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Abstract

Extreme climate events are becoming more frequent, with poorly understood implications for carbon sequestration by terrestrial

ecosystems. A better understanding will critically depend on accurate and precise quantification of ecosystems responses to

these events. Taking the 2019 US Midwest floods as a case study, we investigate current capabilities for tracking regional flux

anomalies with “top-down” inversion analyses that assimilate atmospheric CO2 observations. For this analysis, we develop a

regionally nested version of the NASA Carbon Monitoring System-Flux (CMS-Flux) that allows high resolution atmospheric

transport (0.5° × 0.625°) over a North America domain. Relative to a 2018 baseline, we find US Midwest growing season net

carbon uptake is reduced by 11-57 TgC (3-16%) for 2019 (inversion mean estimates across experiments). These estimates are

found to be consistent with independent “bottom-up” estimates of carbon uptake based on vegetation remote sensing. We then

investigate current limitations in tracking regional carbon emissions and removals by ecosystems using “top-down” methods.

In a set of observing system simulation experiments, we show that the ability to recover regional carbon flux anomalies is

still limited by observational coverage gaps for both in situ and satellite observations. Future space-based missions that allow

for daily observational coverage across North America would largely mitigate these observational gaps, allowing for improved

top-down estimates of ecosystem responses to extreme climate events.
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Abstract28

Extreme climate events are becoming more frequent, with poorly understood implica-29

tions for carbon sequestration by terrestrial ecosystems. A better understanding will crit-30

ically depend on accurate and precise quantification of ecosystems responses to these events.31

Taking the 2019 US Midwest floods as a case study, we investigate current capabilities32

for tracking regional flux anomalies with “top-down” inversion analyses that assimilate33

atmospheric CO2 observations. For this analysis, we develop a regionally nested version34

of the NASA Carbon Monitoring System-Flux (CMS-Flux) that allows high resolution35

atmospheric transport (0.5◦×0.625◦) over a North America domain. Relative to a 201836

baseline, we find US Midwest growing season net carbon uptake is reduced by 11-57 TgC37

(3–16%) for 2019 (inversion mean estimates across experiments). These estimates are38

found to be consistent with independent “bottom-up” estimates of carbon uptake based39

on vegetation remote sensing. We then investigate current limitations in tracking regional40

carbon emissions and removals by ecosystems using “top-down” methods. In a set of ob-41

serving system simulation experiments, we show that the ability to recover regional car-42

bon flux anomalies is still limited by observational coverage gaps for both in situ and satel-43

lite observations. Future space-based missions that allow for daily observational cover-44

age across North America would largely mitigate these observational gaps, allowing for45

improved top-down estimates of ecosystem responses to extreme climate events.46

Plain Language Summary47

Extreme climate events, such as floods or heatwaves, can have major impacts on48

the carbon cycle. For example, widespread flooding in the US Midwest during 2019 de-49

layed the planting of crops leading to reduced plant growth and carbon uptake relative50

to 2018. Here, we test how well this reduction in carbon uptake can be inferred from mea-51

surements of atmospheric CO2. We find that these data can identify reduced net car-52

bon uptake to the US Midwest during the 2019 floods, but that sparse observational cov-53

erage limits our ability to quantify the anomaly in net carbon uptake.54

1 Introduction55

Extreme events, including heat and precipitation extremes, are becoming more fre-56

quent (Shenoy et al., 2022; Q. Sun et al., 2021; Kirchmeier-Young & Zhang, 2020; Senevi-57

ratne et al., 2021). These events have significant implications for carbon sequestration58

in terrestrial ecosystems, often causing carbon losses in a single year equal to many years59

of carbon sequestration (Ciais et al., 2005; Byrne et al., 2021). This is concerning be-60

cause Nature-based Climate Solutions (NbCSs), which aim to enhance the terrestrial car-61

bon sink through improved land management, have been proposed as an important tool62

to mitigate CO2 emissions (Fargione et al., 2018). The increasing frequency of extreme63

events may disrupt this process, creating a carbon-climate feedback where extreme-event-64

driven carbon emissions reduce the effectiveness of NbCSs (Zscheischler et al., 2018; Barkhor-65

darian et al., 2021). Consequently, there is an urgent need to quantify the impact of ex-66

treme events on carbon uptake by ecosystems for policy programs and other climate ap-67

plications.68

“Top-down” methods offer an approach for estimating biosphere-atmosphere CO269

fluxes based on observations of atmospheric CO2. Typically, Bayesian inverse methods70

are used to estimate optimal surface fluxes based on constraints from prior information71

and atmospheric CO2 observations. Although historically data limited, these techniques72

are increasingly used to quantify regional carbon cycle responses to extreme events, thanks73

to expansions of in situ CO2 measurements and the introduction of space-based retrievals74

of column-averaged dry-air CO2 mole fractions (XCO2
) from missions like the Orbiting75

Carbon Observatory 2 (OCO-2) (Feldman et al., 2023; Byrne et al., 2021). Still, current76
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capabilities for tracking extreme events are not well understood. This study aims to im-77

prove our characterization of these capabilities and identify current limitations.78

As a case study, we examine the 2019 US Midwest floods. Intense precipitation dur-79

ing that spring (> 2σ above average) led to widespread flooding across the US Midwest,80

a region that accounts for 40% of world corn and soybean production (Yin et al., 2020).81

Inundation delayed crop planting by 2–3 weeks relative to 2018 across the region, with82

an additional reduction of 6.8 million hectares in the total planted area. These factors83

led to a 16-day shift in the seasonal cycle of photosynthesis relative to 2018, along with84

a 15% lower peak value (Yin et al., 2020). In turn, crop yields across the US Midwest85

were reduced by ∼14%, and a decrease in net carbon uptake of ∼0.1 PgC was inferred86

relative to the preceding years (Yin et al., 2020; Balashov et al., 2022). The relatively87

simple (delayed planting) and well documented carbon cycle perturbation during this88

event makes it an ideal case study for studying our ability to quantify carbon cycle per-89

turbations using top-down and bottom-up methods.90

To perform our analysis, we introduce a regionally nested version of the CMS-Flux91

inversion system with high-resolution (0.5◦×0.625◦) atmospheric transport over North92

America (see Sec. 2.1). This version offers advantages over the coarse-resolution (4◦×93

5◦) global version of CMS-Flux. It reduces transport errors introduced by the coarsen-94

ing of reanalysis winds (Stanevich et al., 2020; K. Yu et al., 2018) and better represents95

assimilated CO2 observations, resulting in improved localization of extreme-event-driven96

CO2 flux anomalies (Sec. 3.2.2).97

The first objective of this study is to evaluate how well existing atmospheric ob-98

serving systems can quantify flood-induced reductions in carbon uptake during 2019 rel-99

ative to 2018. We conduct four inversions that assimilate (1) in situ CO2 measurements100

(IS), (2) OCO-2 land XCO2
retrievals (LNLG), (2) both insitu and OCO-2 land data (LNL-101

GIS), or (4) in situ, OCO-2 land and ocean data (LNLGOGIS)(Sec. 2.1). Climatolog-102

ical prior fluxes are employed in each experiment, allowing us to attribute posterior anoma-103

lies in carbon uptake between years solely to the assimilation of atmospheric CO2 data.104

We then compare these estimates with an independent ensemble of remote-sensing bottom-105

up estimates and with crop-yield data to assess their overall consistency (Sec. 3.1).106

The second objective of this study is to assess the impact of existing observational107

coverage gaps and the potential expansion of space-based XCO2
measurements on our108

ability to detect extreme-event-driven anomalies in CO2 fluxes. To evaluate the effect109

of expanded space-based observations, we devise a hypothetical observing system that110

provides daily XCO2
retrievals at 13:00 local time (similar to OCO-2). Subsequently, we111

conduct observing system simulation experiments (OSSEs) for existing in situ data and112

OCO-2 data as-well as the hypothetical observing system. For each OSSE, we evaluate113

the effectiveness in capturing extreme-event-driven CO2 flux anomalies (Sec. 3.2.1). Our114

aim is to gain a deeper understanding of how observational coverage impacts our abil-115

ity to quantify the influence of extreme events on CO2 fluxes.116

2 Methods117

Sec. 2.1 introduces the configuration for the nested North America version of the118

CMS-Flux atmospheric CO2 inversion system, including its application for real data ex-119

periments (Sec. 2.1.1) and OSSEs (Sec. 2.1.2). Sec. 2.2 describes remote-sensing bottom-120

up NEE anomaly estimates used in this study. Sec. 2.3 describes the state crop produc-121

tion estimates.122
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2.1 Top-down ∆NEE estimate123

We establish a one-way nested inversion system covering the North America region,124

spanning from 40°W to 167.5°W and 14°N to 76°N. Within this domain, model trans-125

port is conducted at a spatial resolution of 0.5◦ × 0.625◦ with a five-minute timestep,126

using archived MERRA-2 reanalysis data. We employ four-dimensional variational data127

assimilation (4D-Var) to optimize scaling factors on prior land and ocean fluxes. These128

fluxes are optimized at a coarser spatial and temporal resolution compared to the nested129

model transport. Spatially, a mask is applied to optimize fluxes over a 4◦×5◦ grid, which130

is truncated at the land-ocean boundary. Temporally, we utilize a six-week inversion win-131

dow and optimize weekly mean land and ocean scaling factors. The middle four weeks132

of the inversion window are retained as optimized fluxes, while the first and last weeks133

are excluded as spin-up and spin-down periods. We conduct a batch of eight six-week134

inversions offset by four weeks, yielding continuous fluxes from April 8th to November135

18th for both 2018 and 2019, resulting in a total of 16 inversion runs.136

For each experiment, the nested inversion setup is run three times using different137

prior fluxes (the BCs and ICs also differ for the real-data experiments, see Sec. 2.1.1).138

The prior NEE fluxes are derived from the posterior NEE fluxes of the GOSAT+surface+TCCON139

experiment by Byrne et al. (2020) and differ based on the employed prior NEE (CASA,140

SiB3, or FLUXCOM). A climatological seasonal cycle is calculated for each prior NEE141

flux over the period of 2010-2015. Subsequently, the climatological NEE seasonal cycle142

is partitioned into net primary production (NPP) and heterotrophic respiration (HR)143

components by subtracting the 2010-2015 mean seasonal cycle from the mean bottom-144

up NPP estimate (assumed to be 65% of mean GPP estimate here). In the inversions,145

we impose both the NPP and HR fluxes in the forward simulation, but optimize scal-146

ing factors only on the weekly mean HR fluxes. This choice is driven by the improved147

performance of this configuration during the spring and fall when NEE is close to zero,148

requiring large scaling factors to adjust the NEE flux. The posterior HR fluxes are not149

interpreted independently but combined with the prior NPP fluxes to obtain a poste-150

rior estimate of NEE for analysis. We generate prior uncertainties on the HR fluxes based151

on the full range of the three prior NEE fluxes. Prior ocean fluxes are derived similarly152

from the posterior ocean flux estimates of the GOSAT+surface+TCCON experiment by153

Byrne et al. (2020), and uncertainties on these estimates reflect the range among the three154

experiments that employ different NEE priors. The prior fluxes, posterior fluxes, and as-155

sociated uncertainties are provided as supporting information.156

In addition to the ocean, NPP, and HR fluxes, the forward simulations incorpo-157

rate prescribed fossil fuel emissions, biomass burning emissions, biofuel emissions, and158

diurnal NEE. Fossil Fuel emissions used here were specifically made for the v10 OCO-159

2 modelling intercomparison project (MIP) (Byrne et al., 2023; Basu & Nassar, 2021).160

Biomass burning emissions are derived from the Global Fire Emissions Database ver-161

sion 4 (GFED4.1s) and scaled to incorporate diurnal variations in emissions (van der Werf162

et al., 2017). Biofuel emissions are obtained from the CASA-GFED4-FUEL dataset. Di-163

urnal variations in NEE are based on the diurnal NEE variations from the CASA and164

SiB3 models, as described in Byrne et al. (2020). The SiB3 diurnal cycle is employed for165

the SiB3-based and FLUXCOM-based NEE priors, while the CASA diurnal cycle is pre-166

scribed for the CASA-based inversion. All of these fluxes are regridded from their na-167

tive spatial resolution to 0.5◦×0.625◦ (fossil fuel emissions were at 1.0◦×1.0◦ degrees,168

biomass burning emissions were at 0.25◦×0.25◦ degrees, and remaining fluxes were at169

4◦ × 5◦ as archived by Byrne et al. (2020)).170

2.1.1 Real data experiment171

First, we require atmospheric CO2 boundary and initial conditions for the nested172

model. To generate these conditions, we conduct a global 4◦×5◦ 4D-Var inversion that173
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optimizes scaling factors on prior land and ocean fluxes. These global inversions utilize174

the same configuration as Byrne et al. (2020). The resulting optimized global NEE and175

ocean fields are then employed in a 2◦×2.5◦ global simulation to produce boundary con-176

ditions and initial conditions for the nested domain. The global inversions are performed177

three times, corresponding to each of the three prior NEE estimates. The nested inver-178

sion setup is subsequently executed three times using the three different prior fluxes, bound-179

ary conditions, and initial conditions based on the three distinct prior flux estimates.180

Four sets of experiments are conducted, differing in the assimilated data. The “IS”181

experiment assimilates in situ CO2 measurements from the global network of sites as de-182

scribed below. The “LNLG” experiment assimilates OCO-2 land data, including nadir183

and glint retrievals. The “LNLGIS” experiment assimilates both in situ and OCO-2 land184

data. Lastly, the “LNLGOGIS” experiment assimilates in situ, OCO-2 land data, and185

OCO-2 ocean glint retrievals.186

In situ CO2 measurements are obtained from version 8.0 of the NOAA GLOBALVIEW187

plus Obspack dataset (Schuldt et al., 2022). These data are provided on the X2019 CO2188

scale but were back corrected to the X2007 CO2 scale following Hall et al. (2021). We189

apply several filters to the in situ data before assimilation. Surface in situ CO2 measure-190

ments are assimilated at their respective height above the surface, with inclusion crite-191

ria that the model surface elevation should differ by less than 500 m from the 15 arc-second192

ETOPO1 global elevation dataset (NOAA, 2021). Secondly, we only assimilate data with193

the CT assim flag greater than or equal to one, which indicates data that is deemed as-194

similable for the NOAA CarbonTracker system. Finally, only measurements obtained195

between 11:00 and 17:00 local time are assimilated (when the atmospheric boundary layer196

is well mixed). The sites assimilated are: amt, bck, bmw, bra, brw, cba, cby, chl, cps,197

crv, egb, esp, est, etl, fsd, inu, inx, key, kum, lef, lew, llb, sct, sgp, uta, wbi, wgc, wkt,198

wsa. The sites with CT assim≥ 1 that are not assimilated are: mbo, mex, mlo, mwo,199

nwr, omp, uts, wsd. We note that some sites with CT assim= 0 may be assimilable, but200

more work is needed to characterize their suitability for assimilation. We apply the CT MDM201

“model-data-mismatch” values as uncertainties on assimilated measurements. All air-202

craft data, including the ACT-America campaign data (Davis et al., 2021, 2018; Wei et203

al., 2021), are withheld for validation purposes. Monthly maps of data density are shown204

in Figure S1.205

We employ XCO2
retrieved using version 10 of NASA’s Atmospheric CO2 Obser-206

vations from Space (ACOS) full-physics retrieval algorithm (O’Dell et al., 2018). Sub-207

sequently, OCO-2 ”buddy” super-observations are calculated by averaging individual sound-208

ings into super-observations at a spatial resolution of 0.5◦ × 0.5◦ within the same or-209

bit, assigning equal weights, following the approach by Liu et al. (2017). Monthly maps210

illustrating data density are shown in Figure S2.211

The global inversions discussed in Sec. 3.2.2 follow an identical set-up as the nested212

inversions, with the same flux datasets regrided to 4◦ × 5◦ globally.213

2.1.2 Observing System Simulation Experiments214

A series of OSSEs are conducted to explore the impact of observational coverage215

in quantifying carbon cycle perturbations resulting from extreme events. These OSSEs216

cover the same two year period as the real data inversions. Four OSSE experiments are217

carried out: IS, LNLG, LNLGOGIS, and one for a new hypothetical space-based observ-218

ing system that provides daily XCO2
retrievals at 13:00 (1 pm). This hypothetical sys-219

tem, referred to as the ideal LEO mission, could comprise a dense constellation of low220

Earth orbit (LEO) sensors. The OSSEs are carried out following the same setup as the221

real data experiments, while the true atmospheric CO2 boundary and initial conditions222

are implemented for the nested inversion.223

–5–



manuscript submitted to JGR: Atmospheres

For the ideal LEO mission, pseudo-observations are generated as follows: 1 pm ob-224

servations within each land 0.5◦×0.625◦ grid cell are filtered to exclude instances of low-225

light conditions, cloudy conditions, and when the surface is covered by snow or ice. Frac-226

tional snow cover and cloud cover data are obtained from the MERRA-2 reanalysis dataset227

(Gelaro et al., 2017). Measurements are excluded for grid cells with a fractional area of228

land snow cover (FRSNO) greater than 75% and total cloud area fraction (ISCCPCLD-229

FRC) greater than 75% from the International Satellite Cloud Climatology Project (IS-230

CCP). Additionally, observations with an atmospheric path exceeding six air-masses are231

removed. We allow one super-obs within each gridcell per day. The uncertainty on the232

super-obs is defined to be 0.7 ppm, roughly matching OCO-2. Monthly maps of data den-233

sity for the ideal LEO mission are shown in Fig. S3.234

True NEE fluxes for the OSSEs are generated by combining a climatological NEE235

seasonal cycle with anomalies from the bottom-up datasets. Climatological true NEE236

fluxes are obtained from the CASA-GFED3 model, which undergoes downscaling from237

monthly to three-hourly fluxes. These fluxes align with those described in Appendix 3238

of Byrne et al. (2020). Interannual variations in the true fluxes are introduced by incor-239

porating NEE anomalies taken to be 65% of the mean bottom-up GPP anomalies across240

the five datasets (see Sec. 2.2). Pseudo-observations are then generated by conducting241

a forward simulation using the nested model.242

2.2 Remote-sensing bottom-up ∆GPP and ∆NEE estimates243

We generate an ensemble of five bottom-up ∆GPP estimates by combining a num-244

ber of remote-sensing-based GPP datasets. Four of these are obtained from existing datasets:245

8 day FLUXCOM remote-sensing-based (RS) GPP (Jung et al., 2020), FluxSat Version246

2 (Joiner & Yoshida, 2020), GOSIF GPP (Li & Xiao, 2019), and the NIRV-based GPP247

estimates of L. He et al. (2022). All of these data are regridded from their native res-248

olution to weekly temporal resolution and 0.5◦ × 0.625◦ spatial resolution.249

In addition, we estimate GPP directly from TROPOMI SIF data. This followed250

the same approach as Yin et al. (2020). Two GPP estimates are then calculated using251

land-cover-dependent SIF-to-GPP scaling factors from Li et al. (2018) and Y. Sun et al.252

(2017), which were adjusted by a factor of 0.64 to account for difference retrieval waveleg-253

nths between OCO-2 and TROPOMI (740 nm vs 757 nm). These factors were then ap-254

plied to gridded SIF data (0.08333◦ spatial and 8 day temporal resolution), while account-255

ing for the fractional vegetation cover within each gridcell. The GPP estimates were then256

regridded to 0.5◦×0.625◦ spatial resolution. Any data gaps within the growing season257

are then filled by linear interpolation over time, while GPP is assumed to be zero for data258

gaps outside the growing season. Finally the two GPP estimates are averaged.259

From these GPP datasets, we estimate an anomaly in NEE between 2018 and 2019260

by assuming the NEE anomaly is equal to the NPP anomaly, which is itself related to261

the GPP anomaly by:262

∆NEE = −∆NPP = −0.60 × ∆GPP (1)

The factor of 0.60 is an estimate of the carbon use efficiency (CUE), and is a relatively263

high estimate (Manzoni et al., 2018; Y. He et al., 2018), though may be representative264

of corn (S. Yu et al., 2023; Campioli et al., 2015). We assume an error of ±0.1 in CUE,265

and perform error analysis using factors of 0.5 and 0.7. The conversion of ∆NPP to ∆NEE266

assumes that ∆HR is negligible. This is likely a poor assumption, but a limitation of remote-267

sensing estimates that are insensitive to HR variations. Previously, Yin et al. (2020) showed268

that bottom-up ∆NEE estimated assuming negligible ∆HR could reasonably reproduce269

observed atmospheric CO2 enhancements during the 2019 US Midwest floods, provid-270

ing some evidence that ∆HR variations have a secondary impact.271
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2.3 State crop yields and NPP272

Crop yields, which represents the amount of crop biomass removed from the field273

during harvest events, have been estimated using county-level crop yield data from the274

US Department of Agriculture (USDA) - National Agricultural Statistics Service (NASS)275

(USDA-NASS, 2020). The carbon content of crop yields was derived from the relation-276

ship:277

YC = YNASS × DM × Cf , (2)

where YC is the crop yield, in units of carbon, YNASS is the annual county-level crop yield278

data from USDA-NASS, DM is the dry matter content for each crop, and Cf is carbon279

content crop factor. Crop NPP (NPPcrop), representing the net carbon uptake by crops,280

was derived from the crop yield estimates using the following equation:281

NPPcrop = YNASS × 1

HI
× (1 + RRS) × DM × Cf , (3)

where HI is the harvest index for each crop, i.e., the proportion of harvested material282

(e.g., grains) in relation to total crop aboveground biomass; and RRS is the root:shoot283

ratio for each crop. We used crop-specific factors for dry matter, root:shoot ratios, har-284

vest indices, and carbon content following the methods in West et al. (2010, 2011) and285

Ogle et al. (2015). Crop yields and NPP were estimated for over 20 crops, which together286

represented >99% of total US crop production (USDA-NASS, 2020). Uncertainty in es-287

timates were propagated through a Monte Carlo approach with 10,000 replicates and prob-288

ability distribution functions for all input data and factors. The results are based on the289

mean and 95% confidence intervals from the final distribution of simulated values. We290

note that NASS only included uncertainty in crop yield data for 2020 so we assumed a291

similar level of uncertainty in crop yields for the other years.292

3 Results293

3.1 Flood-induced NEE anomalies294

Figure 1a–b illustrates the difference in June-July NEE between 2019 and 2018295

(∆NEE = NEE2019 − NEE2018) for both the remote-sensing bottom-up (ensemble mean)296

and top-down (LNLGOGIS) estimates. The analyses reveal a significant decrease in CO2297

uptake (positive ∆NEE) specifically in the US Midwest region. This pronounced pos-298

itive ∆NEE signal in the US Midwest stands out compared to the rest of the continent.299

Figure 1c presents the 5 week running mean time series of ∆NEE over the US Midwest.300

Both the top-down and bottom-up estimates depict a positive ∆NEE signal through-301

out Jun–Jul, with the anomaly peaking towards the end of June. However, during Aug-302

Sep, the top-down and bottom-up estimates suggest a negative ∆NEE in the US Mid-303

west. Across the rest of the continent (Figure 1d), anomalies are weaker. The top-down304

estimate suggests a positive anomaly outside the US Midwest during August, while the305

bottom-up estimate suggests no significant anomalies. The supplementary materials dis-306

play the maps and timeseries for the other top-down experiments (Fig. S4) and individ-307

ual bottom-up datasets (Fig. S5).308

Figure 2 shows US Midwest ∆NEE for each of the top-down and bottom-up esti-309

mates. In addition, an estimate of the anomaly in net primary production for crops (∆NPPcrop)310

derived from crop yield data is shown. All estimates suggest positive ∆NEE over the study311

period (-6–85 TgC for top-down, 15–78 TgC for bottom-up, and 36–65 TgC for yield-312

based estimates). We find that June-July ∆NEE drives the annual anomaly with up-313

take reduced by 24–76 TgC in top-down estimates and 38–131 TgC in bottom-up esti-314

mates. The bottom-up estimates suggest this is moderated when integrating across the315

growing season due to greater carbon uptake during Aug-Sep (-56 TgC to -15 TgC), while316

the top-down estimates are less consistent during Aug-Sep, ranging from -37 TgC to 34 TgC.317

Figure S6 demonstrates that the bottom-up and top-down ∆NEE generally show sim-318

ilar June-July ∆NEE across the CONUS Climate Assessment Regions. In particular, we319
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Figure 1. (a) Bottom-up and (b) top-down (LNLGOGIS) spatial patterns of June–July mean

∆NEE (NEE2019 −NEE2018) at 4
◦ × 5◦ spatial resolution. (c) US Midwest and (d) rest of North

America 5-week-mean ∆NEE. The US Midwest is defined as the area within Illinois, Indiana,

Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin and is indicated by the black outline

in panels (a) and (b). The shading shows the range around the mean estimate for the inversions

using three different priors and for the five bottom-up GPP datasets.

find that all estimates obtain negative ∆NEE across the Southern Great Plains (-22 to320

-46 TgC), resulting from the 2018 drought (Turner et al., 2021).321

These findings suggest that both in situ and OCO-2 data provide adequate obser-322

vational coverage to detect the June-July ∆NEE signal resulting from the 2019 US Mid-323

west floods. However, some differences are also evident. The experiments disagree in the324

sign of Aug-Sep ∆NEE. The IS experiment shows negative Aug-Sep ∆NEE that largely325

compensates for the positive June–July ∆NEE. Conversely, the LNLG experiment gives326

positive Aug–Sep ∆NEE but the smallest June–July ∆NEE. There are some spatial dif-327

ferences as-well, for example, the IS experiment suggests larger positive ∆NEE in west-328

ern Canada and negative ∆NEE in the southeast during Jun-Jul than the other exper-329

iments (Fig. S4). The LNLGIS and LNLGOGIS experiments yield quite similar results.330

The relative accuracy of these different estimates is challenging to evaluate, as a num-331

ber of different drivers could contribute to differences but all experiments exhibit good332

agreement with independent aircraft CO2 measurements during 2018 and 2019 (Text S1,333

Fig. S7-S12). The disparities between experiments may arise from differences in obser-334

vational coverage and this hypothesis is examined in Sec. 3.2.1.335

The bottom-up estimates show some notable differences in the magnitude of ∆NEE336

over the US Midwest and the spatial structure of ∆NEE outside the US Midwest (Fig. S5).337

FLUXCOM consistently displays the weakest ∆NEE signal, and has been previously shown338

to underestimate interannual variations in NEE and GPP (Jung et al., 2020). Outside339

the US Midwest, the NIRV-based estimate shows negative values across the western half340

of North America, which are not observed in any other estimates, while the TROPOMI-341

based estimate indicates positive ∆NEE across a large portion of eastern Canada. Con-342

sequently, the net June–July ∆NEE signal outside the US Midwest varies across datasets,343

ranging from -218 TgC to 187 TgC.344
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Figure 2. Top-down ∆NEE, bottom-up ∆NEE, and yield-based ∆NPP for crops (∆NPPcrop)

over the US Midwest. ∆NEE is calculated for (a) the entire inversion period (April 8th – Nov

18th), (b) June-July and (c) Aug-Sep. The top-down estimates show the mean and range ob-

tained using three different priors. Uncertainty bars for the top-down estimates show the range

using three priors, while the uncertainties on the bottom-up show the range of using carbon use

efficiencies of 0.5–0.7.
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3.2 Sensitivity experiments345

3.2.1 Impact of observational coverage346

Although both the in situ network and OCO-2 were able to identify a positive US347

Midwest ∆NEE signal, we found substantial differences between the top-down exper-348

iments. Here we perform OSSEs to investigate whether gaps in observational coverage349

could explain these differences. Further, we test whether increased observational cover-350

age (in an ideal LEO constellation) would substantially improve top-down estimates of351

extreme-event-driven carbon cycle perturbations.352

Figure 3 shows the true and posterior ∆NEE for the OSSEs. All OSSEs recover353

positive ∆NEE to the US Midwest, consistent with the real data experiments. However,354

June-July US Midwest ∆NEE is underestimated by 43% for IS, 75% for LNLG, 48% for355

LNLGOGIS and 15% for the ideal LEO constellation. In addition, the inversions tend356

to introduce a positive June–July ∆NEE outside the US Midwest that is not present in357

the truth. Over June-July, the true continental-scale ∆NEE is 89 TgC, while the mean358

inversion estimates are 163 TgC (error of +74 TgC) for IS, 93 TgC (error of +4 TgC)359

for LNLG, 68 TgC (error of -21 TgC) for LNLGOGIS, and 93 TgC (error of +4 TgC)360

for ideal LEO. A similar large continental-scale positive June–July ∆NEE was found for361

the real data IS experiment (Fig. S4ci). One possible explanation is that the limited spa-362

tial coverage of the in situ (Fig. S1) data may limit the ability to capture aggregate continental-363

scale budgets using a one-way nested system.

Figure 3. ∆NEE estimates for the OSSEs. Panel (ai) shows the true June-July ∆NEE maps,

while panels (aii)–(av) show the OSSE posterior June-July ∆NEE maps and RMSE across grid-

cells (gCm−2 d−1). The net US Midwest Jun-Jul ∆NEE (PgC) is shown for each OSSE in panel

(bi), and the timeseries of 5-week-mean ∆NEE is shown for each experiment in panels (bii)–

(bv), with RMSE across weeks (gCm−2 d−1). The same quantities are show for the rest of North

America in panels (ci)–(cv).

364
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Figure 4. Weekly timeseries of (top) number of OCO-2 super-obs in the US Midwest for

2018 and 2019. (middle) Weekly ∆NEE in the US Midwest for the truth, OCO-2 OSSE and real

OCO-2 LNLG experiment. (bottom) Difference between posterior and true ∆NEE for the OCO-2

OSSE. The shading shows the range around the mean estimate for the inversions using three

different priors.

Overall, the LNLG OSSE shows the worst performance at isolating the US Mid-365

west ∆NEE. We suggest that this could be related to interannual variations in the ob-366

servational coverage. Figure 4a shows that the number of LNLG weekly samplings over367

the US Midwest can be quite variable from year to year. In particular, there are only368

16 super-obs in the US Midwest during the three week period of June 11, 2019 to July369

2 2019. This coincides with near zero ∆NEE for both the real data LNLG inversion and370

OSSE (Fig. 4b), and the period with the largest error in ∆NEE for the OSSE (Fig. 4c).371

These results suggest that data gaps in OCO-2, particularly differences in observational372

coverage between years, limit our ability to estimate inter-annual variations in NEE at373

high spatio-temporal resolution.374

The increased sampling from combining the datasets (LNLGOGIS) appears to mod-375

erately improve performance, particularly in isolating June–July ∆NEE to the US Mid-376

west (relative to LNLG) and better capturing the continental-scale ∆NEE (relative to377

IS). However, the ideal LEO constellation results in much improved performance in both378

space and time. The ideal LEO constellation reduces June-July RMSE across 4◦× 5◦379

regions by 34–51% and the 5-week-mean ∆NEE US Midwest RMSE by 55–73%. This380

comparison suggests that top-down estimates of extreme-event-driven perturbations to381

carbon uptake remain observationally-limited and that expanded space-based observ-382

ing systems will improve these estimates.383

3.2.2 Comparison between nested and global inversions384

The nested CMS-Flux inversion system in this study offers both advantages and385

disadvantages compared to a global CMS-Flux inversion system. One major advantage386

is the ability to run transport at a higher resolution (0.5◦×0.625◦) compared to the global387
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Figure 5. Comparison of the global 4◦ × 5◦ and nested inversion results. Maps of June–July

∆NEE from the LNLGOGIS experiment are shown for (a) the global 4◦ × 5◦ inversion and (b)

the nested inversion. Weekly ∆NEE in the US Midwest after applying a 5-week running mean

are also show for (c) the US Midwest and (d) rest of North America.

system (4◦×5◦). This higher resolution enables tracer transport to be closer to the par-388

ent model, as spatial averaging of meteorological fields can average out eddy transport,389

particularly affecting vertical motions (Stanevich et al., 2020). Additionally, a higher res-390

olution model grid reduces representativeness errors, allowing better representation of391

fine-scale features that influence observations, such as topography. The primary disad-392

vantage of the one-way nested system used in this study is the assumption of perfect bound-393

ary conditions and the inability to assimilate atmospheric CO2 observations outside the394

nested domain. In a global inversion, fluxes over North America would impact measure-395

ments downwind, providing a powerful constraint on large-scale fluxes, including the net396

North American flux (Liu et al., 2015). A bias in flux at the continental scale would af-397

fect CO2 fields across the entire Northern Hemisphere. Since the nested inversion lacks398

this constraint, significant errors in continental-scale fluxes may go undetected. Further-399

more, biases in the imposed boundary CO2 fields can propagate into optimized fluxes.400

In order to assess the performance of the one-way nested inversion, we compare the401

obtained ∆NEE with the global version of CMS-Flux using the same inversion config-402

uration, whenever possible. Figure 5 presents the results for both the global and nested403

versions of CMS-Flux. It is observed that the nested version of CMS-Flux effectively iso-404

lates ∆NEE to the US Midwest region during June–July. In contrast, the global model405

exhibits spatially broader positive ∆NEE across the US Midwest and Great Plains, re-406

sulting in a significantly reduced ∆NEE estimate for the US Midwest during June–July.407

The spatial pattern of ∆NEE for the nested model aligns more closely with the bottom-408

up estimate, suggesting that this system better captures the overall event. This indicates409

that, considering the observational coverage provided by LNLGOGIS, the benefits of re-410

duced transport and representativeness errors in the nested model outweigh the detri-411

mental impact of a limited domain.412

We note that achieving good performance with nested version of CMS-Flux was413

challenging, and required a number of trial-and-error inversions. This included varying414

the size of the state vector spatially (0.5◦×0.625◦ versus 4◦×5◦ grid) and temporally415

(weekly, bi-weekly, monthly intervals). It also involved adjusting the prior constraints416

(optimizing HR rather than NEE, adjusting prior uncertainties). We suggest that these417
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challenges are due to greater regularization requirements for the nested model in com-418

parison to the global model. The sensitivities of observations to surface fluxes are lim-419

ited to 1–2 weeks by the one-way nesting, such that large-scale constraints are imposed420

by the boundary conditions (Feng, Lauvaux, Davis, et al., 2019; Feng, Lauvaux, Keller,421

et al., 2019). Thus, the flux signal in the domain is generally much smaller than for the422

global model, where downwind observations provide important information for upwind423

continental-scale regions (Liu et al., 2015). We suggest that imposing an error correla-424

tion length between state-vector elements may be an effective approach for regulariza-425

tion in a nested inversion context (see Sec. 4.1), however, this is beyond the scope of our426

current study.427

4 Discussion and Conclusions428

Both top-down and bottom-up approaches capture a flood-induced reduction in net429

carbon uptake during the 2019 US Midwest floods. The top-down approach gave mean430

estimates of 11 TgC (IS), 39 TgC (LNLG), 57 TgC (LNLGIS), 42 TgC (LNLGOGIS)431

for US Midwest growing season ∆NEE. Meanwhile, the bottom-up datasets gave a mean432

estimate of 39 TgC (range: 15–78 TgC). These magnitudes are significant compared to433

anthropogenic emissions, amounting to as much as 28% of the US Midwest’s annual fos-434

sil fuel emissions (300 TgC yr−1 for 2019, U.S. Energy Information Administration (2023)).435

In addition, this anomaly is comparable to the year-to-year variations in fossil fuel emis-436

sions (SD: 25 TgC yr−1), even including the reduction of regional emissions by 36 TgC yr−1
437

due to COVID-19 lockdowns in 2020.438

In the context of more frequent heat and precipitation extremes (Seneviratne et439

al., 2021), accurate estimates of the carbon cycle responses will be critical for monitor-440

ing carbon budgets and evaluating carbon-climate feedbacks. The results of this study441

show that both top-down and bottom-up approaches demonstrate skill in capturing ∆NEE442

resulting from the 2019 Midwest floods, however a number of deficiencies were also iden-443

tified. In the following sub-sections, we highlight current challenges and opportunities444

in quantifying carbon cycle extremes.445

4.1 Top-down446

Observational gaps in atmospheric CO2 observations are identified as a key lim-447

itation in applying top-down methods to quantify extreme-event-driven ∆NEE, consis-448

tent with recent studies of the European carbon budget (W. He et al., 2023; Munassar449

et al., 2022; Monteil et al., 2020; Thompson et al., 2020). Through a series of OSSE ex-450

periments, it was demonstrated that gaps in both the in situ network and OCO-2 sam-451

pling impact the accuracy of ∆NEE estimates. While assimilating these two datasets con-452

currently partially mitigates the issue, fully resolving the problem requires expanded ob-453

servations. Coverage similar to the ideal LEO observing system could be developed by454

combining multiple individual satellites, and motivates future studies that assimilate XCO2
455

retrievals from multiple space-based observing systems concurrently (e.g., GOSAT, OCO-456

2, and OCO-3). In addition, efforts should be made to ensure consistency in XCO2
re-457

trievals between existing and planned missions (e.g., CO2M, GOSAT-GW). Expanding458

the in situ network would also likely enhance the ability to capture regional flux anoma-459

lies more effectively, however, this was not specifically explored.460

Although current observing gaps are found to be a major limitation, there may be461

approaches to better regularize the inverse problem and reduce the impact of these gaps.462

In particular, applying off-diagonal co-variances in the prior error covariance matrix could463

be employed to adjust fluxes where observations are missing (Chen et al., 2023). Apply-464

ing spatial co-variances will likely be especially important for in situ inversions, while465

applying temporal co-variances may be most useful for OCO-2 XCO2
inversions. Of course,466

such an approach will only improve flux estimates if spatial and temporal co-variances467
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are truly present, such that this approach will be limited by a correlation length scale.468

In addition, imposing realistic prior IAV could also be a fruitful approach, as has been469

done in previous studies evaluating the 2019 US Midwest floods (Yin et al., 2020; Bal-470

ashov et al., 2022). However, high-confidence is needed in imposed prior IAV, as inac-471

curate prior IAV can significantly degrade posterior IAV estimates (Byrne et al., 2019).472

Text S2 and Figs. S13-15 show that imposing bottom-up IAV in the prior results in larger473

posterior ∆NEE anomalies during the Midwest Floods for all experiments. This is con-474

sistent with the ∆NEE anomalies being underestimated when using climatological pri-475

ors, as was found in the OSSEs.476

Finally, this study investigated the utility of a one-way nested version of CMS-Flux477

with 0.5◦×0.625◦ spatial resolution relative to the global model at 4◦×5◦ degree spa-478

tial resolution. We note that developing a nested inversion system involved considerable479

effort in tuning the state vector structure, assimilation window, and prior constraints.480

Nevertheless, we found that the nested model better allocated flood-induced ∆NEE to481

the US Midwest, suggesting that the improved model transport and observation repre-482

sentation of the nested model improved the overall performance relative to the global483

model, consistent with several recent studies (Monteil et al., 2020; Hu et al., 2019). How-484

ever, the nested model has some disadvantages, especially the inability to assimilate down-485

wind observations outside the model domain that may limit the utility of the nested model486

in other applications. Transport uncertainty and boundary condition errors may lead to487

significant challenges for nested inversions (Munassar et al., 2023; Kim et al., 2021; Chen488

et al., 2019; Lauvaux et al., 2012), but were not obvious in our analyses. We note that489

high-resolution models will be needed to take advantage of upcoming wide-swath sam-490

pling missions, such as CO2M (∼250 km swath) or GOSAT-GW (∼400 km swath).491

4.2 Bottom-up492

Remote-sensing-based bottom-up estimates of ∆NEE provided a consistent picture493

of reduced net uptake during the 2019 Midwest floods but differed significantly in mag-494

nitude. The primary source of this variability stems from translating space-based reflectance495

or SIF observations to GPP, leading to a range in ∆GPP between datasets of 120% of496

the mean. Indeed, estimating the magnitude of GPP from remote sensing datasets is chal-497

lenging due to satellite signals that could be influenced by factors such as cloud cover-498

age and soil background, in addition to calibration that is predominantly relying on bench-499

marks provided by eddy covariance sites. We encourage research into approaches that500

can reduce uncertainties on large-scale GPP magnitudes, possibly through top-down con-501

straints from Carbonyl Sulphide.502

Additional uncertainties were introduced in estimating ∆NEE from ∆GPP. Due503

to the inherent limitations of remote sensing, which can track GPP but not the total ecosys-504

tem respiration (the sum of HR and AR), certain assumptions must be made. First, to505

estimate AR, we assumed that ∆GPP and ∆NPP can be related through a constant car-506

bon use efficiency (CUE) parameter that varies across vegetation type, age, and man-507

agement practices (Campioli et al., 2015; DeLucia et al., 2007; Manzoni et al., 2018; Y. He508

et al., 2018; S. Yu et al., 2023). In our analysis, we adopted a mean value of 0.60 with509

an uncertainty of range 20% (0.5–0.7), which encompasses most literature estimates. Sec-510

ond, we assumed that the influence of ∆HR on the ∆NEE was negligible. The secondary511

impact of ∆HR is supported by Yin et al. (2020), who were able to reasonably repro-512

duce observed atmospheric CO2 enhancements during the 2019 US Midwest floods while513

neglecting ∆HR variations. Still, it is important to note that HR is sensitive to varia-514

tions in temperature and moisture. Terrestrial biosphere models could serve as poten-515

tial tools for estimating ∆HR (e.g., Balashov et al. (2022)) as remote sensing does not516

adequately capture variations in HR, which is significantly influenced by the availabil-517

ity of labile carbon. However, the accuracy of these model-driven estimates remains chal-518

lenging to verify.519
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5 Open Research520

Once accepted for publication, the prior and posterior fluxes, TROPOMI-based GPP,521

and NIRV-based GPP will be archived with a DOI. During the review processes the data522

are available by contacting Brendan Byrne. The atmospheric CO2 inversion analyses per-523

formed in this study used the CMS-Flux model, which is based on the GEOS-Chem Ad-524

joint model that can be accessed from the GEOS-Chem Wiki (https://wiki.seas.harvard.edu/geos-525

chem). OCO-2 XCO2 Lite files can be downloaded from the GES DISC (https://disc.gsfc.nasa.gov).526

In Situ CO2 measurements (Schuldt et al., 2022) can be downloaded from https://gml.noaa.gov/ccgg/obspack/.527

GFED biomass burning emissions (van der Werf et al., 2017) were downloaded from https://globalfiredata.org/.528

Fossil fuel emissions (Basu & Nassar, 2021) were downloaded from https://doi.org/10.5281/zenodo.4776925.529

MERRA-2 reanalysis data (Gelaro et al., 2017) was downloaded from https://disc.gsfc.nasa.gov/.530

TROPOMI SIF data are accessed online at https://data.caltech.edu/records/1347 (DOI:531

10.22002/D1.1347). FluxSat Version 2 (Joiner & Yoshida, 2021) were downloaded from532

the ORNL DAAC (https://daac.ornl.gov). GOSIF GPP (Li & Xiao, 2019) were down-533

loaded from http://data.globalecology.unh.edu/. FLUXCOM GPP (Jung et al., 2020)534

was downloaded from the aata portal of the Max Planck Institute for Biogeochemistry535

(https://www.bgc-jena.mpg.de/geodb/projects/Home.php).536
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Abstract28

Extreme climate events are becoming more frequent, with poorly understood implica-29

tions for carbon sequestration by terrestrial ecosystems. A better understanding will crit-30

ically depend on accurate and precise quantification of ecosystems responses to these events.31

Taking the 2019 US Midwest floods as a case study, we investigate current capabilities32

for tracking regional flux anomalies with “top-down” inversion analyses that assimilate33

atmospheric CO2 observations. For this analysis, we develop a regionally nested version34

of the NASA Carbon Monitoring System-Flux (CMS-Flux) that allows high resolution35

atmospheric transport (0.5◦×0.625◦) over a North America domain. Relative to a 201836

baseline, we find US Midwest growing season net carbon uptake is reduced by 11-57 TgC37

(3–16%) for 2019 (inversion mean estimates across experiments). These estimates are38

found to be consistent with independent “bottom-up” estimates of carbon uptake based39

on vegetation remote sensing. We then investigate current limitations in tracking regional40

carbon emissions and removals by ecosystems using “top-down” methods. In a set of ob-41

serving system simulation experiments, we show that the ability to recover regional car-42

bon flux anomalies is still limited by observational coverage gaps for both in situ and satel-43

lite observations. Future space-based missions that allow for daily observational cover-44

age across North America would largely mitigate these observational gaps, allowing for45

improved top-down estimates of ecosystem responses to extreme climate events.46

Plain Language Summary47

Extreme climate events, such as floods or heatwaves, can have major impacts on48

the carbon cycle. For example, widespread flooding in the US Midwest during 2019 de-49

layed the planting of crops leading to reduced plant growth and carbon uptake relative50

to 2018. Here, we test how well this reduction in carbon uptake can be inferred from mea-51

surements of atmospheric CO2. We find that these data can identify reduced net car-52

bon uptake to the US Midwest during the 2019 floods, but that sparse observational cov-53

erage limits our ability to quantify the anomaly in net carbon uptake.54

1 Introduction55

Extreme events, including heat and precipitation extremes, are becoming more fre-56

quent (Shenoy et al., 2022; Q. Sun et al., 2021; Kirchmeier-Young & Zhang, 2020; Senevi-57

ratne et al., 2021). These events have significant implications for carbon sequestration58

in terrestrial ecosystems, often causing carbon losses in a single year equal to many years59

of carbon sequestration (Ciais et al., 2005; Byrne et al., 2021). This is concerning be-60

cause Nature-based Climate Solutions (NbCSs), which aim to enhance the terrestrial car-61

bon sink through improved land management, have been proposed as an important tool62

to mitigate CO2 emissions (Fargione et al., 2018). The increasing frequency of extreme63

events may disrupt this process, creating a carbon-climate feedback where extreme-event-64

driven carbon emissions reduce the effectiveness of NbCSs (Zscheischler et al., 2018; Barkhor-65

darian et al., 2021). Consequently, there is an urgent need to quantify the impact of ex-66

treme events on carbon uptake by ecosystems for policy programs and other climate ap-67

plications.68

“Top-down” methods offer an approach for estimating biosphere-atmosphere CO269

fluxes based on observations of atmospheric CO2. Typically, Bayesian inverse methods70

are used to estimate optimal surface fluxes based on constraints from prior information71

and atmospheric CO2 observations. Although historically data limited, these techniques72

are increasingly used to quantify regional carbon cycle responses to extreme events, thanks73

to expansions of in situ CO2 measurements and the introduction of space-based retrievals74

of column-averaged dry-air CO2 mole fractions (XCO2
) from missions like the Orbiting75

Carbon Observatory 2 (OCO-2) (Feldman et al., 2023; Byrne et al., 2021). Still, current76
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capabilities for tracking extreme events are not well understood. This study aims to im-77

prove our characterization of these capabilities and identify current limitations.78

As a case study, we examine the 2019 US Midwest floods. Intense precipitation dur-79

ing that spring (> 2σ above average) led to widespread flooding across the US Midwest,80

a region that accounts for 40% of world corn and soybean production (Yin et al., 2020).81

Inundation delayed crop planting by 2–3 weeks relative to 2018 across the region, with82

an additional reduction of 6.8 million hectares in the total planted area. These factors83

led to a 16-day shift in the seasonal cycle of photosynthesis relative to 2018, along with84

a 15% lower peak value (Yin et al., 2020). In turn, crop yields across the US Midwest85

were reduced by ∼14%, and a decrease in net carbon uptake of ∼0.1 PgC was inferred86

relative to the preceding years (Yin et al., 2020; Balashov et al., 2022). The relatively87

simple (delayed planting) and well documented carbon cycle perturbation during this88

event makes it an ideal case study for studying our ability to quantify carbon cycle per-89

turbations using top-down and bottom-up methods.90

To perform our analysis, we introduce a regionally nested version of the CMS-Flux91

inversion system with high-resolution (0.5◦×0.625◦) atmospheric transport over North92

America (see Sec. 2.1). This version offers advantages over the coarse-resolution (4◦×93

5◦) global version of CMS-Flux. It reduces transport errors introduced by the coarsen-94

ing of reanalysis winds (Stanevich et al., 2020; K. Yu et al., 2018) and better represents95

assimilated CO2 observations, resulting in improved localization of extreme-event-driven96

CO2 flux anomalies (Sec. 3.2.2).97

The first objective of this study is to evaluate how well existing atmospheric ob-98

serving systems can quantify flood-induced reductions in carbon uptake during 2019 rel-99

ative to 2018. We conduct four inversions that assimilate (1) in situ CO2 measurements100

(IS), (2) OCO-2 land XCO2
retrievals (LNLG), (2) both insitu and OCO-2 land data (LNL-101

GIS), or (4) in situ, OCO-2 land and ocean data (LNLGOGIS)(Sec. 2.1). Climatolog-102

ical prior fluxes are employed in each experiment, allowing us to attribute posterior anoma-103

lies in carbon uptake between years solely to the assimilation of atmospheric CO2 data.104

We then compare these estimates with an independent ensemble of remote-sensing bottom-105

up estimates and with crop-yield data to assess their overall consistency (Sec. 3.1).106

The second objective of this study is to assess the impact of existing observational107

coverage gaps and the potential expansion of space-based XCO2
measurements on our108

ability to detect extreme-event-driven anomalies in CO2 fluxes. To evaluate the effect109

of expanded space-based observations, we devise a hypothetical observing system that110

provides daily XCO2
retrievals at 13:00 local time (similar to OCO-2). Subsequently, we111

conduct observing system simulation experiments (OSSEs) for existing in situ data and112

OCO-2 data as-well as the hypothetical observing system. For each OSSE, we evaluate113

the effectiveness in capturing extreme-event-driven CO2 flux anomalies (Sec. 3.2.1). Our114

aim is to gain a deeper understanding of how observational coverage impacts our abil-115

ity to quantify the influence of extreme events on CO2 fluxes.116

2 Methods117

Sec. 2.1 introduces the configuration for the nested North America version of the118

CMS-Flux atmospheric CO2 inversion system, including its application for real data ex-119

periments (Sec. 2.1.1) and OSSEs (Sec. 2.1.2). Sec. 2.2 describes remote-sensing bottom-120

up NEE anomaly estimates used in this study. Sec. 2.3 describes the state crop produc-121

tion estimates.122
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2.1 Top-down ∆NEE estimate123

We establish a one-way nested inversion system covering the North America region,124

spanning from 40°W to 167.5°W and 14°N to 76°N. Within this domain, model trans-125

port is conducted at a spatial resolution of 0.5◦ × 0.625◦ with a five-minute timestep,126

using archived MERRA-2 reanalysis data. We employ four-dimensional variational data127

assimilation (4D-Var) to optimize scaling factors on prior land and ocean fluxes. These128

fluxes are optimized at a coarser spatial and temporal resolution compared to the nested129

model transport. Spatially, a mask is applied to optimize fluxes over a 4◦×5◦ grid, which130

is truncated at the land-ocean boundary. Temporally, we utilize a six-week inversion win-131

dow and optimize weekly mean land and ocean scaling factors. The middle four weeks132

of the inversion window are retained as optimized fluxes, while the first and last weeks133

are excluded as spin-up and spin-down periods. We conduct a batch of eight six-week134

inversions offset by four weeks, yielding continuous fluxes from April 8th to November135

18th for both 2018 and 2019, resulting in a total of 16 inversion runs.136

For each experiment, the nested inversion setup is run three times using different137

prior fluxes (the BCs and ICs also differ for the real-data experiments, see Sec. 2.1.1).138

The prior NEE fluxes are derived from the posterior NEE fluxes of the GOSAT+surface+TCCON139

experiment by Byrne et al. (2020) and differ based on the employed prior NEE (CASA,140

SiB3, or FLUXCOM). A climatological seasonal cycle is calculated for each prior NEE141

flux over the period of 2010-2015. Subsequently, the climatological NEE seasonal cycle142

is partitioned into net primary production (NPP) and heterotrophic respiration (HR)143

components by subtracting the 2010-2015 mean seasonal cycle from the mean bottom-144

up NPP estimate (assumed to be 65% of mean GPP estimate here). In the inversions,145

we impose both the NPP and HR fluxes in the forward simulation, but optimize scal-146

ing factors only on the weekly mean HR fluxes. This choice is driven by the improved147

performance of this configuration during the spring and fall when NEE is close to zero,148

requiring large scaling factors to adjust the NEE flux. The posterior HR fluxes are not149

interpreted independently but combined with the prior NPP fluxes to obtain a poste-150

rior estimate of NEE for analysis. We generate prior uncertainties on the HR fluxes based151

on the full range of the three prior NEE fluxes. Prior ocean fluxes are derived similarly152

from the posterior ocean flux estimates of the GOSAT+surface+TCCON experiment by153

Byrne et al. (2020), and uncertainties on these estimates reflect the range among the three154

experiments that employ different NEE priors. The prior fluxes, posterior fluxes, and as-155

sociated uncertainties are provided as supporting information.156

In addition to the ocean, NPP, and HR fluxes, the forward simulations incorpo-157

rate prescribed fossil fuel emissions, biomass burning emissions, biofuel emissions, and158

diurnal NEE. Fossil Fuel emissions used here were specifically made for the v10 OCO-159

2 modelling intercomparison project (MIP) (Byrne et al., 2023; Basu & Nassar, 2021).160

Biomass burning emissions are derived from the Global Fire Emissions Database ver-161

sion 4 (GFED4.1s) and scaled to incorporate diurnal variations in emissions (van der Werf162

et al., 2017). Biofuel emissions are obtained from the CASA-GFED4-FUEL dataset. Di-163

urnal variations in NEE are based on the diurnal NEE variations from the CASA and164

SiB3 models, as described in Byrne et al. (2020). The SiB3 diurnal cycle is employed for165

the SiB3-based and FLUXCOM-based NEE priors, while the CASA diurnal cycle is pre-166

scribed for the CASA-based inversion. All of these fluxes are regridded from their na-167

tive spatial resolution to 0.5◦×0.625◦ (fossil fuel emissions were at 1.0◦×1.0◦ degrees,168

biomass burning emissions were at 0.25◦×0.25◦ degrees, and remaining fluxes were at169

4◦ × 5◦ as archived by Byrne et al. (2020)).170

2.1.1 Real data experiment171

First, we require atmospheric CO2 boundary and initial conditions for the nested172

model. To generate these conditions, we conduct a global 4◦×5◦ 4D-Var inversion that173
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optimizes scaling factors on prior land and ocean fluxes. These global inversions utilize174

the same configuration as Byrne et al. (2020). The resulting optimized global NEE and175

ocean fields are then employed in a 2◦×2.5◦ global simulation to produce boundary con-176

ditions and initial conditions for the nested domain. The global inversions are performed177

three times, corresponding to each of the three prior NEE estimates. The nested inver-178

sion setup is subsequently executed three times using the three different prior fluxes, bound-179

ary conditions, and initial conditions based on the three distinct prior flux estimates.180

Four sets of experiments are conducted, differing in the assimilated data. The “IS”181

experiment assimilates in situ CO2 measurements from the global network of sites as de-182

scribed below. The “LNLG” experiment assimilates OCO-2 land data, including nadir183

and glint retrievals. The “LNLGIS” experiment assimilates both in situ and OCO-2 land184

data. Lastly, the “LNLGOGIS” experiment assimilates in situ, OCO-2 land data, and185

OCO-2 ocean glint retrievals.186

In situ CO2 measurements are obtained from version 8.0 of the NOAA GLOBALVIEW187

plus Obspack dataset (Schuldt et al., 2022). These data are provided on the X2019 CO2188

scale but were back corrected to the X2007 CO2 scale following Hall et al. (2021). We189

apply several filters to the in situ data before assimilation. Surface in situ CO2 measure-190

ments are assimilated at their respective height above the surface, with inclusion crite-191

ria that the model surface elevation should differ by less than 500 m from the 15 arc-second192

ETOPO1 global elevation dataset (NOAA, 2021). Secondly, we only assimilate data with193

the CT assim flag greater than or equal to one, which indicates data that is deemed as-194

similable for the NOAA CarbonTracker system. Finally, only measurements obtained195

between 11:00 and 17:00 local time are assimilated (when the atmospheric boundary layer196

is well mixed). The sites assimilated are: amt, bck, bmw, bra, brw, cba, cby, chl, cps,197

crv, egb, esp, est, etl, fsd, inu, inx, key, kum, lef, lew, llb, sct, sgp, uta, wbi, wgc, wkt,198

wsa. The sites with CT assim≥ 1 that are not assimilated are: mbo, mex, mlo, mwo,199

nwr, omp, uts, wsd. We note that some sites with CT assim= 0 may be assimilable, but200

more work is needed to characterize their suitability for assimilation. We apply the CT MDM201

“model-data-mismatch” values as uncertainties on assimilated measurements. All air-202

craft data, including the ACT-America campaign data (Davis et al., 2021, 2018; Wei et203

al., 2021), are withheld for validation purposes. Monthly maps of data density are shown204

in Figure S1.205

We employ XCO2
retrieved using version 10 of NASA’s Atmospheric CO2 Obser-206

vations from Space (ACOS) full-physics retrieval algorithm (O’Dell et al., 2018). Sub-207

sequently, OCO-2 ”buddy” super-observations are calculated by averaging individual sound-208

ings into super-observations at a spatial resolution of 0.5◦ × 0.5◦ within the same or-209

bit, assigning equal weights, following the approach by Liu et al. (2017). Monthly maps210

illustrating data density are shown in Figure S2.211

The global inversions discussed in Sec. 3.2.2 follow an identical set-up as the nested212

inversions, with the same flux datasets regrided to 4◦ × 5◦ globally.213

2.1.2 Observing System Simulation Experiments214

A series of OSSEs are conducted to explore the impact of observational coverage215

in quantifying carbon cycle perturbations resulting from extreme events. These OSSEs216

cover the same two year period as the real data inversions. Four OSSE experiments are217

carried out: IS, LNLG, LNLGOGIS, and one for a new hypothetical space-based observ-218

ing system that provides daily XCO2
retrievals at 13:00 (1 pm). This hypothetical sys-219

tem, referred to as the ideal LEO mission, could comprise a dense constellation of low220

Earth orbit (LEO) sensors. The OSSEs are carried out following the same setup as the221

real data experiments, while the true atmospheric CO2 boundary and initial conditions222

are implemented for the nested inversion.223
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For the ideal LEO mission, pseudo-observations are generated as follows: 1 pm ob-224

servations within each land 0.5◦×0.625◦ grid cell are filtered to exclude instances of low-225

light conditions, cloudy conditions, and when the surface is covered by snow or ice. Frac-226

tional snow cover and cloud cover data are obtained from the MERRA-2 reanalysis dataset227

(Gelaro et al., 2017). Measurements are excluded for grid cells with a fractional area of228

land snow cover (FRSNO) greater than 75% and total cloud area fraction (ISCCPCLD-229

FRC) greater than 75% from the International Satellite Cloud Climatology Project (IS-230

CCP). Additionally, observations with an atmospheric path exceeding six air-masses are231

removed. We allow one super-obs within each gridcell per day. The uncertainty on the232

super-obs is defined to be 0.7 ppm, roughly matching OCO-2. Monthly maps of data den-233

sity for the ideal LEO mission are shown in Fig. S3.234

True NEE fluxes for the OSSEs are generated by combining a climatological NEE235

seasonal cycle with anomalies from the bottom-up datasets. Climatological true NEE236

fluxes are obtained from the CASA-GFED3 model, which undergoes downscaling from237

monthly to three-hourly fluxes. These fluxes align with those described in Appendix 3238

of Byrne et al. (2020). Interannual variations in the true fluxes are introduced by incor-239

porating NEE anomalies taken to be 65% of the mean bottom-up GPP anomalies across240

the five datasets (see Sec. 2.2). Pseudo-observations are then generated by conducting241

a forward simulation using the nested model.242

2.2 Remote-sensing bottom-up ∆GPP and ∆NEE estimates243

We generate an ensemble of five bottom-up ∆GPP estimates by combining a num-244

ber of remote-sensing-based GPP datasets. Four of these are obtained from existing datasets:245

8 day FLUXCOM remote-sensing-based (RS) GPP (Jung et al., 2020), FluxSat Version246

2 (Joiner & Yoshida, 2020), GOSIF GPP (Li & Xiao, 2019), and the NIRV-based GPP247

estimates of L. He et al. (2022). All of these data are regridded from their native res-248

olution to weekly temporal resolution and 0.5◦ × 0.625◦ spatial resolution.249

In addition, we estimate GPP directly from TROPOMI SIF data. This followed250

the same approach as Yin et al. (2020). Two GPP estimates are then calculated using251

land-cover-dependent SIF-to-GPP scaling factors from Li et al. (2018) and Y. Sun et al.252

(2017), which were adjusted by a factor of 0.64 to account for difference retrieval waveleg-253

nths between OCO-2 and TROPOMI (740 nm vs 757 nm). These factors were then ap-254

plied to gridded SIF data (0.08333◦ spatial and 8 day temporal resolution), while account-255

ing for the fractional vegetation cover within each gridcell. The GPP estimates were then256

regridded to 0.5◦×0.625◦ spatial resolution. Any data gaps within the growing season257

are then filled by linear interpolation over time, while GPP is assumed to be zero for data258

gaps outside the growing season. Finally the two GPP estimates are averaged.259

From these GPP datasets, we estimate an anomaly in NEE between 2018 and 2019260

by assuming the NEE anomaly is equal to the NPP anomaly, which is itself related to261

the GPP anomaly by:262

∆NEE = −∆NPP = −0.60 × ∆GPP (1)

The factor of 0.60 is an estimate of the carbon use efficiency (CUE), and is a relatively263

high estimate (Manzoni et al., 2018; Y. He et al., 2018), though may be representative264

of corn (S. Yu et al., 2023; Campioli et al., 2015). We assume an error of ±0.1 in CUE,265

and perform error analysis using factors of 0.5 and 0.7. The conversion of ∆NPP to ∆NEE266

assumes that ∆HR is negligible. This is likely a poor assumption, but a limitation of remote-267

sensing estimates that are insensitive to HR variations. Previously, Yin et al. (2020) showed268

that bottom-up ∆NEE estimated assuming negligible ∆HR could reasonably reproduce269

observed atmospheric CO2 enhancements during the 2019 US Midwest floods, provid-270

ing some evidence that ∆HR variations have a secondary impact.271
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2.3 State crop yields and NPP272

Crop yields, which represents the amount of crop biomass removed from the field273

during harvest events, have been estimated using county-level crop yield data from the274

US Department of Agriculture (USDA) - National Agricultural Statistics Service (NASS)275

(USDA-NASS, 2020). The carbon content of crop yields was derived from the relation-276

ship:277

YC = YNASS × DM × Cf , (2)

where YC is the crop yield, in units of carbon, YNASS is the annual county-level crop yield278

data from USDA-NASS, DM is the dry matter content for each crop, and Cf is carbon279

content crop factor. Crop NPP (NPPcrop), representing the net carbon uptake by crops,280

was derived from the crop yield estimates using the following equation:281

NPPcrop = YNASS × 1

HI
× (1 + RRS) × DM × Cf , (3)

where HI is the harvest index for each crop, i.e., the proportion of harvested material282

(e.g., grains) in relation to total crop aboveground biomass; and RRS is the root:shoot283

ratio for each crop. We used crop-specific factors for dry matter, root:shoot ratios, har-284

vest indices, and carbon content following the methods in West et al. (2010, 2011) and285

Ogle et al. (2015). Crop yields and NPP were estimated for over 20 crops, which together286

represented >99% of total US crop production (USDA-NASS, 2020). Uncertainty in es-287

timates were propagated through a Monte Carlo approach with 10,000 replicates and prob-288

ability distribution functions for all input data and factors. The results are based on the289

mean and 95% confidence intervals from the final distribution of simulated values. We290

note that NASS only included uncertainty in crop yield data for 2020 so we assumed a291

similar level of uncertainty in crop yields for the other years.292

3 Results293

3.1 Flood-induced NEE anomalies294

Figure 1a–b illustrates the difference in June-July NEE between 2019 and 2018295

(∆NEE = NEE2019 − NEE2018) for both the remote-sensing bottom-up (ensemble mean)296

and top-down (LNLGOGIS) estimates. The analyses reveal a significant decrease in CO2297

uptake (positive ∆NEE) specifically in the US Midwest region. This pronounced pos-298

itive ∆NEE signal in the US Midwest stands out compared to the rest of the continent.299

Figure 1c presents the 5 week running mean time series of ∆NEE over the US Midwest.300

Both the top-down and bottom-up estimates depict a positive ∆NEE signal through-301

out Jun–Jul, with the anomaly peaking towards the end of June. However, during Aug-302

Sep, the top-down and bottom-up estimates suggest a negative ∆NEE in the US Mid-303

west. Across the rest of the continent (Figure 1d), anomalies are weaker. The top-down304

estimate suggests a positive anomaly outside the US Midwest during August, while the305

bottom-up estimate suggests no significant anomalies. The supplementary materials dis-306

play the maps and timeseries for the other top-down experiments (Fig. S4) and individ-307

ual bottom-up datasets (Fig. S5).308

Figure 2 shows US Midwest ∆NEE for each of the top-down and bottom-up esti-309

mates. In addition, an estimate of the anomaly in net primary production for crops (∆NPPcrop)310

derived from crop yield data is shown. All estimates suggest positive ∆NEE over the study311

period (-6–85 TgC for top-down, 15–78 TgC for bottom-up, and 36–65 TgC for yield-312

based estimates). We find that June-July ∆NEE drives the annual anomaly with up-313

take reduced by 24–76 TgC in top-down estimates and 38–131 TgC in bottom-up esti-314

mates. The bottom-up estimates suggest this is moderated when integrating across the315

growing season due to greater carbon uptake during Aug-Sep (-56 TgC to -15 TgC), while316

the top-down estimates are less consistent during Aug-Sep, ranging from -37 TgC to 34 TgC.317

Figure S6 demonstrates that the bottom-up and top-down ∆NEE generally show sim-318

ilar June-July ∆NEE across the CONUS Climate Assessment Regions. In particular, we319

–7–



manuscript submitted to JGR: Atmospheres

Figure 1. (a) Bottom-up and (b) top-down (LNLGOGIS) spatial patterns of June–July mean

∆NEE (NEE2019 −NEE2018) at 4
◦ × 5◦ spatial resolution. (c) US Midwest and (d) rest of North

America 5-week-mean ∆NEE. The US Midwest is defined as the area within Illinois, Indiana,

Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin and is indicated by the black outline

in panels (a) and (b). The shading shows the range around the mean estimate for the inversions

using three different priors and for the five bottom-up GPP datasets.

find that all estimates obtain negative ∆NEE across the Southern Great Plains (-22 to320

-46 TgC), resulting from the 2018 drought (Turner et al., 2021).321

These findings suggest that both in situ and OCO-2 data provide adequate obser-322

vational coverage to detect the June-July ∆NEE signal resulting from the 2019 US Mid-323

west floods. However, some differences are also evident. The experiments disagree in the324

sign of Aug-Sep ∆NEE. The IS experiment shows negative Aug-Sep ∆NEE that largely325

compensates for the positive June–July ∆NEE. Conversely, the LNLG experiment gives326

positive Aug–Sep ∆NEE but the smallest June–July ∆NEE. There are some spatial dif-327

ferences as-well, for example, the IS experiment suggests larger positive ∆NEE in west-328

ern Canada and negative ∆NEE in the southeast during Jun-Jul than the other exper-329

iments (Fig. S4). The LNLGIS and LNLGOGIS experiments yield quite similar results.330

The relative accuracy of these different estimates is challenging to evaluate, as a num-331

ber of different drivers could contribute to differences but all experiments exhibit good332

agreement with independent aircraft CO2 measurements during 2018 and 2019 (Text S1,333

Fig. S7-S12). The disparities between experiments may arise from differences in obser-334

vational coverage and this hypothesis is examined in Sec. 3.2.1.335

The bottom-up estimates show some notable differences in the magnitude of ∆NEE336

over the US Midwest and the spatial structure of ∆NEE outside the US Midwest (Fig. S5).337

FLUXCOM consistently displays the weakest ∆NEE signal, and has been previously shown338

to underestimate interannual variations in NEE and GPP (Jung et al., 2020). Outside339

the US Midwest, the NIRV-based estimate shows negative values across the western half340

of North America, which are not observed in any other estimates, while the TROPOMI-341

based estimate indicates positive ∆NEE across a large portion of eastern Canada. Con-342

sequently, the net June–July ∆NEE signal outside the US Midwest varies across datasets,343

ranging from -218 TgC to 187 TgC.344
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Figure 2. Top-down ∆NEE, bottom-up ∆NEE, and yield-based ∆NPP for crops (∆NPPcrop)

over the US Midwest. ∆NEE is calculated for (a) the entire inversion period (April 8th – Nov

18th), (b) June-July and (c) Aug-Sep. The top-down estimates show the mean and range ob-

tained using three different priors. Uncertainty bars for the top-down estimates show the range

using three priors, while the uncertainties on the bottom-up show the range of using carbon use

efficiencies of 0.5–0.7.
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3.2 Sensitivity experiments345

3.2.1 Impact of observational coverage346

Although both the in situ network and OCO-2 were able to identify a positive US347

Midwest ∆NEE signal, we found substantial differences between the top-down exper-348

iments. Here we perform OSSEs to investigate whether gaps in observational coverage349

could explain these differences. Further, we test whether increased observational cover-350

age (in an ideal LEO constellation) would substantially improve top-down estimates of351

extreme-event-driven carbon cycle perturbations.352

Figure 3 shows the true and posterior ∆NEE for the OSSEs. All OSSEs recover353

positive ∆NEE to the US Midwest, consistent with the real data experiments. However,354

June-July US Midwest ∆NEE is underestimated by 43% for IS, 75% for LNLG, 48% for355

LNLGOGIS and 15% for the ideal LEO constellation. In addition, the inversions tend356

to introduce a positive June–July ∆NEE outside the US Midwest that is not present in357

the truth. Over June-July, the true continental-scale ∆NEE is 89 TgC, while the mean358

inversion estimates are 163 TgC (error of +74 TgC) for IS, 93 TgC (error of +4 TgC)359

for LNLG, 68 TgC (error of -21 TgC) for LNLGOGIS, and 93 TgC (error of +4 TgC)360

for ideal LEO. A similar large continental-scale positive June–July ∆NEE was found for361

the real data IS experiment (Fig. S4ci). One possible explanation is that the limited spa-362

tial coverage of the in situ (Fig. S1) data may limit the ability to capture aggregate continental-363

scale budgets using a one-way nested system.

Figure 3. ∆NEE estimates for the OSSEs. Panel (ai) shows the true June-July ∆NEE maps,

while panels (aii)–(av) show the OSSE posterior June-July ∆NEE maps and RMSE across grid-

cells (gCm−2 d−1). The net US Midwest Jun-Jul ∆NEE (PgC) is shown for each OSSE in panel

(bi), and the timeseries of 5-week-mean ∆NEE is shown for each experiment in panels (bii)–

(bv), with RMSE across weeks (gCm−2 d−1). The same quantities are show for the rest of North

America in panels (ci)–(cv).

364
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Figure 4. Weekly timeseries of (top) number of OCO-2 super-obs in the US Midwest for

2018 and 2019. (middle) Weekly ∆NEE in the US Midwest for the truth, OCO-2 OSSE and real

OCO-2 LNLG experiment. (bottom) Difference between posterior and true ∆NEE for the OCO-2

OSSE. The shading shows the range around the mean estimate for the inversions using three

different priors.

Overall, the LNLG OSSE shows the worst performance at isolating the US Mid-365

west ∆NEE. We suggest that this could be related to interannual variations in the ob-366

servational coverage. Figure 4a shows that the number of LNLG weekly samplings over367

the US Midwest can be quite variable from year to year. In particular, there are only368

16 super-obs in the US Midwest during the three week period of June 11, 2019 to July369

2 2019. This coincides with near zero ∆NEE for both the real data LNLG inversion and370

OSSE (Fig. 4b), and the period with the largest error in ∆NEE for the OSSE (Fig. 4c).371

These results suggest that data gaps in OCO-2, particularly differences in observational372

coverage between years, limit our ability to estimate inter-annual variations in NEE at373

high spatio-temporal resolution.374

The increased sampling from combining the datasets (LNLGOGIS) appears to mod-375

erately improve performance, particularly in isolating June–July ∆NEE to the US Mid-376

west (relative to LNLG) and better capturing the continental-scale ∆NEE (relative to377

IS). However, the ideal LEO constellation results in much improved performance in both378

space and time. The ideal LEO constellation reduces June-July RMSE across 4◦× 5◦379

regions by 34–51% and the 5-week-mean ∆NEE US Midwest RMSE by 55–73%. This380

comparison suggests that top-down estimates of extreme-event-driven perturbations to381

carbon uptake remain observationally-limited and that expanded space-based observ-382

ing systems will improve these estimates.383

3.2.2 Comparison between nested and global inversions384

The nested CMS-Flux inversion system in this study offers both advantages and385

disadvantages compared to a global CMS-Flux inversion system. One major advantage386

is the ability to run transport at a higher resolution (0.5◦×0.625◦) compared to the global387
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Figure 5. Comparison of the global 4◦ × 5◦ and nested inversion results. Maps of June–July

∆NEE from the LNLGOGIS experiment are shown for (a) the global 4◦ × 5◦ inversion and (b)

the nested inversion. Weekly ∆NEE in the US Midwest after applying a 5-week running mean

are also show for (c) the US Midwest and (d) rest of North America.

system (4◦×5◦). This higher resolution enables tracer transport to be closer to the par-388

ent model, as spatial averaging of meteorological fields can average out eddy transport,389

particularly affecting vertical motions (Stanevich et al., 2020). Additionally, a higher res-390

olution model grid reduces representativeness errors, allowing better representation of391

fine-scale features that influence observations, such as topography. The primary disad-392

vantage of the one-way nested system used in this study is the assumption of perfect bound-393

ary conditions and the inability to assimilate atmospheric CO2 observations outside the394

nested domain. In a global inversion, fluxes over North America would impact measure-395

ments downwind, providing a powerful constraint on large-scale fluxes, including the net396

North American flux (Liu et al., 2015). A bias in flux at the continental scale would af-397

fect CO2 fields across the entire Northern Hemisphere. Since the nested inversion lacks398

this constraint, significant errors in continental-scale fluxes may go undetected. Further-399

more, biases in the imposed boundary CO2 fields can propagate into optimized fluxes.400

In order to assess the performance of the one-way nested inversion, we compare the401

obtained ∆NEE with the global version of CMS-Flux using the same inversion config-402

uration, whenever possible. Figure 5 presents the results for both the global and nested403

versions of CMS-Flux. It is observed that the nested version of CMS-Flux effectively iso-404

lates ∆NEE to the US Midwest region during June–July. In contrast, the global model405

exhibits spatially broader positive ∆NEE across the US Midwest and Great Plains, re-406

sulting in a significantly reduced ∆NEE estimate for the US Midwest during June–July.407

The spatial pattern of ∆NEE for the nested model aligns more closely with the bottom-408

up estimate, suggesting that this system better captures the overall event. This indicates409

that, considering the observational coverage provided by LNLGOGIS, the benefits of re-410

duced transport and representativeness errors in the nested model outweigh the detri-411

mental impact of a limited domain.412

We note that achieving good performance with nested version of CMS-Flux was413

challenging, and required a number of trial-and-error inversions. This included varying414

the size of the state vector spatially (0.5◦×0.625◦ versus 4◦×5◦ grid) and temporally415

(weekly, bi-weekly, monthly intervals). It also involved adjusting the prior constraints416

(optimizing HR rather than NEE, adjusting prior uncertainties). We suggest that these417
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challenges are due to greater regularization requirements for the nested model in com-418

parison to the global model. The sensitivities of observations to surface fluxes are lim-419

ited to 1–2 weeks by the one-way nesting, such that large-scale constraints are imposed420

by the boundary conditions (Feng, Lauvaux, Davis, et al., 2019; Feng, Lauvaux, Keller,421

et al., 2019). Thus, the flux signal in the domain is generally much smaller than for the422

global model, where downwind observations provide important information for upwind423

continental-scale regions (Liu et al., 2015). We suggest that imposing an error correla-424

tion length between state-vector elements may be an effective approach for regulariza-425

tion in a nested inversion context (see Sec. 4.1), however, this is beyond the scope of our426

current study.427

4 Discussion and Conclusions428

Both top-down and bottom-up approaches capture a flood-induced reduction in net429

carbon uptake during the 2019 US Midwest floods. The top-down approach gave mean430

estimates of 11 TgC (IS), 39 TgC (LNLG), 57 TgC (LNLGIS), 42 TgC (LNLGOGIS)431

for US Midwest growing season ∆NEE. Meanwhile, the bottom-up datasets gave a mean432

estimate of 39 TgC (range: 15–78 TgC). These magnitudes are significant compared to433

anthropogenic emissions, amounting to as much as 28% of the US Midwest’s annual fos-434

sil fuel emissions (300 TgC yr−1 for 2019, U.S. Energy Information Administration (2023)).435

In addition, this anomaly is comparable to the year-to-year variations in fossil fuel emis-436

sions (SD: 25 TgC yr−1), even including the reduction of regional emissions by 36 TgC yr−1
437

due to COVID-19 lockdowns in 2020.438

In the context of more frequent heat and precipitation extremes (Seneviratne et439

al., 2021), accurate estimates of the carbon cycle responses will be critical for monitor-440

ing carbon budgets and evaluating carbon-climate feedbacks. The results of this study441

show that both top-down and bottom-up approaches demonstrate skill in capturing ∆NEE442

resulting from the 2019 Midwest floods, however a number of deficiencies were also iden-443

tified. In the following sub-sections, we highlight current challenges and opportunities444

in quantifying carbon cycle extremes.445

4.1 Top-down446

Observational gaps in atmospheric CO2 observations are identified as a key lim-447

itation in applying top-down methods to quantify extreme-event-driven ∆NEE, consis-448

tent with recent studies of the European carbon budget (W. He et al., 2023; Munassar449

et al., 2022; Monteil et al., 2020; Thompson et al., 2020). Through a series of OSSE ex-450

periments, it was demonstrated that gaps in both the in situ network and OCO-2 sam-451

pling impact the accuracy of ∆NEE estimates. While assimilating these two datasets con-452

currently partially mitigates the issue, fully resolving the problem requires expanded ob-453

servations. Coverage similar to the ideal LEO observing system could be developed by454

combining multiple individual satellites, and motivates future studies that assimilate XCO2
455

retrievals from multiple space-based observing systems concurrently (e.g., GOSAT, OCO-456

2, and OCO-3). In addition, efforts should be made to ensure consistency in XCO2
re-457

trievals between existing and planned missions (e.g., CO2M, GOSAT-GW). Expanding458

the in situ network would also likely enhance the ability to capture regional flux anoma-459

lies more effectively, however, this was not specifically explored.460

Although current observing gaps are found to be a major limitation, there may be461

approaches to better regularize the inverse problem and reduce the impact of these gaps.462

In particular, applying off-diagonal co-variances in the prior error covariance matrix could463

be employed to adjust fluxes where observations are missing (Chen et al., 2023). Apply-464

ing spatial co-variances will likely be especially important for in situ inversions, while465

applying temporal co-variances may be most useful for OCO-2 XCO2
inversions. Of course,466

such an approach will only improve flux estimates if spatial and temporal co-variances467
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are truly present, such that this approach will be limited by a correlation length scale.468

In addition, imposing realistic prior IAV could also be a fruitful approach, as has been469

done in previous studies evaluating the 2019 US Midwest floods (Yin et al., 2020; Bal-470

ashov et al., 2022). However, high-confidence is needed in imposed prior IAV, as inac-471

curate prior IAV can significantly degrade posterior IAV estimates (Byrne et al., 2019).472

Text S2 and Figs. S13-15 show that imposing bottom-up IAV in the prior results in larger473

posterior ∆NEE anomalies during the Midwest Floods for all experiments. This is con-474

sistent with the ∆NEE anomalies being underestimated when using climatological pri-475

ors, as was found in the OSSEs.476

Finally, this study investigated the utility of a one-way nested version of CMS-Flux477

with 0.5◦×0.625◦ spatial resolution relative to the global model at 4◦×5◦ degree spa-478

tial resolution. We note that developing a nested inversion system involved considerable479

effort in tuning the state vector structure, assimilation window, and prior constraints.480

Nevertheless, we found that the nested model better allocated flood-induced ∆NEE to481

the US Midwest, suggesting that the improved model transport and observation repre-482

sentation of the nested model improved the overall performance relative to the global483

model, consistent with several recent studies (Monteil et al., 2020; Hu et al., 2019). How-484

ever, the nested model has some disadvantages, especially the inability to assimilate down-485

wind observations outside the model domain that may limit the utility of the nested model486

in other applications. Transport uncertainty and boundary condition errors may lead to487

significant challenges for nested inversions (Munassar et al., 2023; Kim et al., 2021; Chen488

et al., 2019; Lauvaux et al., 2012), but were not obvious in our analyses. We note that489

high-resolution models will be needed to take advantage of upcoming wide-swath sam-490

pling missions, such as CO2M (∼250 km swath) or GOSAT-GW (∼400 km swath).491

4.2 Bottom-up492

Remote-sensing-based bottom-up estimates of ∆NEE provided a consistent picture493

of reduced net uptake during the 2019 Midwest floods but differed significantly in mag-494

nitude. The primary source of this variability stems from translating space-based reflectance495

or SIF observations to GPP, leading to a range in ∆GPP between datasets of 120% of496

the mean. Indeed, estimating the magnitude of GPP from remote sensing datasets is chal-497

lenging due to satellite signals that could be influenced by factors such as cloud cover-498

age and soil background, in addition to calibration that is predominantly relying on bench-499

marks provided by eddy covariance sites. We encourage research into approaches that500

can reduce uncertainties on large-scale GPP magnitudes, possibly through top-down con-501

straints from Carbonyl Sulphide.502

Additional uncertainties were introduced in estimating ∆NEE from ∆GPP. Due503

to the inherent limitations of remote sensing, which can track GPP but not the total ecosys-504

tem respiration (the sum of HR and AR), certain assumptions must be made. First, to505

estimate AR, we assumed that ∆GPP and ∆NPP can be related through a constant car-506

bon use efficiency (CUE) parameter that varies across vegetation type, age, and man-507

agement practices (Campioli et al., 2015; DeLucia et al., 2007; Manzoni et al., 2018; Y. He508

et al., 2018; S. Yu et al., 2023). In our analysis, we adopted a mean value of 0.60 with509

an uncertainty of range 20% (0.5–0.7), which encompasses most literature estimates. Sec-510

ond, we assumed that the influence of ∆HR on the ∆NEE was negligible. The secondary511

impact of ∆HR is supported by Yin et al. (2020), who were able to reasonably repro-512

duce observed atmospheric CO2 enhancements during the 2019 US Midwest floods while513

neglecting ∆HR variations. Still, it is important to note that HR is sensitive to varia-514

tions in temperature and moisture. Terrestrial biosphere models could serve as poten-515

tial tools for estimating ∆HR (e.g., Balashov et al. (2022)) as remote sensing does not516

adequately capture variations in HR, which is significantly influenced by the availabil-517

ity of labile carbon. However, the accuracy of these model-driven estimates remains chal-518

lenging to verify.519
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5 Open Research520

Once accepted for publication, the prior and posterior fluxes, TROPOMI-based GPP,521

and NIRV-based GPP will be archived with a DOI. During the review processes the data522

are available by contacting Brendan Byrne. The atmospheric CO2 inversion analyses per-523

formed in this study used the CMS-Flux model, which is based on the GEOS-Chem Ad-524

joint model that can be accessed from the GEOS-Chem Wiki (https://wiki.seas.harvard.edu/geos-525

chem). OCO-2 XCO2 Lite files can be downloaded from the GES DISC (https://disc.gsfc.nasa.gov).526

In Situ CO2 measurements (Schuldt et al., 2022) can be downloaded from https://gml.noaa.gov/ccgg/obspack/.527

GFED biomass burning emissions (van der Werf et al., 2017) were downloaded from https://globalfiredata.org/.528

Fossil fuel emissions (Basu & Nassar, 2021) were downloaded from https://doi.org/10.5281/zenodo.4776925.529

MERRA-2 reanalysis data (Gelaro et al., 2017) was downloaded from https://disc.gsfc.nasa.gov/.530

TROPOMI SIF data are accessed online at https://data.caltech.edu/records/1347 (DOI:531

10.22002/D1.1347). FluxSat Version 2 (Joiner & Yoshida, 2021) were downloaded from532

the ORNL DAAC (https://daac.ornl.gov). GOSIF GPP (Li & Xiao, 2019) were down-533

loaded from http://data.globalecology.unh.edu/. FLUXCOM GPP (Jung et al., 2020)534

was downloaded from the aata portal of the Max Planck Institute for Biogeochemistry535

(https://www.bgc-jena.mpg.de/geodb/projects/Home.php).536
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Contents of this file

1. Text S1 to S2

2. Figures S1 to S15

Text S1.

This section provides an extended description of the comparison of posterior CO2 fields

with independent aircraft CO2 measurements. Co-samples were made for all aircraft mea-

surements that were deemed assimilable in version 8.0 of the the NOAA GLOBALVIEW

plus Obspack dataset (Schuldt et al., 2022). To simplify the analysis, we examine three

regions over North America, shown in Fig. S7. We aggregate temporally to weekly mean

obs minus model mismatches within each region, to better match the timescale being opti-

mized in the inversions. Figure S8 shows plots of the obs minus model statistics across all

weeks in each region for the boundary layer (<2000 m) and free troposphere (>2000 m),

while Figs. S9–S11 show vertical profiles of the obs minus model differences for each

week. Overall, we find that both the prior and posterior CO2 fields show close agreement

to independent aircraft CO2 observations, with differences close to expected representa-

tiveness errors. The obs-model mismatches do not show large differences between flux

estimates, suggesting that the data-model mismatch has limited sensitivity to flux esti-

mates on the scale optimized (weekly, 4◦ × 5◦), and may be largely driven by transport

errors and higher spatial and temporal flux variations. Nevertheless, the posterior CO2

fields generally show smaller mean biases. Overall, the LNLGOGIS experiment shows the

smallest biases, suggesting that additional data improves regional flux estimates (despite

concerns about the quality of ocean glint data (Byrne et al., 2023)). That said, the obs

minus model differences are quite small for all cases.
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Finally, we examine the obs minus model differences for ∆NEE-sensitive observations.

To find ∆NEE-sensitive observations, we simulate and atmospheric CO2 pulse using

bottom-up ∆NEE for 2018 and 2019, then define any observation with a signal greater

than 0.5 ppm to be ∆NEE-sensitive. Figure. S12 shows the obs minus model differences

for ∆NEE-sensitive observations during 2018 and 2019. All experiments are found to

show close agreement with the observations. Overall, we find that the LNLGOGIS shows

a slightly smaller bias than the other experiments.

Text S2.

This section provides an extended description of a set of flux inversions with imposed

prior IAV. For these experiments, prior IAV is introduced by imposing year-specific

bottom-up NPP estimates (assumed to equal 0.65×GPP) in the prior, and optimiz-

ing climatotlogical HR. Note that the experiments with a climatological prior impose

2018-2019 mean NPP for both years.

Figures S13–S15 show the posterior ∆NEE estimates for the prior with imposed IAV.

The spatial structures in IAV correspond closely to both the prior and inversions using

climatological priors. However, the magnitude of ∆NEE is generally much increased for

both the US Midwest (Fig. S13) and other regions within CONUS (Fig. S15). The

increase in magnitude is consistent with OSSEs, suggesting that the climatological priors

underestimate the magnitude of the anomalies, however the relative accuracy of these

inversions is difficult to quantify.
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Figure S1. Monthly observational coverage of assimilated in situ measurements over North

America for May–Sep during 2018 and 2019. Note that measurements over Canada end in July

of 2019.

References

Byrne, B., Baker, D. F., Basu, S., Bertolacci, M., Bowman, K. W., Carroll, D., . . . Zeng, N.

(2023). National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in

support of the global stocktake. Earth System Science Data, 15 (2), 963–1004. Retrieved

from https://essd.copernicus.org/articles/15/963/2023/ doi: 10.5194/essd-15-963

-2023

Schuldt, K. N., Mund, J., Luijkx, I. T., Aalto, T., Abshire, J. B., Aikin, K., . . . van den Bulk, P.

(2022). Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-

2021; obspack co2 1 globalviewplus v8.0 2022-08-27. NOAA Global Monitoring Laboratory.

doi: 10.25925/20220808

September 14, 2023, 11:42pm



: X - 5

Figure S2. Monthly observational coverage of assimilated OCO-2 XCO2 retrievals over North

America for May–Sep during 2018 and 2019.

Figure S3. Monthly observational coverage of assimilated ideal LEO pseudo-XCO2 retrievals

over North America for May–Sep during 2018 and 2019.
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Figure S4. ∆NEE for each one-way nested atmospheric CO2 inversion experiment. Top row

show June-July maps of the mean ∆NEE for each experiment. Second row shows the ∆NEE

within the MidWest and across the rest of North America. Bottom row shows the weekly ∆NEE

within the MidWest after applying a 5-week running mean.
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Figure S5. ∆NEE for each bottom-up estimate (best estimate, CUE=0.6). Top row show

June–July maps of the mean ∆NEE for each estimate. Second row shows the ∆NEE within the

MidWest (on left) and across the rest of North America (on right). Bottom row shows the weekly

∆NEE within the MidWest after applying a 5-week running mean.
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Figure S6. June–July ∆NEE over CONUS National Climate Assessment Regions

(https://scenarios.globalchange.gov/regions nca4).
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Figure S7. Regions defined for aircraft observation comparisons.
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Figure S8. Statistics of weekly obs minus model differences for each region. Differences are

shown for both (a-c) the free troposphere and (d-f) the boundary layer. The horizontal line shows

the median difference, boxed area shows 25th–75th percentile range and lines show the 0th–100th

percentile range.
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Figure S9. Weekly mean vertical profiles of CO2 (250 m vertical grid) for all aircraft measure-

ments over Region 1. Aircraft measurements are shown on row (a), with the obs minus model

differences shown on the lower rows. Weeks for 2018 and 2019 are shown in columns (i) and (ii),

respectively.
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Figure S10. Weekly mean vertical profiles of CO2 (250 m vertical grid) for all aircraft

measurements over Region 2. Aircraft measurements are shown on row (a), with the obs minus

model differences shown on the lower rows. Weeks for 2018 and 2019 are shown in columns (i)

and (ii), respectively.
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Figure S11. Weekly mean vertical profiles of CO2 (250 m vertical grid) for all aircraft

measurements over Region 3. Aircraft measurements are shown on row (a), with the obs minus

model differences shown on the lower rows. Weeks for 2018 and 2019 are shown in columns (i)

and (ii), respectively.
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Figure S12. Median plus/minus standard deviation of the obs minus model difference for

∆NEE-sensitive atmospheric CO2 measurements in 2018 versus 2019 (see Text S1). These statis-

tics are calculated across all individual observations that qualify as flood-sensitive.

Figure S13. Same as Fig. 1 but for inversions with prior IAV prescribed. (a) Bottom-up

and (b) top-down (LNLGOGIS) spatial patterns of June–July mean ∆NEE at 4◦ × 5◦ spatial

resolution. (c) US Midwest and (d) rest of North America 5-week-mean ∆NEE. The US Midwest

is defined as the area within Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and

Wisconsin and is indicated by the black outline in panels (a) and (b).
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Figure S14. Same as Fig. 2 but for inversions with prior IAV prescribed. Top-down ∆NEE,

bottom-up ∆NEE, and yield-based ∆NPP for crops (∆NPPcrop) over the US Midwest. ∆NEE

is calculated for (a) the entire inversion period (April 8th – Nov 18th), (b) June-July and (c)

Aug-Sep. The top-down estimates show the mean and range obtained using three different priors.
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Figure S15. Same as Fig. S6 but for inversions with prior IAV

prescribed. June–July ∆NEE over CONUS National Climate Assessment Regions

(https://scenarios.globalchange.gov/regions nca4) for top-down estimates with prior IAV.
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