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Abstract

Extreme precipitation is expected to intensify as the climate warms, but the magnitude of the increase will vary regionally.

In many cases, global climate models (GCMs) are not well-suited to project the changes in extreme precipitation due to their

coarse resolution, particularly over complex terrain. Here, we analyze an unprecedented suite of eight bias-corrected dynamically

downscaled GCMs over the western U.S., which allow us to assess extreme precipitation changes at high resolution. We pool

data across the downscaled ensemble to adequately sample extreme events and characterize 99.99th percentile precipitation

in Los Angeles County, home to 10M people. This high-resolution data allows us to advise a county government agency on

expected changes in local extreme precipitation so that they may consider the suitability of their urban design standards in

the coming decades. We find that the 99.99th percentile precipitation event is expected to increase by about 6.5% per degree

Celsius global warming on average over Los Angeles County. However, Los Angeles County contains numerous micro-climates

associated with, e.g., high mountains, marine ecosystems, and urban centers, whose future changes the downscaled projections

are uniquely suited to predict. The absolute increases in extreme precipitation are shown to be magnified in the mountains

and minimized in the desert regions. The agency will use this data to become more resilient to climate change. This project

underscores the importance of stakeholder engagement with scientists for translating climate data into actionable guidance.
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Key Points: 11 

● Extreme precipitation will increase in a warming world 12 

● Dynamically-downscaled climate projections of increasing precipitation can be used  to 13 
adapt urban flooding operations  14 

● Highlights the importance of stakeholder engagement to enact positive change towards 15 
sustainability 16 

 17 
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  19 

Abstract 20 

Extreme precipitation is expected to intensify as the climate warms, but the magnitude of the 21 

increase will vary regionally. In many cases, global climate models (GCMs) are not well-suited 22 

to project the changes in extreme precipitation due to their coarse resolution, particularly over 23 

complex terrain.  Here, we analyze an unprecedented suite of eight bias-corrected dynamically 24 

downscaled GCMs over the western U.S., which allow us to assess extreme precipitation 25 

changes at high resolution. We pool data across the downscaled ensemble to adequately sample 26 

extreme events and characterize 99.99th percentile precipitation in Los Angeles County, home to 27 

10M people. This high-resolution data allows us to advise a county government agency on 28 

expected changes in local extreme precipitation so that they may consider the suitability of their 29 

urban design standards in the coming decades. We find that the 99.99th percentile precipitation 30 

event is expected to increase by about 6.5% per degree Celsius global warming on average over 31 

Los Angeles County. However, Los Angeles County contains numerous micro-climates 32 

associated with, e.g., high mountains, marine ecosystems, and urban centers, whose future 33 

changes the downscaled projections are uniquely suited to predict. The absolute increases in 34 

extreme precipitation are shown to be magnified in the mountains and minimized in the desert 35 

regions. The agency will use this data to become more resilient to climate change. This project 36 

underscores the importance of stakeholder engagement with scientists for translating climate data 37 

into actionable guidance. 38 

 39 

Plain Language Summary 40 

Extreme precipitation is expected to increase globally but with uncertain regional variability. 41 

Due to their coarse resolution, global climate models (GCMs) are not proficient at describing 42 

future changes in regional extreme precipitation. To overcome the coarse resolution of GCMs, 43 

they need to be downscaled to a scale that captures regional climate. Our group has produced a 44 

large array of downscaled GCMs so that now we can describe the regional characteristics of 45 

changing extreme precipitation. We utilize these downscaled GCMs to advise a government 46 

agency on changes in county-scale extreme precipitation so that they may update their 47 

infrastructure and operations to become more resilient.  We have found that the 99.99th 48 

percentile precipitation event (i.e., an event that occurs about once every 50 years) will increase 49 
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by about 6.5% per degree Celsius global warming on average in Los Angeles County. However, 50 

those increases vary in different parts of the county. The absolute increases in extreme 51 

precipitation are enhanced in the mountains and lessened in the deserts. The local agency plans 52 

to use this data to become more resilient to climate change. This project highlights the 53 

importance of stakeholder engagement with scientists for translating climate data into actionable 54 

guidance. 55 

 56 

 57 

 58 

This is optional but will help expand the reach of your paper. Information on writing a good 59 
plain-language summary is available here. 60 

 61 
  62 
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Introduction: 63 

 64 

Climate change presents a significant threat to large-scale public works designed under 65 

assumptions of historical climate conditions. Yet, adaptation is challenging because practitioners 66 

and policymakers typically do not confront the deep uncertainty characteristic of the climate 67 

system (Wasko et al., 2021).  Moreover, climate science should inform risk assessment and the 68 

planning process from inception to fruition (Sutton, 2019). Adapting to climate change requires 69 

flexible design and planning approaches (Wasko et al., 2021) and a willingness to update 70 

traditional methods to be more relevant in a changing climate. Therefore, climate change 71 

adaptation requires cooperation among scientists, practitioners, and policymakers. In this way, 72 

applied climate science targets can be produced through appropriate stakeholder engagement, 73 

communication, and adequate assessment of uncertainty to fit users' needs. 74 

 Anthropogenic greenhouse gas emissions have caused the Earth to warm by about 1ºC since the 75 

late 1800s. One expected consequence is the magnification of global precipitation intensity 76 

because of greater moisture availability in a warming atmosphere. Extreme precipitation is 77 

thought to increase at a rate consistent with the Clausius-Clapeyron (CC) theory (~7% ºC-1 78 

global warming; Trenberth, 2011). However, this is a general statement about the entire planet, 79 

and in some regions, it may intensify at a greater or lesser rate than CC predicts (especially sub-80 

daily extremes; Moustakis et al., 2021; Westra et al., 2013). Moderate precipitation is expected 81 

to intensify at a lower rate or even decrease (Pendergrass, 2018), again with regional variations. 82 

The intensification of extremes has been detected in large areas (Fischer & Knutti, 2015; Min et 83 

al., 2011) and with a global signature (Madakumbura et al., 2021) and is expected to continue 84 

through the 21st Century (Alexander et al., 2006; O’Gorman, 2015; Westra et al., 2013).  The 85 

United States specifically has seen an increase in extreme-precipitation magnitude (Kirchmeier-86 

Young & Zhang, 2020) and frequency (Monier & Gao, 2015). Similarly, to the rest of the globe, 87 

these increases are expected to continue (Kunkel, 2003). 88 

The western United States has seen a marked change in hydroclimate, with 60% of the changes 89 

occurring between 1950 and 1999 being human-induced (Barnett et al., 2008). In California, 90 

while mean precipitation is not expected to change greatly, the frequencies of both wet and dry 91 

extremes are expected to increase (Berg & Hall, 2015; Swain et al., 2018). The volume of the 92 

most extreme precipitation is expected to rise due to increases in both intensity and storm area 93 
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(Chen et al., 2023) Most extreme precipitation events in California are caused by atmospheric 94 

rivers (ARs; Dettinger, 2011; Hall et al., 2018; Harris & Carvalho, 2018). ARs are narrow 95 

corridors of intense atmospheric moisture transport. When ARs collide with topography, the 96 

moist air is lifted to create intense precipitation. ARs can cause severe flooding (Ralph et al., 97 

2006) and significant economic losses (Corringham et al., 2022). However, they can also 98 

mediate long-term deficits in water resources (Dettinger, 2013). Because ARs make up almost all 99 

of California's extreme precipitation, governments throughout the state have a vested interest in 100 

understanding their evolution and the evolution of the associated extreme precipitation in a 101 

warming climate (Mailhot & Duchesne, 2010). 102 

Flooding is a major concern, given California's projected increases in extreme precipitation (Das 103 

et al., 2011, 2013; Huang & Swain, 2022) Not all heavy rain results in pluvial flooding, however. 104 

In some cases, the antecedent soil moisture is so low that significant rainfall infiltrates the soil 105 

and replenishes water-stressed plants before accumulating downhill(Bass et al., 2023; Sharma et 106 

al., 2018; Wasko & Nathan, 2019). In dry periods the snowpack is also reduced, leading to 107 

reductions in the seasonal melt, creating even drier soils(Sharma et al., 2018). Furthermore, land-108 

use and land-cover change can modulate flood intensity. Compared to unaltered and somewhat 109 

altered basins, urbanized basins have shown a higher percentage increase in peak streamflow 110 

(Hodgkins et al., 2019). Furthermore, in Los Angeles, inequitable flood risk has been reported to 111 

affect historically black and brown communities to a greater extent than historically white 112 

communities (Sanders et al., 2022). To protect against flooding, infrastructure has been 113 

developed based on risk standards to cope with certain rainfall magnitudes, defined using 114 

Intensity-Duration-Frequency (IDF) curves.  115 

Based on a time series of annual maximum precipitation, IDF curves display a relationship 116 

between intensity and duration in frequency space (i.e., return period). While IDF curves are 117 

useful for connecting precipitation amounts to a likelihood of occurrence, they have some 118 

limitations. For instance, one of the major challenges is providing a precipitation record of 119 

sufficient length (K. Arnbjerg-Nielsen et al., 2013). Often rain gauges are used to estimate local 120 

recurrence intervals, and while some have long historical records, the minimum record length for 121 

a gauge to be included can be as short as 30 years. This minimum length would present a 122 

challenge if estimating the 99.99th percentile storm (roughly the 50-year storm) in Southern 123 

California—the standard reference for stormwater engineers in Los Angeles County. 124 
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Furthermore, standard IDF curves suffer from stationarity assumptions. Because IDF curves 125 

reflect the historical statistics, they do not reflect changing statistics brought about by climate 126 

change. Cheng and AghaKouchak (2014) showed that IDF curves would underestimate future 127 

extreme precipitation by up to 60% unless they were updated. Arnbjerg-Nielsen (2012) showed 128 

that precipitation, as defined by IDF curves, would increase by 10–60% in Denmark, but the rate 129 

of increase depends on the return period and storm duration. Arnbjerg-Nielsen et al. (2013) 130 

provide an extensive review of IDF curve-based urban drainage systems in the face of increasing 131 

extreme precipitation with climate change. They suggest that further study is necessary to 132 

understand climate change’s effect on extreme precipitation locally and on the ability of urban 133 

drainage systems to cope with those changes. 134 

Numerous studies have endeavored to update IDF curves to be more climate-aware (Cheng & 135 

AghaKouchak, 2014; Cook et al., 2017; Fadhel et al., 2017; Martel et al., 2021; Ragno et al., 136 

2018; Srivastav et al., 2014; Yan et al., 2021; Yilmaz et al., 2014). According to a review, most 137 

mechanisms for updating IDF curves are either covariate-based nonstationary methods or GCM-138 

based approaches, but both have limitations (Yan et al., 2021). For instance, there is a tradeoff 139 

between uncertainty and model complexity for covariate-based nonstationary models. 140 

Meanwhile, GCM-based estimates strongly depend on projections of future local climate, which 141 

are computationally expensive and come with their own uncertainty (Yan et al., 2021). Despite 142 

the complexity of updating IDF curves, it is a necessary practice for societal adaptation to 143 

climate change, given the intensification of short-duration rainfall extremes and the associated 144 

flooding (Fowler et al., 2021). 145 

While updating IDF curves is challenging for the above reasons, implementing those updates in 146 

planning for infrastructure and operations is another obstacle. It requires communicating those 147 

updates clearly to stakeholders, which is challenging due to the deep uncertainty associated with 148 

climate projections. However, mechanisms can be utilized to make the communication of climate 149 

projections in a more digestible way. For example, employing the “storyline” approach allows 150 

for the translation of climate science to scenarios that are more relatable to practitioners 151 

(Shepherd et al., 2018). Additionally, using a “degree-warming framework” can remove the 152 

uncertainty of emissions scenario choices and, instead, frame the changes in the local 153 

environment as those that would accompany, for instance, a world that has warmed 2ºC since a 154 

pre-industrial mean. Finally, while there are many mechanisms for including the effects of 155 
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climate change in extreme precipitation, choosing one that is easily understood (i.e., not a black 156 

box) and easily implemented into existing operations is critical for creating actionable change. 157 

The adaptation must fit seamlessly into existing operational structures to allow for easy adoption. 158 

 159 

With all the above considerations in mind, this study seeks to understand the evolution of a 50-160 

year, 24-hour storm (i.e., a particular magnitude storm from an IDF curve) in Los Angeles 161 

County. The 50-year 24-hour storm (in day-1) is the linchpin that guides flood control operations 162 

in this area. The goals of this study have been established in close coordination with engineers 163 

from the Los Angeles County Flood Control District (LACFCD). Using numerous carefully 164 

selected, dynamically downscaled GCMs over the western U.S. (Rahimi et al. under review, 165 

Krantz et al. under review), we provide a quantitative estimate of shifts in extreme precipitation 166 

with climate change over Los Angeles County. This guidance is designed to be actionable for 167 

LACFCD's planning and operations. 168 

Section 2 discusses the development of the LACFCD design storm and the scaling factors' 169 

construction. Section 3 summarizes the downscaling and bias-correction steps. The implications 170 

of our scaling factors are described in the degree-warming framework in Section 4. Section 5 171 

addresses how we communicate the uncertainty in climate simulations to stakeholder groups. 172 

Conclusions are presented in Section 6. 173 

2 Design Storms and Scaling Factors 174 

 175 
The LACFCD oversees the design of urban infrastructure to withstand severe storm activity. 176 

That includes gutter sizing, spillway size and spacing, and maintenance hole placement. The 177 

design requires an intimate understanding of urban environments, including surface slope, 178 

porosity, and the locations of downslope flow convergence during a rainstorm. Each design 179 

aspect meets a standard to mitigate a certain level of risk. That risk tolerance is predicated on a 180 

return period framework (the inverse of frequency), and standards are designed assuming a 181 

certain amount of risk. 182 

 183 

The primary tool for creating these standards is the LACFCD “design storm”. The design storm 184 

is the 50-year recurrence of a 24-hour  precipitation total. It is created using local rain gauge data 185 
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intense precipitation at higher elevations, especially on the ocean side of mountains. Significant 200 

topography exists in the form of the San Gabriel Mountains in the eastern center of the county, to 201 

a lesser extent the Sierra Pelona Mountains in the northwest, and along the western “panhandle” 202 

in the Santa Monica Mountains. In the northeast of the county, the climate is mostly arid, which 203 

can be inferred from the relatively low values in the 50-year 24-hour storm.  204 

 205 

The design storm framework can help establish risk standards based on historical data. It 206 

assumes that the statistics that govern the historical period will be similar in the future. However, 207 

climate change is not expected to conform to stationarity assumptions. Rather it will establish a 208 

new and evolving set of statistics that describe the future period. The LACFCD has operated for 209 

over 100 years and thus acquired deep local institutional knowledge that guides its operations. 210 

Therefore, developing a climate-aware methodology that will improve their existing framework 211 

rather than replace it is prudent. For this task, we create scaling factors that introduce the effects 212 

of climate change to their current design storm standards. 213 

 214 

To calculate the scaling factors, we find the annual maximum daily precipitation (Rx1day) in 215 

each downscaled GCM over each grid space. Then we select two 40-year periods: the first 216 

represents the historical era (1981–2020); the second is centered on when the 40-year running 217 

mean of global mean surface air temperature (GMT) reaches 𝛥+3ºC relative to preindustrial 218 

conditions (i.e., to 1850–1900 global mean). When this threshold is breached in a particular 219 

GCM simulation is specific to that GCMs’ climate sensitivity. This definition of the future 220 

period is helpful because many aspects of change in the global water cycle, including 221 

precipitation scale with temperature changes (Trenberth, 2011). This architecture allows us to 222 

remove the uncertainty of choosing an emissions scenario and the model uncertainty within a 223 

given emissions scenario and focus on the atmosphere's response to a warmer world. 224 

 225 

 226 

Using both 40-year periods and the GEV theorem, we calculate two 50-year return period 227 

storms. Then we create scaling factors as follows: 228 

 229 
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  𝑃ௌி = (൬௉ఱబ,మర,೑ೠ೟௉ఱబ,మర,೓೔ೞ೟൰ 𝛥𝑇ିଵ) × 100 

 
(1)

  230 
where and 𝑃ହ଴,ଶସ,௛௜௦௧ and 𝑃ହ଴,ଶସ,௙௨௧ are the 50-year 24-hour storm from the historical and future 231 

periods,  and 𝛥𝑇 is the difference in GMT between the historical and future periods. These 232 

calculations produce scaling factors (units = % ºC-1) that can be applied to the FCD’s existing 233 

50-year, 24-hour design storm. 234 

One drawback of this approach is that individual GCMs have a low signal-to-noise ratio for such 235 

a low-frequency statistic, primarily due to internal variability. To address this, we pool all eight 236 

dynamically-downscaled GCMs to improve robustness in calculating the return period storms, 237 

following a similar methodology to Srivastava et al. (2021). By doing so for the historical and 238 

future periods separately, the return periods can be calculated from 320 net years, adding 239 

confidence to the calculations and improving sampling. This technique is justified by the fact 240 

that all historical simulations are driven by bias-corrected GCMs, so that the eight historical 241 

simulations all represent the same baseline climate, albeit with differing climate variability; 242 

meanwhile, the definition of the future period based on +3ºC warming implies that all eight 243 

future simulations represent the same warmer world. 244 

 245 

3 Model Data 246 

 247 
This study utilizes eight dynamically downscaled CMIP6 projections over California at 9-km 248 

grid spacing (Rahimi et al., 2023; in preparation). The set of GCMs was selected for downscaling 249 

by a multi-step process that prioritizes skillful simulations of California's climate and a balanced 250 

representation of projected future changes. To identify the GCMs that most accurately reproduce 251 

California’s historical climate, CMIP6 models’ historical simulations are compared to ERA5 252 

reanalysis data. Each GCM’s performance is ranked via metrics that evaluate mean climate 253 

conditions, climate variability, frequency, and intensity of extreme conditions over California. In 254 

addition, the rankings include the representation of larger-scale circulation features and modes of 255 

variability, like the Pacific jet stream and the El Niño Southern Oscillation (ENSO), that play 256 

important roles in driving California’s climate and variability. The GCMs that perform the best 257 
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across this set of metrics are kept as candidates for downscaling. The selected GCMs are 258 

summarized in Table 1. 259 

 260 

Table 1: Description of the downscaled simulations’ parent GCMs. 261 

 
Country 

Modeling  
Center 

 
Model 

 
Member 

 
Citation 

USA National Center for Atmospheric 
Research 

CESM2 r11i1p1f1 Danabasoglu 
et al., 2020 

France Centre National de Recherches 
Météorologiques 

CNRM-ESM2-1 r1i1p1f2 Séférian et al., 
2019 

Sweden Rossby Center, Swedish  
Meteorological and Hydrological 

Institute 

EC-EARTH3-VEG r1i1p1f1 Döscher et al., 
2022 

Sweden Rossby Center, Swedish 
Meteorological and Hydrological 

Institute 

EC-EARTH3 r1i1p1f1 Döscher et al., 
2022 

Canada Canadian Centre for Climate 
Modelling and Analysis 

CANESM5 r1i1p2f1 Swart et al., 
2019 

Australia Commonwealth Scientific and 
Industrial Research Organisation 

ACCESS-CM2 r5i1p1f1 Bi et al., 2020 

Germany Max Planck Institute for 
Meteorology 

MPI-ESM1-2-LR r7i1p1f1 Mauritsen et 
al., 2019 

United 
Kingdom 

Met Office Hadley Centre UKESM1-0-LL r1i1p1f1 Mulcahy et al., 
2023 

 262 
 Within the best-performing GCMs, most have several individual simulations, known as 263 

ensemble members, covering the entire 21st century. All members are subject to the same 264 

greenhouse gas forcing, thus simulating very similar changes in mean climate. But, due to the 265 

climate system's natural variability, each member captures a different possible sequence of 266 

weather events. The range of projections represented across different members contains 267 

important information about the uncertainty of future changes and the simulated changes to the 268 

statistical likelihood of extreme events.  For studies focused on the impacts of extreme 269 

precipitation, it is vital to ensure that statistically rare events are sampled in the downscaled 270 

ensemble. We note that some institutions that manage GCMs only provide appropriate boundary 271 

conditions for a single member, limiting our choice of which ensemble member to downscale.  272 
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Figure 3: Shows the scaling factors [derived from % ºC-1] over Los Angeles County. The thin dashed gray lines are 303 
topographic contours at a 200 m increment. The stippled area shows 70% model agreement on the sign of the 304 
change signal after bootstrapping the distribution with 1000 samples. 305 

 306 

The final scaling factors are presented in Figure 3. They indicate a general intensification of the 307 

design storm, with over 70% of the downscaled simulations plus 1000 bootstrapped supplements 308 

agreeing on the sign of that change (stippling). Like the current design storm (Fig. 2), the scaling 309 

factors are inconsistent throughout the county, with high values to the north in arid regions and 310 

low percentage increases in areas of major orography (gray dashed lines).  Theory suggests that 311 

extreme precipitation will intensify at ~7% ºC-1 due to the corresponding increase in saturation 312 

specific humidity, predicted by the CC relation. Here, most of the “super-CC” values occur in the 313 

northern part of the county (above 14% C-1 in large areas). The most substantial percent 314 

increases in the northern quarter of the county are also in areas where the 50-year 24-hour storm 315 

magnitudes are relatively small, to begin with (See Fig. 2). Yet, the enhanced values in the 316 

northeast of the county are consistent with studies that have found disproportionately large 317 

increases in lee-side precipitation under climate change (Siler & Roe, 2014). The average scaling 318 

factor in the county is slightly less than CC predicts ( 6.5% ºC-1) but is still within a reasonable 319 

range (Zhang et al., 2013). The range of projected increases in the 50-year 24-hour storm within 320 

the county is 1.48% ºC-1 and 17.35% ºC-1 (Fig. 3). 321 

The CC relation is based on thermodynamic effects only. However, as climate evolves, the 322 

atmospheric circulation will shift too, resulting in non-uniform changes in extreme precipitation 323 

(Pfahl et al., 2017),  as depicted in Fig. 3. Furthermore, in contrast to the high desert (i.e., NE of 324 

the county) where the signal is clear (i.e., stippled), other parts of the county do not meet the 325 

same criteria for a significant signal. This could be because the GCMs themselves have differing 326 

representations of, for example, ENSO—a major driver of the natural variability—leading to 327 

different change signals. 328 
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bilinearly interpolated to the LACFCD’s native GIS grid that hosts the current design storm 345 

(Figure 1). The current design storm is adjusted using the following equation: 346 

 

 
𝑀𝐹 = ቆ(𝑃ௌி + 100)100 ቇ௱்

 
 

(2) 

where PSF is the precipitation scaling factor (Fig. 3), and MF is the resulting multiplicative 347 

factor, again following (Martel et al., 2021). 348 

 349 

Figure 5 provides a detailed illustration of the effects of climate change at three relevant 350 

warming horizons: 2º, 3º, and 4º of global warming relative to a preindustrial average 351 

temperature (1850–1900 mean). Averaged over LA County, there is an increase of 0.44, 0.82, 352 

and 1.22 in/day under 2º, 3º, and 4º warming, respectively. The Transverse Ranges, in particular 353 

the Santa Monica and San Gabriel Mountains, experience the greatest increases. This largely 354 

reflects the greater historical values, although it is noteworthy that the Santa Monica mountains 355 

experience the greatest increases, despite being historically drier than the San Gabriels. For 356 

example, averaged over the Santa Monica Mountains (i.e., in the southwest of the county along 357 

the coast), the design storm increases from 9 in/day historically to 10, 10.9, and 12.0 in/day 358 

under 2º, 3º, and 4º warming, respectively; meanwhile, averaged over the San Gabriels (i.e., in 359 

the eastern center of the county), there is an increase from around 17 in/day historically to 17.9, 360 

18.7, and 19.6 in/day under 2º, 3º, and 4º warming.  361 

 362 
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 363 
 364 

Figure 5: Changes in the 50-year 24-hour storm over LA County on the LACFCD’s original grid after scaling 365 

factors have been applied for (a) a 2º,  (b) a 3º, and (c) a 4º world [in day-1]. Statistics of the changes in the county 366 

are shown in the lower right corner of each panel. 367 

 368 

These future design storm possibilities are conditioned on the given global warming levels to 369 

align with benchmarks emerging from the national and international climate policy conversation. 370 

As socio-economic and political conditions evolve, managers can update their estimations on 371 

which global warming level is likely to be reached within their planning horizon. For example, 372 

there is a consensus that 2˚ of global warming is almost inevitable sometime in the mid-21st 373 

Century, while 3˚ is likely by the end of the century (IPCC, 2021).  Therefore, applying our 374 

scaling factors, by mid-century, design storm increases exceeding 0.5 inches over mountainous 375 

areas are almost inevitable (+2º C warming), and by the end of the century, increases of 3 inches 376 

are possible in the 4º scenario.   377 
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physical parameterizations that represent the relevant processes without explicitly resolving 400 

them. Parameterizations are essential in modeling, but each introduces differences in how models 401 

behave. These physics packages can collectively interact and alter an RCM simulation's results. 402 

The uncertainty arising from variations in model results can be expressed as just the spread 403 

across the model outcome for the same climate forcing. In addition, the uncertainty can be  404 

assessed by comparing the models’ collective performance to known climate physics. In our 405 

case, CC theory suggests that daily extreme precipitation should increase by approximately ~7% 406 

ºC-1. Comparisons of the models’ projections (6.5% ºC-1 averaged over the county) to theory 407 

imply that the models are collectively performing approximately as expected, giving confidence 408 

in our main results (e.g. Figure 3) despite the inter-model variation.  409 

 410 

Second, internal variability derives from the natural processes that occur on different timescales 411 

in the Earth system. Hawkins and Sutton (2009) show that the influence of internal variability on 412 

GMT evolution is significant in the near term but decreases in importance as the century 413 

progresses. Because of internal variability, it is not meaningful to use a single climate model 414 

simulation to guide adaptation. Dong et al. (2021) use 318 climate simulations to quantify 415 

uncertainty due to internal variability. Because individual simulations have different phasing of 416 

variability, any two climate-model realizations may differ significantly in their representation of 417 

precipitation at the regional scale. To address this source of uncertainty with the stakeholders, we 418 

pool all 8 GCMs’ dynamically downscaled simulations together, maximizing the sample size. 419 

This is analogous to utilizing an ensemble from a single GCM, given that all GCMs’ historical 420 

simulations are bias-corrected prior to downscaling. By maximizing our sample size, internal 421 

variability effects can be better constrained and understood, and we can more confidently advise 422 

the stakeholders. 423 

Finally, the choice of emissions scenario is a source of deep uncertainty. The degree-warming 424 

framework takes advantage of the fact that precipitation responds more directly to temperature 425 

than to emissions.  Therefore, the question can shift from “Which emissions scenario should we 426 

choose?” to “When is a given global warming level likely to occur?” This eliminates the 427 

economic and geopolitical assumptions that are highly challenging to define, particularly for 428 

stakeholders who may lack expertise in these topics. Then as socioeconomic and political 429 



manuscript submitted to Water Resources Research 

 

conditions evolve, stormwater managers can employ adaptive planning strategies that update 430 

over time, leading to self-correcting resilience. 431 

 432 

6 Conclusions 433 

 434 
By assessing the state-of-the-art GCMs from CMIP6, we have identified a cohort of models that 435 

better capture the large-scale atmospheric conditions associated with extreme precipitation in LA 436 

County historically. We downscaled the 21st-Century projections from these top-performing 437 

simulations over the western U.S. with a regional climate model. These local projections have 438 

allowed us to examine the changes to a design storm over LA County under a range of future 439 

scenarios. These future design storm possibilities are conditioned on global warming levels of 2˚, 440 

3˚, and 4˚ from pre-industrial times to align with benchmarks that have emerged from the 441 

national and international climate policy conversation. Averaged over LA County, there is an 442 

increase of 0.44, 0.82, and 1.22 in/day under 2º, 3º, and 4º warming, respectively, with larger 443 

increases over the mountainous regions. The 2˚ scenario will inevitably be experienced at some 444 

point in the mid-century (Kriegler et al., 2018), regardless of emissions trajectory. Other 445 

emissions scenarios result in greater warming levels being reached by the end of this century. By 446 

anticipating the associated local impacts, the LACFCD can adaptively manage its planning as the 447 

uncertainty in timing is reduced (i.e., based on the emissions trajectory the world ends up 448 

following). 449 

By focusing on the 50-year, 24-hour design storm, we provide a standard reference for 450 

stormwater engineers. Each return period (e.g., a storm that occurs on average once every 50 451 

years) and duration (the precipitation totals accumulated over, e.g., a full 24 hours) are tied to 452 

stormwater planning policies. Stormwater engineers in the LACFCD are accustomed to relating 453 

these to each other through standard statistical distributions described in their hydrology manual. 454 

By providing a 50-year, 24-hour storm for future conditions at various warming levels, the 455 

climate scientists in our collaboration enable the LACFCD planners to simulate how the surface 456 

hydrology would respond to a complete set of design storms at a range of durations and return 457 

periods. 458 

 459 
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