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Abstract12

Mineral dust is one of the most abundant atmospheric aerosol species and has various13

far-reaching effects on the climate system and adverse impacts on air quality. Satellite14

observations can provide spatio-temporal information on dust emission and transport15

pathways. However, satellite observations of dust plumes are frequently obscured by clouds.16

We use a method based on established, machine-learning-based image in-painting tech-17

niques to restore the spatial extent of dust plumes for the first time. We train an arti-18

ficial neural net (ANN) on modern reanalysis data paired with satellite-derived cloud masks.19

The trained ANN is applied to gray-scaled and cloud-masked false-color daytime images20

for dust aerosols from 2021 and 2022, obtained from the SEVIRI instrument onboard21

the Meteosat Second Generation satellite. We find up to 15 % of summertime observa-22

tions in West Africa and 10 % of summertime observations in Nubia by satellite images23

miss dust events due to cloud cover. The diurnal and seasonal patterns in the reconstructed24

dust occurrence frequency are consistent with known dust emission and transport pro-25

cesses. We use the new dust-plume data to validate the operational forecasts provided26

by the WMO Dust Regional Center in Barcelona from a novel perspective. The com-27

parison elucidates often similar dust plume patterns in the forecasts and the satellite-28

based reconstruction, but the latter computation is substantially faster. Our proposed29

reconstruction provides a new opportunity for validating dust aerosol transport in nu-30

merical weather models and Earth system models. It can be adapted to other aerosol31

species and trace gases.32

Plain Language Summary33

Most dust and sand particles in the atmosphere originate from North Africa. Since34

ground-based observations of dust events in North Africa are sparse, investigations of-35

ten rely on satellite observations. Dust events are frequently obscured by clouds, mak-36

ing it difficult to study the full extent. We use machine-learning methods to restore the37

full extent of dust events in 2021 and 2022 at 9, 12, and 15 UTC. Our analysis focuses38

on the reconstructions at 12 UTC. The spatial patterns of the restored dust events are39

compared to earlier work using satellite observations of dust and known atmospheric pro-40

cesses driving the emission and transport of dust. We use the reconstructed dust pat-41

terns to validate the dust forecast ensemble provided by the WMO Dust Regional Cen-42

ter in Barcelona, Spain. Our proposed method is computationally inexpensive and pro-43

vides new opportunities for assessing the quality of dust transport simulations. The method44

can be transferred to reconstruct other aerosol and trace gas plumes.45

1 Introduction46

Mineral dust constitutes one of the major aerosol types in the atmosphere by mass47

fraction (Pósfai & Buseck, 2010). It has profound direct and indirect effects in the Earth48

system, e.g. by directly affecting atmospheric radiative transfer, by acting as cloud con-49

densation and ice nuclei, and by providing nutrients to terrestrial and marine ecosystems,50

including the fertilization of the Amazon rainforest by North African dust(e.g., Talbot51

et al., 1986; Swap et al., 1992; Buseck & Pósfai, 1999; Griffin & Kellogg, 2004; Goudie,52

2009; Hoose et al., 2010; P. Seifert et al., 2010; Pósfai & Buseck, 2010; Bristow et al.,53

2010; Mahowald et al., 2017; Kok et al., 2023). Furthermore, North African dust can be54

linked to Hurricane activity in the North Atlantic (Evan et al., 2006; Strong et al., 2018).55

Mineral dust also provides surfaces for chemical reactions and can, thus, act as a sink56

for certain chemical compounds (Buseck & Pósfai, 1999; Pósfai & Buseck, 2010). In ad-57

dition to these effects, dust storms have multi-faceted impacts, including disruption of58

public services, public events, economic activity, and air traffic, as well as reducing pho-59

tovoltaic energy production, adversely impacting public health, and diminishing agri-60

cultural yields (Monteiro et al., 2022; Al-Hemoud et al., 2017; Goudie, 2014; N. Middle-61

–2–



manuscript submitted to AGU Advances

ton, 2017; Stefanski & Sivakumar, 2009). In addition to reduced air quality by partic-62

ulate matter, adverse public health impacts also stem from the co-emission of micro-organisms,63

bacteria, fungi, and viruses with dust particles (Griffin, 2007). While Europe itself lacks64

large source regions of mineral dust, dust transported to Europe is specifically linked to65

both adverse impacts on human health, disruption of transport and public services, and66

also linked to an enhanced melting of Alpine glaciers when the dust is deposited (Q. Wang67

et al., 2020; Karanasiou et al., 2012; Oerlemans et al., 2009; Gabbi et al., 2015; Di Mauro68

et al., 2019; Monteiro et al., 2022).69

North Africa is by far the largest source region of mineral dust (Tanaka & Chiba,70

2006; Huneeus et al., 2011; Kok et al., 2021, 2023). Due to the sparse ground-based ob-71

servations in Northern Africa studying emissions of Saharan dust strongly relies on satel-72

lite observations. Dust emission and transport processes are frequently linked with the73

presence of clouds (e.g., Heinold et al., 2013; Ben-Ami et al., 2009; Bou Karam et al.,74

2010; Knippertz & Todd, 2012; Allen et al., 2013; Roberts & Knippertz, 2014; Bou Karam75

et al., 2014; Fromm et al., 2016). Consequently, the full spatial extent of dust plumes76

as observed by satellite-borne instruments is often obscured by clouds. In this study, we77

propose to resolve the shortcoming with a novel machine-learning-based reconstruction78

of North African dust events, which employs image in-painting techniques.79

Geostationary satellites can provide observations with high temporal resolution.80

One sensor facilitating this is the Spinning Enhanced Visible and Infrared Imager (SE-81

VIRI), a passive radiometer and the primary instrument onboard the Meteosat Second82

Generation (MSG) satellites (Schmetz et al., 2002). SEVIRI provides measurements of83

radiance from 12 different spectral channels and one broadband channel every 15 min-84

utes. The spectral channels are centered around wavelengths between λ = 0.635µm and85

λ = 13.40µm. By combining the information from different instrument channels false-86

color RGB images are created. In RGB color spaces each color can be decomposed into87

red (R), green (G), and blue (B) components. On these RGB images various atmospheric88

features, such as different cloud types, air masses, trace gases like SO2, volcanic ash, and89

mineral dust can be identified. The RGB product, on which dust features are shown in90

bright magenta, the Dust RGB, assigns (differences of) brightness temperatures from91

three infrared bands, specifically λ = 8.7µm, 10.8µm, and λ = 12.0µm, to the im-92

ages’ red, green, and blue channels (Schepanski et al., 2007; Lensky & Rosenfeld, 2008;93

Banks et al., 2019). This product has been used for studies of dust emission frequencies94

and transport pathways (e.g., Schepanski et al. (2007, 2012); Ashpole and Washington95

(2012); Trzeciak et al. (2017); Allen et al. (2013); Bou Karam et al. (2010, 2014); H. Yu96

et al. (2021); Dhital et al. (2020); Solomos et al. (2017)) with the caveat that dust be-97

neath clouds is not visible.98

No attempt to resolve the cloud-masking of dust plumes in satellite images has been99

made to date, but approaches for other cloud-obscured features have been successfully100

tested. These features were often stationary and often subject to only small temporal101

changes, such as land cover information (Chauhan et al., 2021; Chen et al., 2020; Cz-102

erkawski et al., 2022; Enomoto et al., 2017; Li et al., 2020; L. Liu & Hu, 2021; Pan, 2020;103

Sarukkai et al., 2020; Singh & Komodakis, 2018; M. Zhao et al., 2021; Zi et al., 2022).104

Further examples are for land-surface temperature (W. Zhao & Duan, 2020; Sarafanov105

et al., 2020; Weiss et al., 2014), evapotranspiration (Cui et al., 2020), sea-surface tem-106

perature (Dong et al., 2019), and chlorophyll a (Stock et al., 2020).107

A substantial amount of dust emissions and consequently transport might be ob-108

scured by clouds. Convection-permitting simulations over West Africa indicate a diur-109

nal cycle of dust emission coinciding with cloud cover in summertime West Africa. Be-110

tween ∼ 6% (19:00 local time) and up to 55% (10:00 local time) of dust emissions in West111

Africa occur during clear sky conditions in the simulation (Heinold et al., 2013). Unlike112

cloud-obscured features like land cover and chlorophyll a, dust storms as well as clouds113

co-develop in time and space. Dust emission in Northern Africa is frequently linked to114
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outflows from mesoscale convective systems during summer (Allen et al., 2013; Heinold115

et al., 2013; Allen & Washington, 2014; Roberts & Knippertz, 2014; Bou Karam et al.,116

2014). A significant amount of North African dust transported over the North Atlantic117

is above and within the marine boundary layer and interacts with stratiform clouds (Ben-118

Ami et al., 2009). Baroclinic storms are another mechanisms for long-distance dust trans-119

port, which is associated with clouds (Schepanski & Knippertz, 2011; Fiedler et al., 2014;120

Fromm et al., 2016).121

In this study we employ an artificial neural network (ANN) to reconstruct the full122

extent of partially obscured North African dust events. This type of ANN was previously123

used to reconstruct historical temperature anomalies (Kadow et al., 2020). The ANN124

is trained on cloud-masked reanalysis data of the aerosol optical depth, provided by the125

Copernicus Atmosphere Monitoring Service (CAMS) (Inness et al., 2019b). The trained126

ANN is then used to reconstruct the below-cloud extent of dust events by applying it127

to gray-scaled and cloud-masked images based on the MSG-SEVIRI Dust RGB prod-128

uct. These reconstructions are used to compute the dust occurrence frequency as annual129

mean and as mean seasonal patterns at 9, 12, and 15 UTC with a particular focus on130

12 UTC. The reconstructions are then used to evaluate spatial patterns of dust plumes131

in operational dust forecasts, which are used by the WMO for warnings, with complete132

spatial information of the dust plume based on satellite data.133

2 Methods and Data134

2.1 Datasets135

2.1.1 Satellite datasets136

We propose and test a machine-learning-based reconstruction of dust events in North137

Africa. More specifically, we reconstruct cloud-masked, gray-scaled images of EUMET-138

SAT’s Dust RGB product (EUMETSAT, 2009b). The Dust RGB images are obtained139

by assigning to each of the RGB channels, a different combination of brightness temper-140

ature observations, TB , from different SEVIRI infra-red channels as follows (Lensky &141

Rosenfeld, 2008):142

R =
TB,12.0µm − TB,10.8µm + 4K

6K
(1)143

144

G =

(
TB,10.8µm − TB,8.7µm

15K

)1/2.5

(2)145

146

B =
TB,10.8µm − 261K

28K
(3)147

Here the wavelength in the subscripts denotes the wavelength around which the respec-148

tive channel is centered, with the full spectral width depending on the channel (Schmetz149

et al., 2002). As a result and as already mentioned, the Dust RGB product features dust150

plumes in bright shades of magenta. Quartz-mineral-containing sand surfaces are seen151

in light-blue shades. Depending on the cloud type, clouds may feature in Dust RGB im-152

ages in brownish shades, black, and/or dark green (Lensky & Rosenfeld, 2008; Banks et153

al., 2019).154

We select data over North Africa, specifically, the region between the longitudes155

of 20◦W and 52◦E and the latitudes of 4◦N and 40◦N. The region is selected such that156

we obtain a quadratic image that is required for the ANN-based algorithm (see Section157

2.2.1). The size of each image was reduced to 128 pixels by 128 pixels to increase the com-158

putational throughput. This results in each pixel having a dimension of 0.28125◦ in North-159

South-direction and 0.5625◦ in East-West-direction. Thus, each pixel spans roughly 30160

km in the North-South direction and 50-60 km in the East-West direction. A pixel’s arc161

length in the East-West direction decreases with increasing distance to the Equator.162
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Both the training process as well as the actual dust plume reconstruction rely on163

the operational cloud mask product, referred to as CLM and provided by EUMETSAT164

(EUMETSAT, 2009a). The CLM product classifies pixels as either cloudy or clear. Clear165

sky pixels are further subdivided according to the surface, i.e., land or water surface. This166

classification is performed based on multispectral threshold techniques (Lutz, 1999; Schmetz167

et al., 2002). The CLM data used here covers the same region of interest with the same168

horizontal resolution as the Dust RGB images.169

In addition to geostationary satellite data from MSG SEVERI, we also use satel-170

lite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard171

the satellites Aqua and Terra for a comparison of our results. The satellites Terra and172

Aqua are orbiting the Earth in a sun-synchronous orbit overpassing the equator in the173

morning and afternoon respectively (see e.g., King et al., 2013). Here we use MODIS Level174

3 data (Collection 6.1) (MODIS Atmosphere Science Team, 2017b, 2017a). The data was175

retrieved using the Deep Blue algorithm, which provides aerosol optical depth (AOD,176

τ) and Ångström exponent (α) data over land surfaces (Hsu et al., 2013; Sayer et al.,177

2013).178

2.1.2 Dust forecasts and reanalysis179

In addition to satellite data, our study also uses dust forecast and reanalysis data.180

Reanalysis data provides a consistent and global overview of dust AOD τdust. We use181

the dust AOD reanalysis from CAMS (Inness et al., 2019b, 2019a) for training the ANN182

(Section 2.2.1). CAMS dust reanalysis data is provided in three-hourly intervals at the183

main and intermediate synoptic times, i.e., at 00:00 UTC, 03:00 UTC, and so forth. For184

additional analysis, we also use the second Modern-Era Retrospective analysis for Re-185

search and Application (MERRA-2) from NASA (Gelaro et al., 2017; Randles et al., 2016,186

2017). MERRA-2 provides hourly data starting at 00:30 UTC. For our analysis, the MERRA-187

2 dust reanalysis data is linearly interpolated to match the times at which CAMS reanal-188

ysis is available.189

We further use the dust forecast data provided by the World Meteorological Or-190

ganization (WMO) Barcelona Dust Regional Center and the partners of the Sand and191

Dust Storm Warning Advisory and Assessment System (SDS-WAS) for Northern Africa,192

the Middle East and Europe. These dust forecasts cover a geographical area of interest,193

which is bound by the longitudes of 25◦W and 60◦E and the latitudes of 0◦N and 65◦N194

(Terradellas et al., 2022). The WMO Barcelona Dust Regional Center additionally pro-195

vides a multi-model median of the available forecast data, which is obtained by regrid-196

ding all other models to a shared grid with 0.5◦ × 0.5◦ horizontal resolution using bi-197

linear interpolation (Basart et al., 2022; Terradellas et al., 2022). Tab. 1 lists the mod-198

els, their horizontal resolution, and data availability in 2021 and 2022. Of the models199

listed in Tab. 1 only CAMS-IFS, DREAM8-CAMS, NASA-GEOS, and MOCAGE em-200

ploy data assimilation. MODIS observations form the backbone of the data assimilation.201

Thus, the numerical dust forecasts can be considered independent from SEVIRI obser-202

vations. Analogously to the processing of the reanalysis data, the WMO’s forecast data203

was selected for our region of interest and remapped bilinearly to the Dust RGB images’204

horizontal resolution.205

Both reanalysis data and numerical dust forecasts were remapped to the Dust RGB206

images’ resolution of 128 pixels by 128 pixels with bilinear interpolation using CDO, ver-207

sion 2.0.4 (Schulzweida, 2021). The two-dimensional fields at a given time will be referred208

to as images.209
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2.2 Dust plume reconstruction210

2.2.1 ANN description211

Machine learning methods have been increasingly used for automatic image in-painting,212

i.e., often the repair of damaged or deteriorated photos. In-painting algorithms can be213

roughly classified into three main types: sequential-based algorithms, convolutional neu-214

ral net-based algorithms, and generative adversarial networks-based approaches. Con-215

volutional neural networks (CNNs) typically capture the global structure better than sequential-216

based algorithms (Elharrouss et al., 2020). CNNs have been employed for cloud removal217

for example by Chen et al. (2020). Another type of ANNs commonly employed in in-painting218

and subsequently cloud-removal tasks are generative adversarial networks (GANs) (J. Yu219

et al., 2018; Elharrouss et al., 2020; Jiao et al., 2019; Pajot et al., 2019; Chauhan et al.,220

2021; Stock et al., 2020; Enomoto et al., 2017; Zi et al., 2022; Li et al., 2020; L. Liu &221

Hu, 2021). Compared to CNNs, GANs typically require a smaller training data set and222

are usually capable of reconstructing large-scale or global features. Reconstructions by223

GANs appear realistic but do not necessarily completely match the ground truth. Sim-224

ilar to the climate data reconstruction by Kadow et al. (2020) we ultimately attempt a225

classification, for which it may be disadvantageous if the reconstructions do not neces-226

sarily match a ground truth. To avoid such disadvantages, we refrained from using al-227

gorithms based on GANs and chose an established CNN-based method.228

G. Liu et al. (2018) proposed an algorithm based on partial convolutions, which229

successfully repaired irregular holes in images. Owning to the similarity to convolutional230

networks for image segmentation, referred to as UNets (Ronneberger et al., 2015), the231

algorithm possesses a UNet-like architecture (G. Liu et al., 2018). Furthermore, the al-232

gorithm was shown to robustly perform regardless of hole size, location, and distance to233

the image border and outperformed several other algorithms of all three types. Subse-234

quently, the algorithm was adapted to geophysical data by Kadow et al. (2020). This235

adapted algorithm, climatereconstructionAI (CRAI, Inoue et al., 2022), was successfully236

used to restore historical temperature anomalies (Kadow et al., 2020). Owning to the237

robust performance of the original image in-painting algorithm and the successful adap-238

tation to geophysical data, we use the CRAI code as the basis of our work.239

The ANN was trained on τdust data provided by CAMS, introduced in Section 2.1.2.240

The cloud masks were derived from the temporally corresponding MSG-SEVIRI prod-241

uct. Spatial maps of τdust from CAMS were temporally matched with the cloud masks242

from MSG-SEVIRI. We chose to use observed cloud patterns and refrained from using243

synthetic clouds for training purposes, since the latter may introduce unrealistic patterns244

during the training process (Enomoto et al., 2017). In addition, both the dust outbreak245

and the cloud cover are subject to the same atmospheric state, especially the pressure246

and wind fields. Combining cloud-free satellite images with a set of different cloud masks,247

thus, would pose the risk of training the ANN on non-physical combinations of cloud and248

dust patterns. We eliminate such risks by using masks of satellite-observed clouds.249

The training was performed on the German Climate Computing Center’s (Deutsches250

Klimarechenzentrum, DKRZ) cluster Levante. Specifically, we used the cluster’s GPU251

partition, on which each node consists of two CPUs equipped with AMD 7713 proces-252

sors and four Nvidia A100 GPUs. The training required ∼ 13 hours of wall-time.253

For initial tests, the trained neural network was applied to the CAMS reanalysis254

fields of τdust from 2022-01-01 to 2022-06-30. Data from this period was excluded in the255

later validation of the results. Analogously to the training data set, the reanalysis was256

masked with the MSG-SEVIRI cloud mask product. Fig. 1 shows two-dimensional his-257

tograms of the mean CAMS reanalysis on the x-axis and the mean reconstruction on the258

y-axis. The different panels represent different sizes of the training dataset. The train-259

ing dataset consists of a total of 16 months, spanning from 2020-09-01 to 2021-12-31 (Fig260
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1a). For three-hourly time steps as dictated by the reanalysis data with occasionally miss-261

ing cloud-mask data from SEVIRI, we obtained 3843 pairs of masks and reanalysis ”im-262

ages”. This training dataset was augmented by rotating the images by 90◦, thus qua-263

drupling the dataset size to a total of 15372 images (Fig 1b). The non-augmented train-264

ing datasets comprised half a year each, and are shown for summer: 2021-04-01 to 2021-265

09-30 (1422 images, Fig. 1c) and winter: 2020-10-01 and 2021-03-31 (1449 images, Fig.266

1d).267

As can be inferred from Fig. 1 and the values of RMSE, MAPE, and r, there is gen-268

erally good agreement between the mean reconstructed τdust and the mean τdust from269

reanalysis. While the ANN trained for summer marginally outperforms the non-augmented270

training dataset of 16 months with respect to RMSE, MAPE, and r, we chose the ANN271

trained on the dataset with 16 months of reanalysis and corresponding cloud mask data272

(Fig 1a) since it covers more than a full year, which captures some seasonal differences273

in spatial patterns of τdust.274

To further assess the quality of the reconstruction examples of the unmasked re-275

analysis (left column) and the corresponding masked reanalysis (center column), and re-276

construction (right column) are shown in Fig. 2. The rows represent different examples277

of reconstructions, showcasing the reconstructions for which we have seen the best per-278

formance as well as the two reconstructions with the poorest agreement with the orig-279

inal reanalysis. The first row shows the case of 2022-01-06, 6:00 UTC. For this case, the280

reconstruction and original reanalysis showed the highest agreement, quantified by both281

the RMSE and the directed Hausdorff distance. The directed Hausdorff distance is a mea-282

sure of image (dis)similarity. A directed Hausdorff distance of zero indicates perfect agree-283

ment. It will be introduced in more detail in Section 3.3. The reconstruction from 2022-284

02-03 at 9:00 UTC resulted in an overestimated mean of τdust. This case is represented285

by the individual point visible in both top row panels of Fig. 1, which is farthest from286

the 1:1 line. That difference between reconstruction and reanalysis results in an RMSE287

of 4.975, the largest between two individual images. Closer inspection in Fig. 2 reveals,288

that the deviation can be attributed to a limited number of pixels north of the Madeira289

Archipelago filled with high very high values of τdust. The reconstruction for 2022-03-290

16, 03:00 UTC, which has the largest value of the directed Hausdorff distance between291

the reconstruction and the ground truth, is shown the the third row of Fig. 2. The trained292

ANN was not able to reconstruct the full spatial pattern of the dust plume, which is the293

prominent feature of the image’s western half. The strong advection of dust over the Iberian294

Peninsula was not reproduced in the reconstruction. Such infrequent cases of strong dust295

advection, in which the dust plume is largely obscured by clouds extending to the im-296

age boundary over the ocean, can be considered particularly challenging for reconstruc-297

tion. However, while the reconstruction did not fully reproduce the spatial pattern of298

τdust, the reconstruction added information compared to the cloud-masked input. The299

fourth row shows a case (2022-03-27, 18 UTC) from a period of high mean values of τdust300

in the study area. The case from 2022-06-12, 18 UTC, shown in the fifth row, was ran-301

domly selected from the month of June 2022.302

As demonstrated in Figs. 1 and 2 the trained ANN is capable of successfully re-303

constructing the cloud-obscured values and patterns of τdust during the first half of 2022.304

The reconstruction’s purpose is to classify individual pixels as dust-containing or dust-305

free. Thus, we consider the error stemming from pixels filled with high values of τdust306

during the reconstruction, as for the case of 2022-02-03 at 9:00 UTC (see Fig. 2) as neg-307

ligible.308

2.2.2 Gray-scaling of Dust RGB images309

To isolate the dust in the satellite observation, the images from MSG-SEVIRI’s Dust310

RGB product were converted to gray-scaled images, where gray corresponds to the pink311
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color assigned to suspended dust in the original product. The gray scaling was based on312

perceptional color differences. These perceptional color differences were calculated ac-313

cording to definitions by the International Commission on Illumination (Commission In-314

ternationale de l’Éclairage, CIE) (Robertson, 1990) in CIELAB color space. To do so315

the RGB colors in the images provided by EUMETSAT need to be converted to CIEXYZ316

color space and further to CIELAB. The conversion was based on the assumption, that317

EUMETSAT uses the sRGB color space, which is the standard for digital online images318

(International Electrotechnical Commission, 1999). The conversion to CIEXYZ was per-319

formed analogously to the conversion laid out by Fairman et al. (1997); Brill (1998), but320

using the conversion matrix values as defined by the sRGB standard (International Elec-321

trotechnical Commission, 1999).322

Each RGB channel has values between 0 and 255. Thus, white would correspond323

to (0,0,0) and black to (255,255,255). In the CIEXYZ color space, the luminance is en-324

coded in Y and the XZ plane includes all possible chromaticities at a value of Y. In the325

CIELAB color space, L∗ denotes the lightness, a∗ represents the green-red-oriented axis,326

and b∗ represents the blue-yellow-oriented axis. Negative values of a∗ indicate green, whereas,327

negative values of b∗ indicate blue. The positive values represent red and yellow on the328

respective axis (Schanda, 2007). CIELAB forms a Cartesian and nearly uniform color329

space, which eases the quantification of perceptional color differences ∆E. ∆E is defined330

by (Robertson, 1990)331

∆E =
[
(∆L∗)2 + (∆a∗)2 + (∆b∗)2

] 1
2 . (4)332

∆L∗, ∆a∗, and ∆b∗ denote the differences between the corresponding values of L∗, a∗,333

and b∗ of the respective colors.334

Equation 4 forms the basis of the conversion of Dust RGB images, in which dust335

plumes are seen as bright magenta (pink), to gray-scale images. In these gray-scale im-336

ages, magenta (RGB = (255, 0, 255)) was assigned to white. Colors exceeding a pre-337

defined threshold value of the perceptional color difference ∆E compared to magenta were338

assigned black. Gray values were assigned based on values of ∆E below the threshold.339

We denote the threshold for identifying dust in the image as ∆Ecut.340

We identify the value of the threshold based on earlier studies and own sensitiv-341

ity tests. Banks et al. (2019) investigated the effect of different environmental conditions,342

such as column water vapor, surface emissivity, skin temperature, and dust layer height343

on the color in the RGB Dust product using radiative transfer calculations. This inves-344

tigation focused on the months of June and July in 2011, 2012, and 2013. They iden-345

tified only a limited number of cases (0.04% of day-time cases and 5.47% of night-time346

cases), which resulted in RGB colors with values of the blue channel other than 255. Fig.347

3 shows the colors for a fixed value of the blue component of 255 and variable values of348

the red (y-axis) and the green (x-axis) components. The corresponding values of ∆E with349

respect to magenta with RGB = (255, 0, 255) are shown as isolines. Furthermore, Banks350

et al. (2019) provided an overview of the mean colors stemming from the combinations351

of aforementioned conditions. For near-pristine cases, the τdust was assumed to take val-352

ues with τdust ≤ 0.2. For unambiguous cases of dust storms, Banks et al. (2019) set τdust ≥353

2. Using Eq. 4 the perceptional color difference ∆E between these mean colors reported354

by Banks et al. (2019) and magenta with RGB = (255, 0, 255) was calculated. For the355

different mean pristine cases, the perceptional color difference takes values with 19.4 ≤356

∆E ≤ 129.4, whereas, for mean cases with a dust load ∆E takes values in the range357

of 29.7 and 88.0. However, when additionally taking the skin temperature Tskin into ac-358

count, the resulting ranges are for cool (Tskin < 300K), pristine mean cases in 19.4 ≤359

∆E ≤ 92.6, for non-cool, i.e., Tskin > 300K, pristine cases 60.2 ≤ ∆E ≤ 129.4. For360

cool dust cases ∆E is in the range between 29.7 and 72.3 and respectively in the range361

between 31.0 and 88.0 for non-cool dust. As a consequence, the night-time observations,362

which are considered to represent the cases of a cool skin temperature are excluded from363

the reconstruction. Note, that we use the classification of cases as defined by Banks et364
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al. (2019). We set the cut-off threshold in our gray-scaling algorithm to ∆Ecut = 51.9,365

marked with a solid isoline in Fig. 3. With this choice of ∆Ecut, pristine cases are not366

expected to be falsely considered as dust cases, while the true number of dust cases is367

potentially underestimated. Prior to the process of in-painting (see, Kadow et al., 2020),368

the gray-scaled images are scaled to values between 0 and 1 as opposed to values between369

0 and 255.370

Full-resolution Dust RGB images and cloud masks have a spatial resolution in nadir371

direction of 0.041◦ or 4.8 km (EUMETSAT, 2009b, 2009a; Schmetz et al., 2002). The372

images used in this study possess a coarser resolution of 0.28125◦ in North-South-direction373

and 0.5625◦ in East-West-direction. Due to this coarser resolution compared to the full374

resolution images, it is expected that resampling of the satellite products, especially the375

Dust RGB product, results in under-counting the number of dust-containing pixels in376

addition to under-counting due to the choice of ∆Ecut (see above). This is expected to377

mainly concern dust plumes of small spatial scale in one dimension. To gauge the effect378

of the resampling, the images were resampled from a 128-pixel by 128-pixel grid to a 64-379

pixel by 64-pixel grid, i.e. each pixel in these coarser resolution images corresponds to380

0.5625◦ in North-South-direction and 1.125◦ in East-West-direction. Subsequently, we381

trained another ANN using this coarser resolution. Note, however, that this addition-382

ally trained ANN was only used to gauge the impact of the image resolution. We will383

refer to the images with a size of 128 pixels by 128 pixels as high-resolution images and384

to the images with a dimension of 64 pixels by 64 pixels as low-resolution images.385

We test to what extent the spatial resolution of the satellite data might have an386

influence on the results. To that end, Figure 4 shows two-dimensional histograms of the387

fraction of dust-containing pixels in low-resolution images (64 pixels by 64 pixels) and388

high-resolution images (128 pixels by 128 pixels). Here, observations and the correspond-389

ing reconstructions at 9, 12, and 15 UTC were considered. The left panel refers to the390

direct observations, i.e. the gray-scaled, cloud-obscured Dust RGB images and the right391

panel refers to the ANN-based reconstructions. The dashed line indicates the best fit,392

which was obtained by linear regression. Regardless of the resolution, the fraction of dust-393

containing pixels is generally maintained, as can be inferred from the equation for the394

best fit and the shape of the histograms. This is also reflected by the Pearson’s corre-395

lation coefficient of r = 0.94 in the case of the direct observations and of r = 0.93 in396

the case of the reconstructions. The reconstruction maintains the general pattern well,397

as illustrated by the nearly unchanged value of r. Note, that the time required for train-398

ing on the low-resolution images (64 pixels by 64 pixels) required roughly half the time,399

compared to the training on the high-resolution images (128 pixels by 128 pixels). Tak-400

ing the high-resolution images as a reference, the coarser resolution results in a MAPE401

of the fraction of dust-containing pixels of 46.59% for the observations and 55.04% for402

the reconstructions. Thus, a finer resolution decreases the under-counting of dusty ar-403

eas and improves the reconstruction’s quality. As a consequence, there are trade-offs be-404

tween the reconstruction’s quality and the reduced risk of under-counting dust-containing405

pixels on the one hand and the training process’ computational demand on the other hand.406

For the remainder of this study, the higher spatial resolution of 128 pixels by 128 pix-407

els was used to detect more spatial details of dust plumes.408

2.2.3 Evaluation methods409

The level of agreement between the dust plume extent from our reconstructions and410

numerical forecasts was evaluated using three different criteria, which have previously411

been employed to quantify image similarity. The structural similarity index measure (SSIM)412

quantifies the perceived differences in structural information between two images (Z. Wang413

et al., 2004). It is a composite measure of means (or luminance), standard deviations (or414

contrast), and correlation coefficient (or structure) (Z. Wang et al., 2004; Brunet et al.,415

2012; Palubinskas, 2014). The SSIM takes values between -1 and 1. The higher the agree-416
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ment of two images, the closer the SSIM is to 1. Several studies on image in-painting and417

cloud removal applications have used SSIM as an evaluation criterion (e.g., G. Liu et al.,418

2018; Qin et al., 2021; Chauhan et al., 2021; Czerkawski et al., 2022; Li et al., 2020; Zi419

et al., 2022). We calculate SSIM using the implementation in the software package scikit-420

image (van der Walt et al., 2014).421

Billet et al. (2008) used the directed Hausdorff distance to assess similarities be-422

tween two images. As mentioned in Sec. 2.2.1, the directed Hausdorff distance between423

two images is the largest distance of a point in the test image to any point in the ref-424

erence image. Thus, identical images have a directed Hausdorff distance of 0, and with425

increasing differences between the images, the directed Hausdorff distance increases (Huttenlocher426

et al., 1993). We calculated the Hausdorff distance of images from our reconstruction427

and from numerical forecasts of individual models relative to the image from the median428

across all available numerical forecasts, which we chose as a reference. Note, that the di-429

rected Hausdorff distance is asymmetric. In other words, the directed Hausdorff distance430

from our reconstruction to the median forecast is not necessarily equal to the directed431

Hausdorff distance from the median forecast to our reconstruction. In this study the di-432

rected Hausdorff distance was calculated using the implementation in SciPy (Virtanen433

et al., 2020), which is based on work by Taha and Hanbury (2015).434

Another commonly used performance evaluation metric in image in-painting and435

cloud removal studies (e.g., Sarukkai et al., 2020; Qin et al., 2021; Elharrouss et al., 2020;436

Pan, 2020; Zi et al., 2022; G. Liu et al., 2018) is the peak signal-to-noise ratio (PSNR).437

The PSNR is defined as (Horé & Ziou, 2013)438

PSNR = 10 · log10
max(Iref)

2

MSE
. (5)439

Here the mean squared error is denoted as MSE. The MSE between an image I and a440

reference image Iref , which both consist of n ·m pixels is calculated by:441

MSE =
1

nm

n∑
i=1

m∑
j=1

(Iij,ref − Iij)
2 (6)442

For the binary images in our study, max(Iref) is equal to 1 and Eq. 5 can be simplified443

to PSNR = 10·log10 MSE−1. With increasing similarity between two images MSE →444

0, and PSNR → ∞.445

3 Results446

3.1 Case studies447

We first perform two case studies to test our reconstructions and to gauge their abil-448

ity to serve as a tool for evaluating numerical forecasts of dust storms. Here we focus449

on observed dust cases that can be considered as hard tests of our proposed method. The450

first case concerns a convective dust storm during summer. The numerical models (see451

Tab. 1) are not expected to accurately forecast the dust plume, since their horizontal452

resolution is too coarse to explicitly simulate convection (cf. Weisman et al., 1997). How-453

ever, this may also present challenges for the training data set, since the dust reanaly-454

sis depends on available satellite observations as well as an underlying numerical fore-455

cast model. The second case study covers a synoptic-scale dust storm in spring. While456

the horizontal resolution of the numerical models is not expected to represent a challenge,457

the satellite image indicates that a large part of the dust storm is entirely obscured by458

clouds, thus providing little guidance on the spatial distribution of the dust plume in the459

cloudy sky.460
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3.1.1 Convective dust storm: 2021-08-22, 09 UTC461

The Dust RGB image from 2021-08-22 at 09:00 UTC is characterized by a dust plume462

extending from Northern Mali to Southern Algeria. Visual inspection of the full-resolution463

Dust RGB images reveals that dust was originally lofted close to a convective cloud sys-464

tem at around 16:00 UTC on 2021-08-21 near the border between Algeria and Niger. Start-465

ing from 23:15 UTC the dust plume decoupled from the motion of the convective sys-466

tem and now followed an independent track. With the chosen threshold of the percep-467

tional color difference of ∆Ecut = 51.9 the gray-scaling approach does not identify the468

entire dust plume, as can be seen in the top left panel. This serves as an example of po-469

tential under-counting of dust pixels (see Section 2.2.2). In Figure 5, the top left panel470

shows the Dust RGB image in 128 pixels by 128-pixel resolution and highlights by white471

lines the areas in which dust was detected. The top right panel shows τ as derived from472

observations by the MODIS instrument aboard Terra. Note that this MODIS Level 3473

product does not coincide with 09:00 UTC, but represents the closest overpass of Terra474

in time. Terra overpasses the Equator at 10:30 local time (cf, King et al., 2013). The pan-475

els in the center row show a comparison between the spatial extent of the reconstruc-476

tion (dark blue shading) and forecasted fields of τdust from two numerical models (iso-477

lines). Since the horizontal resolution of the dust forecast model ensemble (see Tab. 1)478

is too coarse to explicitly simulate deep convection on the model grids (Kain et al., 2008),479

the forecast models are not expected to accurately predict associated dust plumes (Heinold480

et al., 2013).481

The MODIS/Terra observations of τ also indicate the presence of coarse aerosol482

at and near the Bodélé Depression in Chad. The DREAM8-CAMS model forecasts a small483

dust plume near the Bodélé Depression. While the Dust RGB image in 128 pixels by 128-484

pixel resolution does not indicate the presence of dust plumes at the Bodélé Depression,485

however, the full-resolution Dust RGB images show the presence of a small dust plume486

in the Bodélé Depression. As discussed in Section 2.2.2, rescaling Dust RGB images to487

coarser resolutions leads to undercounting dust events of small spatial extent. Thus, the488

resulting RGB color values in each pixel may differ too strongly from magenta, i.e. pos-489

sess large perceptional color differences ∆E. At first, dust emitted by convective systems490

is completely covered by clouds. Heinold et al. (2013) estimated based on convection-491

permitting simulations, that up to 90% of afternoon-to-evening dust emissions occur in492

partly cloudy conditions, and up to 60% of afternoon-to-evening dust emissions occur493

during strongly cloud-covered conditions, with total cloud cover exceeding 80%. In this494

case study, dust can first be discerned on the satellite image at 16:00 UTC, making it495

a prime example of the emission mechanisms discussed by Heinold et al. (2013).496

3.1.2 Synoptic-scale dust storm: 2022-03-15, 12 UTC497

During mid-March 2022 high loads of Saharan dust were transported to Central498

Europe via the Iberian Peninsula (cf. A. Seifert et al., 2023). This second case study con-499

cerns 12:00 UTC on 2022-03-15. The region of interest’s western part is dominated by500

a cyclone and its associated cloud patterns over the Iberian Peninsula extending south-501

ward across Morocco and Algeria. Dust plumes are visible over large areas of Algeria.502

Furthermore, magenta colors indicate the presence of dust over Chad, Niger, Burkina503

Faso, Sudan and Egypt. The regional plumes along the border between Burkina Faso504

and Niger, as well as the ones in Egypt are not displayed in the gray-scaled images, with505

the exception of a small area in Egypt. As stated in Section 2.2.2 the choice of ∆Ecut506

is such that we use the clearly identifyable dust pixels with intense magenta well aware507

that this approach leads to a conservative estimate of number of dusty pixels. Specif-508

ically, the dust plumes over Egypt are organized as thin streaks, which are less promi-509

nently visible after resampling the dust RGB images to a grid of 0.28125◦ by 0.5625◦.510

It is worth pointing out, that the darker magenta of Southern Niger and Northern Nige-511
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ria is likely caused by clouds, as indicated by visual inspection of the full-resolution im-512

ages. Thus, these pixels are correctly identified as dust-free.513

The reconstructed dust plume stretching from the Iberian Peninsula towards the514

Algerian-Malian border is meteorologically plausible. This large dust plume is simulated515

by the forecasts of both DREAM8-CAMS and BSC-DREAM8b. However, the dust plume’s516

forecasted position over the Mediterranean and the Iberian Peninsula differs from the517

reconstruction. In the case of the BSC-DREAM8b forecast, the dust plume extends across518

Mali to the Malian-Guinean border region. Visual inspection of the original resolution519

images indicates the presence of thin low-level clouds across Mali instead of dust. While520

the DREAM8-CAMS dust forecast indicates some dust in Sudan, both models fail to ac-521

curately forecast the dust plumes in Sudan and Egypt. The dust plumes in Egypt are522

captured by neither the CAMS reanalysis nor the MERRA-2 reanalysis. Both reanal-523

ysis products, however, indicate a strong presence of mineral dust with values of τdust >524

1.1 in Sub-Saharan West Africa. This corresponds to the values observed by MODIS for525

coarse aerosol particles. The Dust RGB image, including the full-resolution image, does526

not indicate dust this far south. Since both CAMS and MERRA-2 use MODIS satellite527

observations to gain information on aerosol properties (Inness et al., 2019b; Rémy et al.,528

2019; Gelaro et al., 2017; Randles et al., 2016, 2017), observations from additional satel-529

lite sensors may increase the agreement between the reanalysis and the reconstructed530

spatial patterns of mineral dust. Furthermore, this case study illustrates, that synoptic-531

scale dust storms are still challenges for numerical forecast models, e.g., documented ear-532

lier for another case advecting dust over the Iberian Peninsula (Huneeus et al., 2016).533

3.2 Dust occurrence frequencies534

We obtain statistics of dust events by calculating dust occurrence frequencies for535

each individual pixel. The maps of the calculated dust occurrence frequencies further536

serve as a consistency check, as they can be compared to results from previous studies537

including known meteorological drivers of dust emission and transport.538

3.2.1 Annual means539

Based on the reconstructions dust occurrence frequencies are derived for each in-540

dividual pixel at 12:00 UTC.541

A comparison between reconstructed and directly observed, i.e. non-reconstructed,542

dust occurrence frequency for 2021 (left column) and 2022 (right column) is shown in543

Fig. 7. We show here the two years separately to illustrate to what extent inter-annual544

variability can be inferred for the recent years since the interannual variability was large545

for other past years (Wagner et al., 2016). The red shading in the bottom panels indi-546

cates that compared to observations without reconstruction, the reconstructed images547

indicate an expected higher dust frequency. Notably high differences are seen over the548

Atlantic Ocean and along the Atlantic coast. The largest difference inland can be noted549

in the Bodélé Depression in Chad, the Tanezrouft Basin in the border region of Alge-550

ria and Mali, and the Nubian Desert in Sudan. The differences in the annual dust oc-551

currence frequencies for 2021 and 2022 are typically small. A notable exception is the552

higher dust occurrence frequency in Iraq during 2022 than in 2021, which was caused553

by the heavy dust storms during May and June 2022 (cf. Abdulrahman, 2022; Francis554

et al., 2023).555

For daytime observations, higher values of τdust result on average in colors closer556

to magenta (Banks et al. (2019), specifically Fig. 6 therein) and are therefore better rep-557

resented in our reconstruction than weak dust events. Our results show that smaller val-558

ues of ∆Ecut correspond on average to higher values of τdust (Fig. 8). Dust occurrence559

frequencies for ∆Ecut = 20 corresponds to bright magenta, whereas the ∆Ecut = 51.9560
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include more faded magenta shades and even faded purple shades (compare Fig. 3). Our561

studies focuses on ∆Ecut = 51.9, which captures most dust events and reduces the risk562

of misclassifications due to ambiguity of processes associated with colors that have a less563

pronounced pink component. (see Sec. 2.2.2). For comparison the remaining panels of564

Fig. 8 show the dust occurrence frequency obtained from CAMS reanalysis for dust events565

with τdust ≥ 0.5 (center left), τdust ≥ 0.65 (center right), τdust ≥ 0.9 (bottom left),566

and τdust ≥ 1.1 (bottom right). Visual inspection and calculation of the PSNR indi-567

cate that ∆Ecut = 20 results in the closest match with τdust ≥ 0.9 and ∆Ecut = 51.9568

can be matched with τdust ≥ 0.65. Over ocean surfaces the perceptional color differ-569

ence of ∆Ecut = 51.9 corresponds to values of τdust of ∼ 0.5, reflecting the influence570

of the surface conditions on the dust retrieval. Note, that based on the results by Banks571

et al. (2019) the number of dust events can be under-counted with a threshold of the per-572

ceptional color difference of ∆Ecut = 51.9 (see Section 2.2.2). Our calculated dust oc-573

currence frequency from the reconstructed dust images is therefore still a conservative574

estimate, even though dust underneath clouds is now accounted for.575

The reconstructed patterns of dust occurrence frequency have marked regional max-576

ima consistent with previous results for the source activation frequency. Schepanski et577

al. (2007, 2012) provided dust source activation frequencies derived from SEVIRI obser-578

vations. While these frequencies cannot serve as a validation of the dust occurrence fre-579

quency from reconstructed SEVIRI observations, since the latter also include transported580

dust, they may serve as a consistency check. From March 2006 to February 2010 strongly581

active dust source regions, as identified by Schepanski et al. (2012), were the Tanezrouft582

Basin, the Bodélé Depression, and the Nubian Desert. These regions are also display-583

ing local maxima in the dust occurrence frequency in 2021 and 2022 shown here (Fig.584

7).585

The local maximum of the dust occurrence frequency from the reconstructed satel-586

lite images in the Nubian Desert (close to Sudan’s Red Sea coast) is not represented by587

the CAMS reanalysis. The Nubian Desert is a known dust source region as identified ear-588

lier in SEVIRI images (Schepanski et al., 2012), and also seen in other aerosol data, e.g.,589

the dust emission index derived from data of the Infrared Atmospheric Sounding Inter-590

ferometer (Chédin et al., 2020) and the Aerosol Index using observations of the Total591

Ozone Mapping Spectrometer (N. J. Middleton & Goudie, 2001). Since the local max-592

imum is also present in the dust frequency from non-reconstructed observations, the fea-593

ture is not an artifact of the reconstruction. The feature is, however, present in dust oc-594

currence frequencies derived from MERRA-2 reanalysis (see Fig. S1). AOD data derived595

from MODIS sensors (MODIS Atmosphere Science Team, 2017b, 2017a) for coarse aerosol596

particles (Fig. S2) indicates no optically thick, i.e. τ ≥ 0.7, dust plumes in the Nubian597

Desert during both 2021 and 2022. However, MODIS aerosol data can be (partially) ob-598

scured by clouds. Since both CAMS and MERRA-2 use MODIS satellite observations599

for aerosol to gain information on their properties (Inness et al., 2019b; Rémy et al., 2019;600

Gelaro et al., 2017; Randles et al., 2016, 2017) this difference between CAMS and MERRA-601

2 reanalysis is likely attributable to differences between the underlying numerical mod-602

els or differences in the assimilation of data. In these models, differences in the emission603

of dust are mainly driven by differently simulated winds as well as assumptions on the604

soil-surface dependent threshold velocities, which need to be exceeded for dust emission605

(e.g., Inness et al., 2019b; Randles et al., 2017).606

3.2.2 Seasonal cycle607

The spatial patterns of seasonal dust occurrence from the reconstruction are re-608

markably consistent with the dust source activation frequency from March 2006 to Febru-609

ary 2007 as reported by Schepanski et al. (2007). The spatial pattern for 2021 and 2022610

also shows consistency with the dust occurrence frequency derived from a combination611

of MODIS AOD data with Aerosol Index data from the Ozone Monitoring Instrument612
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(OMI) for 2005–2019 as reported by Gavrouzou et al. (2021). This similarity allows us613

to infer dominant meteorological processes driving the dust occurrence in the following.614

Dust emission and dust transport in North Africa are known to be subject to di-615

urnal, seasonal, annual, and inter-annual differences (e.g., Engelstaedter et al., 2006). The616

seasonal mean dust occurrence frequency averaged for 2021–2022 is shown in Fig. 9. For617

comparison, occurrence frequencies for coarse aerosol particles with τdust ≥ 0.65 from618

MODIS Level 3 data are used. The threshold of τdust ≥ 0.65 was chosen, based on the619

comparison of reconstruction-derived dust occurrence frequencies with CAMS reanalysis-620

derived dust occurrence frequencies (see Fig. 8), which yields the best match with re-621

spect to the PSNR between the resulting spatial patterns. The right column of Fig. 9622

specifically shows the mean of the Level 3 product from MODIS on board Terra and Aqua.623

Following the work by Basart et al. (2009), we counted dust events for which the thresh-624

old of τ was reached and for which simultaneously the Ångström exponent was α < 0.75.625

Note, that Basart et al. (2009) used Ångström exponent data between the wavelength626

pair of 440 nm and 870 nm, whereas, the values from MODIS Ångström exponent data627

are for the wavelength pairs of 412 nm and 470 nm (over bright scenes, such as deserts)628

or else between 470 nm and 650 nm (Hsu et al., 2013).629

We identify distinct seasonal differences in the spatial patterns of dust obscured630

by clouds, based on the differences between the dust occurrence frequency derived di-631

rectly from original SEVIRI observations and those derived from the ANN-based recon-632

struction,. In winter, dust plumes primarily close to the Bodélé Depression are obscured633

by clouds. During spring, the effects of obscuring clouds in the Bodélé Depression can634

still be clearly recognized, but the effect is now more evenly spread over the entire re-635

gion of interest. Summertime cloud obscuring mainly occurs in Mali, Algeria, and to a636

lesser extent in Niger, as well as in the Nubian desert. As dust activity during autumn637

is generally lower compared to the other seasons, the number of dust events obscured638

by clouds is also smaller.639

The spatial patterns of the cloud occurrence frequency, fcloud, as derived from MODIS640

observations (see Fig. S5) during winter and spring display a remarkable similarity be-641

tween each other. With the exception of the Bodélé Depression, where during winter fcloud ∼642

50%, fcloud was 20−40% in the in-land locations of the study region north of ∼ 13◦N.643

For better visual guidance, this latitude approximately falls onto the Nigerien-Nigerian644

border. During spring, dust plumes extend further southwards than during summer, which645

is due to seasonally different dust transport directions associated with seasonal varia-646

tions in the atmospheric dynamics over Northern Africa (Schepanski et al., 2009). Dur-647

ing summer, for instance, high cloud occurrence is expected further inland due to deep648

convection associated with the West African Monsoon (see Fig. S5).649

The identified spatial patterns of dust occurrence agree with known dust emission650

and transport processes. For instance, the dust occurrence in spring along the Mediter-651

ranean coast is associated with moving cyclones, which primarily occur in spring along652

the North African Mediterranean coast and transport dust east- and north-wards (Israelevich653

et al., 2002). The absolute differences between dust occurrence derived from direct SE-654

VIRI observations and the reconstructions take values of 2–3 pp along North Africa’s655

Mediterranean coast (see Fig. 7) indicative of an underestimation of dust occurrence in656

satellite images due to clouds during cyclones , also known as Sharav cyclones (Alpert657

& Ziv, 1989; Israelevich et al., 2002). In spring, up to 90% of North African dust emis-658

sions north of 25◦N and west of 10◦E are associated with depressions, and up to 25% of659

dust emissions along the Mediterranean Sea’s coast are linked to mobile cyclones (Fiedler660

et al., 2014).661

Between November and March, dust is transported towards regions south of the662

Sahel by north-easterly near-surface trade winds, referred to as Harmattan (Warner, 2004;663

Oluleye & Jimoh, 2018). The dust occurrence south of the Sahel in spring is attributable664
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to the Harmattan. The summertime dust occurrence in West Africa, mostly in Algeria,665

Mali, and Niger, is also commonly linked to depressions, also known as the West African666

heat low (Fiedler et al., 2014). More specifically, summertime dust emission can be linked667

to strong near-surface winds generated by low-level jets and convective cold pools (Fiedler668

et al., 2013; Heinold et al., 2013). Convective cold pools are generated by downdrafts669

from deep moist convection and hence are associated with the presence of clouds (Roberts670

& Knippertz, 2014; Trzeciak et al., 2017; Caton Harrison et al., 2019; Allen & Washing-671

ton, 2014). Especially, the timing of the onset of dust emission is missed by satellite ob-672

servations due to the clouds during such conditions. The aspects pertaining to the di-673

urnal cycle will be discussed in Section 3.2.3.674

The severe Middle Eastern dust storms in May and June 2022 (Abdulrahman, 2022;675

Francis et al., 2023) resulted in high values of dust occurrence frequency, which can be676

seen in Iraq, Iran and Saudi Arabia, during both spring and summer as seen by com-677

paring the seasonal dust occurrence frequency in 2021 against 2022 (Fig. S3).678

During winter and spring a comparatively large number of events with AODcoarse ≥ 0.65679

was detected in sub-Saharan North Africa from MODIS, which is not as strongly pro-680

nounced in the reconstruction of SEVIRI images. A small number of regional dust cases681

(with fdust < 5%) is here indeed seen in the reconstructed SEVIRI images, however,682

in general, no frequent dust events are detected in sub-Saharan North Africa by SEVIRI.683

Earlier investigations of the dust source activation frequencies derived from MODIS AOD684

and OMI Aerosol Index display here a different spatial pattern compared to SEVIRI-685

derived dust source regions. MODIS-derived dust source regions are located further south686

than most of the SEVIRI- and OMI-derived dust source regions. The SEVIRI-derived687

dust source regions stretch across North Africa from Western Sahara and Morocco in the688

west until Sudan in the east. Observations from all three sensors indicate a dust source689

region in Niger and Chad, which includes the Bodélé Depression (Schepanski et al., 2012).690

Since winter and spring are outside the North African biomass burning season (Barbosa691

et al., 1999) and by taking only coarse aerosol (α < 0.75) into account, the risk of mis-692

classifying other types of aerosol particles as dust is reduced but not entirely eliminated.693

Dust occurrence frequencies derived by SEVIRI and occurrence frequencies based on AOD694

and Ångström exponent thresholds derived from MODIS Level 3 data are not directly695

comparable. One reason is that other aerosol species than mineral dust are also included696

in the AOD of MODIS, e.g., anthropogenic and biogenic aerosols. Another reason lies697

in the orbits of Terra and Aqua. Each MODIS overpass over a specific location corre-698

sponds to a certain time. The MODIS Level 3 products aggregate the observations into699

a single dataset. These differences limit the comparability between observations of aerosols700

from MODIS and SEVIRI. Regardless of the systematic differences, the two results agree701

on identifying seasonal patterns of dust occurrence frequency. For instance, both SEVIRI702

and MODIS observations identify the Bodélé Depression as an important dust source703

during winter and spring, as well as, highlighting widespread dust occurrence in West704

Africa during summer.705

As already evident from Fig. 8, with ∆Ecut = 51.9 a higher number of optically706

thinner (0.5 ≤ τdust < 0.65) dust plumes are detected over ocean than over land. This707

difference in the detection sensitivity between land and ocean is especially prominent dur-708

ing the spring months (MAM) and during the winter months of 2021 (cf. Fig. 9). Fig.709

8 also indicates that the dust occurrence frequency derived with ∆Ecut = 20.0, which710

corresponds to bright magenta colors, is less sensitive to transitions between land and711

ocean backgrounds. Surface characteristics, specifically differences in emissivity and skin712

temperature, affect the color in the Dust RGB images resulting in rather purple shades713

in the presence of dust plumes. By considering only bright magenta colors, we select cases714

in which the effect of different surface conditions is less prominent, hence the transition715

between land and ocean background is smoother.716
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To gauge the influence of the value of ∆Ecut, we show the seasonal dust occurrence717

frequency during 2021 and 2022 derived from images with ∆Ecut = 20.0 in Fig. 10. The718

interannual differences in the dust occurrence frequency between 2021 and 2022 are shown719

in Fig. S4. As mentioned earlier, the threshold of ∆Ecut = 20.0 results in only pixels720

colored brightly magenta being classified as dust-containing. Thus, the dust occurrence721

frequency is lower compared to ∆Ecut = 51.9 which includes also more purple colors722

for dust detection. However, not only the magnitude but also the spatial patterns change723

when setting ∆Ecut = 20.0, specifically during winter and spring, whereas, the spatial724

patterns over land during summer and autumn remain largely similar, with little over-725

all activity in autumn. Dust occurrence in both winter and spring is connected to trans-726

port by mobile cyclones along the Mediterranean coast (e.g., Engelstaedter et al., 2006;727

Bou Karam et al., 2010) and southward transport towards sub-Saharan Africa and the728

Gulf of Guinea (e.g., Schwanghart & Schütt, 2008; Schepanski et al., 2009; Oluleye &729

Jimoh, 2018). In both cases, dust plumes become more frequently mixed with moister730

air, resulting in purple-colored pixels in the Dust RGB images, which are not detected731

assuming ∆Ecut = 20. Summertime dust events in West Africa can be associated with732

convective systems (cf., Nickling & Gillies, 1993; Schwanghart & Schütt, 2008; Heinold733

et al., 2013; Bou Karam et al., 2014; Roberts & Knippertz, 2014; Allen & Washington,734

2014), which feature in bright magenta in the Dust RGB images and are, consequently,735

detected with both values of ∆Ecut. Transported dust even during summertime can fea-736

ture in purple and faded magenta shades (see Sec. 3.1) and, thus, account for pattern737

differences.738

Dust emitted from the Bodélé Depression during winter and spring was only sparsely739

detected in 2021 and not at all in 2022 when we used ∆E = 20 as a threshold since here740

the dust plumes result in less brightly magenta colors in the Dust RGB images. The dust741

occurring during winter over the Atlantic Ocean to the northwest of the Madeira Archipelago742

is an artifact produced by the ANN since here little dust occurs in combination with clouds743

and hence the training data might be too small. During spring 2021 the maximum dust744

occurrence is along the Malian-Burkinabé border with no dust detected in Northern Mali.745

This local maximum can be attributed to multiple dust events in early May, which re-746

sulted in bright magenta shades in the Dust RGB product.747

3.2.3 Diurnal cycle748

We assess the diurnal cycle in the dust occurrence frequency by extending our anal-749

ysis from 12 UTC shown so far to 9 and 15 UTC. These additional reconstructions were750

performed using gray-scaled SEVIRI images with ∆Ecut = 51.9 for 9 and 15 UTC. Fig.751

11 shows the absolute differences in dust occurrence frequency at 9 (left column) and 15752

UTC (center column) respectively with respect to 12 UTC.753

The annual dust occurrence frequencies indicate high values of the dust occurrence754

frequency in the Bodélé Depression at 9 UTC. The breakdown into seasons shows clearly,755

that at 9 UTC dust events in the Bodélé Depression mainly occur during winter and spring,756

consistent with the mid-morning breakdown of nocturnal low-level jets generating dust-757

emitting winds (Fiedler et al., 2013). In the left-hand column of Fig. 11 the larger oc-758

currence at 9 UTC is seen by the red shades at the location of the Bodélé Depression,759

marked by a black star in the right-hand column. This finding is further consistent with760

other data shown by Washington et al. (2009), according to which dust in 2006 and 2007761

in the Bodélé Depression was mainly emitted between 6 and 9 UTC. As can be seen in762

Fig. 11 dust is then mainly transported towards the southwest. This gives rise to the763

dipole structure visible in the absolute differences between dust occurrence frequencies764

at 9 and 12 UTC and 15 and 12 UTC respectively in Chad and along the border of Chad765

and Niger. This transport pattern is consistent with dust transport from the Bodélé De-766

pression in January, February, and March 1979 to 1997 (Washington et al., 2006).767
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The absolute differences in dust occurrence frequency over the Arabian peninsula768

at 15 UTC reach up to 15 pp compared to 12 UTC. These are likely caused by dust lift-769

ing due to convection. Mesoscale convective systems over the southern Arabian Penin-770

sula typically occur during winter and spring with a local maximum at 14–15 UTC (Nelli771

et al., 2021). Note, that the highest number of mesoscale convective systems was reported772

between 22 and 23 UTC, a time not covered by this study. The combination of solar heat-773

ing, local circulations, and cyclonic activity during winter and spring drive convection774

on the Arabian Peninsula (Warner, 2004). Numerical studies point to dry convection and775

to a lesser extent moist convection as an important driver of dust emission on the Ara-776

bian Peninsula (Bukowski & van den Heever, 2020). Field observations in Morocco fur-777

ther indicate the importance of convection for dust emission (Ansmann et al., 2009). At778

15 UTC, which corresponds to roughly 18 LT, beginning surface cooling after sunset in779

the Eastern parts of the studied region may further begin to distort the values of dust780

occurrence frequency. As discussed in Sec. 2.2.2, for skin temperatures with Tskin < 300K781

the dust plumes are no longer clearly distinguishable from other environmental impacts782

on the Dust RGB product. Such conditions can be reached after sunset.783

As stated above among the processes contributing to summer-time dust emission784

in the Sahara, specifically the region characterized by a local maximum in dust occur-785

rence frequency situated in northern Mali, southern Algeria, and north west Niger, are786

low-level jets and cold pool outflows. Field observations during June 2011 in Bordj-Badji787

Mokhtar (southern Algeria, 21.33◦N, 0.95◦E) indicate a maximum in surface-level wind788

speeds (at 10m a.g.l.) with the breakdown of low-level jets, i.e., typically between 9 and789

10 UTC which corresponds to 10 – 11 LT (Allen & Washington, 2014). Numerical sim-790

ulations of dust emission between 2006-07-26 and 2006-09-02 by Heinold et al. (2013)791

indicate an earlier maximum in the mean hourly dust emission over West Africa at 8 UTC.792

Considering the continued dust emission after 8 UTC and the time needed for the freshly793

emitted dust to be upward mixed and transported as seen in the satellite images, the higher794

values of dust occurrence frequency at 12 UTC over West Africa during summer in our795

results are broadly consistent with Heinold et al. (2013) and Allen and Washington (2014).796

3.3 Evaluation of forecast data797

The trained neural network was applied to all available gray-scaled SEVIRI images798

from 2021 and 2022 at 12:00 UTC. Here, we use the resulting images to evaluate the out-799

put of dust forecast provided by the World Meteorological Organization (WMO) Barcelona800

Dust Regional Center (see Section 2.1.2). Since qualitatively reconstructed images of ar-801

eas with dust and quantitative forecasts of the dust aerosol optical depth are not directly802

comparable, we first convert both the reconstructed gray-scale satellite images and the803

forecasted fields of τdust to binary images in which 1 represents a ”dusty” pixel and 0804

a dust-free pixel. In the case of the dust forecasts, a pixel is classified as dusty, if the AOD805

exceeds a pre-defined threshold, i.e., τ ≥ τthreshold. For this purpose, we define and test806

six different thresholds: τthreshold=[0.3, 0.5, 0.7, 0.9, 1.1, 1.3].807

Fig. 12 compares the dust forecast ensemble with respect to the median forecast,808

provided by the WMO Barcelona Dust Regional Center, and the forecast ensemble with809

respect to the reconstruction for both 2021 and 2022. The evaluation metrics SSIM, di-810

rected Hausdorff distance, and PSNR (Section 2.2.3) are displayed as violin plots (Hintze811

& Nelson, 1998) to evaluate the regional performance. As the median forecast is com-812

posed of the other model forecasts within the ensemble, we expect a larger number of813

cases with SSIM ≈ 1 when we compare the individual forecast models against the me-814

dian of all forecasts than for the reconstruction compared to the median of all forecasts.815

For small lower bounds of AOD (τmathrmdus ≥ [0.3, 0.5]) the distribution of SSIM val-816

ues for forecasts compared to median forecasts strongly differ from the reconstructions817

compared to the median of forecasts. For intermediate AOD bounds (τdust = 0.7) the818

difference in the value distributions is reduced, although for the reason outlined above819
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the forecasts as a whole yield values of SSIM closer to 1. For larger values of AOD bounds820

SSIM → 1, however, the forecasts converge faster to 1 than the reconstructions.821

Using the directed Hausdorff distance as an evaluation criterion the reconstruction822

performs with respect to the dust forecast ensemble on average as well as the forecast823

ensemble compared to the median forecast for values of τthreshold ≥ 0.7. In the case of824

PSNR, the reconstruction with respect to the forecast ensemble performs best for AODthreshold =825

0.7 compared to all model forecasts with respect to the median forecast, although the826

performance differences are not large. For τthreshold ≥ 0.9 the median forecast outper-827

forms the reconstruction with respect to the PSNR.828

We use the reconstruction of dust plumes to assess the level of similarity of dust-829

plume extents simulated by individual numerical forecasts over North Africa next. Fig-830

ure 13 allows us to compare the reconstruction’s performance against the output from831

individual forecast models. In 2021 (top row) the models BSC-DREAM8b, DREAM8-832

CAMS, and WRF-NEMO agree best with the reconstruction as indicated by the respec-833

tive median values of all three metrics. In 2022 (bottom row) the highest agreement in834

terms of PSNR and directed Hausdorff distance is seen for DREAM8-CAMS, MOCAGE,835

and WRF-NEMO, and in terms of SSIM for DREAM8-CAMS, MOCAGE, NCEP-GEFS836

and ICON-ART. Only evaluating the spatial patterns, LOTOS-EUROS and MONARCH837

performed poorest in both 2021 and 2022. While outperforming LOTOS-EUROS and838

MONARCH with respect to all three evaluation metrics, NCEP-GEFS performed third839

poorest in 2021. In 2022 NOA, which in 2021 narrowly outperformed NCEP-GEFS, had840

the third poorest performance. It should be noted, that among the best-performing mod-841

els, both DREAM8-CAMS and MOCAGE use data assimilation, while none of the mod-842

els with comparatively poor performance used data assimilation techniques. It should843

be stressed, that our evaluation has a focus on the spatial pattern of dust plumes, which844

was not done in the past. Typically, dust model forecasts are evaluated by their ability845

to correctly forecast τ at monitoring stations, most of which stem from sunphotometers846

that can only provide data during daytime in cloud-free conditions (cf. Huneeus et al.,847

2011; Terradellas et al., 2022). Hence, our study has demonstrated a new capability to848

evaluate simulated dust transport with a first consideration of dust plume shapes, based849

on computationally fast reconstructions of dust plumes in satellite images.850

4 Discussion and Outlook851

In this study, we restored spatial patterns of dust plumes from partially cloud-obscured852

satellite observations for the first time. Since both dust-aerosol emission and transport853

and cloud structures are governed by atmospheric conditions, we combined dust AOD854

data from CAMS reanalysis with coinciding SEVIRI-derived cloud-masks for the train-855

ing of the ANN. The trained network was applied to cloud-masked, gray-scaled satel-856

lite images, derived from MSG-SEVIRI’s Dust RGB product. The reconstruction of dust857

plumes performs just as well or better than individual forecasts relative to the median858

across all forecasts.859

Our dust occurrence frequency from the reconstructed dust plumes is consistent860

with spatial patterns of the dust source activation frequency reported in earlier studies861

and with the understanding of atmospheric processes driving dust emission and trans-862

port. So far parametrizations in numerical models provided a way of gauging the extent863

of below-cloud dust events, i.e. of ”seeing” beneath the clouds. By applying machine-864

learning-based in-painting methods to geostationary satellite images, we demonstrated865

another possibility of estimating the full extent of dust events. Compared to numerical866

modeling, once the ANN is trained, our approach is computationally much cheaper than867

numerical modeling. Provided a SEVIRI Dust RGB image and the corresponding cloud868

mask are available, gray-scaling, data conversions, and subsequent in-painting for a sin-869

gle image required 30 seconds on a single core (AMD 7763 CPU, provided by DKRZ).870
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Note, that this is an upper bound of required resources since the computational set-up871

was not streamlined for (near) real-time image processing.872

Comparing the reconstructed and the directly observed dust occurrence frequen-873

cies for both 2021 and 2022 (see Fig. 7) indicates, that previous studies of the dust oc-874

currence frequency and by extension the dust source activation frequency derived from875

SEVIRI and other satellite observations underestimate the dust occurrence and dust source876

activation due to the presence of clouds (e.g., Schepanski et al., 2012; Heinold et al., 2013;877

Chédin et al., 2020). Our results suggest that at least 0.78% of observations in the spa-878

tial mean over the entire region of interest miss dust events due to cloud coverage. Re-879

gionally and seasonally dust missed due to clouds can be up to 15% of observations. In880

extreme cases, all dust events occurring in an individual pixel are obscured by clouds.881

In 7.3% of pixels, all dust events as obtained by our proposed reconstruction method would882

be missed using conventional satellite observations. In 29.5% and 17.7% of pixels at least883

a tenth and a half of all dust events in the reconstruction, respectively, coincide with cloud884

coverage. When considering only the events with τdust ≥ 0.65 (see 8) in the CAMS re-885

analysis as dust events, then for 9.6% of pixels of all dust events coincide with a cloud886

as observed by SEVIRI. A tenth and a half of dust events from CAMS reanalysis coin-887

cide with cloud coverage in 84.3% and 55.4% respectively of the pixels. Owning to our888

choice of identifying dust events by using gray-scaling based on perceptional color dif-889

ferences and due to the resolution of the input images, our number of dust events is still890

likely to be a conservative estimate, as indicated by the two case studies. In close prox-891

imity to clouds, the under-counting of dust-containing pixels can still be rectified by the892

ANN-based reconstruction method as illustrated in the first case study.893

Since a similar Dust RGB composite is provided operationally for observations by894

the Advanced Baseline Imager (ABI) instrument onboard the Geostationary Operational895

Environmental Satellite (GOES) and the Advanced Himawari Imagers (AHI) onboard896

the geostationary Himawari satellite, our approach could be transferred to other regions897

of interest (cf. Fuell et al., 2016; Bessho et al., 2016). While this study was focused on898

data from geostationary satellites the in-painting approach can also be adapted to ob-899

servations and products from polar-orbiting satellites, such as AOD products derived from900

MODIS. Provided suitable training data from reanalysis is available the approach can901

further be applied to observations of different aerosol species and plumes of trace gases902

close to the respective source.903

The here proposed method to restore dust plume extents on SEVIRI RGB Dust904

images by machine-learning-based image in-painting methods can be applied to a larger905

area and to images at a higher temporal resolution of up to 15 minutes in the case of SE-906

VIRI. Such a spatial extension can facilitate additional investigations of dust transport907

to Europe and/or across the Atlantic Ocean. Using a higher temporal resolution may908

aid in studying dust transport mechanisms within North Africa in more detail and help909

to overcome observational gaps stemming from sparse ground-based observations.910

There are a number of aspects in our current approach that can be further refined911

for future applications. To obtain a consistent spatio-temporal picture of suspended dust,912

the values of ∆Ecut can be adjusted to the different environmental conditions, such as913

surface type (surface emissivity), skin temperature, and a climatology of column water914

vapor content (see Section 2.2.2 and Banks et al. (2019)), e.g., via generating look-up915

tables to account for these aspects. Adapting ∆Ecut to different environmental condi-916

tions would also be the next step to develop a link of the Dust RGB product or derived917

products, such as our reconstructed images, to τdust. Currently, there are already retrievals918

of dust AOD from SEVIRI observations based on look-up tables of observed shortwave919

reflectance (Brindley & Ignatov, 2006) for retrievals over ocean surfaces and based on920

longwave brightness temperatures in conjunction with European Centre for Medium-Range921

Weather Forecasts’ operational analysis for retrievals over land surfaces (Brindley & Rus-922

sell, 2009), which could be exploited. Other retrieval algorithms involve optimal estima-923
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tion (cf. Rodgers, 2000) based on observed brightness temperatures at both visible and924

infrared channels (Carboni et al., 2007; Thomas et al., 2009). Following successfully es-925

tablished links between AOD and the color in the RGB Dust product, our method can926

restore the cloud-obscured fractions of AOD and subsequently contribute to assimilat-927

ing further satellite observations into numerical models to better constrain the forecasts928

of dust. Accurate forecasts of dust plumes are important for different applications, e.g.,929

in the health and energy sector.930

So far, each image has been reconstructed individually. With the help of recurrent931

neural networks (Che et al., 2018) the temporal evolution of dust storms can be taken932

into account explicitly by the network, thus, potentially further improving the reconstruc-933

tions. While ground-based observations of dust in Northern Africa are sparse, incorpo-934

rating these observations into the reconstructions provides another avenue for potential935

improvements in dust storm reconstruction for a better understanding of their evolution936

and accurate warnings of their impacts.937

5 Conclusion938

We present to our knowledge the first fast reconstruction of the spatial extent of939

partially cloud-obscured dust plumes from satellite observations. We achieve this by em-940

ploying machine-learning-based image inpainting techniques. Once the artificial neural941

network is trained, the reconstruction of dust plume extents is computationally inexpen-942

sive.943

Spatially averaged over North Africa the differences in annual dust occurrence be-944

tween reconstructions and classical satellite observations are small, not at last because945

dust is not present all the time across the entire of North Africa. However, the number946

of dust events obscured by clouds increases, when considering seasonal and regional sub-947

sets. As a conservative estimate, we find that up to 15% of satellite observations in West948

Africa and up to 10% of satellite observations in the Nubian Desert during 2021–2022949

miss dust events. Based on the reconstructed plumes, in 7.3% of pixels, all dust events950

coincide with clouds and would, thus, not be directly identifiable from classical satellite951

observations. This roughly corresponds to a geographical area of ∼ 2 · 106 km2. Our952

comparison with reanalysis indicates a somewhat higher fraction of 9.6% of pixels in which953

all dust events coincide with cloud cover.954

The reconstructed dust plumes provide new means to validate and constrain spa-955

tial patterns of dust plumes in simulations from numerical forecast models and Earth956

system models. They further provide means for more detailed studies of dust emission957

and transport mechanisms using satellite observations free of gaps caused by cloud cover958

for the first time. The method can be applied to the corresponding dust products ob-959

tained from sensors on other geostationary satellites to compile a global dataset. It can960

also be adapted to different types of aerosols and trace gases observed from geostation-961

ary and low-earth orbit satellites to broaden the possibilities for model validation of at-962

mospheric composition in models, e.g., as simulated by Earth system models in the Cou-963

pled Model Intercomparison Project (CMIP).964

Open Research Section965

The code for the ClimatereconstructionAI can be obtained from Zenodo (Inoue et966

al., 2022). The gray-scaling algorithm can be obtained from https://github.com/tobihose/Masterarbeit.967

Dust forecast datasets were provided by the WMO Barcelona Dust Regional Center and968

the partners of the Sand and Dust Storm Warning Advisory and Assessment System (SDS-969

WAS) for Northern Africa, the Middle East and Europe and can be obtained from https://dust.aemet.es.970

CAMS reanalysis data were provided by the Copernicus Atmospheric Monitoring Ser-971

vice (Inness et al., 2019a) and can be obtained from https://ads.atmosphere.copernicus.eu.972
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SEVIRI false color RGB images (collection ID: EO:EUM:DAT:MSG:DUST, EUMETSAT973

(2009b)) and MSG cloud masks (collection ID: EO:EUM:DAT:MSG:CLM, EUMETSAT974

(2009a)) were provided by EUMETSAT and can be obtained from the EUMETSAT Data975

Store under https://data.eumetsat.int. MERRA-2 reanalysis data (Global Modeling And976

Assimilation Office & Pawson, 2015) was provided by the National Aeronautics and Space977

Administration’s (NASA) Goddard Earth Science Data Information and Services Cen-978

ter (GES DISC) and can be obtained from https://disc.gsfc.nasa.gov/datasets?project=MERRA-979

2. MODIS level 3 data (MODIS Atmosphere Science Team, 2017b, 2017a) was provided980

by NASA and can be obtained from https://ladsweb.modaps.eosdis.nasa.gov. Access to981

all datasets requires prior registration. In-painted images generated in the course of this982

study, as well as, trained ANNs will be made available on Zenodo with the publication983

of the study.984
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Fig. 1. Two-dimensional histograms of the mean non-masked τdust from CAMS re-1599

analysis and the mean reconstructed τdust. The shading represents the density of the data1600

points in the respective size bin with white indicating no available data. For each panel,1601

the root mean squared error (RMSE) and the mean absolute percent error (MAPE) of1602

the reconstruction with respect to the reanalysis are given. Furthermore, the Pearson1603

correlation coefficient r between reconstructed and original, i.e., non-masked, reanaly-1604

sis is shown.1605

Fig. 2. Comparison of CAMS reanalysis used as ground truth (left column), cloud-1606

masked CAMS reanalysis, used as input (center column), and reconstruction (right col-1607

umn) for 5 different cases, represented by the rows. Note, that rows 2 and 3 represent1608

the reconstructions resulting in the largest deviations from the ground truth with respect1609

to RMSE (case 2022-02-03, 09:00 UTC) and directed Hausdorff distance (case 2022-03-1610

16, 03:00 UTC).1611

Fig. 3. RGB colors as a function of value of the red component (along y-axis) and1612

the green component (along x-axis) for a fixed value of the blue component of 255. Iso-1613

lines indicate perceptional color differences ∆E calculated using Eq. 4. For most parts1614

of our study, we set ∆Ecut = 51.9, indicated by the solid line.1615

Fig. 4. Two-dimensional histograms showing fraction of dust containing pixels in1616

the gray-scaled, cloud-obscured Dust RGB images in coarser and finer resolution (left)1617

and the ANN-based reconstruction (right). Shading is as in Fig. 1. The dashed line in-1618

dicates the best fit, obtained by using linear regression.1619

Fig. 5. Comparison of SEVIRI and MODIS observations with results from numer-1620

ical dust forecasts, ANN-based reconstructions and reanalysis data for 2021-08-22, 091621

UTC. Top right panel show Dust RGB image in 128 pixel by 128 pixel resolution and1622

dust plumes detected by applying gray-scaling are indicated by white contours. The top1623

left panel shows τ from MODIS/Terra observations for coarse particles (α > 0.75) with1624

isolines indicating the different values. The middle panels show the reconstructed dust1625
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plumes in dark blue and the isolines show the forecasted values of τdust. The forecast shown1626

in the left panel was obtained from the DREAM8-CAMS model and the forecast in the1627

right panel from the NASA-GEOS model. The bottom panels show SEVIRI Dust RGB1628

images as in the top right panel. White, hatched contours indicate reconstructed dust1629

plumes, whereas, isolines indicate the values of τdust from CAMS (left panel) and MERRA-1630

2 (right panel) reanalysis.1631

Fig. 6. As Fig. 5, but for 2022-03-15, 12 UTC. The top right panel shows obser-1632

vations from MODIS/Aqua. The middle right panel shows forecasts obtained from the1633

BSC-DREAM8b model.1634

Fig. 7. Comparison of the dust frequency in 2021 (left column) and 2022 (right col-1635

umn) at 12 UTC from reconstructed images (top) and observations without reconstruc-1636

tion (center). The bottom image shows the absolute difference between reconstructed1637

and non-reconstructed images in percentage points (pp). For dust plume detection we1638

assumed ∆Ecut = 51.9 (see Fig. 3). The respective mean dust occurrence frequency1639

is indicated as f̄dust in the panels.1640

Fig. 8. Comparison of dust occurrence frequency in 2021 from reconstruction with1641

different values of ∆Ecut (top row) and from CAMS reanalysis with different lower bounds1642

of τdust (middle and bottom row). See Fig. 3 for an interpretation aid of values of ∆Ecut.1643

Fig. 9. Seasonal dust frequency obtained from gray-scaled images with ∆Ecut =1644

51.9 (first column, starting from the left) and from reconstructed gray-scaled images (sec-1645

ond column). The third column shows the absolute difference between the first two columns.1646

For comparison, the occurrence frequency of events with τcoarse ≥ 0.65 as obtained from1647

MODIS data is shown in the fourth column. The rows represent the different seasons,1648

from top to bottom winter (DJF), spring (MAM), summer (JJA), and autumn (SON).1649

See Fig. 3 for an interpretation aid of values of ∆Ecut.1650

Fig. 10. As Fig. 9 but obtained with ∆Ecut = 20.0 and τcoarse ≥ 0.91651

Fig. 11. Comparison between reconstructed dust occurrence frequencies at 9, 12,1652

and 15 UTC with ∆Ecut = 51.9 (cf. Fig. 3). The left column represents the absolute1653

difference between dust occurrence frequencies at 9 UTC and 12 UTC in percentage points1654

(pp) and the middle column the absolute difference between 15 UTC and 12 UTC. The1655

right column shows the dust occurrence frequency at 12 UTC. The rows indicate the dif-1656

ferent seasons. From top to bottom, the rows show the full year, winter (DJF), spring1657

(MAM), summer (JJA), and autumn (SON). The black stars in the right column indi-1658

cate the location of the Bodélé Depression.1659

Fig. 12. Comparison of the dust forecasts with respect to the median forecast (blue)1660

and with respect to the reconstruction (orange). Colors represent the respective quan-1661

tity’s distribution. Long dashed black lines represent the median and short dashed black1662

lines the first and third quartile respectively. The left column compares forecasts and1663

observations for 2021, whereas, the right column shows the comparison for 2022. The1664

rows indicate different quality metrics, namely the structural similarity index measure1665

(top row), directed Hausdorff distance (middle row), and peak signal-to-noise ratio (bot-1666

tom row).1667

Fig. 13. Comparison of the dust reconstruction with numerical forecasts with by1668

the individual models in the ensemble provided by the WMO Barcelona Dust Regional1669

Center for 2021 (top row) and 2022 (bottom row). The similarity measures shown are1670

SSIM (left column), directed Hausdorff distance (center column), and PSNR (right col-1671

umn). As for Fig. 12 the colors show the measures’ distributions with long dashed black1672

lines representing the median and short dashed black lines indicating the first and third1673

quartile. Models marked with * use data assimilation. A full overview of the quartiles1674
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indicated by long-dashed (second quartile) and short-dashed (first and third quartile)1675

lines is given in Tables S1 and S2.1676
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Figure S1. Comparison of dust occurrence frequency in 2021 from reconstruction with different

values of ∆Ecut (top row) and from MERRA-2 reanalysis with different lower bounds of dust

AOD (middle and bottom row).
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Figure S3. Reconstructed seasonal dust occurrence frequencies with ∆Ecut = 51.9 in 2021

(left column) and 2022 (right column). Rows indicate the season.
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Figure S4. As Fig. S3, but with ∆Ecut = 20.0.
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Figure S5. Seasomal occurrence frequency of events with AODcorase ≥ 0.65 (left column) and

cloud occurrence frequency fcloud. Clouds are defined as pixels with values of cloud optical depth

of τcloud ≥ 0.3 (cf. Sun et al., 2011).
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