce nitrification. 676 

Because the effects of total precipitation on streamflow N export are non-linear, it can be 677 

challenging to predict N export as precipitation regimes continue to change, particularly in N-678 

limited watersheds (Harms & Grimm, 2008; Homyak et al., 2016).  679 

 Changes in the amount of precipitation can also interact with N saturation status to 680 

modify various N fluxes. For example, a higher precipitation scaling factor enhanced the N 681 

saturation effect on denitrification and its variability (Figure 12h). Alternatively, in drier future 682 

scenarios the ratio between N-saturated to N-limited denitrification was smaller than 1 (Figure 683 

12h), suggesting that a drier future can largely inhibit (or even reverse) the N saturation effect, 684 

even with 100 times higher N deposition (Wu et al., 2022). With respect to streamflow N, a 685 

higher precipitation scaling factor reduced the effects of N saturation and its variability (Figure 686 

12g). This aligns with predictions that a drier future would lead to greater N export to streams 687 

and a lower flux to the atmosphere through denitrification (Cregger et al., 2014). Our findings 688 

also corroborate recent studies showing that interactions between N deposition and the total 689 

amount of precipitation drive N export in drylands (Li et al., 2022).  690 

 Although increases or decreases in the total amount of precipitation had smaller effects 691 

on N fluxes than increases in intermittency and/or variability, they interacted with precipitation 692 
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timing to amplify or attenuate their effects. In N-limited scenarios, streamflow N export 693 

increased with higher intermittency and variability, but a drier future exaggerated this response 694 

whereas a wetter future dampened it (e.g., Figure 5d, Figure 7d, and Figure 9d). Although a 695 

wetter future may lead to greater overall streamflow N export (e.g., Figure 8d), a drier future can 696 

result in more substantial increases in streamflow N export (Figure 9d). Furthermore, even minor 697 

decreases in the precipitation scaling factor could substantially increase streamflow N (e.g., 698 

Figure 9d and Figure 12g; 0.8 and 0.6 precipitation scaling factors). Thus, the total amount of 699 

precipitation can play a critical threshold role in driving how N fluxes respond to increases in 700 

precipitation variability and timing (Ficklin et al., 2022).   701 
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 702 

Figure 12. The effect of drier or wetter conditions on N fluxes. The top panels a, b, and c 703 
represent how cumulative N fluxes over 60 years change with precipitation scaling factor. Each 704 
distribution contains both N saturation statuses and all precipitation regime changes. The 705 
middle panels of d, e, and f represent the ratio of fluxes between precipitation scaling factors 706 
larger than 0.6 and the driest scaling factor (i.e., 0.6). The bottom panels g, h and i represent the 707 
ratio of fluxes in N-saturated and N-limited conditions and how they vary with the precipitation 708 
scaling factor. The dashed blue line denotes a ratio equal to 1.   709 

4.5 Study implications 710 

 Predicting future N export in drylands requires considering interaction between hotspots 711 

(defined as wetter microsites in the soil that have disproportionately high rates of 712 
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biogeochemical cycling) and hot moments (defined as wet periods after a prolonged dry spell) 713 

rather than treating them as separate entities (Groffman et al., 2009; Kuzyakov & Blagodatskaya, 714 

2015; Pinay et al., 2015). Our study revealed that the interannual intermittency exhibited the 715 

largest influence on streamflow N and denitrification. Interannual intermittency scenarios 716 

incorporated increases in both the timing and magnitude of storms (with the same total 717 

precipitation over the simulation period for a given precipitation multiplier). Following 718 

prolonged drought, large storms can be viewed as hot moments. Once the amount of 719 

precipitation during these hot moments surpassed a certain threshold (e.g., 2/ λ in Figure 7e), 720 

denitrification was activated in patches across the basin that were not designated as microscale 721 

hotspots. This generated a more dynamic distribution of “hotspots” due to the timing of hot 722 

moments. To better account for the interdependence between hotspots and hot moments, 723 

Bernhardt et al. (2017) proposed a new term more comprehensive term: “ecosystem control 724 

points.” This new term incorporates both spatial and temporal dynamics instead of addressing 725 

them independently (Bernhardt et al., 2017). Our research in a dryland chaparral watershed 726 

illustrates how ecosystem control points drive N export under a range of future scenarios. 727 

 Our modeling framework considered interactions between N saturation status and several 728 

ways that precipitation regimes can change. This framework can serve as a tool for 729 

understanding the specific mechanisms driving future N export under climate change. For 730 

example, our model framework highlights the importance of considering the role of interannual 731 

intermittency (not just variability) when examining how future precipitation will influence N 732 

fluxes. This approach can help researcher determine the interannual intermittency thresholds that 733 

trigger substantial increases in denitrification, which can in turn help them design precipitation 734 

manipulation experiments with appropriate intermittency levels.   735 
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5 Conclusion 736 

 We developed a comprehensive modeling framework that incorporates the role of both N 737 

deposition and intensification of the precipitation regime (i.e., the total amount, intermittency, 738 

and variability) in driving N export in dryland ecosystems. We identified a critical N deposition 739 

threshold of around 2 g m-2 year-1 beyond which the watershed shifts from N-limited to N-740 

saturated. Our findings reveal that streamflow N export in N-limited watersheds is more sensitive 741 

to changes in the timing of precipitation compared to N-saturated watersheds, whereas 742 

denitrification in N-saturated watersheds was more responsive to changes in precipitation timing 743 

in N-saturated watersheds. Additionally, we found that a drier future exaggerated the effects of 744 

precipitation timing on N export, while there was no uniform response under a wetter future. 745 

Notably, among the various precipitation regime changes, interannual intermittency caused the 746 

largest changes in N export compared to other characteristics of the precipitation regime. Our 747 

modeling framework helps disentangle the key drivers of N fluxes amid complex interactions 748 

between N saturation and precipitation in dryland watersheds. We found that interannual rainfall 749 

intermittency enables solutes like nitrate to build up in hotspots and then be flushed to streams 750 

with subsequent intense storms—thus as rainfall intermittency and associated droughts continue 751 

to increase, N export will become an even greater threat to water security. 752 
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