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Abstract

This study examines the impact of ocean advection and surface freshwater flux on the non-seasonal, upper-ocean salinity

variability in two climate model simulations with eddy-resolving and eddy-parameterized ocean components (HR and LR,

respectively). We assess the realism of each simulation by comparing their sea surface salinity (SSS) variance with satellite and

Argo float estimates. Our results show that, in the extratropics, the HR variance is about five times larger than that in LR

and agrees with the Argo estimates. In turn, the extratropical satellite SSS variance is smaller than that from HR and Argo by

about a factor of two, potentially reflecting the low sensitivity of radiometers to SSS in cold waters. Using a simplified salinity

conservation equation for the upper-50-m ocean layer, we find that the advection-driven variance in HR is, on average, one

order of magnitude larger than the surface flux-driven variance, reflecting the action of mesoscale processes.
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Key Points:12

• We investigate how advection and surface flux affect upper-50-m salinity variance13

in eddy-resolving and eddy-parameterized climate models.14

• The extratropical variance in the eddy-resolving run matches Argo and is much15

larger than in the eddy-parameterized run and satellite data.16

• The larger upper-ocean salinity variance in the eddy-resolving run is predominantly17

driven by mesoscale ocean processes.18
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Abstract19

This study examines the impact of ocean advection and surface freshwater flux on the20

non-seasonal, upper-ocean salinity variability in two climate model simulations with eddy-21

resolving and eddy-parameterized ocean components (HR and LR, respectively). We as-22

sess the realism of each simulation by comparing their sea surface salinity (SSS) vari-23

ance with satellite and Argo float estimates. Our results show that, in the extratropics,24

the HR variance is about five times larger than that in LR and agrees with the Argo es-25

timates. In turn, the extratropical satellite SSS variance is smaller than that from HR26

and Argo by about a factor of two, potentially reflecting the low sensitivity of radiome-27

ters to SSS in cold waters. Using a simplified salinity conservation equation for the upper-28

50-m ocean layer, we find that the advection-driven variance in HR is, on average, one29

order of magnitude larger than the surface flux-driven variance, reflecting the action of30

mesoscale processes.31

Plain Language Summary32

This study explores the importance of ocean currents, evaporation, and rainfall for33

driving changes in the salt concentration in the upper ocean (known as salinity) in two34

climate model simulations with differing ocean resolutions. The high-resolution model35

(HR) simulates ocean currents with dimensions of tens of km, while the low-resolution36

model (LR) can only simulate currents with hundreds of km in size. When comparing37

their simulated sea surface salinity variations with those captured by satellites and au-38

tonomous floats from the Argo array, the salinity variability in the high-resolution model39

is similar to the Argo data at mid to high latitudes and about five times stronger than40

that in the low-resolution model. The satellite data show a variability two times smaller41

than HR and Argo in the same regions, potentially due to low sensitivity to the surface42

salinity in cold waters. Using a simple equation describing the conservation of salinity43

in the upper ocean, we have shown that small-scale ocean currents drive most of the salin-44

ity variability in HR, while in LR, ocean currents play a much smaller role.45

1 Introduction46

Mesoscale ocean currents play a significant role in setting the upper-ocean temper-47

ature variability over much of the extratropical oceans. Indeed, estimates based on ob-48

servations and model simulations indicate that the heat flux convergence associated with49

the mesoscale ocean eddy variability dominates over other terms of the heat budget equa-50

tion at spatial scales smaller than about 1000 km and timescales ranging from intrasea-51

sonal to interannual (e.g., Putrasahan et al., 2017; Small et al., 2020; Martin et al., 2021;52
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Patrizio & Thompson, 2021, 2022) and potentially longer (Laurindo et al., 2022). While53

the conclusions drawn for the upper-ocean temperature suggest that advection by tran-54

sient ocean motions can also be relevant for driving the upper-ocean salinity variabil-55

ity, only regional assessments of salinity have been made, and they show contrasting con-56

clusions on the role of advection.57

Results from the Salinity Processes in the Upper-ocean Regional Study (SPURS)58

field experiment conducted in the subtropical North Atlantic (SPURS-1, Lindstrom et59

al., 2015) indicate that the local time-averaged SSS is primarily balanced by the net sur-60

face fluxes acting to increase the salinity against the freshening effect of Ekman advec-61

tion, seasonal fluctuations are mainly controlled by the seasonally-varying surface forc-62

ing, and interannual variations by surface fluxes and advection by Ekman currents, with63

little influence from mesoscale ocean processes (Dohan et al., 2015; Dong et al., 2015).64

In contrast, other studies show that freshwater advection by mesoscale ocean eddies con-65

tributes to the monthly to intraseasonal SSS variability in the region (Busecke et al., 2014;66

Centurioni et al., 2015; Farrar et al., 2015; Melnichenko et al., 2017), with model-based67

assessments also suggesting an important role in the time-averaged balance and on sea-68

sonal to interannual variations (Busecke et al., 2014; Gordon & Giulivi, 2014).69

Treguier et al. (2012) showed that mesoscale eddies are essential for balancing the70

meridional freshwater transport in an eddy-resolving, 1/12◦ horizontal resolution ocean71

simulation of the North Atlantic, a mechanism that was absent in a corresponding eddy-72

permitting, 1/4◦ resolution run. The eddy-induced freshwater transport inferred by Treguier73

et al. (2012) was consistent with satellite and hydrography-based estimates for the re-74

gion (Stammer, 1998; Amores et al., 2017; Melnichenko et al., 2017). Model results also75

indicate that eddy stirring enhances horizontal salinity gradients where small-scale mix-76

ing can occur (Bryan & Bachman, 2015).77

In the eastern equatorial North Pacific, results from a second SPURS experiment78

(SPURS-2, Lindstrom et al., 2019) indicate that the local upper-ocean salinity budget79

is predominantly balanced by the freshening effect of the surface fluxes and the salting80

induced by vertical advection, with monthly to seasonal variations in the region driven81

by fluctuations in the Ekman advection (Farrar & Plueddemann, 2019; Melnichenko et82

al., 2019). In addition, satellite data indicates that westward propagating eddies con-83

tribute to the intraseasonal SSS variability in the area and that interannual changes re-84

flect variations in the surface freshwater fluxes associated with the El Niño-Southern Os-85

cillation (ENSO) cycle (Melnichenko et al., 2019).86
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The differing conclusions on the importance of mesoscale ocean currents for driv-87

ing the SSS variability may stem from uncertainties of the observational datasets used,88

the geographical locations and size of the control volumes used, and the different tem-89

poral averaging periods used in the assessments (Lindstrom et al., 2015). The configu-90

ration of model experiments may have contributed to the divergence in the literature,91

as the horizontal ocean resolution controls the mesoscale current variability and the as-92

sociated tracer transport (Kirtman et al., 2012; Treguier et al., 2012; Small et al., 2014;93

Chang et al., 2020). Further, most previous modeling studies used ocean-only simula-94

tions that cannot account for coupled ocean-atmosphere feedbacks on surface freshwa-95

ter flux (e.g., Frenger et al., 2013; Light et al., 2022), and that rely on physically unre-96

alistic sea surface salinity restoring schemes (Spall, 1993; Kamenkovich & Sarachik, 2004;97

Q. Zhang et al., 2022).98

Here, we examine the influence of mesoscale processes on the monthly upper-ocean99

salinity variance at global scales from two fully coupled climate model simulations con-100

figured with eddy-resolving and eddy-parameterized ocean components. We quantify the101

contribution of ocean advection and surface freshwater fluxes to the upper-ocean salin-102

ity variability resolved by each simulation using saved terms in the salinity budget and103

assess their realism by comparing their global sea surface salinity (SSS) variance maps104

with that estimated using satellite and Argo float data.105

Our work is organized as follows. Section 2 describes the observational products106

and climate model simulations (2.1), the methods applied for computing the upper-ocean107

salinity variance from the datasets used (2.2), and the budget equation used to decom-108

pose the model salinity variance into advection-driven and surface flux driven compo-109

nents (2.3). The results are presented and discussed in Section 3, while Section 4 sum-110

marizes this study and its conclusions.111

2 Methods112

2.1 Data description113

2.1.1 Satellite sea surface salinity data114

We use near-global satellite SSS data for September 2011 to March 2022 from the115

Multi-Mission Optimally Interpolated Sea Surface Salinity dataset (OISSS, Melnichenko116

et al., 2016, 2021). This product combines observations from three satellites: Aquarius/117

SAC-D (August 2011 to June 2015), Soil Moisture Active Passive (SMAP, March 2015118

until the present), and Soil Moisture and Ocean Salinity (SMOS, January 2010 to present).119

Their primary instruments are passive microwave radiometers that measure the surface120
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radiative flux along wide ground swaths. The measurements are taken in the L-band ra-121

diometric frequency band (∼1.4 GHz), where the equivalent surface brightness temper-122

ature is highly correlated with SSS for sea surface temperatures above 5◦C (Klein & Swift,123

1977). However, these correlations rapidly drop for temperatures less than 5◦C (Meissner124

et al., 2018; Dinnat et al., 2019; Vinogradova et al., 2019). The OISSS data is produced125

at a 0.25◦ × 0.25◦ × 4-day grid, has a 0.19 psu root mean square difference relative to126

in situ measurements, and near-zero bias.127

2.1.2 Vertical salinity profiles from Argo floats128

We utilize about two and a half million quality-controlled vertical salinity profiles129

obtained from January 1998 to December 2020 by Argo profiling floats (Good et al., 2013;130

Wong et al., 2020). The Argo floats are designed to drift in neutral equilibrium at 1000131

or 2000 m depth, emerging every ten days to measure pressure, temperature, and salin-132

ity as they rise. After transmitting their position and data to land-based receiving sta-133

tions, the floats return to their drifting depth until the next sampling cycle. The Argo134

array is globally distributed and currently has more than 3800 floats that gather about135

12,000 profiles each month.136

2.1.3 CESM climate model outputs137

We analyze two climate simulations produced using the Community Earth System138

Model version 1.3 (CESM, Meehl et al., 2019; S. Zhang et al., 2020) with differing hor-139

izontal resolutions in the ocean and atmosphere. The first is low-resolution (LR), using140

a nominal 1◦ resolution in both components that requires parameterizing the effects of141

mesoscale ocean processes (e.g., Gent & McWilliams, 1990). The second is high-resolution142

(HR), using a 0.25◦ resolution in the atmosphere and 0.1◦ in the ocean that is eddy-resolving143

except at high latitudes. LR is integrated for 501 years and HR for 519 years, both us-144

ing 1850 CO2 forcing. These simulations are thoroughly described in Chang et al. (2020).145

The CESM outputs used in this work are monthly-averaged horizontal fields of SSS146

and surface freshwater flux, and three-dimensional monthly global fields of ocean salt flux147

convergence computed using horizontal and vertical advection components. The LR (HR)148

quantities are obtained for the simulation years 1–249 (338–519), following their avail-149

ability in the model output files.150

2.2 Estimating the salinity variance using observations and CESM data151

To compute variance maps, we define salinity anomalies as fluctuations about a best-152

fit model composed of the long-term mean, a linear temporal trend, and of annual and153
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semiannual harmonics representing the seasonal cycle. We first compute monthly aver-154

ages of the 4-day resolution satellite SSS data for consistency with the model outputs155

before isolating the monthly anomalies. In turn, using model data, we estimate the SSS156

variance for 10-year segments of the monthly outputs to simulate the length of the satel-157

lite record. This results in twenty-one global SSS variance maps for LR and eighteen for158

HR, which we use to estimate the uncertainty of the SSS variance levels resolved by the159

simulations.160

In the case of the Argo vertical salinity profiles, SSS data is unavailable as the shal-161

lowest measurements are taken at 5-m depth or more. Thus, we consider the average salin-162

ity measured by the floats over the first 10 m of the water column as a proxy for SSS,163

consistent with the 10-m thickness of the CESM surface ocean layer. We also low-pass164

filter the 10-day resolution data along the float trajectories at thirty days to reproduce165

the monthly sampling frequency of the model data. Finally, we use the data binning pro-166

cedure described in Laurindo et al. (2017) to decompose the Argo measurements into167

time-mean, seasonal, and eddy components, the latter of which are used to compute a168

regular-gridded (0.25◦ × 0.25◦ resolution) global salinity variance map.169

2.3 Decomposing the CESM upper-ocean salinity variance170

Inspired by the analysis of Patrizio and Thompson (2021), here we use a simpli-171

fied salinity conservation equation to diagnose the contribution of the ocean advection172

and surface freshwater fluxes to the monthly salinity variability in a surface layer of thick-173

ness h = 50-m resolved by the HR and LR simulations, given by:174

∂ ⟨S⟩
∂t

= −⟨∇ · (uS)⟩︸ ︷︷ ︸
Ocean advection (Qo)

+
S0

h
(E − P )︸ ︷︷ ︸

Surface fluxes (Qs)

, (1)

where the brackets denote quantities vertically averaged over the upper 50-m, u is the175

three-dimensional velocity vector, S represents salinity, E evaporation, P precipitation,176

and S0 is a constant reference salinity equal to 34.7 psu. The first term on the right-hand177

side represents the salt flux convergence associated with the three-dimensional ocean ad-178

vection (Qo), and the second term the surface freshwater flux (Qs). Eq. (1) omits the179

contributions of entrainment at the bottom of the layer and of diffusive processes.180

Dropping the brackets for simplicity and isolating monthly mean anomalies (rep-181

resented by primes) from (1) yields:182
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∂S′

∂t
= Q′

o +Q′
s, (2)

from which we obtain an analytical expression for the salinity variance σ2
S by centered183

differencing the salinity tendency term, squaring both sides of the equation, and taking184

a time average:185

σ2
S =

2∆t2

1− r2

(
Q′2

o +Q′2
s + 2Q′

oQ
′
s

)
, (3)

where ∆t represents the sampling interval of one month, and r2 is the two-month lag au-186

tocorrelation of the vertically-averaged salinity (Patrizio & Thompson, 2021).187

From (3), we define the diagnostic relationship:188

σ2
S = Q̃oo + Q̃ss + Q̃os, (4)

where Q̃oo and Q̃ss represent the contribution of ocean advection and surface freshwa-189

ter flux for driving the upper-ocean salinity variability, respectively, while Q̃os arises from190

the covariance between advection and surface fluxes. They are expressed as:191

Q̃oo =
2∆t2

1− r2
Q′2

o , (5)

Q̃ss =
2∆t2

1− r2
Q′2

s , (6)

Q̃os =
4∆t2

1− r2
Q′

oQ
′
s. (7)

We use (4) to (7), combined with the salt flux convergence and surface freshwater192

flux outputs, to estimate σ2
S , Q̃oo, Q̃ss, and Q̃os for HR and LR. We note that the CESM193

budget outputs are for the conservation of salt content rather than of salinity. While both194

are equivalent at subsurface layers, undulations of the free surface can strongly modu-195

late the salt content of the surface layer but not its salinity (c.f. Sec. 3.3 of Smith et al.,196

2010). Since we focus on the salinity variability, here we examine advection outputs vertically-197

averaged over the 10 to 50 m layer as a proxy for the upper-50-m salinity flux conver-198

gence Qo. We isolate the monthly anomalies Q′
o and Q′

s using the methods described in199

Sec. 2.2, which are then applied in Eqs. (4) to (7) for computing the quantities of in-200

terest.201
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3 Results and discussion202

3.1 Salinity variance in observations and CESM simulations203

Here, we compare the non-seasonal, monthly SSS variance calculated using OISSS204

data, Argo data, and outputs from LR and HR. The large-scale patterns observed in the205

OISSS data (Fig. 1a) resemble those of the long-term mean precipitation (e.g., Adler et206

al., 2003; Xie et al., 2017), with enhanced values found in the vicinity of the Intertrop-207

ical Convergence Zone (ITCZ) in the Atlantic and Pacific basins and over much of the208

Indian Ocean. This may indicate the influence of transient precipitation events from small-209

scale convective systems. The enhanced SSS variance within the tropics can also be at-210

tributed to advection by Ekman currents and Tropical Instability Waves (Melnichenko211

et al., 2019). In addition, significant SSS variances are associated with the freshwater212

discharge of major rivers, such as the Amazon (Congo) in the western (eastern) trop-213

ical Atlantic, the La Plata in the western South Atlantic, the Mississippi in the Gulf of214

Mexico, and the Ganges in the Bay of Bengal (Fournier & Lee, 2021). Moving to the ex-215

tratropics, enhanced SSS variance appears in strong current systems, most prominently216

the Gulf Stream seaward extension, and to a lesser degree in the Kuroshio Current, Brazil217

Current, the Brazil-Malvinas Confluence, and the Agulhas Current System. The large218

SSS variance in these regions coincides with strong time-mean horizontal SSS gradients,219

suggesting that it arises from horizontal advection by mesoscale ocean currents (Amores220

et al., 2017; Melnichenko et al., 2017, 2019).221

The upper-10-m salinity variance from Argo (Fig. 1b) show similar spatial distri-222

bution and magnitudes within the tropics. However, the Argo estimates resolve spatial223

patterns associated with all major extratropical current systems that are better defined224

and with larger magnitudes. In particular, the Argo estimates show values of up to 1.8225

psu2 (whose logarithm is ∼ 0.2, for visualization in Fig. 1) at the Gulf Stream seaward226

extension, compared to only 0.3 psu2 in OISSS (log ∼ −0.7). About one order of mag-227

nitude differences are also seen at the Brazil-Malvinas Confluence and the Kuroshio and228

Agulhas Currents. The Argo estimates further show enhanced variances associated with229

the Antarctic Circumpolar Current (ACC) that are absent in OISSS. Also absent are zonally-230

elongated variance bands of about 0.03 psu2 (log −1.5) south of Australia and in the Pa-231

cific and Atlantic subtropical gyres. Finally, Argo prominently show wide low variance232

regions (≤0.01 psu2, or ≤ −2 in log scale) in the Southern Ocean that coincides with233

low eddy kinetic energy regions (Lumpkin & Johnson, 2013).234

The comparison between the LR and HR variances provides further insight into235

the importance of mesoscale processes. Similarly to observations (Figs. 1a-b), HR re-236
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Figure 1. Monthly sea surface salinity (SSS) variance resolved by the OISSS satellite product

(a), of the upper-10-m averaged salinity estimated using from Argo float data (b), and of the

monthly SSS variance resolved by the low- and high-resolution CESM simulations (c and d). All

estimates are shown in logarithmic scale.
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Figure 2. Zonally-averaged SSS variance from low- and high-resolution CESM simulations

(red and blue lines, respectively), contrasted against zonally-averaged observational estimates

(black lines) of the SSS variance resolved by the OISSS satellite product (panel a) and the upper-

10-m salinity variance computed using Argo data (b). The darker shading around the CESM

estimates is the standard deviation of the zonally-averaged salinity variances of individual ten-

year segments of the model outputs, while the lighter shading show the minimum and maximum

values obtained over all segments. All estimates are shown in logarithmic scale.

solves the enhanced variability associated with extratropical current systems, features237

absent in the LR results (Figs. 1c-d). Notably, the spatial features and variance levels238

resolved by HR in the extratropics resemble those shown by the Argo results.239

Zonally-averaged salinity variances (Fig. 2) reinforce the similarity between the HR240

and Argo results in the extratropics and that both are significantly larger than those from241

LR. The zonally-averaged variance estimates from Argo (Fig. 2b) fall within one stan-242

dard deviation of the ensemble-averaged HR variance estimates (computed as described243

in Sec. 2.2) in the Southern Hemisphere, and are generally larger than the minimum vari-244

ance for HR in the Northern. In turn, the variance from OISSS (Fig. 2a), albeit larger245

than those from LR at most latitudes, are muted relative to Argo and HR between about246

60◦S and 55◦N and exceed the variance levels resolved by both Argo and HR poleward247

of these latitudes. These characteristics likely reflect the smaller sensitivity of the SSS248

satellite retrievals in cold waters (Klein & Swift, 1977; Meissner et al., 2018; Dinnat et249

al., 2019; Vinogradova et al., 2019). Further highlighting the similarity between HR and250

Argo and their larger variance levels relative to LR and OISSS, the global area-averaged251

SSS variances are 0.009, 0.018, 0.021, 0.014 psu2 for LR, HR, Argo, and OISSS respec-252

tively. Considering only latitudes poleward of 23◦, these values change to 0.002, 0.010,253

0.011, and 0.004 psu2 for LR, HR, Argo, and OISSS, respectively.254
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Despite the higher overall realism of HR relative to LR, there are important dif-255

ferences relative to observations. In particular, OISSS and Argo both show larger and256

spatially more widespread salinity variance off the mouth of large rivers than HR, most257

prominently for the Amazon and Congo, potentially reflecting issues with the river runoff258

scheme in CESM-HR. Observations also show local salinity variance maxima in the west-259

ern tropical Pacific, associated with the Indo-Pacific Warm Pool (De Deckker, 2016), that260

are imperfectly reproduced in HR. Specifically, the HR shows high variance values over261

the equator that are shifted west and closer to Indonesia relative to that from OISSS and262

Argo, while the high variances centered at about 10◦S are shifted east by almost thirty263

degrees. These biases can be associated with deficiencies in how CESM represents at-264

mospheric phenomena within the tropics, such as Madden-Julian Oscillations, tropical265

cyclones, and the ITCZ, as documented in Chang et al. (2020).266

3.2 Role of advection and surface flux in the CESM salinity variance267

In this Section, we examine the contribution of ocean advection and surface fresh-268

water fluxes to the upper-50-m salinity variance, as resolved by HR and LR simulations,269

using Eqs. (4) to (7). The advection-induced salinity variance [Q̃oo, Eq. (5)] is much higher270

in HR than in LR, except in the Indo-Pacific Warm Pool and in the eastern tropical Pa-271

cific, where both simulations show comparable values (Figs. 3a-b). The contribution of272

surface freshwater fluxes [Q̃ss, Eq. (6)] is similar in both simulations, except in the South-273

ern Ocean and in the western portion of the oceanic basins, where it can be up to one274

order of magnitude larger in LR relative to HR (Figs. 3c-d). The spatial distribution of275

the surface flux-induced variance is similar to climatological precipitation (e.g., Adler276

et al., 2003; Xie et al., 2017). The contribution of the covariance between advection and277

surface fluxes to the total salinity variance [Q̃os, Eq. (7)] is smaller in magnitude than278

the other two components and shows predominantly negative values, whose spatial dis-279

tribution mirrors that of the surface fluxes (Fig. S1). The global area-averaged values280

of the advection, surface flux, and covariance components are 0.019, 0.010, and −0.003281

psu2 for LR, in contrast to 0.092, 0.007, and −0.005 psu2 for HR.282

The sum of all components [σ2
S , Eq. (4), Figs. 3e-f] produce salinity variance fields283

for LR and HR with spatial features similar to the respective monthly SSS variance fields284

(Figs. 3c-d), although with larger magnitudes, especially for HR. This is because σ2
S is285

obtained from monthly-averaged outputs of advection and surface freshwater flux, which286

are components of the salinity tendency that result from the difference between the in-287

stantaneous salinity from the beginning and end of each simulation month, while the SSS288

variances are computed using monthly-averaged salinity outputs that attenuate high-frequency289
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Figure 3. Contribution of ocean advection (a, b) and of surface freshwater fluxes (c, d) to the

upper-50 m salinity variance (e, f) resolved by the low- and high-resolution CESM simulations.

All estimates are shown in logarithmic scale.

–12–



manuscript submitted to Geophysical Research Letters

Figure 4. Zonally-averaged contributions of ocean advection and surface freshwater flux (or-

ange and green lines, respectively) to the total salinity variance (black lines) for the low- and

high-resolution CESM simulations (panels a and b, respectively). The shading around the es-

timates are the standard deviation of the zonally-averaged variances computed for individual

ten-year segments of the model outputs. Estimates are shown in logarithmic scale.

variability. Here, the global area-average variances and 0.026 psu2 for LR and 0.094 psu2290

for HR, about three and five times larger, respectively, than the corresponding values291

obtained for SSS.292

Specifically in LR, the upper-ocean salinity variance is dominated by advection within293

the tropics and at western boundary currents, and by surface fluxes in the Southern Ocean294

and at the interior of all subtropical gyres (Fig. 3). Zonal averages of the advection- and295

surface-flux-induced salinity variance further highlights that surface fluxes predominantly296

drive the variance south of 20◦S while north of 20◦N both components contribute about297

equally (Fig. 4). In turn, the HR salinity variance is dominated by advection virtually298

everywhere, with a contribution from the surface fluxes only noticeable at quiescent, low299

salinity variance regions in the Southern Ocean (Figs. 3 and 4).300

These results show that the larger upper-ocean salinity variance levels in HR are301

due to larger advective flux variability compared to LR. The advective fluxes consist of302

Ekman and geostrophic components, with the Ekman dynamics being forced by the at-303

mosphere via wind stress and contributing to the SST variability within the tropics (Larson304

et al., 2018; Small et al., 2020). Geostrophic current variability near the equator is ex-305

plained by large-scale, equatorially-trapped waves such as Rossby and Tropical Insta-306

bility Waves, while in the extratropics it is explained by mesoscale eddies (Tulloch et al.,307

2009; Chelton et al., 2011), which dominate the non-seasonal SST variability in eddy-308

resolving simulations (Delworth et al., 2012; Kirtman et al., 2012; Putrasahan et al., 2017;309

Small et al., 2020; Laurindo et al., 2022).310
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We note that the simulations also have different horizontal atmospheric resolutions311

(0.25◦ vs. 1◦), which enables a more accurate representation of phenomena such as weather312

fronts and tropical cyclones in HR. These phenomena significantly affect precipitation313

(Chang et al., 2020; Light et al., 2022) and likely also impact the upper-ocean salinity314

variance. The outline of the ITCZ in the tropical Pacific, seen in all variance components315

calculated using HR data [Eq. (4) and Figs. 3 and S1], is a potential signature of the316

influence of resolved atmospheric phenomena. This feature is weaker in LR. Previous stud-317

ies have demonstrated that the influence of intrinsic ocean and atmosphere phenomena318

on upper-ocean temperature can be distinguished by the spatial and temporal scales where319

they operate (Small et al., 2019, 2020; Laurindo et al., 2019, 2022). Future studies can320

potentially apply similar methods to disentangle the influence of atmospheric and oceanic321

processes in the upper-ocean salinity variability.322

4 Summary and conclusions323

In this study, we use a simplified salinity conservation equation to quantify the con-324

tribution of ocean advection and surface freshwater flux to the non-seasonal, upper-50-325

m ocean salinity variability resolved by century-long CESM simulations configured with326

eddy-resolving and eddy-parameterized ocean resolutions (HR and LR, respectively). We327

determine the overall realism of each model run by contrasting their SSS variance with328

those calculated using ten years of satellite SSS data from the OISSS product and twenty-329

one years of upper-10-m averaged salinity data from Argo floats.330

We find that the upper-ocean salinity variance in HR is, on average, twice as large331

as that from LR. The difference increases to a factor of five if we only consider the ex-332

tratropics. The most significant differences occur in western boundary current systems333

and the ACC, where the variance can be one order of magnitude larger in HR. Relative334

to observations, the variance level resolved by HR is in excellent agreement in the ex-335

tratropics with that estimated using Argo data and is two times larger than the OISSS336

satellite estimates. OISSS also shows too strong variance in some high-latitude regions,337

such as the Southern Ocean near the ice edge. The biases visible in the satellite results338

are potentially associated with the low sensitivity of orbital radiometers to SSS over cold339

waters, and imply that the satellite measurements must be supplemented by in situ ob-340

servations when studying the salinity variability at mid to high latitudes. Within the trop-341

ical Atlantic, HR and LR prominently underestimate the salinity variance near the Ama-342

zon and Congo River estuaries relative to Argo and satellite estimates, potentially re-343

flecting shortcomings with the CESM river runoff scheme. The simulations also misrep-344

resent large-scale patterns at the Indo-Pacific Warm Pool that can be associated with345
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documented CESM biases on the representation of the ITCZ, tropical cyclones, and in-346

traseasonal forms of atmospheric variability such as Madden-Julian Oscillations.347

Finally, we show that the larger extratropical, upper-ocean salinity variance in HR348

is associated with a more significant contribution of ocean advection relative to LR, pre-349

dominantly attributed to the action of resolved mesoscale ocean phenomena in HR. The350

HR simulation also shows a better-resolved signature of atmospheric features in both its351

advection and surface flux-driven components, suggesting that the resolution of the at-352

mospheric grid also influences the salinity variability. In particular, recent findings by353

Light et al. (2022) showed that the precipitation resolved by coupled models is jointly354

sensitive to the horizontal resolution of both the ocean and atmospheric grids, suggest-355

ing that realistically resolving the SSS variability in climate simulations require high res-356

olution in both the ocean and atmosphere model components.357
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Key Points:12

• We investigate how advection and surface flux affect upper-50-m salinity variance13

in eddy-resolving and eddy-parameterized climate models.14

• The extratropical variance in the eddy-resolving run matches Argo and is much15

larger than in the eddy-parameterized run and satellite data.16

• The larger upper-ocean salinity variance in the eddy-resolving run is predominantly17

driven by mesoscale ocean processes.18
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Abstract19

This study examines the impact of ocean advection and surface freshwater flux on the20

non-seasonal, upper-ocean salinity variability in two climate model simulations with eddy-21

resolving and eddy-parameterized ocean components (HR and LR, respectively). We as-22

sess the realism of each simulation by comparing their sea surface salinity (SSS) vari-23

ance with satellite and Argo float estimates. Our results show that, in the extratropics,24

the HR variance is about five times larger than that in LR and agrees with the Argo es-25

timates. In turn, the extratropical satellite SSS variance is smaller than that from HR26

and Argo by about a factor of two, potentially reflecting the low sensitivity of radiome-27

ters to SSS in cold waters. Using a simplified salinity conservation equation for the upper-28

50-m ocean layer, we find that the advection-driven variance in HR is, on average, one29

order of magnitude larger than the surface flux-driven variance, reflecting the action of30

mesoscale processes.31

Plain Language Summary32

This study explores the importance of ocean currents, evaporation, and rainfall for33

driving changes in the salt concentration in the upper ocean (known as salinity) in two34

climate model simulations with differing ocean resolutions. The high-resolution model35

(HR) simulates ocean currents with dimensions of tens of km, while the low-resolution36

model (LR) can only simulate currents with hundreds of km in size. When comparing37

their simulated sea surface salinity variations with those captured by satellites and au-38

tonomous floats from the Argo array, the salinity variability in the high-resolution model39

is similar to the Argo data at mid to high latitudes and about five times stronger than40

that in the low-resolution model. The satellite data show a variability two times smaller41

than HR and Argo in the same regions, potentially due to low sensitivity to the surface42

salinity in cold waters. Using a simple equation describing the conservation of salinity43

in the upper ocean, we have shown that small-scale ocean currents drive most of the salin-44

ity variability in HR, while in LR, ocean currents play a much smaller role.45

1 Introduction46

Mesoscale ocean currents play a significant role in setting the upper-ocean temper-47

ature variability over much of the extratropical oceans. Indeed, estimates based on ob-48

servations and model simulations indicate that the heat flux convergence associated with49

the mesoscale ocean eddy variability dominates over other terms of the heat budget equa-50

tion at spatial scales smaller than about 1000 km and timescales ranging from intrasea-51

sonal to interannual (e.g., Putrasahan et al., 2017; Small et al., 2020; Martin et al., 2021;52
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Patrizio & Thompson, 2021, 2022) and potentially longer (Laurindo et al., 2022). While53

the conclusions drawn for the upper-ocean temperature suggest that advection by tran-54

sient ocean motions can also be relevant for driving the upper-ocean salinity variabil-55

ity, only regional assessments of salinity have been made, and they show contrasting con-56

clusions on the role of advection.57

Results from the Salinity Processes in the Upper-ocean Regional Study (SPURS)58

field experiment conducted in the subtropical North Atlantic (SPURS-1, Lindstrom et59

al., 2015) indicate that the local time-averaged SSS is primarily balanced by the net sur-60

face fluxes acting to increase the salinity against the freshening effect of Ekman advec-61

tion, seasonal fluctuations are mainly controlled by the seasonally-varying surface forc-62

ing, and interannual variations by surface fluxes and advection by Ekman currents, with63

little influence from mesoscale ocean processes (Dohan et al., 2015; Dong et al., 2015).64

In contrast, other studies show that freshwater advection by mesoscale ocean eddies con-65

tributes to the monthly to intraseasonal SSS variability in the region (Busecke et al., 2014;66

Centurioni et al., 2015; Farrar et al., 2015; Melnichenko et al., 2017), with model-based67

assessments also suggesting an important role in the time-averaged balance and on sea-68

sonal to interannual variations (Busecke et al., 2014; Gordon & Giulivi, 2014).69

Treguier et al. (2012) showed that mesoscale eddies are essential for balancing the70

meridional freshwater transport in an eddy-resolving, 1/12◦ horizontal resolution ocean71

simulation of the North Atlantic, a mechanism that was absent in a corresponding eddy-72

permitting, 1/4◦ resolution run. The eddy-induced freshwater transport inferred by Treguier73

et al. (2012) was consistent with satellite and hydrography-based estimates for the re-74

gion (Stammer, 1998; Amores et al., 2017; Melnichenko et al., 2017). Model results also75

indicate that eddy stirring enhances horizontal salinity gradients where small-scale mix-76

ing can occur (Bryan & Bachman, 2015).77

In the eastern equatorial North Pacific, results from a second SPURS experiment78

(SPURS-2, Lindstrom et al., 2019) indicate that the local upper-ocean salinity budget79

is predominantly balanced by the freshening effect of the surface fluxes and the salting80

induced by vertical advection, with monthly to seasonal variations in the region driven81

by fluctuations in the Ekman advection (Farrar & Plueddemann, 2019; Melnichenko et82

al., 2019). In addition, satellite data indicates that westward propagating eddies con-83

tribute to the intraseasonal SSS variability in the area and that interannual changes re-84

flect variations in the surface freshwater fluxes associated with the El Niño-Southern Os-85

cillation (ENSO) cycle (Melnichenko et al., 2019).86
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The differing conclusions on the importance of mesoscale ocean currents for driv-87

ing the SSS variability may stem from uncertainties of the observational datasets used,88

the geographical locations and size of the control volumes used, and the different tem-89

poral averaging periods used in the assessments (Lindstrom et al., 2015). The configu-90

ration of model experiments may have contributed to the divergence in the literature,91

as the horizontal ocean resolution controls the mesoscale current variability and the as-92

sociated tracer transport (Kirtman et al., 2012; Treguier et al., 2012; Small et al., 2014;93

Chang et al., 2020). Further, most previous modeling studies used ocean-only simula-94

tions that cannot account for coupled ocean-atmosphere feedbacks on surface freshwa-95

ter flux (e.g., Frenger et al., 2013; Light et al., 2022), and that rely on physically unre-96

alistic sea surface salinity restoring schemes (Spall, 1993; Kamenkovich & Sarachik, 2004;97

Q. Zhang et al., 2022).98

Here, we examine the influence of mesoscale processes on the monthly upper-ocean99

salinity variance at global scales from two fully coupled climate model simulations con-100

figured with eddy-resolving and eddy-parameterized ocean components. We quantify the101

contribution of ocean advection and surface freshwater fluxes to the upper-ocean salin-102

ity variability resolved by each simulation using saved terms in the salinity budget and103

assess their realism by comparing their global sea surface salinity (SSS) variance maps104

with that estimated using satellite and Argo float data.105

Our work is organized as follows. Section 2 describes the observational products106

and climate model simulations (2.1), the methods applied for computing the upper-ocean107

salinity variance from the datasets used (2.2), and the budget equation used to decom-108

pose the model salinity variance into advection-driven and surface flux driven compo-109

nents (2.3). The results are presented and discussed in Section 3, while Section 4 sum-110

marizes this study and its conclusions.111

2 Methods112

2.1 Data description113

2.1.1 Satellite sea surface salinity data114

We use near-global satellite SSS data for September 2011 to March 2022 from the115

Multi-Mission Optimally Interpolated Sea Surface Salinity dataset (OISSS, Melnichenko116

et al., 2016, 2021). This product combines observations from three satellites: Aquarius/117

SAC-D (August 2011 to June 2015), Soil Moisture Active Passive (SMAP, March 2015118

until the present), and Soil Moisture and Ocean Salinity (SMOS, January 2010 to present).119

Their primary instruments are passive microwave radiometers that measure the surface120
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radiative flux along wide ground swaths. The measurements are taken in the L-band ra-121

diometric frequency band (∼1.4 GHz), where the equivalent surface brightness temper-122

ature is highly correlated with SSS for sea surface temperatures above 5◦C (Klein & Swift,123

1977). However, these correlations rapidly drop for temperatures less than 5◦C (Meissner124

et al., 2018; Dinnat et al., 2019; Vinogradova et al., 2019). The OISSS data is produced125

at a 0.25◦ × 0.25◦ × 4-day grid, has a 0.19 psu root mean square difference relative to126

in situ measurements, and near-zero bias.127

2.1.2 Vertical salinity profiles from Argo floats128

We utilize about two and a half million quality-controlled vertical salinity profiles129

obtained from January 1998 to December 2020 by Argo profiling floats (Good et al., 2013;130

Wong et al., 2020). The Argo floats are designed to drift in neutral equilibrium at 1000131

or 2000 m depth, emerging every ten days to measure pressure, temperature, and salin-132

ity as they rise. After transmitting their position and data to land-based receiving sta-133

tions, the floats return to their drifting depth until the next sampling cycle. The Argo134

array is globally distributed and currently has more than 3800 floats that gather about135

12,000 profiles each month.136

2.1.3 CESM climate model outputs137

We analyze two climate simulations produced using the Community Earth System138

Model version 1.3 (CESM, Meehl et al., 2019; S. Zhang et al., 2020) with differing hor-139

izontal resolutions in the ocean and atmosphere. The first is low-resolution (LR), using140

a nominal 1◦ resolution in both components that requires parameterizing the effects of141

mesoscale ocean processes (e.g., Gent & McWilliams, 1990). The second is high-resolution142

(HR), using a 0.25◦ resolution in the atmosphere and 0.1◦ in the ocean that is eddy-resolving143

except at high latitudes. LR is integrated for 501 years and HR for 519 years, both us-144

ing 1850 CO2 forcing. These simulations are thoroughly described in Chang et al. (2020).145

The CESM outputs used in this work are monthly-averaged horizontal fields of SSS146

and surface freshwater flux, and three-dimensional monthly global fields of ocean salt flux147

convergence computed using horizontal and vertical advection components. The LR (HR)148

quantities are obtained for the simulation years 1–249 (338–519), following their avail-149

ability in the model output files.150

2.2 Estimating the salinity variance using observations and CESM data151

To compute variance maps, we define salinity anomalies as fluctuations about a best-152

fit model composed of the long-term mean, a linear temporal trend, and of annual and153
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semiannual harmonics representing the seasonal cycle. We first compute monthly aver-154

ages of the 4-day resolution satellite SSS data for consistency with the model outputs155

before isolating the monthly anomalies. In turn, using model data, we estimate the SSS156

variance for 10-year segments of the monthly outputs to simulate the length of the satel-157

lite record. This results in twenty-one global SSS variance maps for LR and eighteen for158

HR, which we use to estimate the uncertainty of the SSS variance levels resolved by the159

simulations.160

In the case of the Argo vertical salinity profiles, SSS data is unavailable as the shal-161

lowest measurements are taken at 5-m depth or more. Thus, we consider the average salin-162

ity measured by the floats over the first 10 m of the water column as a proxy for SSS,163

consistent with the 10-m thickness of the CESM surface ocean layer. We also low-pass164

filter the 10-day resolution data along the float trajectories at thirty days to reproduce165

the monthly sampling frequency of the model data. Finally, we use the data binning pro-166

cedure described in Laurindo et al. (2017) to decompose the Argo measurements into167

time-mean, seasonal, and eddy components, the latter of which are used to compute a168

regular-gridded (0.25◦ × 0.25◦ resolution) global salinity variance map.169

2.3 Decomposing the CESM upper-ocean salinity variance170

Inspired by the analysis of Patrizio and Thompson (2021), here we use a simpli-171

fied salinity conservation equation to diagnose the contribution of the ocean advection172

and surface freshwater fluxes to the monthly salinity variability in a surface layer of thick-173

ness h = 50-m resolved by the HR and LR simulations, given by:174

∂ ⟨S⟩
∂t

= −⟨∇ · (uS)⟩︸ ︷︷ ︸
Ocean advection (Qo)

+
S0

h
(E − P )︸ ︷︷ ︸

Surface fluxes (Qs)

, (1)

where the brackets denote quantities vertically averaged over the upper 50-m, u is the175

three-dimensional velocity vector, S represents salinity, E evaporation, P precipitation,176

and S0 is a constant reference salinity equal to 34.7 psu. The first term on the right-hand177

side represents the salt flux convergence associated with the three-dimensional ocean ad-178

vection (Qo), and the second term the surface freshwater flux (Qs). Eq. (1) omits the179

contributions of entrainment at the bottom of the layer and of diffusive processes.180

Dropping the brackets for simplicity and isolating monthly mean anomalies (rep-181

resented by primes) from (1) yields:182
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∂S′

∂t
= Q′

o +Q′
s, (2)

from which we obtain an analytical expression for the salinity variance σ2
S by centered183

differencing the salinity tendency term, squaring both sides of the equation, and taking184

a time average:185

σ2
S =

2∆t2

1− r2

(
Q′2

o +Q′2
s + 2Q′

oQ
′
s

)
, (3)

where ∆t represents the sampling interval of one month, and r2 is the two-month lag au-186

tocorrelation of the vertically-averaged salinity (Patrizio & Thompson, 2021).187

From (3), we define the diagnostic relationship:188

σ2
S = Q̃oo + Q̃ss + Q̃os, (4)

where Q̃oo and Q̃ss represent the contribution of ocean advection and surface freshwa-189

ter flux for driving the upper-ocean salinity variability, respectively, while Q̃os arises from190

the covariance between advection and surface fluxes. They are expressed as:191

Q̃oo =
2∆t2

1− r2
Q′2

o , (5)

Q̃ss =
2∆t2

1− r2
Q′2

s , (6)

Q̃os =
4∆t2

1− r2
Q′

oQ
′
s. (7)

We use (4) to (7), combined with the salt flux convergence and surface freshwater192

flux outputs, to estimate σ2
S , Q̃oo, Q̃ss, and Q̃os for HR and LR. We note that the CESM193

budget outputs are for the conservation of salt content rather than of salinity. While both194

are equivalent at subsurface layers, undulations of the free surface can strongly modu-195

late the salt content of the surface layer but not its salinity (c.f. Sec. 3.3 of Smith et al.,196

2010). Since we focus on the salinity variability, here we examine advection outputs vertically-197

averaged over the 10 to 50 m layer as a proxy for the upper-50-m salinity flux conver-198

gence Qo. We isolate the monthly anomalies Q′
o and Q′

s using the methods described in199

Sec. 2.2, which are then applied in Eqs. (4) to (7) for computing the quantities of in-200

terest.201
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3 Results and discussion202

3.1 Salinity variance in observations and CESM simulations203

Here, we compare the non-seasonal, monthly SSS variance calculated using OISSS204

data, Argo data, and outputs from LR and HR. The large-scale patterns observed in the205

OISSS data (Fig. 1a) resemble those of the long-term mean precipitation (e.g., Adler et206

al., 2003; Xie et al., 2017), with enhanced values found in the vicinity of the Intertrop-207

ical Convergence Zone (ITCZ) in the Atlantic and Pacific basins and over much of the208

Indian Ocean. This may indicate the influence of transient precipitation events from small-209

scale convective systems. The enhanced SSS variance within the tropics can also be at-210

tributed to advection by Ekman currents and Tropical Instability Waves (Melnichenko211

et al., 2019). In addition, significant SSS variances are associated with the freshwater212

discharge of major rivers, such as the Amazon (Congo) in the western (eastern) trop-213

ical Atlantic, the La Plata in the western South Atlantic, the Mississippi in the Gulf of214

Mexico, and the Ganges in the Bay of Bengal (Fournier & Lee, 2021). Moving to the ex-215

tratropics, enhanced SSS variance appears in strong current systems, most prominently216

the Gulf Stream seaward extension, and to a lesser degree in the Kuroshio Current, Brazil217

Current, the Brazil-Malvinas Confluence, and the Agulhas Current System. The large218

SSS variance in these regions coincides with strong time-mean horizontal SSS gradients,219

suggesting that it arises from horizontal advection by mesoscale ocean currents (Amores220

et al., 2017; Melnichenko et al., 2017, 2019).221

The upper-10-m salinity variance from Argo (Fig. 1b) show similar spatial distri-222

bution and magnitudes within the tropics. However, the Argo estimates resolve spatial223

patterns associated with all major extratropical current systems that are better defined224

and with larger magnitudes. In particular, the Argo estimates show values of up to 1.8225

psu2 (whose logarithm is ∼ 0.2, for visualization in Fig. 1) at the Gulf Stream seaward226

extension, compared to only 0.3 psu2 in OISSS (log ∼ −0.7). About one order of mag-227

nitude differences are also seen at the Brazil-Malvinas Confluence and the Kuroshio and228

Agulhas Currents. The Argo estimates further show enhanced variances associated with229

the Antarctic Circumpolar Current (ACC) that are absent in OISSS. Also absent are zonally-230

elongated variance bands of about 0.03 psu2 (log −1.5) south of Australia and in the Pa-231

cific and Atlantic subtropical gyres. Finally, Argo prominently show wide low variance232

regions (≤0.01 psu2, or ≤ −2 in log scale) in the Southern Ocean that coincides with233

low eddy kinetic energy regions (Lumpkin & Johnson, 2013).234

The comparison between the LR and HR variances provides further insight into235

the importance of mesoscale processes. Similarly to observations (Figs. 1a-b), HR re-236
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Figure 1. Monthly sea surface salinity (SSS) variance resolved by the OISSS satellite product

(a), of the upper-10-m averaged salinity estimated using from Argo float data (b), and of the

monthly SSS variance resolved by the low- and high-resolution CESM simulations (c and d). All

estimates are shown in logarithmic scale.
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Figure 2. Zonally-averaged SSS variance from low- and high-resolution CESM simulations

(red and blue lines, respectively), contrasted against zonally-averaged observational estimates

(black lines) of the SSS variance resolved by the OISSS satellite product (panel a) and the upper-

10-m salinity variance computed using Argo data (b). The darker shading around the CESM

estimates is the standard deviation of the zonally-averaged salinity variances of individual ten-

year segments of the model outputs, while the lighter shading show the minimum and maximum

values obtained over all segments. All estimates are shown in logarithmic scale.

solves the enhanced variability associated with extratropical current systems, features237

absent in the LR results (Figs. 1c-d). Notably, the spatial features and variance levels238

resolved by HR in the extratropics resemble those shown by the Argo results.239

Zonally-averaged salinity variances (Fig. 2) reinforce the similarity between the HR240

and Argo results in the extratropics and that both are significantly larger than those from241

LR. The zonally-averaged variance estimates from Argo (Fig. 2b) fall within one stan-242

dard deviation of the ensemble-averaged HR variance estimates (computed as described243

in Sec. 2.2) in the Southern Hemisphere, and are generally larger than the minimum vari-244

ance for HR in the Northern. In turn, the variance from OISSS (Fig. 2a), albeit larger245

than those from LR at most latitudes, are muted relative to Argo and HR between about246

60◦S and 55◦N and exceed the variance levels resolved by both Argo and HR poleward247

of these latitudes. These characteristics likely reflect the smaller sensitivity of the SSS248

satellite retrievals in cold waters (Klein & Swift, 1977; Meissner et al., 2018; Dinnat et249

al., 2019; Vinogradova et al., 2019). Further highlighting the similarity between HR and250

Argo and their larger variance levels relative to LR and OISSS, the global area-averaged251

SSS variances are 0.009, 0.018, 0.021, 0.014 psu2 for LR, HR, Argo, and OISSS respec-252

tively. Considering only latitudes poleward of 23◦, these values change to 0.002, 0.010,253

0.011, and 0.004 psu2 for LR, HR, Argo, and OISSS, respectively.254
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Despite the higher overall realism of HR relative to LR, there are important dif-255

ferences relative to observations. In particular, OISSS and Argo both show larger and256

spatially more widespread salinity variance off the mouth of large rivers than HR, most257

prominently for the Amazon and Congo, potentially reflecting issues with the river runoff258

scheme in CESM-HR. Observations also show local salinity variance maxima in the west-259

ern tropical Pacific, associated with the Indo-Pacific Warm Pool (De Deckker, 2016), that260

are imperfectly reproduced in HR. Specifically, the HR shows high variance values over261

the equator that are shifted west and closer to Indonesia relative to that from OISSS and262

Argo, while the high variances centered at about 10◦S are shifted east by almost thirty263

degrees. These biases can be associated with deficiencies in how CESM represents at-264

mospheric phenomena within the tropics, such as Madden-Julian Oscillations, tropical265

cyclones, and the ITCZ, as documented in Chang et al. (2020).266

3.2 Role of advection and surface flux in the CESM salinity variance267

In this Section, we examine the contribution of ocean advection and surface fresh-268

water fluxes to the upper-50-m salinity variance, as resolved by HR and LR simulations,269

using Eqs. (4) to (7). The advection-induced salinity variance [Q̃oo, Eq. (5)] is much higher270

in HR than in LR, except in the Indo-Pacific Warm Pool and in the eastern tropical Pa-271

cific, where both simulations show comparable values (Figs. 3a-b). The contribution of272

surface freshwater fluxes [Q̃ss, Eq. (6)] is similar in both simulations, except in the South-273

ern Ocean and in the western portion of the oceanic basins, where it can be up to one274

order of magnitude larger in LR relative to HR (Figs. 3c-d). The spatial distribution of275

the surface flux-induced variance is similar to climatological precipitation (e.g., Adler276

et al., 2003; Xie et al., 2017). The contribution of the covariance between advection and277

surface fluxes to the total salinity variance [Q̃os, Eq. (7)] is smaller in magnitude than278

the other two components and shows predominantly negative values, whose spatial dis-279

tribution mirrors that of the surface fluxes (Fig. S1). The global area-averaged values280

of the advection, surface flux, and covariance components are 0.019, 0.010, and −0.003281

psu2 for LR, in contrast to 0.092, 0.007, and −0.005 psu2 for HR.282

The sum of all components [σ2
S , Eq. (4), Figs. 3e-f] produce salinity variance fields283

for LR and HR with spatial features similar to the respective monthly SSS variance fields284

(Figs. 3c-d), although with larger magnitudes, especially for HR. This is because σ2
S is285

obtained from monthly-averaged outputs of advection and surface freshwater flux, which286

are components of the salinity tendency that result from the difference between the in-287

stantaneous salinity from the beginning and end of each simulation month, while the SSS288

variances are computed using monthly-averaged salinity outputs that attenuate high-frequency289
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Figure 3. Contribution of ocean advection (a, b) and of surface freshwater fluxes (c, d) to the

upper-50 m salinity variance (e, f) resolved by the low- and high-resolution CESM simulations.

All estimates are shown in logarithmic scale.
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Figure 4. Zonally-averaged contributions of ocean advection and surface freshwater flux (or-

ange and green lines, respectively) to the total salinity variance (black lines) for the low- and

high-resolution CESM simulations (panels a and b, respectively). The shading around the es-

timates are the standard deviation of the zonally-averaged variances computed for individual

ten-year segments of the model outputs. Estimates are shown in logarithmic scale.

variability. Here, the global area-average variances and 0.026 psu2 for LR and 0.094 psu2290

for HR, about three and five times larger, respectively, than the corresponding values291

obtained for SSS.292

Specifically in LR, the upper-ocean salinity variance is dominated by advection within293

the tropics and at western boundary currents, and by surface fluxes in the Southern Ocean294

and at the interior of all subtropical gyres (Fig. 3). Zonal averages of the advection- and295

surface-flux-induced salinity variance further highlights that surface fluxes predominantly296

drive the variance south of 20◦S while north of 20◦N both components contribute about297

equally (Fig. 4). In turn, the HR salinity variance is dominated by advection virtually298

everywhere, with a contribution from the surface fluxes only noticeable at quiescent, low299

salinity variance regions in the Southern Ocean (Figs. 3 and 4).300

These results show that the larger upper-ocean salinity variance levels in HR are301

due to larger advective flux variability compared to LR. The advective fluxes consist of302

Ekman and geostrophic components, with the Ekman dynamics being forced by the at-303

mosphere via wind stress and contributing to the SST variability within the tropics (Larson304

et al., 2018; Small et al., 2020). Geostrophic current variability near the equator is ex-305

plained by large-scale, equatorially-trapped waves such as Rossby and Tropical Insta-306

bility Waves, while in the extratropics it is explained by mesoscale eddies (Tulloch et al.,307

2009; Chelton et al., 2011), which dominate the non-seasonal SST variability in eddy-308

resolving simulations (Delworth et al., 2012; Kirtman et al., 2012; Putrasahan et al., 2017;309

Small et al., 2020; Laurindo et al., 2022).310
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We note that the simulations also have different horizontal atmospheric resolutions311

(0.25◦ vs. 1◦), which enables a more accurate representation of phenomena such as weather312

fronts and tropical cyclones in HR. These phenomena significantly affect precipitation313

(Chang et al., 2020; Light et al., 2022) and likely also impact the upper-ocean salinity314

variance. The outline of the ITCZ in the tropical Pacific, seen in all variance components315

calculated using HR data [Eq. (4) and Figs. 3 and S1], is a potential signature of the316

influence of resolved atmospheric phenomena. This feature is weaker in LR. Previous stud-317

ies have demonstrated that the influence of intrinsic ocean and atmosphere phenomena318

on upper-ocean temperature can be distinguished by the spatial and temporal scales where319

they operate (Small et al., 2019, 2020; Laurindo et al., 2019, 2022). Future studies can320

potentially apply similar methods to disentangle the influence of atmospheric and oceanic321

processes in the upper-ocean salinity variability.322

4 Summary and conclusions323

In this study, we use a simplified salinity conservation equation to quantify the con-324

tribution of ocean advection and surface freshwater flux to the non-seasonal, upper-50-325

m ocean salinity variability resolved by century-long CESM simulations configured with326

eddy-resolving and eddy-parameterized ocean resolutions (HR and LR, respectively). We327

determine the overall realism of each model run by contrasting their SSS variance with328

those calculated using ten years of satellite SSS data from the OISSS product and twenty-329

one years of upper-10-m averaged salinity data from Argo floats.330

We find that the upper-ocean salinity variance in HR is, on average, twice as large331

as that from LR. The difference increases to a factor of five if we only consider the ex-332

tratropics. The most significant differences occur in western boundary current systems333

and the ACC, where the variance can be one order of magnitude larger in HR. Relative334

to observations, the variance level resolved by HR is in excellent agreement in the ex-335

tratropics with that estimated using Argo data and is two times larger than the OISSS336

satellite estimates. OISSS also shows too strong variance in some high-latitude regions,337

such as the Southern Ocean near the ice edge. The biases visible in the satellite results338

are potentially associated with the low sensitivity of orbital radiometers to SSS over cold339

waters, and imply that the satellite measurements must be supplemented by in situ ob-340

servations when studying the salinity variability at mid to high latitudes. Within the trop-341

ical Atlantic, HR and LR prominently underestimate the salinity variance near the Ama-342

zon and Congo River estuaries relative to Argo and satellite estimates, potentially re-343

flecting shortcomings with the CESM river runoff scheme. The simulations also misrep-344

resent large-scale patterns at the Indo-Pacific Warm Pool that can be associated with345
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manuscript submitted to Geophysical Research Letters

documented CESM biases on the representation of the ITCZ, tropical cyclones, and in-346

traseasonal forms of atmospheric variability such as Madden-Julian Oscillations.347

Finally, we show that the larger extratropical, upper-ocean salinity variance in HR348

is associated with a more significant contribution of ocean advection relative to LR, pre-349

dominantly attributed to the action of resolved mesoscale ocean phenomena in HR. The350

HR simulation also shows a better-resolved signature of atmospheric features in both its351

advection and surface flux-driven components, suggesting that the resolution of the at-352

mospheric grid also influences the salinity variability. In particular, recent findings by353

Light et al. (2022) showed that the precipitation resolved by coupled models is jointly354

sensitive to the horizontal resolution of both the ocean and atmospheric grids, suggest-355

ing that realistically resolving the SSS variability in climate simulations require high res-356

olution in both the ocean and atmosphere model components.357

Data Availability Statement358

The OISSS data (Melnichenko et al., 2016, 2021; Melnichenko, 2021) is distributed359

by the Jet Propulsion Laboratory / Physical Oceanography Distributed Active Archive360

Center (JPL/PO.DAAC) at https://doi.org/10.5067/SMP10-4U7CS. The Argo salin-361

ity profiles (Argo, 2000; Wong et al., 2020) are quality-controlled as described in Good362

et al. (2013) and distributed as part of the EN.4.2.2 dataset available at https://www363

.metoffice.gov.uk/hadobs/en4/, which is ©British Crown Copyright, Met Office, 2023,364

provided under a Non-Commercial Government Licence (http://www.nationalarchives365

.gov.uk/doc/non-commercial-government-licence/version/2/). The Argo profiles366

were collected and made freely available by the International Argo Program and the na-367

tional programs that contribute to it. The Argo Program is part of the Global Ocean368

Observing System. Lastly, the CESM outputs are described in Chang et al. (2020) and369

were obtained from the International Laboratory for High-Resolution Earth System Pre-370

diction (iHESP) GitHub repository at https://ihesp.github.io/archive/products/371

ds archive/Sunway Runs.html.372
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Introduction

In this Supporting Information we show global maps of contribution of the covariance

between advection and surface fluxes to the total salinity variance [Q̃os, Eq. (7) of the

main manuscript] resolved by the low- and high-resolution CESM simulations (Fig. S1).
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Figure S1. Contribution of the covariance between advection and surface freshwater fluxes to

the upper-50 m salinity variance resolved by the low- and high-resolution CESM simulations.
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