"Seeing" beneath the clouds - machine-learning-based reconstruction of North African dust events

Franz Kanngießer 1* and Stephanie Fiedler 1†

¹Institute of Geophysics and Meteorology, University of Cologne, DE-50923 Cologne, Germany

Key Points:

1

2

3

4

5

6	•	We present the first fast reconstruction of cloud-obscured Saharan dust plumes
7		through novel machine learning applied to satellite images.
8	•	Up to 15% of all observations by classical satellite images may miss cloud events
9		compared to reconstructed dust plumes.
10	•	WMO dust forecasts for North Africa mostly agree with the satellite-based recon-
11		struction of the dust plume extent.

^{*}now: GEOMAR Helmholtz Center for Ocean Research Kiel, DE-24105 Kiel, Germany [†]now: GEOMAR Helmholtz Center for Ocean Research Kiel, DE-24105 Kiel, Germany and Christian-Albrechts University of Kiel, DE-24118 Kiel, Germany

Corresponding author: Franz Kanngießer, fkanngiesser@geomar.de

12 Abstract

Mineral dust is one of the most abundant atmospheric aerosol species and has various 13 far-reaching effects on the climate system and adverse impacts on air quality. Satellite 14 observations can provide spatio-temporal information on dust emission and transport 15 pathways. However, satellite observations of dust plumes are frequently obscured by clouds. 16 We use a method based on established, machine-learning-based image in-painting tech-17 niques to restore the spatial extent of dust plumes for the first time. We train an arti-18 ficial neural net (ANN) on modern reanalysis data paired with satellite-derived cloud masks. 19 The trained ANN is applied to gray-scaled and cloud-masked false-color daytime images 20 for dust aerosols from 2021 and 2022, obtained from the SEVIRI instrument onboard 21 the Meteosat Second Generation satellite. We find up to 15 % of summertime observa-22 tions in West Africa and 10~% of summertime observations in Nubia by satellite images 23 miss dust events due to cloud cover. The diurnal and seasonal patterns in the reconstructed 24 dust occurrence frequency are consistent with known dust emission and transport pro-25 cesses. We use the new dust-plume data to validate the operational forecasts provided 26 by the WMO Dust Regional Center in Barcelona from a novel perspective. The com-27 parison elucidates often similar dust plume patterns in the forecasts and the satellite-28 based reconstruction, but the latter computation is substantially faster. Our proposed 29 reconstruction provides a new opportunity for validating dust aerosol transport in nu-30 merical weather models and Earth system models. It can be adapted to other aerosol 31 species and trace gases. 32

³³ Plain Language Summary

Most dust and sand particles in the atmosphere originate from North Africa. Since 34 ground-based observations of dust events in North Africa are sparse, investigations of-35 ten rely on satellite observations. Dust events are frequently obscured by clouds, mak-36 ing it difficult to study the full extent. We use machine-learning methods to restore the 37 full extent of dust events in 2021 and 2022 at 9, 12, and 15 UTC. Our analysis focuses 38 on the reconstructions at 12 UTC. The spatial patterns of the restored dust events are 39 compared to earlier work using satellite observations of dust and known atmospheric pro-40 cesses driving the emission and transport of dust. We use the reconstructed dust pat-41 terns to validate the dust forecast ensemble provided by the WMO Dust Regional Cen-42 ter in Barcelona, Spain. Our proposed method is computationally inexpensive and pro-43 vides new opportunities for assessing the quality of dust transport simulations. The method 44 can be transferred to reconstruct other aerosol and trace gas plumes. 45

46 1 Introduction

Mineral dust constitutes one of the major aerosol types in the atmosphere by mass 47 fraction (Pósfai & Buseck, 2010). It has profound direct and indirect effects in the Earth 48 system, e.g. by directly affecting atmospheric radiative transfer, by acting as cloud con-49 densation and ice nuclei, and by providing nutrients to terrestrial and marine ecosystems, 50 including the fertilization of the Amazon rainforest by North African dust(e.g., Talbot 51 et al., 1986; Swap et al., 1992; Buseck & Pósfai, 1999; Griffin & Kellogg, 2004; Goudie, 52 2009; Hoose et al., 2010; P. Seifert et al., 2010; Pósfai & Buseck, 2010; Bristow et al., 53 2010; Mahowald et al., 2017; Kok et al., 2023). Furthermore, North African dust can be 54 linked to Hurricane activity in the North Atlantic (Evan et al., 2006; Strong et al., 2018). 55 Mineral dust also provides surfaces for chemical reactions and can, thus, act as a sink 56 for certain chemical compounds (Buseck & Pósfai, 1999; Pósfai & Buseck, 2010). In ad-57 dition to these effects, dust storms have multi-faceted impacts, including disruption of 58 public services, public events, economic activity, and air traffic, as well as reducing pho-59 tovoltaic energy production, adversely impacting public health, and diminishing agri-60 cultural yields (Monteiro et al., 2022; Al-Hemoud et al., 2017; Goudie, 2014; N. Middle-61

ton, 2017; Stefanski & Sivakumar, 2009). In addition to reduced air quality by partic-62 ulate matter, adverse public health impacts also stem from the co-emission of micro-organisms, 63 bacteria, fungi, and viruses with dust particles (Griffin, 2007). While Europe itself lacks 64 large source regions of mineral dust, dust transported to Europe is specifically linked to 65 both adverse impacts on human health, disruption of transport and public services, and 66 also linked to an enhanced melting of Alpine glaciers when the dust is deposited (Q. Wang 67 et al., 2020; Karanasiou et al., 2012; Oerlemans et al., 2009; Gabbi et al., 2015; Di Mauro 68 et al., 2019; Monteiro et al., 2022). 69

North Africa is by far the largest source region of mineral dust (Tanaka & Chiba, 70 2006; Huneeus et al., 2011; Kok et al., 2021, 2023). Due to the sparse ground-based ob-71 servations in Northern Africa studying emissions of Saharan dust strongly relies on satel-72 lite observations. Dust emission and transport processes are frequently linked with the 73 presence of clouds (e.g., Heinold et al., 2013; Ben-Ami et al., 2009; Bou Karam et al., 74 2010; Knippertz & Todd, 2012; Allen et al., 2013; Roberts & Knippertz, 2014; Bou Karam 75 et al., 2014; Fromm et al., 2016). Consequently, the full spatial extent of dust plumes 76 as observed by satellite-borne instruments is often obscured by clouds. In this study, we 77 propose to resolve the shortcoming with a novel machine-learning-based reconstruction 78 of North African dust events, which employs image in-painting techniques. 79

Geostationary satellites can provide observations with high temporal resolution. 80 One sensor facilitating this is the Spinning Enhanced Visible and Infrared Imager (SE-81 VIRI), a passive radiometer and the primary instrument onboard the Meteosat Second 82 Generation (MSG) satellites (Schmetz et al., 2002). SEVIRI provides measurements of 83 radiance from 12 different spectral channels and one broadband channel every 15 min-84 utes. The spectral channels are centered around wavelengths between $\lambda = 0.635 \,\mu\text{m}$ and 85 $\lambda = 13.40 \,\mu\text{m}$. By combining the information from different instrument channels false-86 color RGB images are created. In RGB color spaces each color can be decomposed into 87 red (R), green (G), and blue (B) components. On these RGB images various atmospheric 88 features, such as different cloud types, air masses, trace gases like SO_2 , volcanic ash, and 89 mineral dust can be identified. The RGB product, on which dust features are shown in 90 bright magenta, the Dust RGB, assigns (differences of) brightness temperatures from 91 three infrared bands, specifically $\lambda = 8.7 \,\mu\text{m}$, $10.8 \,\mu\text{m}$, and $\lambda = 12.0 \,\mu\text{m}$, to the im-92 ages' red, green, and blue channels (Schepanski et al., 2007; Lensky & Rosenfeld, 2008; 93 Banks et al., 2019). This product has been used for studies of dust emission frequencies 94 and transport pathways (e.g., Schepanski et al. (2007, 2012); Ashpole and Washington 95 (2012); Trzeciak et al. (2017); Allen et al. (2013); Bou Karam et al. (2010, 2014); H. Yu 96 et al. (2021); Dhital et al. (2020); Solomos et al. (2017)) with the caveat that dust be-97 neath clouds is not visible. 98

No attempt to resolve the cloud-masking of dust plumes in satellite images has been 99 made to date, but approaches for other cloud-obscured features have been successfully 100 tested. These features were often stationary and often subject to only small temporal 101 changes, such as land cover information (Chauhan et al., 2021; Chen et al., 2020; Cz-102 erkawski et al., 2022; Enomoto et al., 2017; Li et al., 2020; L. Liu & Hu, 2021; Pan, 2020; 103 Sarukkai et al., 2020; Singh & Komodakis, 2018; M. Zhao et al., 2021; Zi et al., 2022). 104 Further examples are for land-surface temperature (W. Zhao & Duan, 2020; Sarafanov 105 106 et al., 2020; Weiss et al., 2014), evapotranspiration (Cui et al., 2020), sea-surface temperature (Dong et al., 2019), and chlorophyll a (Stock et al., 2020). 107

A substantial amount of dust emissions and consequently transport might be obscured by clouds. Convection-permitting simulations over West Africa indicate a diurnal cycle of dust emission coinciding with cloud cover in summertime West Africa. Between $\sim 6\%$ (19:00 local time) and up to 55% (10:00 local time) of dust emissions in West Africa occur during clear sky conditions in the simulation (Heinold et al., 2013). Unlike cloud-obscured features like land cover and chlorophyll a, dust storms as well as clouds co-develop in time and space. Dust emission in Northern Africa is frequently linked to outflows from mesoscale convective systems during summer (Allen et al., 2013; Heinold et al., 2013; Allen & Washington, 2014; Roberts & Knippertz, 2014; Bou Karam et al., 2014). A significant amount of North African dust transported over the North Atlantic is above and within the marine boundary layer and interacts with stratiform clouds (Ben-Ami et al., 2009). Baroclinic storms are another mechanisms for long-distance dust transport, which is associated with clouds (Schepanski & Knippertz, 2011; Fiedler et al., 2014; Fromm et al., 2016).

In this study we employ an artificial neural network (ANN) to reconstruct the full 122 123 extent of partially obscured North African dust events. This type of ANN was previously used to reconstruct historical temperature anomalies (Kadow et al., 2020). The ANN 124 is trained on cloud-masked reanalysis data of the aerosol optical depth, provided by the 125 Copernicus Atmosphere Monitoring Service (CAMS) (Inness et al., 2019b). The trained 126 ANN is then used to reconstruct the below-cloud extent of dust events by applying it 127 to gray-scaled and cloud-masked images based on the MSG-SEVIRI Dust RGB prod-128 uct. These reconstructions are used to compute the dust occurrence frequency as annual 129 mean and as mean seasonal patterns at 9, 12, and 15 UTC with a particular focus on 130 12 UTC. The reconstructions are then used to evaluate spatial patterns of dust plumes 131 in operational dust forecasts, which are used by the WMO for warnings, with complete 132 spatial information of the dust plume based on satellite data. 133

¹³⁴ 2 Methods and Data

2.1 Datasets

2.1.1 Satellite datasets

¹³⁷ We propose and test a machine-learning-based reconstruction of dust events in North ¹³⁸ Africa. More specifically, we reconstruct cloud-masked, gray-scaled images of EUMET-¹³⁹ SAT's Dust RGB product (EUMETSAT, 2009b). The Dust RGB images are obtained ¹⁴⁰ by assigning to each of the RGB channels, a different combination of brightness temper-¹⁴¹ ature observations, T_B , from different SEVIRI infra-red channels as follows (Lensky & ¹⁴² Rosenfeld, 2008):

$$R = \frac{T_{\rm B,12.0\mu m} - T_{\rm B,10.8\mu m} + 4\,K}{6\,K} \tag{1}$$

145

147

135

136

$$G = \left(\frac{T_{\rm B,10.8\mu m} - T_{\rm B,8.7\mu m}}{15\,K}\right)^{1/2.5} \tag{2}$$

146

$$B = \frac{T_{\rm B,10.8\mu m} - 261\,K}{28\,K} \tag{3}$$

Here the wavelength in the subscripts denotes the wavelength around which the respective channel is centered, with the full spectral width depending on the channel (Schmetz et al., 2002). As a result and as already mentioned, the Dust RGB product features dust plumes in bright shades of magenta. Quartz-mineral-containing sand surfaces are seen in light-blue shades. Depending on the cloud type, clouds may feature in Dust RGB images in brownish shades, black, and/or dark green (Lensky & Rosenfeld, 2008; Banks et al., 2019).

We select data over North Africa, specifically, the region between the longitudes 155 of 20° W and 52° E and the latitudes of 4° N and 40° N. The region is selected such that 156 we obtain a quadratic image that is required for the ANN-based algorithm (see Section 157 2.2.1). The size of each image was reduced to 128 pixels by 128 pixels to increase the com-158 putational throughput. This results in each pixel having a dimension of 0.28125° in North-159 South-direction and 0.5625° in East-West-direction. Thus, each pixel spans roughly 30 160 km in the North-South direction and 50-60 km in the East-West direction. A pixel's arc 161 length in the East-West direction decreases with increasing distance to the Equator. 162

Both the training process as well as the actual dust plume reconstruction rely on the operational cloud mask product, referred to as CLM and provided by EUMETSAT (EUMETSAT, 2009a). The CLM product classifies pixels as either cloudy or clear. Clear sky pixels are further subdivided according to the surface, i.e., land or water surface. This classification is performed based on multispectral threshold techniques (Lutz, 1999; Schmetz et al., 2002). The CLM data used here covers the same region of interest with the same horizontal resolution as the Dust RGB images.

In addition to geostationary satellite data from MSG SEVERI, we also use satel-170 lite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard 171 the satellites Aqua and Terra for a comparison of our results. The satellites Terra and 172 Aqua are orbiting the Earth in a sun-synchronous orbit overpassing the equator in the 173 morning and afternoon respectively (see e.g., King et al., 2013). Here we use MODIS Level 174 3 data (Collection 6.1) (MODIS Atmosphere Science Team, 2017b, 2017a). The data was 175 retrieved using the Deep Blue algorithm, which provides aerosol optical depth (AOD, 176 τ) and Angström exponent (α) data over land surfaces (Hsu et al., 2013; Sayer et al., 177 2013). 178

179

2.1.2 Dust forecasts and reanalysis

In addition to satellite data, our study also uses dust forecast and reanalysis data. 180 Reanalysis data provides a consistent and global overview of dust AOD τ_{dust} . We use 181 the dust AOD reanalysis from CAMS (Inness et al., 2019b, 2019a) for training the ANN 182 (Section 2.2.1). CAMS dust reanalysis data is provided in three-hourly intervals at the 183 main and intermediate synoptic times, i.e., at 00:00 UTC, 03:00 UTC, and so forth. For 184 additional analysis, we also use the second Modern-Era Retrospective analysis for Re-185 search and Application (MERRA-2) from NASA (Gelaro et al., 2017; Randles et al., 2016, 186 2017). MERRA-2 provides hourly data starting at 00:30 UTC. For our analysis, the MERRA-187 2 dust reanalysis data is linearly interpolated to match the times at which CAMS reanal-188 vsis is available. 189

We further use the dust forecast data provided by the World Meteorological Or-190 ganization (WMO) Barcelona Dust Regional Center and the partners of the Sand and 191 Dust Storm Warning Advisory and Assessment System (SDS-WAS) for Northern Africa, 192 the Middle East and Europe. These dust forecasts cover a geographical area of interest, 193 which is bound by the longitudes of 25° W and 60° E and the latitudes of 0° N and 65° N 194 (Terradellas et al., 2022). The WMO Barcelona Dust Regional Center additionally pro-195 vides a multi-model median of the available forecast data, which is obtained by regrid-196 ding all other models to a shared grid with $0.5^{\circ} \times 0.5^{\circ}$ horizontal resolution using bi-197 linear interpolation (Basart et al., 2022; Terradellas et al., 2022). Tab. 1 lists the mod-198 els, their horizontal resolution, and data availability in 2021 and 2022. Of the models 199 listed in Tab. 1 only CAMS-IFS, DREAM8-CAMS, NASA-GEOS, and MOCAGE em-200 ploy data assimilation. MODIS observations form the backbone of the data assimilation. 201 Thus, the numerical dust forecasts can be considered independent from SEVIRI obser-202 vations. Analogously to the processing of the reanalysis data, the WMO's forecast data 203 was selected for our region of interest and remapped bilinearly to the Dust RGB images 204 horizontal resolution. 205

Both reanalysis data and numerical dust forecasts were remapped to the Dust RGB images' resolution of 128 pixels by 128 pixels with bilinear interpolation using CDO, version 2.0.4 (Schulzweida, 2021). The two-dimensional fields at a given time will be referred to as images.

Dust Regional Center. MULTI-MODEL ther operational forecasts were provided	denotes the by the BSC-	median forecast as provi- DREAM8b model.	ded by the WMO Ba	arcelona Dust Region	al Center. Note that after 2022-09-29 no fur-
model	domain	horizontal resolution	availability 2021 (days)	availability 2022 (days)	reference
ALADIN	regional	$25\mathrm{km} imes 25\mathrm{km}$	301	210	Termonia et al. (2018); Mokhtari et al. (2012)
BSC-DREAM8b	regional	$\frac{1}{3}^{\circ} \times \frac{1}{3}^{\circ}$	176	120	Nickovic et al. (2001); Pérez et al. (2006): Basart et al. (2012)
CAMS-IFS	global	$\sim 9{ m km}^a$	324	353	Rémy et al. (2019)
DREAM8-CAMS	regional	$\frac{1}{3} \times \frac{1}{3}^{\circ}$	328	360	Pejanovic et al. (2010); Nickovic et al. (2016)
EMA-RegCM4	regional	$45\mathrm{km} imes 45\mathrm{km}$	299	171	\mathbf{Z} akey et al. (2006)
ICON-ART	regional	$20{ m km} imes 20{ m km}$	304	340	Rieger et al. (2015)
LOTOS-EUROS	regional	$0.5^{\circ} imes 0.25^{\circ}$	316	353	Manders et al. (2017)
MOCAGE	global	$1^{\circ} \times 1^{\circ}$	<i>q</i> -	226	El Amraoui et al. (2022)
MONARCH	regional	$\frac{1}{3}^{\circ} \times \frac{1}{3}^{\circ}$	343	345	Pérez et al. (2011); Klose et al. (2021)
NASA-GEOS	global	$0.25^\circ imes 0.3125^\circ$	304	348	Colarco et al. (2010)
NCEP-GEFS	global	$1^{\circ} \times 1^{\circ}$	324	343	Lu et al. (2016)
NOA	regional	$0.19^\circ imes 0.22^\circ$	111	235	Flaounas et al. (2017)
SILAM	global	$0.5^{\circ} imes 0.5^{\circ}$	222	339	Sofiev et al. (2015)
WRF-NEMO	regional	$18\mathrm{km} imes 18\mathrm{km}$	82	251	Kontos et al. (2021)
ZAMG-WRF-CHEM	regional	$0.2^{\circ} imes 0.2^{\circ}$	q^-	198	LeGrand et al. (2019)
MULTI-MODEL (median forecast)	1	$0.5^\circ imes 0.5^\circ$	360	365	Basart et al. (2019); Terradellas et al. (2022)
	י ר				

Storm Warning Advisory and Assessment System (SDS-WAS) for Northern Africa, the Middle East and Europe. Model names are as indicated by WMO Barcelona Note that after 2022-00-20 no fur Table 1. Overview of output from numerical forecast models provided by the WMO Barcelona Dust Regional Center and the partners of the Sand and Dust otor al Con Duet Barion ided by the WMO Ba + ų -17 +00 -0 . þ

 a CAMS-IFS uses a octahedral reduced Gaussian grid (O1280) with a horizontal distance of $8 - 10 \,\mathrm{km}$ between grid points (Malardel et al., 2016). b Forecasts are only available in 2022.

2.2 Dust plume reconstruction

210

211

2.2.1 ANN description

Machine learning methods have been increasingly used for automatic image in-painting, 212 i.e., often the repair of damaged or deteriorated photos. In-painting algorithms can be 213 roughly classified into three main types: sequential-based algorithms, convolutional neu-214 ral net-based algorithms, and generative adversarial networks-based approaches. Con-215 volutional neural networks (CNNs) typically capture the global structure better than sequential-216 based algorithms (Elharrouss et al., 2020). CNNs have been employed for cloud removal 217 for example by Chen et al. (2020). Another type of ANNs commonly employed in in-painting 218 and subsequently cloud-removal tasks are generative adversarial networks (GANs) (J. Yu 219 et al., 2018; Elharrouss et al., 2020; Jiao et al., 2019; Pajot et al., 2019; Chauhan et al., 220 2021; Stock et al., 2020; Enomoto et al., 2017; Zi et al., 2022; Li et al., 2020; L. Liu & 221 Hu, 2021). Compared to CNNs, GANs typically require a smaller training data set and 222 are usually capable of reconstructing large-scale or global features. Reconstructions by 223 GANs appear realistic but do not necessarily completely match the ground truth. Sim-224 ilar to the climate data reconstruction by Kadow et al. (2020) we ultimately attempt a 225 classification, for which it may be disadvantageous if the reconstructions do not neces-226 sarily match a ground truth. To avoid such disadvantages, we refrained from using al-227 gorithms based on GANs and chose an established CNN-based method. 228

G. Liu et al. (2018) proposed an algorithm based on partial convolutions, which 229 successfully repaired irregular holes in images. Owning to the similarity to convolutional 230 networks for image segmentation, referred to as UNets (Ronneberger et al., 2015), the 231 algorithm possesses a UNet-like architecture (G. Liu et al., 2018). Furthermore, the al-232 gorithm was shown to robustly perform regardless of hole size, location, and distance to the image border and outperformed several other algorithms of all three types. Subse-234 quently, the algorithm was adapted to geophysical data by Kadow et al. (2020). This 235 adapted algorithm, climatereconstructionAI (CRAI, Inoue et al., 2022), was successfully 236 used to restore historical temperature anomalies (Kadow et al., 2020). Owning to the 237 robust performance of the original image in-painting algorithm and the successful adap-238 tation to geophysical data, we use the CRAI code as the basis of our work. 239

The ANN was trained on τ_{dust} data provided by CAMS, introduced in Section 2.1.2. 240 The cloud masks were derived from the temporally corresponding MSG-SEVIRI prod-241 uct. Spatial maps of τ_{dust} from CAMS were temporally matched with the cloud masks 242 from MSG-SEVIRI. We chose to use observed cloud patterns and refrained from using 243 synthetic clouds for training purposes, since the latter may introduce unrealistic patterns 244 during the training process (Enomoto et al., 2017). In addition, both the dust outbreak 245 and the cloud cover are subject to the same atmospheric state, especially the pressure 246 and wind fields. Combining cloud-free satellite images with a set of different cloud masks, 247 thus, would pose the risk of training the ANN on non-physical combinations of cloud and 248 dust patterns. We eliminate such risks by using masks of satellite-observed clouds. 249

The training was performed on the German Climate Computing Center's (Deutsches Klimarechenzentrum, DKRZ) cluster Levante. Specifically, we used the cluster's GPU partition, on which each node consists of two CPUs equipped with AMD 7713 processors and four Nvidia A100 GPUs. The training required ~ 13 hours of wall-time.

For initial tests, the trained neural network was applied to the CAMS reanalysis fields of τ_{dust} from 2022-01-01 to 2022-06-30. Data from this period was excluded in the later validation of the results. Analogously to the training data set, the reanalysis was masked with the MSG-SEVIRI cloud mask product. Fig. 1 shows two-dimensional histograms of the mean CAMS reanalysis on the x-axis and the mean reconstruction on the y-axis. The different panels represent different sizes of the training dataset. The training dataset consists of a total of 16 months, spanning from 2020-09-01 to 2021-12-31 (Fig 1a). For three-hourly time steps as dictated by the reanalysis data with occasionally missing cloud-mask data from SEVIRI, we obtained 3843 pairs of masks and reanalysis "images". This training dataset was augmented by rotating the images by 90°, thus quadrupling the dataset size to a total of 15372 images (Fig 1b). The non-augmented training datasets comprised half a year each, and are shown for summer: 2021-04-01 to 202109-30 (1422 images, Fig. 1c) and winter: 2020-10-01 and 2021-03-31 (1449 images, Fig.
1d).

As can be inferred from Fig. 1 and the values of RMSE, MAPE, and r, there is generally good agreement between the mean reconstructed τ_{dust} and the mean τ_{dust} from reanalysis. While the ANN trained for summer marginally outperforms the non-augmented training dataset of 16 months with respect to RMSE, MAPE, and r, we chose the ANN trained on the dataset with 16 months of reanalysis and corresponding cloud mask data (Fig 1a) since it covers more than a full year, which captures some seasonal differences in spatial patterns of τ_{dust} .

To further assess the quality of the reconstruction examples of the unmasked re-275 analysis (left column) and the corresponding masked reanalysis (center column), and re-276 construction (right column) are shown in Fig. 2. The rows represent different examples 277 of reconstructions, showcasing the reconstructions for which we have seen the best per-278 formance as well as the two reconstructions with the poorest agreement with the orig-279 inal reanalysis. The first row shows the case of 2022-01-06, 6:00 UTC. For this case, the 280 reconstruction and original reanalysis showed the highest agreement, quantified by both 281 the RMSE and the directed Hausdorff distance. The directed Hausdorff distance is a mea-282 sure of image (dis)similarity. A directed Hausdorff distance of zero indicates perfect agree-283 ment. It will be introduced in more detail in Section 3.3. The reconstruction from 2022-284 02-03 at 9:00 UTC resulted in an overestimated mean of $\tau_{\rm dust}$. This case is represented 285 by the individual point visible in both top row panels of Fig. 1, which is farthest from 286 the 1:1 line. That difference between reconstruction and reanalysis results in an RMSE 287 of 4.975, the largest between two individual images. Closer inspection in Fig. 2 reveals, 288 that the deviation can be attributed to a limited number of pixels north of the Madeira 289 Archipelago filled with high very high values of τ_{dust} . The reconstruction for 2022-03-290 16, 03:00 UTC, which has the largest value of the directed Hausdorff distance between 291 the reconstruction and the ground truth, is shown the the third row of Fig. 2. The trained 292 ANN was not able to reconstruct the full spatial pattern of the dust plume, which is the 293 prominent feature of the image's western half. The strong advection of dust over the Iberian 294 Peninsula was not reproduced in the reconstruction. Such infrequent cases of strong dust 295 advection, in which the dust plume is largely obscured by clouds extending to the im-296 age boundary over the ocean, can be considered particularly challenging for reconstruc-297 tion. However, while the reconstruction did not fully reproduce the spatial pattern of 298 $\tau_{\rm dust}$, the reconstruction added information compared to the cloud-masked input. The 299 fourth row shows a case (2022-03-27, 18 UTC) from a period of high mean values of $\tau_{\rm dust}$ 300 in the study area. The case from 2022-06-12, 18 UTC, shown in the fifth row, was ran-301 domly selected from the month of June 2022. 302

As demonstrated in Figs. 1 and 2 the trained ANN is capable of successfully reconstructing the cloud-obscured values and patterns of τ_{dust} during the first half of 2022. The reconstruction's purpose is to classify individual pixels as dust-containing or dustfree. Thus, we consider the error stemming from pixels filled with high values of τ_{dust} during the reconstruction, as for the case of 2022-02-03 at 9:00 UTC (see Fig. 2) as negligible.

2.2.2 Gray-scaling of Dust RGB images

309

To isolate the dust in the satellite observation, the images from MSG-SEVIRI's Dust RGB product were converted to gray-scaled images, where gray corresponds to the pink

color assigned to suspended dust in the original product. The gray scaling was based on 312 perceptional color differences. These perceptional color differences were calculated ac-313 cording to definitions by the International Commission on Illumination (Commission In-314 ternationale de l'Éclairage, CIE) (Robertson, 1990) in CIELAB color space. To do so 315 the RGB colors in the images provided by EUMETSAT need to be converted to CIEXYZ 316 color space and further to CIELAB. The conversion was based on the assumption, that 317 EUMETSAT uses the sRGB color space, which is the standard for digital online images 318 (International Electrotechnical Commission, 1999). The conversion to CIEXYZ was per-319 formed analogously to the conversion laid out by Fairman et al. (1997); Brill (1998), but 320 using the conversion matrix values as defined by the sRGB standard (International Elec-321 trotechnical Commission, 1999). 322

Each RGB channel has values between 0 and 255. Thus, white would correspond 323 to (0,0,0) and black to (255,255,255). In the CIEXYZ color space, the luminance is en-324 coded in Y and the XZ plane includes all possible chromaticities at a value of Y. In the 325 CIELAB color space, L* denotes the lightness, a* represents the green-red-oriented axis, 326 and b^* represents the blue-yellow-oriented axis. Negative values of a^* indicate green, whereas, 327 negative values of b* indicate blue. The positive values represent red and yellow on the 328 respective axis (Schanda, 2007). CIELAB forms a Cartesian and nearly uniform color 329 space, which eases the quantification of perceptional color differences ΔE . ΔE is defined 330 by (Robertson, 1990) 331

332

$$\Delta E = \left[(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2 \right]^{\frac{1}{2}}.$$
(4)

 $\Delta L_*, \Delta a_*, \text{ and } \Delta b_* \text{ denote the differences between the corresponding values of } L_*, a_*, and b_* of the respective colors.$

Equation 4 forms the basis of the conversion of Dust RGB images, in which dust plumes are seen as bright magenta (pink), to gray-scale images. In these gray-scale images, magenta (RGB = (255, 0, 255)) was assigned to white. Colors exceeding a predefined threshold value of the perceptional color difference ΔE compared to magenta were assigned black. Gray values were assigned based on values of ΔE below the threshold. We denote the threshold for identifying dust in the image as ΔE_{cut} .

We identify the value of the threshold based on earlier studies and own sensitiv-341 ity tests. Banks et al. (2019) investigated the effect of different environmental conditions, 342 such as column water vapor, surface emissivity, skin temperature, and dust layer height 343 on the color in the RGB Dust product using radiative transfer calculations. This inves-344 tigation focused on the months of June and July in 2011, 2012, and 2013. They iden-345 tified only a limited number of cases (0.04%) of day-time cases and 5.47% of night-time 346 cases), which resulted in RGB colors with values of the blue channel other than 255. Fig. 347 3 shows the colors for a fixed value of the blue component of 255 and variable values of 348 the red (v-axis) and the green (x-axis) components. The corresponding values of ΔE with 349 respect to magenta with RGB = (255, 0, 255) are shown as isolines. Furthermore, Banks 350 et al. (2019) provided an overview of the mean colors stemming from the combinations 351 of a forementioned conditions. For near-pristine cases, the $\tau_{\rm dust}$ was assumed to take val-352 ues with $\tau_{\rm dust} \leq 0.2$. For unambiguous cases of dust storms, Banks et al. (2019) set $\tau_{\rm dust} \geq$ 353 2. Using Eq. 4 the perceptional color difference ΔE between these mean colors reported 354 by Banks et al. (2019) and magenta with RGB = (255, 0, 255) was calculated. For the 355 different mean pristine cases, the perceptional color difference takes values with $19.4 \leq$ 356 $\Delta E \leq 129.4$, whereas, for mean cases with a dust load ΔE takes values in the range 357 of 29.7 and 88.0. However, when additionally taking the skin temperature $T_{\rm skin}$ into ac-358 count, the resulting ranges are for cool ($T_{\rm skin} < 300 \,{\rm K}$), pristine mean cases in 19.4 \leq 359 $\Delta E \leq 92.6$, for non-cool, i.e., $T_{\rm skin} > 300$ K, pristine cases $60.2 \leq \Delta E \leq 129.4$. For 360 cool dust cases ΔE is in the range between 29.7 and 72.3 and respectively in the range 361 between 31.0 and 88.0 for non-cool dust. As a consequence, the night-time observations, 362 which are considered to represent the cases of a cool skin temperature are excluded from 363 the reconstruction. Note, that we use the classification of cases as defined by Banks et 364

al. (2019). We set the cut-off threshold in our gray-scaling algorithm to $\Delta E_{\rm cut} = 51.9$, marked with a solid isoline in Fig. 3. With this choice of $\Delta E_{\rm cut}$, pristine cases are not expected to be falsely considered as dust cases, while the true number of dust cases is potentially underestimated. Prior to the process of in-painting (see, Kadow et al., 2020), the gray-scaled images are scaled to values between 0 and 1 as opposed to values between 0 and 255.

Full-resolution Dust RGB images and cloud masks have a spatial resolution in nadir 371 direction of 0.041° or 4.8 km (EUMETSAT, 2009b, 2009a; Schmetz et al., 2002). The 372 images used in this study possess a coarser resolution of 0.28125° in North-South-direction 373 and 0.5625° in East-West-direction. Due to this coarser resolution compared to the full 374 resolution images, it is expected that resampling of the satellite products, especially the 375 Dust RGB product, results in under-counting the number of dust-containing pixels in 376 addition to under-counting due to the choice of $\Delta E_{\rm cut}$ (see above). This is expected to 377 mainly concern dust plumes of small spatial scale in one dimension. To gauge the effect 378 of the resampling, the images were resampled from a 128-pixel by 128-pixel grid to a 64-379 pixel by 64-pixel grid, i.e. each pixel in these coarser resolution images corresponds to 380 0.5625° in North-South-direction and 1.125° in East-West-direction. Subsequently, we 381 trained another ANN using this coarser resolution. Note, however, that this addition-382 ally trained ANN was only used to gauge the impact of the image resolution. We will 383 refer to the images with a size of 128 pixels by 128 pixels as high-resolution images and to the images with a dimension of 64 pixels by 64 pixels as low-resolution images. 385

We test to what extent the spatial resolution of the satellite data might have an 386 influence on the results. To that end, Figure 4 shows two-dimensional histograms of the 387 fraction of dust-containing pixels in low-resolution images (64 pixels by 64 pixels) and 388 high-resolution images (128 pixels by 128 pixels). Here, observations and the correspond-389 ing reconstructions at 9, 12, and 15 UTC were considered. The left panel refers to the 390 direct observations, i.e. the gray-scaled, cloud-obscured Dust RGB images and the right 391 panel refers to the ANN-based reconstructions. The dashed line indicates the best fit, 392 which was obtained by linear regression. Regardless of the resolution, the fraction of dust-393 containing pixels is generally maintained, as can be inferred from the equation for the 394 best fit and the shape of the histograms. This is also reflected by the Pearson's corre-395 lation coefficient of r = 0.94 in the case of the direct observations and of r = 0.93 in 396 the case of the reconstructions. The reconstruction maintains the general pattern well, 397 as illustrated by the nearly unchanged value of r. Note, that the time required for train-398 ing on the low-resolution images (64 pixels by 64 pixels) required roughly half the time, 399 compared to the training on the high-resolution images (128 pixels by 128 pixels). Tak-400 ing the high-resolution images as a reference, the coarser resolution results in a MAPE 401 of the fraction of dust-containing pixels of 46.59% for the observations and 55.04% for 402 the reconstructions. Thus, a finer resolution decreases the under-counting of dusty ar-403 eas and improves the reconstruction's quality. As a consequence, there are trade-offs be-404 tween the reconstruction's quality and the reduced risk of under-counting dust-containing pixels on the one hand and the training process' computational demand on the other hand. 406 For the remainder of this study, the higher spatial resolution of 128 pixels by 128 pix-407 els was used to detect more spatial details of dust plumes. 408

409

2.2.3 Evaluation methods

The level of agreement between the dust plume extent from our reconstructions and numerical forecasts was evaluated using three different criteria, which have previously been employed to quantify image similarity. The structural similarity index measure (SSIM) quantifies the perceived differences in structural information between two images (Z. Wang et al., 2004). It is a composite measure of means (or luminance), standard deviations (or contrast), and correlation coefficient (or structure) (Z. Wang et al., 2004; Brunet et al., 2012; Palubinskas, 2014). The SSIM takes values between -1 and 1. The higher the agreement of two images, the closer the SSIM is to 1. Several studies on image in-painting and
cloud removal applications have used SSIM as an evaluation criterion (e.g., G. Liu et al.,
2018; Qin et al., 2021; Chauhan et al., 2021; Czerkawski et al., 2022; Li et al., 2020; Zi
et al., 2022). We calculate SSIM using the implementation in the software package scikitimage (van der Walt et al., 2014).

Billet et al. (2008) used the directed Hausdorff distance to assess similarities be-422 tween two images. As mentioned in Sec. 2.2.1, the directed Hausdorff distance between 423 two images is the largest distance of a point in the test image to any point in the ref-424 erence image. Thus, identical images have a directed Hausdorff distance of 0, and with 425 increasing differences between the images, the directed Hausdorff distance increases (Huttenlocher 426 et al., 1993). We calculated the Hausdorff distance of images from our reconstruction 427 and from numerical forecasts of individual models relative to the image from the median 428 across all available numerical forecasts, which we chose as a reference. Note, that the di-429 rected Hausdorff distance is asymmetric. In other words, the directed Hausdorff distance 430 from our reconstruction to the median forecast is not necessarily equal to the directed 431 Hausdorff distance from the median forecast to our reconstruction. In this study the di-432 rected Hausdorff distance was calculated using the implementation in SciPy (Virtanen 433 et al., 2020), which is based on work by Taha and Hanbury (2015). 434

Another commonly used performance evaluation metric in image in-painting and
cloud removal studies (e.g., Sarukkai et al., 2020; Qin et al., 2021; Elharrouss et al., 2020;
Pan, 2020; Zi et al., 2022; G. Liu et al., 2018) is the peak signal-to-noise ratio (PSNR).
The PSNR is defined as (Horé & Ziou, 2013)

$$PSNR = 10 \cdot \log_{10} \frac{\max(I_{\rm ref})^2}{MSE}.$$
(5)

Here the mean squared error is denoted as MSE. The MSE between an image I and a reference image I_{ref} , which both consist of $n \cdot m$ pixels is calculated by:

$$MSE = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} (I_{ij,ref} - I_{ij})^2$$
(6)

For the binary images in our study, $\max(I_{\text{ref}})$ is equal to 1 and Eq. 5 can be simplified to $PSNR = 10 \cdot \log_{10} MSE^{-1}$. With increasing similarity between two images $MSE \rightarrow 0$, and $PSNR \rightarrow \infty$.

446 **3 Results**

439

442

447

3.1 Case studies

We first perform two case studies to test our reconstructions and to gauge their abil-448 ity to serve as a tool for evaluating numerical forecasts of dust storms. Here we focus 449 on observed dust cases that can be considered as hard tests of our proposed method. The 450 first case concerns a convective dust storm during summer. The numerical models (see 451 Tab. 1) are not expected to accurately forecast the dust plume, since their horizontal 452 resolution is too coarse to explicitly simulate convection (cf. Weisman et al., 1997). How-453 ever, this may also present challenges for the training data set, since the dust reanaly-454 sis depends on available satellite observations as well as an underlying numerical fore-455 cast model. The second case study covers a synoptic-scale dust storm in spring. While 456 the horizontal resolution of the numerical models is not expected to represent a challenge, 457 the satellite image indicates that a large part of the dust storm is entirely obscured by 458 clouds, thus providing little guidance on the spatial distribution of the dust plume in the 459 cloudy sky. 460

3.1.1 Convective dust storm: 2021-08-22, 09 UTC

The Dust RGB image from 2021-08-22 at 09:00 UTC is characterized by a dust plume 462 extending from Northern Mali to Southern Algeria. Visual inspection of the full-resolution 463 Dust RGB images reveals that dust was originally lofted close to a convective cloud sys-464 tem at around 16:00 UTC on 2021-08-21 near the border between Algeria and Niger. Start-465 ing from 23:15 UTC the dust plume decoupled from the motion of the convective sys-466 tem and now followed an independent track. With the chosen threshold of the percep-467 tional color difference of $\Delta E_{\rm cut} = 51.9$ the gray-scaling approach does not identify the 468 entire dust plume, as can be seen in the top left panel. This serves as an example of potential under-counting of dust pixels (see Section 2.2.2). In Figure 5, the top left panel 470 shows the Dust RGB image in 128 pixels by 128-pixel resolution and highlights by white 471 lines the areas in which dust was detected. The top right panel shows τ as derived from 472 observations by the MODIS instrument aboard Terra. Note that this MODIS Level 3 473 product does not coincide with 09:00 UTC, but represents the closest overpass of Terra 474 in time. Terra overpasses the Equator at 10:30 local time (cf, King et al., 2013). The pan-475 els in the center row show a comparison between the spatial extent of the reconstruc-476 tion (dark blue shading) and forecasted fields of τ_{dust} from two numerical models (iso-477 lines). Since the horizontal resolution of the dust forecast model ensemble (see Tab. 1) 478 is too coarse to explicitly simulate deep convection on the model grids (Kain et al., 2008), 479 the forecast models are not expected to accurately predict associated dust plumes (Heinold et al., 2013). 481

The MODIS/Terra observations of τ also indicate the presence of coarse aerosol 482 at and near the Bodélé Depression in Chad. The DREAM8-CAMS model forecasts a small 483 dust plume near the Bodélé Depression. While the Dust RGB image in 128 pixels by 128-484 pixel resolution does not indicate the presence of dust plumes at the Bodélé Depression, 485 however, the full-resolution Dust RGB images show the presence of a small dust plume 486 in the Bodélé Depression. As discussed in Section 2.2.2, rescaling Dust RGB images to 487 coarser resolutions leads to undercounting dust events of small spatial extent. Thus, the 488 resulting RGB color values in each pixel may differ too strongly from magenta, i.e. pos-489 sess large perceptional color differences ΔE . At first, dust emitted by convective systems 490 is completely covered by clouds. Heinold et al. (2013) estimated based on convection-491 permitting simulations, that up to 90% of afternoon-to-evening dust emissions occur in 492 partly cloudy conditions, and up to 60% of afternoon-to-evening dust emissions occur 493 during strongly cloud-covered conditions, with total cloud cover exceeding 80%. In this 494 case study, dust can first be discerned on the satellite image at 16:00 UTC, making it 495 a prime example of the emission mechanisms discussed by Heinold et al. (2013). 496

497

461

3.1.2 Synoptic-scale dust storm: 2022-03-15, 12 UTC

During mid-March 2022 high loads of Saharan dust were transported to Central 498 Europe via the Iberian Peninsula (cf. A. Seifert et al., 2023). This second case study concerns 12:00 UTC on 2022-03-15. The region of interest's western part is dominated by 500 a cyclone and its associated cloud patterns over the Iberian Peninsula extending south-501 ward across Morocco and Algeria. Dust plumes are visible over large areas of Algeria. 502 Furthermore, magenta colors indicate the presence of dust over Chad, Niger, Burkina 503 Faso, Sudan and Egypt. The regional plumes along the border between Burkina Faso 504 and Niger, as well as the ones in Egypt are not displayed in the gray-scaled images, with 505 the exception of a small area in Egypt. As stated in Section 2.2.2 the choice of $\Delta E_{\rm cut}$ is such that we use the clearly identifyable dust pixels with intense magenta well aware 507 that this approach leads to a conservative estimate of number of dusty pixels. Specif-508 ically, the dust plumes over Egypt are organized as thin streaks, which are less promi-509 nently visible after resampling the dust RGB images to a grid of 0.28125° by 0.5625° . 510 It is worth pointing out, that the darker magenta of Southern Niger and Northern Nige-511

ria is likely caused by clouds, as indicated by visual inspection of the full-resolution images. Thus, these pixels are correctly identified as dust-free.

The reconstructed dust plume stretching from the Iberian Peninsula towards the 514 Algerian-Malian border is meteorologically plausible. This large dust plume is simulated 515 by the forecasts of both DREAM8-CAMS and BSC-DREAM8b. However, the dust plume's 516 forecasted position over the Mediterranean and the Iberian Peninsula differs from the 517 reconstruction. In the case of the BSC-DREAM8b forecast, the dust plume extends across 518 Mali to the Malian-Guinean border region. Visual inspection of the original resolution 519 images indicates the presence of thin low-level clouds across Mali instead of dust. While 520 the DREAM8-CAMS dust forecast indicates some dust in Sudan, both models fail to ac-521 curately forecast the dust plumes in Sudan and Egypt. The dust plumes in Egypt are 522 captured by neither the CAMS reanalysis nor the MERRA-2 reanalysis. Both reanal-523 ysis products, however, indicate a strong presence of mineral dust with values of $\tau_{\rm dust} >$ 524 1.1 in Sub-Saharan West Africa. This corresponds to the values observed by MODIS for 525 coarse aerosol particles. The Dust RGB image, including the full-resolution image, does 526 not indicate dust this far south. Since both CAMS and MERRA-2 use MODIS satellite 527 observations to gain information on aerosol properties (Inness et al., 2019b; Rémy et al., 528 2019; Gelaro et al., 2017; Randles et al., 2016, 2017), observations from additional satel-529 lite sensors may increase the agreement between the reanalysis and the reconstructed 530 spatial patterns of mineral dust. Furthermore, this case study illustrates, that synoptic-531 scale dust storms are still challenges for numerical forecast models, e.g., documented ear-532 lier for another case advecting dust over the Iberian Peninsula (Huneeus et al., 2016). 533

534

3.2 Dust occurrence frequencies

We obtain statistics of dust events by calculating dust occurrence frequencies for each individual pixel. The maps of the calculated dust occurrence frequencies further serve as a consistency check, as they can be compared to results from previous studies including known meteorological drivers of dust emission and transport.

539

3.2.1 Annual means

Based on the reconstructions dust occurrence frequencies are derived for each individual pixel at 12:00 UTC.

A comparison between reconstructed and directly observed, i.e. non-reconstructed, 542 dust occurrence frequency for 2021 (left column) and 2022 (right column) is shown in 543 Fig. 7. We show here the two years separately to illustrate to what extent inter-annual variability can be inferred for the recent years since the interannual variability was large 545 for other past years (Wagner et al., 2016). The red shading in the bottom panels indi-546 cates that compared to observations without reconstruction, the reconstructed images 547 indicate an expected higher dust frequency. Notably high differences are seen over the 548 Atlantic Ocean and along the Atlantic coast. The largest difference inland can be noted 549 in the Bodélé Depression in Chad, the Tanezrouft Basin in the border region of Alge-550 ria and Mali, and the Nubian Desert in Sudan. The differences in the annual dust oc-551 currence frequencies for 2021 and 2022 are typically small. A notable exception is the 552 higher dust occurrence frequency in Iraq during 2022 than in 2021, which was caused 553 by the heavy dust storms during May and June 2022 (cf. Abdulrahman, 2022; Francis 554 et al., 2023). 555

For daytime observations, higher values of τ_{dust} result on average in colors closer to magenta (Banks et al. (2019), specifically Fig. 6 therein) and are therefore better represented in our reconstruction than weak dust events. Our results show that smaller values of ΔE_{cut} correspond on average to higher values of τ_{dust} (Fig. 8). Dust occurrence frequencies for $\Delta E_{cut} = 20$ corresponds to bright magenta, whereas the $\Delta E_{cut} = 51.9$

include more faded magenta shades and even faded purple shades (compare Fig. 3). Our 561 studies focuses on $\Delta E_{\rm cut} = 51.9$, which captures most dust events and reduces the risk 562 of misclassifications due to ambiguity of processes associated with colors that have a less 563 pronounced pink component. (see Sec. 2.2.2). For comparison the remaining panels of 564 Fig. 8 show the dust occurrence frequency obtained from CAMS reanalysis for dust events 565 with $\tau_{\text{dust}} \ge 0.5$ (center left), $\tau_{\text{dust}} \ge 0.65$ (center right), $\tau_{\text{dust}} \ge 0.9$ (bottom left), 566 and $\tau_{\rm dust} \geq 1.1$ (bottom right). Visual inspection and calculation of the PSNR indi-567 cate that $\Delta E_{\rm cut} = 20$ results in the closest match with $\tau_{\rm dust} \ge 0.9$ and $\Delta E_{\rm cut} = 51.9$ 568 can be matched with $\tau_{\rm dust} \geq 0.65$. Over ocean surfaces the perceptional color differ-569 ence of $\Delta E_{\rm cut} = 51.9$ corresponds to values of $\tau_{\rm dust}$ of ~ 0.5, reflecting the influence 570 of the surface conditions on the dust retrieval. Note, that based on the results by Banks 571 et al. (2019) the number of dust events can be under-counted with a threshold of the per-572 ceptional color difference of $\Delta E_{\rm cut} = 51.9$ (see Section 2.2.2). Our calculated dust oc-573 currence frequency from the reconstructed dust images is therefore still a conservative 574 estimate, even though dust underneath clouds is now accounted for. 575

The reconstructed patterns of dust occurrence frequency have marked regional max-576 ima consistent with previous results for the source activation frequency. Schepanski et 577 al. (2007, 2012) provided dust source activation frequencies derived from SEVIRI obser-578 vations. While these frequencies cannot serve as a validation of the dust occurrence fre-579 quency from reconstructed SEVIRI observations, since the latter also include transported 580 dust, they may serve as a consistency check. From March 2006 to February 2010 strongly 581 active dust source regions, as identified by Schepanski et al. (2012), were the Tanezrouft 582 Basin, the Bodélé Depression, and the Nubian Desert. These regions are also display-583 ing local maxima in the dust occurrence frequency in 2021 and 2022 shown here (Fig. 7). 585

The local maximum of the dust occurrence frequency from the reconstructed satel-586 lite images in the Nubian Desert (close to Sudan's Red Sea coast) is not represented by 587 the CAMS reanalysis. The Nubian Desert is a known dust source region as identified ear-588 lier in SEVIRI images (Schepanski et al., 2012), and also seen in other aerosol data, e.g., 589 the dust emission index derived from data of the Infrared Atmospheric Sounding Inter-590 ferometer (Chédin et al., 2020) and the Aerosol Index using observations of the Total 591 Ozone Mapping Spectrometer (N. J. Middleton & Goudie, 2001). Since the local max-592 imum is also present in the dust frequency from non-reconstructed observations, the fea-593 ture is not an artifact of the reconstruction. The feature is, however, present in dust oc-594 currence frequencies derived from MERRA-2 reanalysis (see Fig. S1). AOD data derived 595 from MODIS sensors (MODIS Atmosphere Science Team, 2017b, 2017a) for coarse aerosol 596 particles (Fig. S2) indicates no optically thick, i.e. $\tau \ge 0.7$, dust plumes in the Nubian 597 Desert during both 2021 and 2022. However, MODIS aerosol data can be (partially) ob-598 scured by clouds. Since both CAMS and MERRA-2 use MODIS satellite observations 599 for aerosol to gain information on their properties (Inness et al., 2019b; Rémy et al., 2019; 600 Gelaro et al., 2017; Randles et al., 2016, 2017) this difference between CAMS and MERRA-601 2 reanalysis is likely attributable to differences between the underlying numerical mod-602 els or differences in the assimilation of data. In these models, differences in the emission 603 of dust are mainly driven by differently simulated winds as well as assumptions on the 604 soil-surface dependent threshold velocities, which need to be exceeded for dust emission 605 (e.g., Inness et al., 2019b; Randles et al., 2017). 606

3.2.2 Seasonal cycle

607

The spatial patterns of seasonal dust occurrence from the reconstruction are remarkably consistent with the dust source activation frequency from March 2006 to February 2007 as reported by Schepanski et al. (2007). The spatial pattern for 2021 and 2022 also shows consistency with the dust occurrence frequency derived from a combination of MODIS AOD data with Aerosol Index data from the Ozone Monitoring Instrument (OMI) for 2005–2019 as reported by Gavrouzou et al. (2021). This similarity allows us to infer dominant meteorological processes driving the dust occurrence in the following.

Dust emission and dust transport in North Africa are known to be subject to di-615 urnal, seasonal, annual, and inter-annual differences (e.g., Engelstaedter et al., 2006). The 616 seasonal mean dust occurrence frequency averaged for 2021–2022 is shown in Fig. 9. For 617 comparison, occurrence frequencies for coarse aerosol particles with $\tau_{dust} \ge 0.65$ from 618 MODIS Level 3 data are used. The threshold of $\tau_{dust} \ge 0.65$ was chosen, based on the 619 comparison of reconstruction-derived dust occurrence frequencies with CAMS reanalysis-620 derived dust occurrence frequencies (see Fig. 8), which yields the best match with re-621 spect to the PSNR between the resulting spatial patterns. The right column of Fig. 9 622 specifically shows the mean of the Level 3 product from MODIS on board Terra and Aqua. 623 Following the work by Basart et al. (2009), we counted dust events for which the thresh-624 old of τ was reached and for which simultaneously the Ångström exponent was $\alpha < 0.75$. 625 Note, that Basart et al. (2009) used Angström exponent data between the wavelength 626 pair of 440 nm and 870 nm, whereas, the values from MODIS Angström exponent data 627 are for the wavelength pairs of 412 nm and 470 nm (over bright scenes, such as deserts) 628 or else between 470 nm and 650 nm (Hsu et al., 2013). 629

We identify distinct seasonal differences in the spatial patterns of dust obscured 630 by clouds, based on the differences between the dust occurrence frequency derived di-631 rectly from original SEVIRI observations and those derived from the ANN-based recon-632 struction,. In winter, dust plumes primarily close to the Bodélé Depression are obscured 633 by clouds. During spring, the effects of obscuring clouds in the Bodélé Depression can 634 still be clearly recognized, but the effect is now more evenly spread over the entire re-635 gion of interest. Summertime cloud obscuring mainly occurs in Mali, Algeria, and to a 636 lesser extent in Niger, as well as in the Nubian desert. As dust activity during autumn 637 is generally lower compared to the other seasons, the number of dust events obscured by clouds is also smaller. 639

The spatial patterns of the cloud occurrence frequency, $f_{\rm cloud}$, as derived from MODIS 640 observations (see Fig. S5) during winter and spring display a remarkable similarity be-641 tween each other. With the exception of the Bodélé Depression, where during winter $f_{\rm cloud} \sim$ 642 50%, $f_{\rm cloud}$ was 20-40% in the in-land locations of the study region north of $\sim 13^{\circ}$ N. 643 For better visual guidance, this latitude approximately falls onto the Nigerian-Nigerian 644 border. During spring, dust plumes extend further southwards than during summer, which 645 is due to seasonally different dust transport directions associated with seasonal varia-646 tions in the atmospheric dynamics over Northern Africa (Schepanski et al., 2009). Dur-647 ing summer, for instance, high cloud occurrence is expected further inland due to deep 648 convection associated with the West African Monsoon (see Fig. S5). 649

The identified spatial patterns of dust occurrence agree with known dust emission 650 and transport processes. For instance, the dust occurrence in spring along the Mediter-651 ranean coast is associated with moving cyclones, which primarily occur in spring along 652 the North African Mediterranean coast and transport dust east- and north-wards (Israelevich 653 et al., 2002). The absolute differences between dust occurrence derived from direct SE-654 VIRI observations and the reconstructions take values of 2–3 pp along North Africa's 655 Mediterranean coast (see Fig. 7) indicative of an underestimation of dust occurrence in 656 satellite images due to clouds during cyclones, also known as Sharav cyclones (Alpert 657 & Ziv, 1989; Israelevich et al., 2002). In spring, up to 90% of North African dust emis-658 sions north of 25° N and west of 10° E are associated with depressions, and up to 25% of 659 dust emissions along the Mediterranean Sea's coast are linked to mobile cyclones (Fiedler 660 et al., 2014). 661

Between November and March, dust is transported towards regions south of the Sahel by north-easterly near-surface trade winds, referred to as Harmattan (Warner, 2004; Oluleye & Jimoh, 2018). The dust occurrence south of the Sahel in spring is attributable

to the Harmattan. The summertime dust occurrence in West Africa, mostly in Algeria, 665 Mali, and Niger, is also commonly linked to depressions, also known as the West African 666 heat low (Fiedler et al., 2014). More specifically, summertime dust emission can be linked 667 to strong near-surface winds generated by low-level jets and convective cold pools (Fiedler 668 et al., 2013; Heinold et al., 2013). Convective cold pools are generated by downdrafts 669 from deep moist convection and hence are associated with the presence of clouds (Roberts 670 & Knippertz, 2014; Trzeciak et al., 2017; Caton Harrison et al., 2019; Allen & Washing-671 ton, 2014). Especially, the timing of the onset of dust emission is missed by satellite ob-672 servations due to the clouds during such conditions. The aspects pertaining to the di-673 urnal cycle will be discussed in Section 3.2.3. 674

The severe Middle Eastern dust storms in May and June 2022 (Abdulrahman, 2022; Francis et al., 2023) resulted in high values of dust occurrence frequency, which can be seen in Iraq, Iran and Saudi Arabia, during both spring and summer as seen by comparing the seasonal dust occurrence frequency in 2021 against 2022 (Fig. S3).

During winter and spring a comparatively large number of events with $AOD_{\text{coarse}} \geq 0.65$ 679 was detected in sub-Saharan North Africa from MODIS, which is not as strongly pro-680 nounced in the reconstruction of SEVIRI images. A small number of regional dust cases 681 (with $f_{\text{dust}} < 5\%$) is here indeed seen in the reconstructed SEVIRI images, however, 682 in general, no frequent dust events are detected in sub-Saharan North Africa by SEVIRI. 683 Earlier investigations of the dust source activation frequencies derived from MODIS AOD 684 and OMI Aerosol Index display here a different spatial pattern compared to SEVIRI-685 derived dust source regions. MODIS-derived dust source regions are located further south 686 than most of the SEVIRI- and OMI-derived dust source regions. The SEVIRI-derived 687 dust source regions stretch across North Africa from Western Sahara and Morocco in the 688 west until Sudan in the east. Observations from all three sensors indicate a dust source 689 region in Niger and Chad, which includes the Bodélé Depression (Schepanski et al., 2012) Since winter and spring are outside the North African biomass burning season (Barbosa 691 et al., 1999) and by taking only coarse aerosol ($\alpha < 0.75$) into account, the risk of mis-692 classifying other types of aerosol particles as dust is reduced but not entirely eliminated. 693 Dust occurrence frequencies derived by SEVIRI and occurrence frequencies based on AOD 694 and Ångström exponent thresholds derived from MODIS Level 3 data are not directly 695 comparable. One reason is that other aerosol species than mineral dust are also included 696 in the AOD of MODIS, e.g., anthropogenic and biogenic aerosols. Another reason lies 697 in the orbits of Terra and Aqua. Each MODIS overpass over a specific location corre-698 sponds to a certain time. The MODIS Level 3 products aggregate the observations into 699 a single dataset. These differences limit the comparability between observations of aerosols 700 from MODIS and SEVIRI. Regardless of the systematic differences, the two results agree 701 on identifying seasonal patterns of dust occurrence frequency. For instance, both SEVIRI 702 and MODIS observations identify the Bodélé Depression as an important dust source 703 during winter and spring, as well as, highlighting widespread dust occurrence in West 704 Africa during summer. 705

As already evident from Fig. 8, with $\Delta E_{\rm cut} = 51.9$ a higher number of optically 706 thinner $(0.5 \le \tau_{dust} < 0.65)$ dust plumes are detected over ocean than over land. This 707 difference in the detection sensitivity between land and ocean is especially prominent dur-708 ing the spring months (MAM) and during the winter months of 2021 (cf. Fig. 9). Fig. 709 8 also indicates that the dust occurrence frequency derived with $\Delta E_{\rm cut} = 20.0$, which 710 corresponds to bright magenta colors, is less sensitive to transitions between land and 711 ocean backgrounds. Surface characteristics, specifically differences in emissivity and skin 712 temperature, affect the color in the Dust RGB images resulting in rather purple shades 713 in the presence of dust plumes. By considering only bright magenta colors, we select cases 714 in which the effect of different surface conditions is less prominent, hence the transition 715 between land and ocean background is smoother. 716

To gauge the influence of the value of $\Delta E_{\rm cut}$, we show the seasonal dust occurrence 717 frequency during 2021 and 2022 derived from images with $\Delta E_{\rm cut} = 20.0$ in Fig. 10. The 718 interannual differences in the dust occurrence frequency between 2021 and 2022 are shown 719 in Fig. S4. As mentioned earlier, the threshold of $\Delta E_{\rm cut} = 20.0$ results in only pixels 720 colored brightly magenta being classified as dust-containing. Thus, the dust occurrence 721 frequency is lower compared to $\Delta E_{\rm cut} = 51.9$ which includes also more purple colors 722 for dust detection. However, not only the magnitude but also the spatial patterns change 723 when setting $\Delta E_{\rm cut} = 20.0$, specifically during winter and spring, whereas, the spatial 724 patterns over land during summer and autumn remain largely similar, with little over-725 all activity in autumn. Dust occurrence in both winter and spring is connected to trans-726 port by mobile cyclones along the Mediterranean coast (e.g., Engelstaedter et al., 2006; 727 Bou Karam et al., 2010) and southward transport towards sub-Saharan Africa and the 728 Gulf of Guinea (e.g., Schwanghart & Schütt, 2008; Schepanski et al., 2009; Oluleye & 729 Jimoh, 2018). In both cases, dust plumes become more frequently mixed with moister 730 air, resulting in purple-colored pixels in the Dust RGB images, which are not detected 731 assuming $\Delta E_{\rm cut} = 20$. Summertime dust events in West Africa can be associated with 732 convective systems (cf., Nickling & Gillies, 1993; Schwanghart & Schütt, 2008; Heinold 733 et al., 2013; Bou Karam et al., 2014; Roberts & Knippertz, 2014; Allen & Washington, 734 2014), which feature in bright magenta in the Dust RGB images and are, consequently, 735 detected with both values of $\Delta E_{\rm cut}$. Transported dust even during summertime can fea-736 ture in purple and faded magenta shades (see Sec. 3.1) and, thus, account for pattern 737 differences. 738

Dust emitted from the Bodélé Depression during winter and spring was only sparsely 739 detected in 2021 and not at all in 2022 when we used $\Delta E = 20$ as a threshold since here 740 the dust plumes result in less brightly magenta colors in the Dust RGB images. The dust 741 occurring during winter over the Atlantic Ocean to the northwest of the Madeira Archipelago 742 is an artifact produced by the ANN since here little dust occurs in combination with clouds 743 and hence the training data might be too small. During spring 2021 the maximum dust 744 occurrence is along the Malian-Burkinabé border with no dust detected in Northern Mali. 745 This local maximum can be attributed to multiple dust events in early May, which re-746 sulted in bright magenta shades in the Dust RGB product. 747

748

3.2.3 Diurnal cycle

⁷⁴⁹ We assess the diurnal cycle in the dust occurrence frequency by extending our anal-⁷⁵⁰ ysis from 12 UTC shown so far to 9 and 15 UTC. These additional reconstructions were ⁷⁵¹ performed using gray-scaled SEVIRI images with $\Delta E_{\rm cut} = 51.9$ for 9 and 15 UTC. Fig. ⁷⁵² 11 shows the absolute differences in dust occurrence frequency at 9 (left column) and 15 ⁷⁵³ UTC (center column) respectively with respect to 12 UTC.

The annual dust occurrence frequencies indicate high values of the dust occurrence 754 frequency in the Bodélé Depression at 9 UTC. The breakdown into seasons shows clearly, 755 that at 9 UTC dust events in the Bodélé Depression mainly occur during winter and spring, 756 consistent with the mid-morning breakdown of nocturnal low-level jets generating dust-757 emitting winds (Fiedler et al., 2013). In the left-hand column of Fig. 11 the larger oc-758 currence at 9 UTC is seen by the red shades at the location of the Bodélé Depression, 759 marked by a black star in the right-hand column. This finding is further consistent with 760 other data shown by Washington et al. (2009), according to which dust in 2006 and 2007 761 in the Bodélé Depression was mainly emitted between 6 and 9 UTC. As can be seen in 762 Fig. 11 dust is then mainly transported towards the southwest. This gives rise to the 763 dipole structure visible in the absolute differences between dust occurrence frequencies 764 at 9 and 12 UTC and 15 and 12 UTC respectively in Chad and along the border of Chad 765 and Niger. This transport pattern is consistent with dust transport from the Bodélé De-766 pression in January, February, and March 1979 to 1997 (Washington et al., 2006). 767

The absolute differences in dust occurrence frequency over the Arabian peninsula 768 at 15 UTC reach up to 15 pp compared to 12 UTC. These are likely caused by dust lift-769 ing due to convection. Mesoscale convective systems over the southern Arabian Penin-770 sula typically occur during winter and spring with a local maximum at 14–15 UTC (Nelli 771 et al., 2021). Note, that the highest number of mesoscale convective systems was reported 772 between 22 and 23 UTC, a time not covered by this study. The combination of solar heat-773 ing, local circulations, and cyclonic activity during winter and spring drive convection 774 on the Arabian Peninsula (Warner, 2004). Numerical studies point to dry convection and 775 to a lesser extent moist convection as an important driver of dust emission on the Ara-776 bian Peninsula (Bukowski & van den Heever, 2020). Field observations in Morocco fur-777 ther indicate the importance of convection for dust emission (Ansmann et al., 2009). At 778 15 UTC, which corresponds to roughly 18 LT, beginning surface cooling after sunset in 779 the Eastern parts of the studied region may further begin to distort the values of dust 780 occurrence frequency. As discussed in Sec. 2.2.2, for skin temperatures with $T_{\rm skin} < 300 \, {\rm K}$ 781 the dust plumes are no longer clearly distinguishable from other environmental impacts 782 on the Dust RGB product. Such conditions can be reached after sunset. 783

As stated above among the processes contributing to summer-time dust emission 784 in the Sahara, specifically the region characterized by a local maximum in dust occur-785 rence frequency situated in northern Mali, southern Algeria, and north west Niger, are 786 low-level jets and cold pool outflows. Field observations during June 2011 in Bordj-Badji 787 Mokhtar (southern Algeria, 21.33°N, 0.95°E) indicate a maximum in surface-level wind 788 speeds (at 10 m a.g.l.) with the breakdown of low-level jets, i.e., typically between 9 and 789 10 UTC which corresponds to 10 - 11 LT (Allen & Washington, 2014). Numerical sim-790 ulations of dust emission between 2006-07-26 and 2006-09-02 by Heinold et al. (2013) 791 indicate an earlier maximum in the mean hourly dust emission over West Africa at 8 UTC. 792 Considering the continued dust emission after 8 UTC and the time needed for the freshly 793 emitted dust to be upward mixed and transported as seen in the satellite images, the higher 794 values of dust occurrence frequency at 12 UTC over West Africa during summer in our 795 results are broadly consistent with Heinold et al. (2013) and Allen and Washington (2014). 796

797

3.3 Evaluation of forecast data

The trained neural network was applied to all available gray-scaled SEVIRI images 798 from 2021 and 2022 at 12:00 UTC. Here, we use the resulting images to evaluate the out-799 put of dust forecast provided by the World Meteorological Organization (WMO) Barcelona Dust Regional Center (see Section 2.1.2). Since qualitatively reconstructed images of ar-801 eas with dust and quantitative forecasts of the dust aerosol optical depth are not directly 802 comparable, we first convert both the reconstructed gray-scale satellite images and the 803 forecasted fields of τ_{dust} to binary images in which 1 represents a "dusty" pixel and 0 a dust-free pixel. In the case of the dust forecasts, a pixel is classified as dusty, if the AOD 805 exceeds a pre-defined threshold, i.e., $\tau \geq \tau_{\text{threshold}}$. For this purpose, we define and test 806 six different thresholds: $\tau_{\text{threshold}} = [0.3, 0.5, 0.7, 0.9, 1.1, 1.3].$ 807

Fig. 12 compares the dust forecast ensemble with respect to the median forecast, 808 provided by the WMO Barcelona Dust Regional Center, and the forecast ensemble with 809 respect to the reconstruction for both 2021 and 2022. The evaluation metrics SSIM, di-810 rected Hausdorff distance, and PSNR (Section 2.2.3) are displayed as violin plots (Hintze 811 & Nelson, 1998) to evaluate the regional performance. As the median forecast is com-812 posed of the other model forecasts within the ensemble, we expect a larger number of 813 cases with $SSIM \approx 1$ when we compare the individual forecast models against the me-814 dian of all forecasts than for the reconstruction compared to the median of all forecasts. 815 816 For small lower bounds of AOD ($\tau_m a thrm dus \geq [0.3, 0.5]$) the distribution of SSIM values for forecasts compared to median forecasts strongly differ from the reconstructions 817 compared to the median of forecasts. For intermediate AOD bounds ($\tau_{dust} = 0.7$) the 818 difference in the value distributions is reduced, although for the reason outlined above 819

the forecasts as a whole yield values of SSIM closer to 1. For larger values of AOD bounds $SSIM \rightarrow 1$, however, the forecasts converge faster to 1 than the reconstructions.

⁸²² Using the directed Hausdorff distance as an evaluation criterion the reconstruction ⁸²³ performs with respect to the dust forecast ensemble on average as well as the forecast ⁸²⁴ ensemble compared to the median forecast for values of $\tau_{\text{threshold}} \ge 0.7$. In the case of ⁸²⁵ PSNR, the reconstruction with respect to the forecast ensemble performs best for $AOD_{\text{threshold}} =$ ⁸²⁶ 0.7 compared to all model forecasts with respect to the median forecast, although the ⁸²⁷ performance differences are not large. For $\tau_{\text{threshold}} \ge 0.9$ the median forecast outper-⁸²⁸ forms the reconstruction with respect to the PSNR.

We use the reconstruction of dust plumes to assess the level of similarity of dust-829 plume extents simulated by individual numerical forecasts over North Africa next. Fig-830 ure 13 allows us to compare the reconstruction's performance against the output from 831 individual forecast models. In 2021 (top row) the models BSC-DREAM8b, DREAM8-832 CAMS, and WRF-NEMO agree best with the reconstruction as indicated by the respec-833 tive median values of all three metrics. In 2022 (bottom row) the highest agreement in 834 terms of PSNR and directed Hausdorff distance is seen for DREAM8-CAMS, MOCAGE, 835 and WRF-NEMO, and in terms of SSIM for DREAM8-CAMS, MOCAGE, NCEP-GEFS 836 and ICON-ART. Only evaluating the spatial patterns, LOTOS-EUROS and MONARCH 837 performed poorest in both 2021 and 2022. While outperforming LOTOS-EUROS and 838 MONARCH with respect to all three evaluation metrics, NCEP-GEFS performed third 839 poorest in 2021. In 2022 NOA, which in 2021 narrowly outperformed NCEP-GEFS, had 840 the third poorest performance. It should be noted, that among the best-performing mod-841 els, both DREAM8-CAMS and MOCAGE use data assimilation, while none of the mod-842 els with comparatively poor performance used data assimilation techniques. It should 843 be stressed, that our evaluation has a focus on the spatial pattern of dust plumes, which 844 was not done in the past. Typically, dust model forecasts are evaluated by their ability 845 to correctly forecast τ at monitoring stations, most of which stem from supphotometers 846 that can only provide data during daytime in cloud-free conditions (cf. Huneeus et al., 847 2011; Terradellas et al., 2022). Hence, our study has demonstrated a new capability to 848 evaluate simulated dust transport with a first consideration of dust plume shapes, based 849 on computationally fast reconstructions of dust plumes in satellite images. 850

4 Discussion and Outlook

In this study, we restored spatial patterns of dust plumes from partially cloud-obscured 852 satellite observations for the first time. Since both dust-aerosol emission and transport 853 and cloud structures are governed by atmospheric conditions, we combined dust AOD 854 data from CAMS reanalysis with coinciding SEVIRI-derived cloud-masks for the train-855 ing of the ANN. The trained network was applied to cloud-masked, gray-scaled satel-856 lite images, derived from MSG-SEVIRI's Dust RGB product. The reconstruction of dust 857 plumes performs just as well or better than individual forecasts relative to the median 858 across all forecasts. 859

Our dust occurrence frequency from the reconstructed dust plumes is consistent 860 with spatial patterns of the dust source activation frequency reported in earlier studies 861 and with the understanding of atmospheric processes driving dust emission and trans-862 port. So far parametrizations in numerical models provided a way of gauging the extent 863 of below-cloud dust events, i.e. of "seeing" beneath the clouds. By applying machine-864 learning-based in-painting methods to geostationary satellite images, we demonstrated 865 another possibility of estimating the full extent of dust events. Compared to numerical 866 modeling, once the ANN is trained, our approach is computationally much cheaper than 867 numerical modeling. Provided a SEVIRI Dust RGB image and the corresponding cloud 868 mask are available, gray-scaling, data conversions, and subsequent in-painting for a sin-869 gle image required 30 seconds on a single core (AMD 7763 CPU, provided by DKRZ). 870

Note, that this is an upper bound of required resources since the computational set-up was not streamlined for (near) real-time image processing.

Comparing the reconstructed and the directly observed dust occurrence frequen-873 cies for both 2021 and 2022 (see Fig. 7) indicates, that previous studies of the dust oc-874 currence frequency and by extension the dust source activation frequency derived from 875 SEVIRI and other satellite observations underestimate the dust occurrence and dust source 876 activation due to the presence of clouds (e.g., Schepanski et al., 2012; Heinold et al., 2013; 877 Chédin et al., 2020). Our results suggest that at least 0.78% of observations in the spa-878 tial mean over the entire region of interest miss dust events due to cloud coverage. Re-879 gionally and seasonally dust missed due to clouds can be up to 15% of observations. In 880 extreme cases, all dust events occurring in an individual pixel are obscured by clouds. 881 In 7.3% of pixels, all dust events as obtained by our proposed reconstruction method would 882 be missed using conventional satellite observations. In 29.5% and 17.7% of pixels at least 883 a tenth and a half of all dust events in the reconstruction, respectively, coincide with cloud 884 coverage. When considering only the events with $\tau_{dust} \ge 0.65$ (see 8) in the CAMS re-885 analysis as dust events, then for 9.6% of pixels of all dust events coincide with a cloud 886 as observed by SEVIRI. A tenth and a half of dust events from CAMS reanalysis coin-887 cide with cloud coverage in 84.3% and 55.4% respectively of the pixels. Owning to our 888 choice of identifying dust events by using gray-scaling based on perceptional color dif-889 ferences and due to the resolution of the input images, our number of dust events is still likely to be a conservative estimate, as indicated by the two case studies. In close prox-891 imity to clouds, the under-counting of dust-containing pixels can still be rectified by the 892 ANN-based reconstruction method as illustrated in the first case study. 893

894 Since a similar Dust RGB composite is provided operationally for observations by the Advanced Baseline Imager (ABI) instrument onboard the Geostationary Operational 895 Environmental Satellite (GOES) and the Advanced Himawari Imagers (AHI) onboard 896 the geostationary Himawari satellite, our approach could be transferred to other regions 897 of interest (cf. Fuell et al., 2016; Bessho et al., 2016). While this study was focused on 898 data from geostationary satellites the in-painting approach can also be adapted to ob-899 servations and products from polar-orbiting satellites, such as AOD products derived from 900 MODIS. Provided suitable training data from reanalysis is available the approach can 901 further be applied to observations of different aerosol species and plumes of trace gases 902 close to the respective source. 903

The here proposed method to restore dust plume extents on SEVIRI RGB Dust images by machine-learning-based image in-painting methods can be applied to a larger area and to images at a higher temporal resolution of up to 15 minutes in the case of SE-VIRI. Such a spatial extension can facilitate additional investigations of dust transport to Europe and/or across the Atlantic Ocean. Using a higher temporal resolution may aid in studying dust transport mechanisms within North Africa in more detail and help to overcome observational gaps stemming from sparse ground-based observations.

There are a number of aspects in our current approach that can be further refined 911 for future applications. To obtain a consistent spatio-temporal picture of suspended dust, 912 the values of $\Delta E_{\rm cut}$ can be adjusted to the different environmental conditions, such as 913 surface type (surface emissivity), skin temperature, and a climatology of column water 914 vapor content (see Section 2.2.2 and Banks et al. (2019)), e.g., via generating look-up 915 tables to account for these aspects. Adapting $\Delta E_{\rm cut}$ to different environmental condi-916 tions would also be the next step to develop a link of the Dust RGB product or derived 917 products, such as our reconstructed images, to τ_{dust} . Currently, there are already retrievals 918 of dust AOD from SEVIRI observations based on look-up tables of observed shortwave 919 reflectance (Brindley & Ignatov, 2006) for retrievals over ocean surfaces and based on 920 longwave brightness temperatures in conjunction with European Centre for Medium-Range 921 Weather Forecasts' operational analysis for retrievals over land surfaces (Brindley & Rus-922 sell, 2009), which could be exploited. Other retrieval algorithms involve optimal estima-923

tion (cf. Rodgers, 2000) based on observed brightness temperatures at both visible and
infrared channels (Carboni et al., 2007; Thomas et al., 2009). Following successfully established links between AOD and the color in the RGB Dust product, our method can
restore the cloud-obscured fractions of AOD and subsequently contribute to assimilating further satellite observations into numerical models to better constrain the forecasts
of dust. Accurate forecasts of dust plumes are important for different applications, e.g.,
in the health and energy sector.

So far, each image has been reconstructed individually. With the help of recurrent neural networks (Che et al., 2018) the temporal evolution of dust storms can be taken into account explicitly by the network, thus, potentially further improving the reconstructions. While ground-based observations of dust in Northern Africa are sparse, incorporating these observations into the reconstructions provides another avenue for potential improvements in dust storm reconstruction for a better understanding of their evolution and accurate warnings of their impacts.

938 5 Conclusion

We present to our knowledge the first fast reconstruction of the spatial extent of partially cloud-obscured dust plumes from satellite observations. We achieve this by employing machine-learning-based image inpainting techniques. Once the artificial neural network is trained, the reconstruction of dust plume extents is computationally inexpensive.

Spatially averaged over North Africa the differences in annual dust occurrence be-944 tween reconstructions and classical satellite observations are small, not at last because 945 dust is not present all the time across the entire of North Africa. However, the number 946 of dust events obscured by clouds increases, when considering seasonal and regional sub-947 sets. As a conservative estimate, we find that up to 15% of satellite observations in West 948 Africa and up to 10% of satellite observations in the Nubian Desert during 2021-2022949 miss dust events. Based on the reconstructed plumes, in 7.3% of pixels, all dust events 950 coincide with clouds and would, thus, not be directly identifiable from classical satellite 951 observations. This roughly corresponds to a geographical area of $\sim 2 \cdot 10^6 \,\mathrm{km}^2$. Our 952 comparison with reanalysis indicates a somewhat higher fraction of 9.6% of pixels in which 953 all dust events coincide with cloud cover. 954

The reconstructed dust plumes provide new means to validate and constrain spa-955 tial patterns of dust plumes in simulations from numerical forecast models and Earth 956 system models. They further provide means for more detailed studies of dust emission 957 and transport mechanisms using satellite observations free of gaps caused by cloud cover 958 for the first time. The method can be applied to the corresponding dust products ob-959 tained from sensors on other geostationary satellites to compile a global dataset. It can 960 also be adapted to different types of aerosols and trace gases observed from geostation-961 ary and low-earth orbit satellites to broaden the possibilities for model validation of at-962 mospheric composition in models, e.g., as simulated by Earth system models in the Cou-963 pled Model Intercomparison Project (CMIP). 964

965 Open Research Section

The code for the ClimatereconstructionAI can be obtained from Zenodo (Inoue et al., 2022). The gray-scaling algorithm can be obtained from https://github.com/tobihose/Masterarbeit. Dust forecast datasets were provided by the WMO Barcelona Dust Regional Center and the partners of the Sand and Dust Storm Warning Advisory and Assessment System (SDS-

- WAS) for Northern Africa, the Middle East and Europe and can be obtained from https://dust.aemet.es.
- CAMS reanalysis data were provided by the Copernicus Atmospheric Monitoring Ser-
- vice (Inness et al., 2019a) and can be obtained from https://ads.atmosphere.copernicus.eu.

SEVIRI false color RGB images (collection ID: EO:EUM:DAT:MSG:DUST, EUMETSAT

(2009b)) and MSG cloud masks (collection ID: EO:EUM:DAT:MSG:CLM, EUMETSAT

 $_{975}$ \qquad (2009a)) were provided by EUMETSAT and can be obtained from the EUMETSAT Data

976 Store under https://data.eumetsat.int. MERRA-2 reanalysis data (Global Modeling And

Assimilation Office & Pawson, 2015) was provided by the National Aeronautics and Space

Administration's (NASA) Goddard Earth Science Data Information and Services Cen-

ter (GES DISC) and can be obtained from https://disc.gsfc.nasa.gov/datasets?project=MERRA-

2. MODIS level 3 data (MODIS Atmosphere Science Team, 2017b, 2017a) was provided

by NASA and can be obtained from https://ladsweb.modaps.eosdis.nasa.gov. Access to

all datasets requires prior registration. In-painted images generated in the course of this study, as well as, trained ANNs will be made available on Zenodo with the publication

983 study, as well as984 of the study.

985 Acknowledgments

We acknowledge internal funding by the GEOMAR Helmholtz Centre for Ocean Research

⁹⁸⁷ Kiel and University of Cologne for this work. We are grateful to Naoto Inoue, Christo-

pher Kadow, and Stephan Seitz for making the climatereconstructionAI code publically

available and to Johannes Meuer and Étienne Plésiat for maintaining the code. Tobias

⁹⁹⁰ Höschen is acknowledged for developing the grey-scaling algorithm as part of his mas-

⁹⁹¹ ter's thesis work, which was co-supervised by S. Fiedler. Dust forecast data was provided

by the WMO Barcelona Dust Regional Center and the partners of the Sand and Dust

⁹⁹³ Storm Warning Advisory and Assessment System (SDS-WAS) for Northern Africa, the

⁹⁹⁴ Middle East and Europe. This work used resources of the Deutsches Klimarechenzen-

trum (DKRZ) granted by its Scientific Steering Committee (WLA) under project ID 1198.

996 **References**

997	Abdulrahman, S. A. (2022). Iraq's environment: from dustfall to soilfall. In-
998	ternational Journal of Environmental Studies, $0(0)$, 1-3. doi: DOI:10.1080/
999	00207233.2022.2078110
1000	Al-Hemoud, A., Al-Sudairawi, M., Neelamanai, S., Naseeb, A., & Behbehani, W.
1001	(2017, Jan 03). Socioeconomic effect of dust storms in Kuwait. Arabian Jour-
1002	nal of Geosciences, 10(1), 18. doi: DOI:10.1007/s12517-016-2816-9
1003	Allen, C. J. T., & Washington, R. (2014). The low-level jet dust emission mech-
1004	anism in the central Sahara: Observations from Bordj-Badji Mokhtar during
1005	the June 2011 Fennec Intensive Observation Period. Journal of Geophysical
1006	Research: Atmospheres, 119(6), 2990-3015. doi: DOI:10.1002/2013JD020594
1007	Allen, C. J. T., Washington, R., & Engelstaedter, S. (2013). Dust emission and
1008	transport mechanisms in the central Sahara: Fennec ground-based observa-
1009	tions from Bordj Badji Mokhtar, June 2011. Journal of Geophysical Research:
1010	Atmospheres, 118(12), 6212-6232. doi: DOI:10.1002/jgrd.50534
1011	Alpert, P., & Ziv, B. (1989). The sharav cyclone: Observations and some theoret-
1012	ical considerations. Journal of Geophysical Research: Atmospheres, 94(D15),
1013	18495-18514. doi: DOI:10.1029/JD094iD15p18495
1014	Ansmann, A., Tesche, M., Knippertz, P., Bierwirth, E., Althausen, D., Müller, D., &
1015	Schulz, O. (2009, Jan). Vertical profiling of convective dust plumes in southern
1016	morocco during samum. Tellus B: Chemical and Physical Meteorology. doi:
1017	DOI:10.1111/j.1600-0889.2008.00384.x
1018	Ashpole, I., & Washington, R. (2012). An automated dust detection using seviri:
1019	A multiyear climatology of summertime dustiness in the central and west-
1020	ern sahara. Journal of Geophysical Research: Atmospheres, 117(D8). doi:
1021	DOI:10.1029/2011JD016845
1022	Banks, J. R., Hünerbein, A., Heinold, B., Brindley, H. E., Deneke, H., & Schepanski,
1023	K. (2019). The sensitivity of the colour of dust in MSG-SEVIRI Desert Dust

1024	infrared composite imagery to surface and atmospheric conditions. Atmos
1025	Chem Phys, $19(10)$, $6893-6911$. doi: DOI:10.5194/acp-19-6893-2019
1026	Barbosa, P. M., Stroppiana, D., Grégoire, JM., & Cardoso Pereira, J. M. (1999).
1027	An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned
1028	biomass, and atmospheric emissions. Global Biogeochemical Cycles, $13(4)$,
1029	933-950. doi: DOI:10.1029/1999GB900042
1030	Basart, S., Nickovic, S., Terradellas, E., Cuevas, E., Pérez García-Pando, C., García-
1031	Castrillo, G., Benincasa, F. (2019). The WMO SDS-WAS Regional Center
1032	for Northern Africa, Middle East and Europe. E3S Web Conf., 99, 04008. doi:
1033	DOI:10.1051/e3sconf/20199904008
1034	Basart, S., Pérez, C., Cuevas, E., Baldasano, J. M., & Gobbi, G. P. (2009). Aerosol
1035	characterization in Northern Africa, Northeastern Atlantic, Mediterranean
1036	Basin and Middle East from direct-sun AERONET observations. Atmo-
1037	spheric Chemistry and Physics, $9(21)$, $8265-8282$. doi: DOI:10.5194/
1038	acp-9-8265-2009
1039	Basart, S., Pérez, C., Nickovic, S., Cuevas, E., & Baldasano, J. (2012). Develop-
1040	ment and evaluation of the BSC-DREAM8b dust regional model over Northern
1041	Africa, the Mediterranean and the Middle East. Tellus B: Chemical and Physi-
1042	cal Meteorology, 64(1), 18539. doi: DOI:10.3402/tellusb.v64i0.18539
1043	Basart, S., Werner, E., Cuevas, E., & García-Pando, C. P. (2022). The wmo
1044	barcelona dust regional center: Linking research with the development of dust
1045	user-oriented services. In C. Mensink & O. Jorba (Eds.), Air pollution mod-
1046	eling and its application xxviii (pp. 223–229). Cham: Springer International
1047	Publishing.
1048	Ben-Ami, Y., Koren, I., & Altaratz, O. (2009). Patterns of North African dust
1049	transport over the Atlantic: whiter vs. summer, based on CALIPSO first
1050	year data. Atmospheric Chemistry and Physics, $9(20)$, $1801-1815$. doi:
	$D01 \cdot 10 = 5104 / 3 cm - 0 - 7867 - 2000$
1051	DOI:10.5194/acp-9-7867-2009 Bessho K Date K Hayashi M Ikeda A Imai T Inoue H Voshida B
1051 1052 1053	DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostation-
1051 1052 1053 1054	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. <i>Journal of the Meteorological Society of Japan</i>.
1051 1052 1053 1054 1055	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. <i>Journal of the Meteorological Society of Japan.</i> Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009
1051 1052 1053 1054 1055 1056	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local
1051 1052 1053 1054 1055 1056 1057	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI.
1051 1052 1053 1054 1055 1056 1057 1058	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7
1051 1052 1053 1054 1055 1056 1057 1058 1059	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi:
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M.,
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006.
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607.
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: DOI:10.1002/qj.2326
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: DOI:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069	 D0I:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: D0I:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: D0I:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: D0I:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: D0I:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application, 23(4), 259-259. doi: D0I:
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: DOI:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application, 23(4), 259-259. doi: DOI: 10.1002/(SICI)1520-6378(199808)23:4<259::AID-C0L18>3.0.C0;2-7
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncoft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: DOI:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application, 23(4), 259-259. doi: DOI: 10.1002/(SICI)1520-6378(199808)23:4<259::AID-C0L18>3.0.C0;2-7 Brindley, H., & Ignatov, A. (2006). Retrieval of mineral aerosol optical depth
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: DOI:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application, 23(4), 259-259. doi: DOI: 10.1002/(SICI)1520-6378(199808)23:4<259::AID-COL18>3.0.C0;2-7 Brindley, H., & Ignatov, A. (2006). Retrieval of mineral aerosol optical depth and size information from Meteosat Second Generation SEVIRI solar re-
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: DOI:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application, 23(4), 259-259. doi: DOI: 10.1002/(SICI)1520-6378(199808)23:4<259::AID-COL18>3.0.C0;2-7 Brindley, H., & Ignatov, A. (2006). Retrieval of mineral aerosol optical depth and size information from Meteosat Second Generation SEVIRI solar reflectance bands. Remote Sensing of Environment, 102(3), 344-363. doi:
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072	 D0I:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: D0I:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: D0I:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: D0I:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: D0I:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application, 23(4), 259-259. doi: D0I: 10.1002/(SICI)1520-6378(199808)23:4<259::AID-C0L18>3.0.C0;2-7 Brindley, H., & Ignatov, A. (2006). Retrieval of mineral aerosol optical depth and size information from Meteosat Second Generation SEVIRI solar reflectance bands. Remote Sensing of Environment, 102(3), 344-363. doi: D0I:10.1016/j.rse.2006.02.024
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: DOI:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application, 23(4), 259-259. doi: DOI: 10.1002/(SICI)1520-6378(199808)23:4<259::AID-C0L18>3.0.C0;2-7 Brindley, H., & Ignatov, A. (2006). Retrieval of mineral aerosol optical depth and size information from Meteosat Second Generation SEVIRI solar reflectance bands. Remote Sensing of Environment, 102(3), 344-363. doi: DOI:10.1016/j.rse.2006.02.024 Brindley, H., & Russell, J. E. (2009). An assessment of Saharan dust loading and the second metal and state and state information from Meteosat Second Generation Sevier and state and state information from Meteosat Second Generation Sevier and state and state information from Meteosat Second Generation Sevier and second Sevier and state and ste and state information from Meteosat Second Generation Sevier a
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074	 DOI:10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94 (2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: DOI:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application, 23(4), 259-259. doi: DOI: 10.1002/(SICI)1520-6378(199808)23:4<259::AID-C0L18>3.0.C0;2-7 Brindley, H., & Ignatov, A. (2006). Retrieval of mineral aerosol optical depth and size information from Meteosat Second Generation SEVIRI solar reflectance bands. Remote Sensing of Environment, 102(3), 344-363. doi: DOI:10.1016/j.rse.2006.02.024 Brindley, H., & Russell, J. E. (2009). An assessment of Saharan dust loading and the corresponding cloud-free longwave direct radiative effect from geostation-terms.
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074	 DOI: 10.5194/acp-9-7867-2009 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi: DOI:10.2151/jmsj.2016-009 Billet, E., Fedorov, A., & Chrisochoides, N. (2008, 05). The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. The Insight Journal. doi: DOI:10.54294/y57wd7 Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., & Williams, E. (2010). Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of Geophysical Research: Atmospheres, 115(D4). doi: DOI:10.1029/2009JD012390 Bou Karam, D., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Thorncroft, C. (2014). Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quarterly Journal of the Royal Meteorological Society, 140(685), 2591-2607. doi: DOI:10.1002/qj.2326 Brill, M. H. (1998). How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application, 23(4), 259-259. doi: DOI: 10.1002/(SICI)1520-6378(199808)23:4<259::AID-COL18>3.0.C0;2-7 Brindley, H., & Ignatov, A. (2006). Retrieval of mineral aerosol optical depth and size information from Meteosat Second Generation SEVIRI solar reflectance bands. Remote Sensing of Environment, 102(3), 344-363. doi: DOI:10.1016/j.rse.2006.02.024 Brindley, H., & Russell, J. E. (2009). An assessment of Saharan dust loading and the corresponding cloud-free longwave direct radiative effect from geostationary satellite observations. Journal of Geophysical Research: Atmospheres, (1/(D2)).

1079	Bristow, C. S., Hudson-Edwards, K. A., & Chappell, A. (2010). Fertilizing the ama-
1080	zon and equatorial atlantic with west african dust. Geophysical Research Let-
1081	ters, $37(14)$. doi: DOI:https://doi.org/10.1029/2010GL043486
1082	Brunet, D., Vrscay, E. R., & Wang, Z. (2012). On the mathematical properties
1083	of the structural similarity index. IEEE Transactions on Image Processing,
1084	21(4), 1488-1499. doi: DOI:10.1109/TIP.2011.2173206
1085	Bukowski, J., & van den Heever, S. C. (2020). Convective distribution of dust over
1086	the Arabian Peninsula: the impact of model resolution. Atmospheric Chem-
1087	istry and Physics, 20(5), 2967–2986. doi: DOI:10.5194/acp-20-2967-2020
1088	Buseck, P. R., & Pósfai, M. (1999). Airborne minerals and related aerosol particles:
1089	Effects on climate and the environment. Proceedings of the National Academy
1090	of Sciences of the United States of America, 96(7), 3372–3379.
1091	Carboni, E., Thomas, G., Grainger, R., Poulsen, C., Siddans, R., Peters, D.,
1092	Brindley, H. (2007). Retrieval of aerosol properties from SEVIRI using visible
1093	and infrared channels. In Proceedings of EUMETSAT/AMS conference.
1094	Caton Harrison, T., Washington, R., & Engelstaedter, S. (2019). A 14-year climatol-
1095	ogy of Saharan dust emission mechanisms inferred from automatically tracked
1096	plumes. Journal of Geophysical Research: Atmospheres, 124(16), 9665-9690.
1097	doi: DOI:10.1029/2019JD030291
1098	Chauhan, R., Singh, A., & Saha, S. (2021). Cloud removal from satellite im-
1099	ages. CoRR, abs/2112.15483. Retrieved from https://arxiv.org/abs/
1100	2112.15483
1101	Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018, apr). Recurrent
1102	neural networks for multivariate time series with missing values. Scientific Re-
1103	ports, 8(1). doi: DOI:10.1038/s41598-018-24271-9
1104	Chédin, A., Capelle, V., Scott, N. A., & Todd, M. C. (2020). Contribution
1105	of IASI to the observation of dust aerosol emissions (morning and night-
1106	time) over the Sahara desert. Journal of Geophysical Research: Atmo-
1107	spheres, 125(15), e2019JD032014. (e2019JD032014 2019JD032014) doi:
1108	DUI:10.1029/2019JD032014
1109	Chen, Y., Tang, L., Yang, X., Fan, R., Bilal, M., & Li, Q. (2020). Thick clouds
1110	removal from multitemporal ZY-3 satellite images using deep learning. IEEE
1111	12 142 152 doi: DOI:10 1100/JETARS 2010 2054120
1112	15, 145-155. doi: DOI: 10.1109/JSIARS.2019.2954150
1113	control, F., da Silva, A., Olili, M., & Dielii, T. (2010). Oliline simulations of global
1114	and ground-based aerosol ontical depth Iournal of Geophysical Research:
1115	Atmospheres 115(D14) doi: DOI:10.1029/2009 ID012820
1110	Cui V Ma S Vao Z Chen X Luo Z Fan W & Hong V (2020) Developing
1117	a gap-filling algorithm using DNN for the Ts-VI triangle model to obtain tem-
1110	porally continuous daily actual evapotranspiration in an arid area of China
1120	Remote Sensing, 12(7), doi: DOI:10.3390/rs12071121
1121	Czerkawski M Upadhyay P Davison C Werkmeister A Cardona J Atkin-
1122	son, R., Tachtatzis, C. (2022). Deep internal learning for inpainting
1123	of cloud-affected regions in satellite imagery. <i>Remote Sensing</i> , 14(6). doi:
1124	DOI:10.3390/rs14061342
1125	Dhital, S., Kaplan, M. L., Orza, J. A. G., & Fiedler, S. (2020). Atmospheric dy-
1126	namics of a saharan dust outbreak over mindelo, cape verde islands, preceded
1127	by rossby wave breaking: Multiscale observational analyses and simulations.
1128	Journal of Geophysical Research: Atmospheres, 125(18), e2020JD032975.
1129	(e2020JD032975 2020JD032975) doi: DOI:10.1029/2020JD032975
1130	Di Mauro, B., Garzonio, R., Rossini, M., Filippa, G., Pogliotti, P., Galvagno, M.,
1131	Colombo, R. (2019). Saharan dust events in the European Alps: role in
1132	snowmelt and geochemical characterization. The Cryosphere, $13(4)$, 1147–
1133	1165. doi: DOI:10.5194/tc-13-1147-2019

1134	Dong, J., Yin, R., Sun, X., Li, Q., Yang, Y., & Qin, X. (2019). Inpainting of re-
1135	mote sensing SST images with deep convolutional generative adversarial net-
1136	work. <i>IEEE Geoscience and Remote Sensing Letters</i> , 16(2), 173-177. doi:
1137	DOI:10.1109/LGRS.2018.2870880
1138	El Amraoui, L., Plu, M., Guidard, V., Cornut, F., & Bacles, M. (2022). A pre-
1139	operational system based on the assimilation of MODIS aerosol optical depth
1140	in the MOCAGE chemical transport model. Remote Sensing, 14(8). doi:
1141	DOI:10.3390/rs14081949
1142	Elharrouss O Almaadeed N Al-Maadeed S & Akbari Y (2020 Apr 01) Image
1143	inpainting: A review. Neural Processing Letters, 51(2), 2007-2028. doi: DOI:10
1144	1007/s11063-019-10163-0
1145	Engelstaedter S. Tegen I. & Washington B. (2006) North African dust emis-
1145	sions and transport. Earth-Science Reviews 79(1) 73-100 doi: DOI:10.1016/
1140	i earscirev 2006 06 004
1147	Fnomoto K. Sakurada K. Wang W. Fukui H. Mateuoka M. Nakamura B. k
1148	Kawaguchi N (2017 July) Filmy cloud removal on satellite imagery with
1149	multispostral conditional generative adversarial nota. In <i>Proceedings of the icea</i>
1150	and national generative adversarial nets. In <i>Troceedings of the teee</i>
1151	EUNETCAT (2000) Cloud Mach MCC 0 down Detrieved from https://
1152	EUMEISAI. (2009a). Cloud Mask - MSG - 0 degree. Retrieved from https://
1153	navigator.eumetsat.int/product/EU:EUM:DAI:MSG:CLM (dataset)
1154	EUMETSAT. (2009b). Dust RGB - MSG - 0 degree. Retrieved from https://
1155	navigator.eumetsat.int/product/EU:EUM:DAT:MSG:DUST (dataset)
1156	Evan, A. T., Dunion, J., Foley, J. A., Heidinger, A. K., & Velden, C. S. (2006).
1157	New evidence for a relationship between Atlantic tropical cyclone ac-
1158	tivity and African dust outbreaks. Geophys. Res. Lett., 33(19). doi:
1159	DUI:10.1029/2006GL026408
1160	Fairman, H. S., Brill, M. H., & Hemmendinger, H. (1997). How the CIE 1931 color-
1161	matching functions were derived from Wright-Guild data. Color Research &
1162	Application, 22(1), 11-23. doi: DOI:10.1002/(SICI)1520-6378(199702)22:
1163	1<11::AID-CUL4>3.0.CU;2-7
1164	Fiedler, S., Schepanski, K., Heinold, B., Knippertz, P., & Tegen, I. (2013). Clima-
1165	tology of nocturnal low-level jets over north atrica and implications for mod-
1166	eling mineral dust emission. Journal of Geophysical Research: Atmospheres,
1167	118(12), 6100-6121. doi: DOI:10.1002/jgrd.50394
1168	Fiedler, S., Schepanski, K., Knippertz, P., Heinold, B., & Tegen, I. (2014). How
1169	important are atmospheric depressions and mobile cyclones for emitting min-
1170	eral dust aerosol in north africa? Atmospheric Chemistry and Physics, 14(17),
1171	8983-9000. doi: DUI:10.5194/acp-14-8983-2014
1172	Flaounas, E., Kotroni, V., Lagouvardos, K., Klose, M., Flamant, C., & Gian-
1173	naros, T. M. (2017). Sensitivity of the WRF-Chem (v3.6.1) model to dif-
1174	ferent dust emission parametrisation: assessment in the broader Mediter-
1175	ranean region. Geoscientific Model Development, $10(8)$, $2925-2945$. doi:
1176	DUI:10.5194/gmd-10-2925-2017
1177	Francis, D., Fonseca, R., Nelli, N., Bozkurt, D., Cuesta, J., & Bosc, E. (2023).
1178	On the Middle East's severe dust storms in spring 2022: Triggers and im-
1179	pacts. Atmospheric Environment, 296, 119539. doi: DOI:10.1016/
1180	j.atmosenv.2022.119539
1181	Fromm, M., Kablick III, G., & Caffrey, P. (2016). Dust-infused baroclinic cyclone
1182	storm clouds: The evidence, meteorology, and some implications. <i>Geophysical</i>
1183	Research Letters, 43(24), 12,643-12,650. doi: DOI:10.1002/2016GL071801
1184	Fuell, K., Guyer, B., Kann, D., Molthan, A., & Elmer, N. (2016, mar). Next gen-
1185	eration satellite RGB dust imagery leads to op-erational changes at NWS
1186	alburquerque. Journal of Operational Meteorology, $04(06)$, 75–91. doi:
1187	DOI:10.15191/nwajom.2016.0406
1188	Gabbi, J., Huss, M., Bauder, A., Cao, F., & Schwikowski, M. (2015). The

1189	impact of saharan dust and black carbon on albedo and long-term mass
1190	balance of an alpine glacier. The Cryosphere, $9(4)$, 1385–1400. doi:
1191	DOI:10.5194/tc-9-1385-2015
1192	Gavrouzou, M., Hatzianastassiou, N., Gkikas, A., Korras-Carraca, MB., & Mi-
1193	halopoulos, N. (2021). A global climatology of dust aerosols based on satellite
1194	data: Spatial, seasonal and inter-annual patterns over the period 2005–2019.
1195	Remote Sensing, 13(3). doi: DOI:10.3390/rs13030359
1196	Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
1107	Zhao B (2017) The Modern-Fra Retrospective analysis for Research and
1108	Applications version 2 (MERBA-2) Journal of Climate 30(14) 5419 - 5454
1100	doi: DOI:10_1175/ICLI-D-16-0758_1
1199	Clobal Modeling And Assimilation Office & Pawson S (2015) MERRA 2
1200	taval 2d aer nr: 2d 1 hourly time averaged single level assimilation aerosol
1201	diagnostics v5 19 / NASA Coddard Farth Sciences Data and Information
1202	Sorvices Conter doi: DOI:10.5067/KLICLI78EMOD
1203	Coudia A S (2000) Dust storms: Recent developments I Environ Manage
1204	Goudie, A. S. (2009) . Dust storms. Recent developments. J. Emotion. Manage., 00(1) 80.04 doi: DOL https://doi.org/10.1016/j.jonumon.2008.07.007
1205	90(1), 89-94. doi: Doi: https://doi.org/10.1010/j.jenvman.2008.07.007
1206	Goudie, A. S. (2014). Desert dust and numan neatin disorders. Environment Inter-
1207	mational, 03, 101-115. doi: D01:10.1016/j.envint.2013.10.011
1208	Grimn, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert
1209	dust and implications for numan nearth. <i>Clinical Microbiology Reviews</i> , 20(3),
1210	459-477. doi: DUI:10.1128/CMR.00039-06
1211	Griffin, D. W., & Kellogg, C. A. (2004, Sep 01). Dust storms and their impact on
1212	ocean and human health: Dust in earth's atmosphere. EcoHealth, $I(3)$, 284-
1213	295. doi: DUI:10.1007/s10393-004-0120-8
1214	Hemold, B., Knippertz, P., Marsham, J. H., Fiedler, S., Dixon, N. S., Schepanski,
1215	K., Tegen, I. (2013). The role of deep convection and nocturnal low-level
1216	jets for dust emission in summertime West Africa: Estimates from convection-
1217	permitting simulations. Journal of Geophysical Research: Atmospheres,
1218	118(10), 4385-4400. doi: DUI:https://doi.org/10.1002/jgrd.50402
1219	Hintze, J. L., & Nelson, R. D. (1998). Violin plots: A box plot-density trace syner-
1220	gism. The American Statistician, $52(2)$, 181-184. doi: DUI:10.1080/00031305
1221	.1998.10480559
1222	Hoose, C., Kristjansson, J. E., Chen, JP., & Hazra, A. (2010). A classical-theory-
1223	based parameterization of heterogeneous ice nucleation by mineral dust, soot,
1224	and biological particles in a global climate model. J. Atmos. Sci., $67(8)$,
1225	2483-2503. doi: D0I:10.1175/2010JAS3425.1
1226	Horé, A., & Ziou, D. (2013). Is there a relationship between peak-signal-to-noise ra-
1227	tio and structural similarity index measure? IET Image Processing, $7(1)$, 12-
1228	24. doi: DOI:10.1049/iet-ipr.2012.0489
1229	Hsu, N. C., Jeong, MJ., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S.,
1230	Tsay, SC. (2013). Enhanced deep blue aerosol retrieval algorithm: The
1231	second generation. Journal of Geophysical Research: Atmospheres, 118(16),
1232	9296-9315. doi: DOI:10.1002/jgrd.50712
1233	Huneeus, N., Basart, S., Fiedler, S., Morcrette, JJ., Benedetti, A., Mulcahy, J.,
1234	Cvetkovic, B. (2016). Forecasting the northern african dust outbreak towards
1235	europe in april 2011: a model intercomparison. Atmospheric Chemistry and
1236	<i>Physics</i> , <i>16</i> (8), 4967–4986. doi: DOI:10.5194/acp-16-4967-2016
1237	Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S.,
1238	Zender, C. S. (2011). Global dust model intercomparison in aerocom
1239	phase i. Atmospheric Chemistry and Physics, $11(15)$, 7781–7816. Re-
1240	trieved from https://acp.copernicus.org/articles/11/7781/2011/ doi:
1241	DOI:10.5194/acp-11-7781-2011
1242	Huttenlocher, D., Klanderman, G., & Rucklidge, W. (1993). Comparing images us-
1243	ing the Hausdorff distance. IEEE Transactions on Pattern Analysis and Ma-

1244	chine Intelligence, 15(9), 850-863, doi: DOI:10.1109/34.232073
1245	Inness A Ades M Agustí-Panareda A Barré J Benedictow A Blechschmidt
1245	A -M Suttie M (2019a) CAMS alobal reanalysis (EAC). Copernicus
1240	Atmosphere Monitoring Service (CAMS) Atmosphere Data Store (ADS). Re-
1248	trieved from https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/
1249	cams-global-reanalysis-eac4?tab=overview
1250	Inness A Ades M Agustí-Panareda A Barré I Benedictow A Blech-
1250	schmidt A -M Suttie M (2019b) The CAMS reanalysis of at-
1251	mospheric composition Atmos Chem Phys 19(6) 3515–3556 doi:
1252	DOI: 10 5194/acn-19-3515-2019
1255	Inoue N Soitz S Meyer I & Kadow C (2022 April) EREVA
1254	CLINT/climatereconstruction AI: v1 0.9 Zenodo Betrieved from https://
1255	doj org/10 5281/zenodo 6475858 doj DDI:10 5281/zenodo 6475858
1250	International Flogtratechnical Commission (1000) Multimedia systems and equin
1257	ment colour measurement and menagement nart 2 1: Colour menagement
1258	default BCB colour measurement und management - part 2-1. Colour management -
1259	Switzerland: Author
1260	Jana alguich D. L. Louin, Z. Loganh, L. H. & Canon, E. (2002). Depart concel trans
1261	Israelevicii, F. L., Levili, Z., Josephi, J. H., & Ganor, E. (2002). Desert aerosol trans-
1262	port in the Mediterranean region as interred from the 10MB aerosol index.
1263	12 12 doi: DDI.10. 1020/2001 ID002011
1264	13-15. doi: $D01:10.1029/2001JD002011$
1265	Jiao, L., Wu, H., Wang, H., & Bie, R. (2019). Multi-scale semantic image inpainting
1266	with residual learning and GAN. <i>Neurocomputing</i> , 331, 199-212. doi: DUI:10
1267	1016/J.neucom.2018.11.045
1268	Kadow, C., Hall, D. M., & Ulbrich, U. (2020, Jun 01). Artificial intelligence recon-
1269	structs missing climate information. Nature Geoscience, 13(6), 408-413. doi:
1270	DUI:10.1038/s41561-020-0582-5
1271	Kain, J. S., Weiss, S. J., Bright, D. R., Baldwin, M. E., Levit, J. J., Carbin, G. W.,
1272	Thomas, K. W. (2008). Some practical considerations regarding horizon-
1273	tal resolution in the first generation of operational convection-allowing NWP.
1274	Weather and Forecasting, $23(5)$, $931 - 952$. doi: DUI:10.1175/WAF2007106.1
1275	Karanasiou, A., Moreno, N., Moreno, T., Viana, M., de Leeuw, F., & Querol, X.
1276	(2012). Health effects from Sahara dust episodes in Europe: Literature
1277	review and research gaps. Environment International, 47, 107-114. doi:
1278	DU1:10.1016/j.envint.2012.06.012
1279	King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., & Hubanks, P. A.
1280	(2013). Spatial and temporal distribution of clouds observed by MODIS
1281	onboard the terra and aqua satellites. IEEE Transactions on Geoscience and $P_{\text{constraint}} = \frac{1}{2} \frac{1}{$
1282	Remote Sensing, 51(1), 3820-3852. doi: DUI:10.1109/16R5.2012.222/333
1283	Klose, M., Jorba, O., Gonçalves Ageitos, M., Escribano, J., Dawson, M. L., Obiso,
1284	V., Perez Garcia-Pando, C. (2021). Mineral dust cycle in the Multi-
1285	scale Online Nonnydrostatic Atmosphere Chemistry model (MONARCH)
1286	version 2.0. Geoscientific Model Development, $14(10)$, $6403-6444$. doi:
1287	DU1:10.5194/gmd=14-6403-2021
1288	Knippertz, P., & Todd, M. C. (2012). Mineral dust aerosols over the sahara: Meteo-
1289	rological controls on emission and transport and implications for modeling. Re
1290	views of Geophysics, $50(1)$. doi: DUI:10.1029/2011RG000362
1291	Kok, J. F., Adebiyi, A. A., Albani, S., Balkanski, Y., Checa-Garcia, K., Chin, M.,
1292	wan, J. S. (2021). Contribution of the world's main dust source regions to the algebra contribution of the A_{1} and A_{2} and A_{3} and A_{4} and A
1293	the global cycle of desert dust. Atmospheric Chemistry and Physics, $21(10)$,
1294	8109-8193. doi: DUI:10.5194/acp-21-8169-2021
1295	Kok, J. F., Storelymo, T., Karydis, V. A., Adebiyi, A. A., Mahowald, N. M., Evan,
1296	A. I., Leung, D. M. (2023, jan). Mineral dust aerosol impacts on global
1297	climate and climate change. Nature Keviews Earth & Environment. doi:
1298	DU1:10.1038/\$4301/-022-003/9-5

1299	Kontos, S., Kakosimos, K., Liora, N., Poupkou, A., & Melas, D. (2021). Towards a
1300	regional dust modeling system in the central middle east: Evaluation, uncer-
1301	tainties and recommendations. Atmospheric Environment, 246, 118160. doi:
1302	DOI:10.1016/j.atmosenv.2020.118160
1303	LeGrand, S. L., Polashenski, C., Letcher, T. W., Creighton, G. A., Peckham, S. E.,
1304	& Cetola, J. D. (2019). The AFWA dust emission scheme for the GOCART
1305	aerosol model in WRF-Chem v3.8.1. Geoscientific Model Development, $12(1)$,
1306	131-166. doi: DOI:10.5194/gmd-12-131-2019
1307	Lensky, I. M., & Rosenfeld, D. (2008). Clouds-aerosols-precipitation satellite analysis
1308	tool (CAPSAT). Atmospheric Chemistry and Physics, 8(22), 6739–6753. doi:
1309	DOI:10.5194/acp-8-6739-2008
1310	Li, J., Wu, Z., Hu, Z., Zhang, J., Li, M., Mo, L., & Molinier, M. (2020). Thin
1311	cloud removal in optical remote sensing images based on generative adver-
1312	sarial networks and physical model of cloud distortion. ISPRS Journal of
1313	Photogrammetry and Remote Sensing, 166, 373-389. doi: DOI:10.1016/
1314	j.isprsjprs.2020.06.021
1315	Liu, G., Reda, F. A., Shih, K. J., Wang, TC., Tao, A., & Catanzaro, B. (2018,
1316	September). Image inpainting for irregular holes using partial convolutions. In
1317	Proceedings of the european conference on computer vision (eccv).
1318	Liu, L., & Hu, S. (2021, Oct 26). SACTNet: Spatial attention context transforma-
1319	tion network for cloud removal. Wireless Communications and Mobile Comput-
1320	ing, 2021, 8292612. doi: DOI:10.1155/2021/8292612
1321	Lu, CH., da Silva, A., Wang, J., Moorthi, S., Chin, M., Colarco, P., Iredell,
1322	M. (2016). The implementation of NEMS GFS Aerosol Component (NGAC)
1323	version 1.0 for global dust forecasting at NOAA/NCEP. Geoscientific Model
1324	Development, 9(5), 1905–1919. doi: DOI:10.5194/gmd-9-1905-2016
1325	Lutz, HJ. (1999). Cloud processing for meteosat second generation. EUMETSAT
1326	Tech. Department Tech. Memo., 4, 26.
1327	Mahowald, N. M., Scanza, R., Brahney, J., Goodale, C. L., Hess, P. G., Moore,
1328	J. K., & Neff, J. (2017, Mar 01). Aerosol deposition impacts on land and
1329	ocean carbon cycles. Current Climate Change Reports, $3(1)$, 16-31. doi:
1330	DOI:10.1007/s40641-017-0056-z
1331	Malardel, S., Wedi, N., Deconinck, W., Diamantakis, M., Kuehnlein, C., Mozdzyn-
1332	ski, G., Smolarkiewicz, P. (2016). A new grid for the IFS. $ECMWF$
1333	Newsletter(146). doi: DOI:10.21957/ZWDU9U5I
1334	Manders, A. M. M., Builtjes, P. J. H., Curier, L., Denier van der Gon, H. A. C.,
1335	Hendriks, C., Jonkers, S., Schaap, M. (2017). Curriculum vitae of the
1336	LOTOS–EUROS (v2.0) chemistry transport model. Geoscientific Model Devel-
1337	opment, 10(11), 4145–4173. doi: DOI:10.5194/gmd-10-4145-2017
1338	Middleton, N. (2017). Desert dust hazards: A global review. Aeolian Research, 24,
1339	53-63. doi: DOI:10.1016/j.aeolia.2016.12.001
1340	Middleton, N. J., & Goudie, A. S. (2001). Saharan dust: sources and trajectories.
1341	Transactions of the Institute of British Geographers, $26(2)$, 165-181. doi: DOI:
1342	10.1111/1475-5661.00013
1343	MODIS Atmosphere Science Team. (2017a). MODIS/terra aerosol cloud water
1344	vapor ozone daily 13 global 1 deg cmg. NASA Level 1 and Atmosphere Archive
1345	and Distribution System. doi: DOI:10.5067/MODIS/MOD08_D3.061
1346	MODIS Atmosphere Science Team. (2017b). Myd08_d3 MODIS/aqua aerosol cloud
1347	water vapor ozone daily 13 global 1deg cmg. NASA Level 1 and Atmosphere
1348	Archive and Distribution System. doi: DOI:10.5067/MODIS/MYD08_D3.061
1349	Mokhtari, M., Gomes, L., Tulet, P., & Rezoug, T. (2012). Importance of the surface
1350	size distribution of erodible material: an improvement on the Dust Entrain-
1351	ment And Deposition (DEAD) Model. Geoscientific Model Development, $5(3)$,
1352	581-598. doi: DOI:10.5194/gmd-5-581-2012
1050	Monteiro A. Basart, S. Kazadzis, S. Votsis, A. Gkikas, A. Vandenbussche, S.

1354	Nickovic, S. (2022). Multi-sectoral impact assessment of an extreme African
1355	dust episode in the Eastern Mediterranean in March 2018. Science of The To-
1356	tal Environment, 843, 156861. doi: DOI:10.1016/j.scitotenv.2022.156861
1357	Nelli, N. R., Francis, D., Fonseca, R., Abida, R., Weston, M., Wehbe, Y., & Al
1358	Hosary, T. (2021). The atmospheric controls of extreme convective events
1359	over the southern Arabian Peninsula during the spring season. Atmospheric
1360	Research, 262, 105788. doi: DOI:10.1016/j.atmosres.2021.105788
1361	Nickling, W. G., & Gillies, J. A. (1993). Dust emission and transport in mali,
1362	west africa. Sedimentology, 40(5), 859-868. Retrieved from https://
1363	onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3091.1993.tb01365.x
1364	doi: DOI:https://doi.org/10.1111/j.1365-3091.1993.tb01365.x
1365	Nickovic, S., Cvetkovic, B., Madonna, F., Rosoldi, M., Pejanovic, G., Petkovic,
1366	S., & Nikolic, J. (2016). Cloud ice caused by atmospheric mineral dust –
1367	part 1: Parameterization of ice nuclei concentration in the NMME-DREAM
1368	model. Atmospheric Chemistry and Physics, 16(17), 11367–11378. doi:
1369	DOI:10.5194/acp-16-11367-2016
1370	Nickovic, S., Kallos, G., Papadopoulos, A., & Kakaliagou, O. (2001). A model
1371	for prediction of desert dust cycle in the atmosphere. Journal of Geophys-
1372	<i>ical Research: Atmospheres</i> , 106 (D16), 18113-18129. doi: DOI:10.1029/
1373	2000JD900794
1374	Oerlemans, J., Giesen, R., & Van Den Broeke, M. (2009). Retreating alpine
1375	glaciers: increased melt rates due to accumulation of dust (vadret da
1376	morteratsch, switzerland). Journal of Glaciology, 55(192), 729–736. doi:
1377	DOI:10.3189/002214309789470969
1378	Oluleve, A., & Jimoh, O. (2018). Influence of atmospheric circulation patterns on
1379	dust transport during harmattan period in west africa. Pollution, $4(1)$, 9-27.
1380	doi: DOI:10.22059/poll.2017.232096.270
1381	Paiot, A., de Bezenac, E., & Gallinari, P. (2019). Unsupervised adversarial image
1381 1382	inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/
1381 1382 1383	Pajot, A., de Bezenac, E., & Gallinari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/ 1912.12164
1381 1382 1383 1384	 Pajot, A., de Bezenac, E., & Gallinari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014
1381 1382 1383 1384 1385	 Pajot, A., de Bezenac, E., & Gallinari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI:
1381 1382 1383 1384 1385 1386	 Pajot, A., de Bezenac, E., & Gallinari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115
1381 1382 1383 1384 1385 1386 1387	 Pajot, A., de Bezenac, E., & Gallinari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention gen-
1381 1382 1383 1384 1385 1386 1386 1387 1388	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/
1381 1382 1383 1384 1385 1386 1386 1387 1388 1389	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1390	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Equ general assembly conference abstracts (p. 7353).
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1391 1392 1393	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M.,
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24),
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397	 Pajot, A., de Bezenac, E., & Galimari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027. doi: DOI:10.5194/acp-11-13001-2011
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027. doi: DOI:10.5194/acp-11-13001-2011 Pósfai, M., & Buseck, P. R. (2010). Nature and climate effects of individual tro-
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398	 Pajot, A., de Bezenac, E., & Galinari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027. doi: DOI:10.5194/acp-11-13001-2011 Pósfai, M., & Buseck, P. R. (2010). Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci., 38(1), 17-43. doi:
1381 1382 1383 1384 1385 1386 1387 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400	 Pajot, A., de Bezenac, E., & Galinari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027. doi: DOI:10.5194/acp-11-13001-2011 Pósfai, M., & Buseck, P. R. (2010). Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci., 38(1), 17-43. doi: DOI:10.1146/annurev.earth.031208.100032
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400	 Pajot, A., de Bezenac, E., & Galinari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027. doi: DOI:10.5194/acp-11-13001-2011 Pósfai, M., & Buseck, P. R. (2010). Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci., 38(1), 17-43. doi: DOI:10.1146/annurev.earth.031208.100032
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1394 1395 1396 1397 1398 1399 1400 1401	 Pajot, A., de Bezenac, E., & Galimari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027. doi: DOI:10.5194/acp-11-13001-2011 Pósfai, M., & Buseck, P. R. (2010). Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci., 38(1), 17-43. doi: DOI:10.1146/annurev.earth.031208.100032 Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., & Özsoy, E. (2006). Interactive dust-radiation modeling: A step to improve weather forecasts. Journal of
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1399 1400 1401	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001-13027. doi: DOI:10.5194/acp-11-13001-2011 Pósfai, M., & Buseck, P. R. (2010). Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci., 38(1), 17-43. doi: DOI:10.1146/annurev.earth.031208.100032 Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., & Özsoy, E. (2006). Interactive dust-radiation modeling: A step to improve weather forecasts. Journal of Geophysical Research: Atmospheres, 111(D16). doi: DOI:https://doi.org/10
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1390 1391 1392 1393 1394 1395 1396 1397 1396 1397 1398 1399 1400 1401 1402 1403	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027. doi: DOI:10.5194/acp-11-13001-2011 Pósfai, M., & Buseck, P. R. (2010). Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci., 38(1), 17-43. doi: DOI:10.1146/annurev.earth.031208.100032 Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., & Özsoy, E. (2006). Interactive dust-radiation modeling: A step to improve weather forecasts. Journal of Geophysical Research: Atmospheres, 111(D16). doi: DOI:https://doi.org/10.1029/2005JD006717
1381 1382 1383 1384 1385 1386 1387 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1396 1397 1398 1399 1400 1401 1402 1403 1404	 Pajot, A., de Bezenac, E., & Gallmari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027. doi: DOI:10.5194/acp-11-13001-2011 Pósfai, M., & Buseck, P. R. (2010). Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci., 38(1), 17-43. doi: DOI:10.1146/annurev.earth.031208.100032 Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., & Özsoy, E. (2006). Interactive dust-radiation modeling: A step to improve weather forecasts. Journal of Geophysical Research: Atmospheres, 111(D16). doi: DOI:https://doi.org/10.1029/2005JD006717 Qin, Z., Zeng, Q., Zong, Y., & Xu, F. (2021). Image inpainting based on
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404	 Pajot, A., de Bezenac, E., & Galinari, P. (2019). Unsupervised adversarial image inpainting. CoRR, abs/1912.12164. Retrieved from http://arxiv.org/abs/1912.12164 Palubinskas, G. (2014). Mystery behind similarity measures mse and ssim. In 2014 ieee international conference on image processing (icip) (p. 575-579). doi: DOI: 10.1109/ICIP.2014.7025115 Pan, H. (2020). Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv. Retrieved from https://arxiv.org/abs/2009.13015 doi: DOI:10.48550/ARXIV.2009.13015 Pejanovic, G., Vukovic, A., Vujadinovic, M., & Dacic, M. (2010, May). Assimilation of satellite information on mineral dust using dynamic relaxation approach. In Egu general assembly conference abstracts (p. 7353). Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online nmmb/bsc-dust model - part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027. doi: DOI:10.5194/acp-11-13001-2011 Pósfai, M., & Buseck, P. R. (2010). Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci., 38(1), 17-43. doi: DOI:10.1146/annurev.earth.031208.100032 Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., & Özsoy, E. (2006). Interactive dust-radiation modeling: A step to improve weather forecasts. Journal of Geophysical Research: Atmospheres, 111(D16). doi: DOI:https://doi.org/10.1029/2005JD006717 Qin, Z., Zeng, Q., Zong, Y., & Xu, F. (2021). Image inpainting based on deep learning: A review. Displays, 69, 102028. doi: DOI:10.1016/

Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govin-

1409	daraju, R., Flynn, C. J. (2017). The MERRA-2 aerosol reanalysis, 1980
1410	onward. part i: System description and data assimilation evaluation. Jour-
1411	nal of Climate, 30(17), 6823 - 6850. doi: DOI:https://doi.org/10.1175/
1412	JCLI-D-16-0609.1
1413	Randles, C. A., da Silva, A. M., Buchard, V., Darmenov, A., Colarco, P. R.,
1414	Aquila, V., Govindaraju, R. (2016). The MERRA-2 aerosol assimila-
1415	tion (Tech. Rep. No. NASA/TM-2016-104606/Vol. 45). National Aeronautics
1416	and Space Administration, Goddard Space Flight Center. Retrieved from
1417	https://gmao.gsfc.nasa.gov/pubs/docs/Randles887.pdf (Technical
1418	Report Series on Global Modeling and Data Assimilation, Volume 45)
1419	Rémy, S., Kipling, Z., Flemming, J., Boucher, O., Nabat, P., Michou, M.,
1420	Morcrette, JJ. (2019). Description and evaluation of the tropospheric
1421	aerosol scheme in the European Centre for Medium-Range Weather Fore-
1422	casts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45r1).
1423	Geoscientific Model Development, 12(11), 4627–4659. doi: DOI:10.5194/
1424	gmd-12-4627-2019
1425	Rieger, D., Bangert, M., Bischoff-Gauss, L., Förstner, J., Lundgren, K., Reinert, D.,
1426	Vogel, B. (2015). ICON-ART 1.0 – a new online-coupled model system
1427	from the global to regional scale <i>Geoscientific Model Development</i> 8(6)
1428	1659–1676 doi: DDI:10.5194/gmd-8-1659-2015
1420	Roberts A I & Knippertz P (2014) The formation of a large summertime Saha-
1429	ran dust plume: Convective and synoptic-scale analysis <i>Journal of Geophysical</i>
1430	Research: Atmospheres $119(4)$ 1766-1785 doi: DOI:10.1002/2013. DO20667
1451	Reportson A B (1000) Historical development of CIF recommended color differ
1432	appa equations Color Research & Application 15(3) 167 170 doi: DOI:10
1433	1002/col = 5080150208
1434	Dedrame C. D. (2000) Inverse methods for streamhoris sounding, theory and mass
1435	tige Singapore Piver Edge N I: World Scientific
1436	Ute. Singapore rever Edge, N.J. World Scientific.
1437	for hismedical image commentation an Viz dei: DOL 10 ASEE (ADVIV 1505
1438	Jor biomedical image segmentation. arXiv. doi: DUI:10.48550/ARXIV.1505
1439	
1440	Saraianov, M., Kazakov, E., Nikitin, N. O., & Kalyuzhnaya, A. V. (2020). A ma-
1441	chine learning approach for remote sensing data gap-ning with open-source
1442	implementation: An example regarding land surface temperature, surface
1443	albedo and NDVI. Remote Sensing, $12(23)$. doi: DUI:10.3390/rs12233865
1444	Sarukkai, V., Jain, A., Uzkent, B., & Ermon, S. (2020, March). Cloud removal from
1445	satellite images using spatiotemporal generator networks. In Proceedings of the
1446	ieee/cvf winter conference on applications of computer vision (wacv).
1447	Sayer, A. M., Hsu, N. C., Bettenhausen, C., & Jeong, MJ. (2013). Validation and
1448	uncertainty estimates for modis collection 6 "deep blue" aerosol data. Journal
1449	of Geophysical Research: Atmospheres, 118(14), 7864-7872. doi: DUI:10.1002/
1450	jgrd.50600
1451	Schanda, J. (Ed.). (2007). Colorimetry. Wiley.
1452	Schepanski, K., & Knippertz, P. (2011). Soudano-saharan depressions and their
1453	importance for precipitation and dust: a new perspective on a classical synop-
1454	tic concept. Quarterly Journal of the Royal Meteorological Society, 137(659),
1455	1431-1445. Retrieved from https://rmets.onlinelibrary.wiley.com/doi/
1456	abs/10.1002/qj.850 doi: DOI:https://doi.org/10.1002/qj.850
1457	Schepanski, K., Tegen, I., Laurent, B., Heinold, B., & Macke, A. (2007). A new
1458	Saharan dust source activation frequency map derived from MSG-SEVIRI
1459	IR-channels. Geophys Res Lett, 34(18). doi: DOI:10.1029/2007GL030168
1460	Schepanski, K., Tegen, I., & Macke, A. (2009). Saharan dust transport and de-
1461	position towards the tropical northern atlantic. Atmospheric Chemistry and
1462	Physics, 9(4), 1173-1189. Retrieved from https://acp.copernicus.org/
1463	articles/9/1173/2009/ doi: DOI:10.5194/acp-9-1173-2009
	-

(2012).Schepanski, K., Tegen, I., & Macke, A. Comparison of satellite based ob-1464 servations of Saharan dust source areas. Remote Sensing of Environment, 123, 1465 90-97. doi: DOI:10.1016/j.rse.2012.03.019 1466 Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., & Ratier, 1467 An introduction to Meteosat Second Generation (MSG). Α. (2002).1468 Bulletin of the American Meteorological Society, 83(7), 977 - 992. doi: 1469 DOI:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2 1470 Schulzweida, U. (2021, October). CDO user guide. doi: DOI:10.5281/zenodo 1471 .5614769 1472 Schwanghart, W., & Schütt, B. (2008). Meteorological causes of Harmattan dust in 1473 West Africa. Geomorphology, 95(3), 412-428. doi: DOI:https://doi.org/10 1474 .1016/j.geomorph.2007.07.002 1475 Seifert, A., Bachmann, V., Filipitsch, F., Förstner, J., Grams, C. M., Hoshyaripour, 1476 (2023).Aerosol-cloud-radiation interaction during Sa-G. A., ... Vogel, B. 1477 haran dust episodes: the dusty cirrus puzzle. Atmospheric Chemistry and 1478 *Physics*, 23(11), 6409–6430. doi: DOI:10.5194/acp-23-6409-2023 1479 Seifert, P., Ansmann, A., Mattis, I., Wandinger, U., Tesche, M., Engelmann, R., ... 1480 Haustein, K. (2010). Saharan dust and heterogeneous ice formation: Eleven 1481 years of cloud observations at a central european earlinet site. J. Geophys. 1482 *Res. Atmos.*, 115(D20). doi: DOI:10.1029/2009JD013222 1483 Singh, P., & Komodakis, N. (2018).Cloud-gan: Cloud removal for Sentinel-2 im-1484 agery using a cyclic consistent generative adversarial networks. In IGARSS 1485 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium 1486 (p. 1772-1775). doi: DOI:10.1109/IGARSS.2018.8519033 1487 Sofiev, M., Vira, J., Kouznetsov, R., Prank, M., Soares, J., & Genikhovich, E. 1488 (2015).Construction of the SILAM Eulerian atmospheric dispersion model 1489 based on the advection algorithm of Michael Galperin. Geoscientific Model 1490 Development, 8(11), 3497-3522. doi: DOI:10.5194/gmd-8-3497-2015 1491 Solomos, S., Ansmann, A., Mamouri, R.-E., Binietoglou, I., Patlakas, P., Marinou, 1492 E., & Amiridis, V. (2017).Remote sensing and modelling analysis of the 1493 extreme dust storm hitting the middle east and eastern mediterranean in 1494 september 2015. Atmospheric Chemistry and Physics, 17(6), 4063–4079. doi: 1495 DOI:10.5194/acp-17-4063-2017 1496 Stefanski, R., & Sivakumar, M. V. K. (2009, mar). Impacts of sand and dust storms 1497 on agriculture and potential agricultural applications of a SDSWS. IOP Con-1498 ference Series: Earth and Environmental Science, 7(1), 012016. doi: DOI:10 1499 .1088/1755-1307/7/1/012016 1500 Stock, A., Subramaniam, A., Van Dijken, G. L., Wedding, L. M., Arrigo, K. R., 1501 Mills, M. M., ... Micheli, F. (2020).Comparison of cloud-filling algo-1502 rithms for marine satellite data. Remote Sensing, 12(20). doi: DOI:10.3390/ 1503 rs12203313 1504 Strong, J. D. O., Vecchi, G. A., & Ginoux, P. (2018). The climatological effect of 1505 saharan dust on global tropical cyclones in a fully coupled GCM. Journal of 1506 Geophysical Research: Atmospheres, 123(10), 5538-5559. doi: DOI:10.1029/ 1507 2017JD027808 1508 Swap, R., Garstang, M., Greco, S., Talbot, R., & Kållberg, P. (1992). Saharan dust 1509 Tellus B, 44(2), 133-149. doi: DOI:10.1034/j.1600 in the amazon basin. 1510 -0889.1992.t01-1-00005.x 1511 Taha, A. A., & Hanbury, A. (2015). An efficient algorithm for calculating the exact 1512 Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine In-1513 *telligence*, 37(11), 2153-2163. doi: DOI:10.1109/TPAMI.2015.2408351 1514 Talbot, R. W., Harriss, R. C., Browell, E. V., Gregory, G. L., Sebacher, D. I., 1515 & Beck, S. M. (1986).Distribution and geochemistry of aerosols in the 1516 tropical north atlantic troposphere: Relationship to saharan dust. Jour-1517 nal of Geophysical Research: Atmospheres, 91(D4), 5173-5182. doi:

1518

1519	DOI:10.1029/JD091iD04p05173
1520	Tanaka, T. Y., & Chiba, M. (2006). A numerical study of the contributions of dust
1521	source regions to the global dust budget. Global and Planetary Change, $52(1)$,
1522	88-104. (Monitoring and Modelling of Asian Dust Storms) doi: DOI:https://
1523	doi.org/10.1016/j.gloplacha.2006.02.002
1524	Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P.,
1525	Joly A (2018) The ALADIN system and its canonical model configurations
1525	AROME CV41T1 and ALARO CV40T1 — Geoscientific Model Development
1520	11(1) 257–281 doi: DOI:10 5191/md-11-257-2018
1527	Tampadollag E. Degent G. Wannen E. & Deningeg E. (2022) Model inter-
1528	Terradenas, E., Dasart, S., Werner, E., & Dennicas, F. (2022). Model inter-
1529	comparisonana evaluation of austforecasts (techreport No. SDS-WAS-2020-
1530	001). Barcelona, Spain: Sand and Dust Storm Warning Advisory and As-
1531	sessment System (SDS-WAS) Regional Center for Northern Africa-Middle
1532	East-Europe (NAMEE).
1533	Thomas, G. E., Carboni, E., Sayer, A. M., Poulsen, C. A., Siddans, R., & Grainger,
1534	R. G. (2009). Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from
1535	satellite radiometers. In A. A. Kokhanovsky & G. de Leeuw (Eds.), <i>Satellite</i>
1536	aerosol remote sensing over land (pp. 193–225). Berlin, Heidelberg: Springer
1537	Berlin Heidelberg. doi: DOI:10.1007/978-3-540-69397-0_7
1538	Trzeciak, T. M., Garcia-Carreras, L., & Marsham, J. H. (2017). Cross-Saharan
1539	transport of water vapor via recycled cold pool outflows from moist convec-
1540	tion. Geophysical Research Letters, 44(3), 1554-1563. doi: DOI:10.1002/
1541	2016GL072108
1542	van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D.,
1543	Yager, N., Yu, T. (2014, jun). scikit-image: image processing in python.
1544	PeerJ, 2, e453. doi: DOI:10.7717/peerj.453
1545	Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
1546	D.,, SciPy 1.0 Contributors (2020, Mar 01). SciPy 1.0: fundamental algo-
1547	rithms for scientific computing in Python. Nature Methods, 17(3), 261-272.
1548	doi: DOI:10.1038/s41592-019-0686-2
1549	Wagner B. Schepanski K. Heinold B. & Tegen I. (2016). Interannual variability
1550	in the saharan dust source activation - toward understanding the differences
1551	between 2007 and 2008 <i>Journal of Geophysical Research: Atmospheres</i>
1552	121(9) 4538-4562 doi: DOI:https://doi.org/10.1002/2015.ID024302
1552	Wang O Gu I & Wang X (2020) The impact of Sahara dust on air quality and
1555	nublic health in European countries Atmospheric Environment 2/1 117771
1554	doi: DOI:10_1016/j. atmosony_2020_117771
1555	Wang Z Boyik A Sheikh H & Simoncelli E (2004) Image quality aggregament:
1556	from one visibility to structural similarity. <i>IEEE Transactions on Image Dra</i>
1557	nom enor visibility to structural similarity. <i>IEEE Transactions on Image Fio-</i>
1558	cessting, 13(4), 000-012. a01: D01:10.1109/11P.2003.819861
1559	warner, I. I. (2004). Desert meteorology. Cambridge University Press. doi: DUI:
1560	
1561	Washington, R., Bouet, C., Cautenet, G., Mackenzie, E., Ashpole, I., Engelstaedter,
1562	S., Tegen, I. (2009). Dust as a tipping element: The Bodélé Depression,
1563	Chad. Proceedings of the National Academy of Sciences, $106(49)$, $20564-20571$.
1564	doi: DOI:10.1073/pnas.0711850106
1565	Washington, R., Todd, M. C., Engelstaedter, S., Mbainayel, S., & Mitchell, F.
1566	(2006). Dust and the low-level circulation over the Bodélé Depression, Chad:
1567	Observations from BoDEx 2005. Journal of Geophysical Research: Atmo-
1568	spheres, 111(D3). doi: DOI:10.1029/2005JD006502
1569	Weisman, M. L., Skamarock, W. C., & Klemp, J. B. (1997). The resolution de-
1570	pendence of explicitly modeled convective systems. Monthly Weather Review,
1571	125(4), 527 - 548. doi: DOI:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0
1572	.CO;2
1573	Weiss, D. J., Atkinson, P. M., Bhatt, S., Mappin, B., Hay, S. I., & Gething, P. W.

	(2014) An effective encourse h for one filling continental costs and the encoded
1574	(2014). An effective approach for gap-ining continental scale remotely sensed
1575	time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98,
1576	106-118. doi: DOI:10.1016/j.isprsjprs.2014.10.001
1577	Yu, H., Tan, Q., Zhou, L., Zhou, Y., Bian, H., Chin, M., Holben, B. N. (2021).
1578	Observation and modeling of the historic "godzilla" african dust intrusion into
1579	the caribbean basin and the southern us in june 2020. Atmospheric Chemistry
1580	and Physics, 21(16), 12359–12383. doi: DOI:10.5194/acp-21-12359-2021
1581	Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2018, June). Generative
1582	image inpainting with contextual attention. In Proceedings of the IEEE Con-
1583	ference on Computer Vision and Pattern Recognition (CVPR).
1584	Zakey, A. S., Solmon, F., & Giorgi, F. (2006). Implementation and testing of a
1585	desert dust module in a regional climate model. Atmospheric Chemistry and
1586	<i>Physics</i> , $6(12)$, 4687–4704. doi: DOI:10.5194/acp-6-4687-2006
1587	Zhao, M., Olsen, P. A., & Chandra, R. (2021). Seeing through clouds in satellite im-
1588	ages. CoRR, abs/2106.08408. Retrieved from https://arxiv.org/abs/2106
1589	.08408
1590	Zhao, W., & Duan, SB. (2020). Reconstruction of daytime land surface tem-
1591	peratures under cloud-covered conditions using integrated MODIS/Terra
1592	land products and MSG geostationary satellite data. Remote Sensing
1593	of Environment, 247, 111931. doi: DOI:https://doi.org/10.1016/
1594	j.rse.2020.111931
1595	Zi, Y., Xie, F., Song, X., Jiang, Z., & Zhang, H. (2022). Thin cloud removal
1596	for remote sensing images using a physical-model-based CycleGAN with
1597	unpaired data. IEEE Geosci. Remote. S., 19, 1-5. doi: DOI:10.1109/
1598	LGRS.2021.3140033
	Fig. 1. Two dimensional histograms of the mean non-masked $\tau_{\rm c}$ from CAMS re-

Fig. 1. Two-dimensional histograms of the mean non-masked τ_{dust} from CAMS reanalysis and the mean reconstructed τ_{dust} . The shading represents the density of the data points in the respective size bin with white indicating no available data. For each panel, the root mean squared error (RMSE) and the mean absolute percent error (MAPE) of the reconstruction with respect to the reanalysis are given. Furthermore, the Pearson correlation coefficient r between reconstructed and original, i.e., non-masked, reanalysis is shown.

Fig. 2. Comparison of CAMS reanalysis used as ground truth (left column), cloudmasked CAMS reanalysis, used as input (center column), and reconstruction (right column) for 5 different cases, represented by the rows. Note, that rows 2 and 3 represent the reconstructions resulting in the largest deviations from the ground truth with respect to RMSE (case 2022-02-03, 09:00 UTC) and directed Hausdorff distance (case 2022-03-16, 03:00 UTC).

Fig. 3. RGB colors as a function of value of the red component (along y-axis) and the green component (along x-axis) for a fixed value of the blue component of 255. Isolines indicate perceptional color differences ΔE calculated using Eq. 4. For most parts of our study, we set $\Delta E_{\text{cut}} = 51.9$, indicated by the solid line.

Fig. 4. Two-dimensional histograms showing fraction of dust containing pixels in the gray-scaled, cloud-obscured Dust RGB images in coarser and finer resolution (left) and the ANN-based reconstruction (right). Shading is as in Fig. 1. The dashed line indicates the best fit, obtained by using linear regression.

¹⁶²⁰ Fig. 5. Comparison of SEVIRI and MODIS observations with results from numer-¹⁶²¹ ical dust forecasts, ANN-based reconstructions and reanalysis data for 2021-08-22, 09 ¹⁶²² UTC. Top right panel show Dust RGB image in 128 pixel by 128 pixel resolution and ¹⁶²³ dust plumes detected by applying gray-scaling are indicated by white contours. The top ¹⁶²⁴ left panel shows τ from MODIS/Terra observations for coarse particles ($\alpha > 0.75$) with ¹⁶²⁵ isolines indicating the different values. The middle panels show the reconstructed dust plumes in dark blue and the isolines show the forecasted values of τ_{dust} . The forecast shown in the left panel was obtained from the DREAM8-CAMS model and the forecast in the right panel from the NASA-GEOS model. The bottom panels show SEVIRI Dust RGB images as in the top right panel. White, hatched contours indicate reconstructed dust plumes, whereas, isolines indicate the values of τ_{dust} from CAMS (left panel) and MERRA-2 (right panel) reanalysis.

Fig. 6. As Fig. 5, but for 2022-03-15, 12 UTC. The top right panel shows observations from MODIS/Aqua. The middle right panel shows forecasts obtained from the BSC-DREAM8b model.

Fig. 7. Comparison of the dust frequency in 2021 (left column) and 2022 (right column) at 12 UTC from reconstructed images (top) and observations without reconstruction (center). The bottom image shows the absolute difference between reconstructed and non-reconstructed images in percentage points (pp). For dust plume detection we assumed $\Delta E_{\rm cut} = 51.9$ (see Fig. 3). The respective mean dust occurrence frequency is indicated as $\bar{f}_{\rm dust}$ in the panels.

Fig. 8. Comparison of dust occurrence frequency in 2021 from reconstruction with different values of $\Delta E_{\rm cut}$ (top row) and from CAMS reanalysis with different lower bounds of $\tau_{\rm dust}$ (middle and bottom row). See Fig. 3 for an interpretation aid of values of $\Delta E_{\rm cut}$.

Fig. 9. Seasonal dust frequency obtained from gray-scaled images with $\Delta E_{\rm cut} =$ 51.9 (first column, starting from the left) and from reconstructed gray-scaled images (second column). The third column shows the absolute difference between the first two columns. For comparison, the occurrence frequency of events with $\tau_{\rm coarse} \ge 0.65$ as obtained from MODIS data is shown in the fourth column. The rows represent the different seasons, from top to bottom winter (DJF), spring (MAM), summer (JJA), and autumn (SON). See Fig. 3 for an interpretation aid of values of $\Delta E_{\rm cut}$.

1651

Fig. 10. As Fig. 9 but obtained with $\Delta E_{\rm cut} = 20.0$ and $\tau_{\rm coarse} \ge 0.9$

Fig. 11. Comparison between reconstructed dust occurrence frequencies at 9, 12, 1652 and 15 UTC with $\Delta E_{\rm cut} = 51.9$ (cf. Fig. 3). The left column represents the absolute 1653 difference between dust occurrence frequencies at 9 UTC and 12 UTC in percentage points 1654 (pp) and the middle column the absolute difference between 15 UTC and 12 UTC. The 1655 right column shows the dust occurrence frequency at 12 UTC. The rows indicate the dif-1656 ferent seasons. From top to bottom, the rows show the full year, winter (DJF), spring 1657 (MAM), summer (JJA), and autumn (SON). The black stars in the right column indi-1658 cate the location of the Bodélé Depression. 1659

Fig. 12. Comparison of the dust forecasts with respect to the median forecast (blue) 1660 and with respect to the reconstruction (orange). Colors represent the respective quan-1661 tity's distribution. Long dashed black lines represent the median and short dashed black 1662 lines the first and third quartile respectively. The left column compares forecasts and 1663 observations for 2021, whereas, the right column shows the comparison for 2022. The 1664 rows indicate different quality metrics, namely the structural similarity index measure 1665 (top row), directed Hausdorff distance (middle row), and peak signal-to-noise ratio (bot-1666 tom row). 1667

Fig. 13. Comparison of the dust reconstruction with numerical forecasts with by the individual models in the ensemble provided by the WMO Barcelona Dust Regional Center for 2021 (top row) and 2022 (bottom row). The similarity measures shown are SSIM (left column), directed Hausdorff distance (center column), and PSNR (right column). As for Fig. 12 the colors show the measures' distributions with long dashed black lines representing the median and short dashed black lines indicating the first and third quartile. Models marked with * use data assimilation. A full overview of the quartiles

- indicated by long-dashed (second quartile) and short-dashed (first and third quartile)
- lines is given in Tables S1 and S2.

Supporting Information for "Seeing' beneath the clouds - machine-learning-based reconstruction of North African dust events"

Franz Kanngießer¹ * and Stephanie Fiedler¹ †

¹Institute of Geophysics and Meteorology, University of Cologne, DE-50923 Cologne, Germany

Contents of this file

- 1. Figures S1 to S5
- 2. Tables S1 to S2

References

Sun, W., Videen, G., Kato, S., Lin, B., Lukashin, C., & Hu, Y. (2011). A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data. *Journal of Geophysical Research: Atmospheres*, 116(D22). doi:

Corresponding author: F. Kanngießer fkanngiesser@geomar.de

^{*}current address, GEOMAR Helmholtz

Center for Ocean Research Kiel, DE-24105

Kiel, Germany

 $^{\dagger}\mathrm{current}$ address, GEOMAR Helmholtz

Center for Ocean Research Kiel, DE-24105

Kiel, Germany and Christian-Albrechts

University of Kiel, DE-24118 Kiel, Germany

X - 2 KANNGIESSER AND FIEDLER: "SEEING" BENEATH THE CLOUDS

10.1029/2011JD016422

Figure S1. Comparison of dust occurrence frequency in 2021 from reconstruction with different values of $\Delta E_{\rm cut}$ (top row) and from MERRA-2 reanalysis with different lower bounds of dust AOD (middle and bottom row).

X - 4

KANNGIESSER AND FIEDLER: "SEEING" BENEATH THE CLOUDS

September 8, 2023, 1:15pm

Figure S3. Reconstructed seasonal dust occurrence frequencies with $\Delta E_{\text{cut}} = 51.9$ in 2021 (left column) and 2022 (right column). Rows indicate the season.

Figure S4. As Fig. S3, but with $\Delta E_{\rm cut} = 20.0$.

Figure S5. Seasonal occurrence frequency of events with $AOD_{corase} \ge 0.65$ (left column) and cloud occurrence frequency f_{cloud} . Clouds are defined as pixels with values of cloud optical depth of $\tau_{cloud} \ge 0.3$ (cf. Sun et al., 2011).

(112), which is believe been to be a set of the best of the be					TC COL TICLE	ICLICOL IIIO			dod by mo II.
Regional Center Barcelo	ona for 2021.	The quartil	es are also in	ndicated in	Fig. 5.				
model	Q_1 (SSIM)	Q_2 (SSIM)	Q_3 (SSIM)	Q_1 (HD)	Q_2 (HD)	Q_3 (HD)	Q_1 (PSNR)	Q_2 (PSNR)	$\overline{Q_3 (\text{PSNR})}$
ALADIN	0.7977	0.9291	0.9717	1.2071	2.8284	6.1235	10.3873	16.5752	23.2378
BSC-DREAM8b	0.9231	0.9584	0.9829	0.0000	1.7321	2.4495	16.1893	20.1203	25.4512
CAMS-IFS	0.8871	0.9286	0.9829	2.0000	2.8284	3.6056	15.3205	18.4613	22.8248
DREAM8-CAMS	0.9176	0.9561	0.9817	0.0000	1.8660	2.4495	16.4534	20.1166	25.1764
EMA-RegCM4	0.9168	0.9538	0.9795	0.0000	2.0000	2.6458	16.0858	19.5080	24.8203
ICON-ART	0.8375	0.9063	0.9615	1.4142	3.6056	4.6904	13.2737	15.7097	21.1405
LOTOS-EUROS	0.5763	0.6981	0.8096	5.8310	7.1414	7.9373	6.6788	8.9512	11.4620
MONARCH	0.6241	0.7088	0.8244	5.6569	7.2801	8.3066	7.3456	8.7101	11.6249
NASA-GEOS	0.8964	0.9333	0.9736	1.0000	2.6458	3.8730	14.9364	17.6418	22.8890
NCEP-GEFS	0.7140	0.8450	0.9136	3.4994	5.0000	6.7823	9.6400	13.4402	17.6882
NOA	0.7118	0.8838	0.9439	3.0000	4.8990	6.9282	8.6930	14.3754	18.5512
SILAM	0.8642	0.9006	0.9432	2.8284	3.7416	4.6904	13.2550	15.6025	18.6762
WRF-NEMO	0.8754	0.9597	0.9883	0.0000	1.4142	2.4495	13.8600	19.8911	30.3248
MULTI-MODEL	0.8925	0.9407	0.9761	0.0000	2.4495	3.8730	14.3954	17.9117	23.2233

KANNGIESSER AND FIEDLER: "SEEING" BENEATH THE CLOUDS

Table S1.

Overview over the first, second and third quartiles of the different similarity measures, SSIM, directed Hausdorff distance

Table S2. As Tab. S1,	, but for 202 ²	2							
model	Q_1 (SSIM)	Q_2 (SSIM)	Q_3 (SSIM)	$Q_1 (HD)$	$Q_2 (HD)$	$Q_2 (HD)$	$Q_1 (PSNR)$	$Q_2 (PSNR)$	$Q_3 (PSNR)$
ALADIN	0.7815	0.8708	0.9341	2.4495	3.8730	5.8310	10.7707	14.2239	17.9710
BSC-DREAM8b	0.8816	0.9167	0.9473	0.0000	2.2361	2.8713	14.2320	16.3534	19.8397
CAMS-IFS	0.8608	0.9115	0.9525	2.4495	3.4641	4.4721	14.0251	16.6665	20.6829
DREAM8-CAMS	0.9005	0.9486	0.9735	1.4142	2.0000	2.6914	15.6048	19.4258	24.7018
EMA-RegCM4	0.8859	0.9159	0.9456	1.0000	2.2361	3.1623	14.4719	16.9855	19.7826
ICON-ART	0.8481	0.9250	0.9697	1.0000	3.0000	4.7958	13.4285	17.0254	23.4519
LOTOS-EUROS	0.6153	0.6978	0.8043	5.7446	7.0000	7.8103	7.0981	8.6572	11.4884
MOCAGE	0.9084	0.9633	0.9838	0.0000	2.0000	2.8285	15.6998	20.8732	26.1290
MONARCH	0.6657	0.7601	0.8517	4.4721	6.5574	7.8103	8.0428	9.9274	13.7622
NASA-GEOS	0.8232	0.9067	0.9629	2.0000	3.6056	4.8990	12.0582	15.6509	21.4623
NCEP-GEFS	0.8762	0.9272	0.9676	1.7321	2.8284	4.0000	14.3555	17.4460	22.1660
NOA	0.7370	0.8129	0.8941	4.0616	5.1961	6.0828	9.3595	11.8748	15.4327
SILAM	0.8667	0.9220	0.9703	1.4142	2.8284	4.1829	13.9209	17.1405	22.8890
WRF-NEMO	0.8559	0.9011	0.9313	0.0000	1.7321	3.1623	13.5709	15.8400	18.0831
ZAMG-WRF-CHEM	0.7304	0.8167	0.9097	3.8730	5.4312	6.4807	9.7896	12.3261	17.3824
MULTI-MODEL	0.8841	0.9431	0.9750	0.0000	2.2361	3.6056	14.3845	18.3602	23.8191

5
for
but
S1.
Tab.
A_{S}
S2.
ole