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Abstract

Excessive nutrient loading is a well-established driver of hypoxia in aquatic ecosystems. However, recent limnological research

has illuminated the role of Chromophoric Dissolved Organic Matter (CDOM) in exacerbating hypoxic conditions, particularly

in freshwater lakes. In coastal ocean environments, the influence of CDOM on hypoxia remains an underexplored area of

investigation. This study seeks to elucidate the intricate relationship between CDOM and hypoxia by employing a nitrogen-

based model within the context of Chesapeake Bay, a large estuary with unique characteristics including salinity stratification

and the localization of hypoxia/anoxia in a 30-meter-deep channel aligned with the estuary’s primary stem. Our findings indicate

that the impact of CDOM on nutrient dynamics and productivity varies significantly across different regions of Chesapeake

Bay. In the upper Bay, the removal of CDOM reduces light limitation, thus promoting increased productivity, resulting in

the generation of more detritus and burial, which, in turn, contributes to elevated levels of hypoxia. As we transition to the

middle and lower Bay, the removal of CDOM can cause a decline in integrated primary productivity due to nutrient uptake

in the upper Bay. This decrease in productivity is associated with reduced burial and denitrification, ultimately leading to a

decrease in hypoxia levels. Streamflow modulates this impact. The time integral of the hypoxic volume during low-flow years

is particularly sensitive to CDOM removal, while in high-flow years, it is relatively unchanged. This research underscores the

necessity for a comprehensive understanding of the intricate interactions between CDOM and hypoxia in coastal ecosystems.
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Key Points: 12 

• Colored dissolved organic matter can impact hypoxia within Chesapeake Bay by 13 
changing the absorption of light. 14 

• In the upper Bay, removing CDOM alleviates light limitation, stimulates primary 15 
productivity and increases hypoxia, but also burial. 16 

• In the middle and lower Bay, CDOM removal reduces integrated primary productivity 17 
and hypoxia due to nutrient uptake in the upper Bay. 18 

  19 
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Abstract 20 

Excessive nutrient loading is a well-established driver of hypoxia in aquatic ecosystems. 21 
However, recent limnological research has illuminated the role of Chromophoric Dissolved 22 
Organic Matter (CDOM) in exacerbating hypoxic conditions, particularly in freshwater lakes. In 23 
coastal ocean environments, the influence of CDOM on hypoxia remains an underexplored area 24 
of investigation. This study seeks to elucidate the intricate relationship between CDOM and 25 
hypoxia by employing a nitrogen-based model within the context of Chesapeake Bay, a large 26 
estuary with unique characteristics including salinity stratification and the localization of 27 
hypoxia/anoxia in a 30-meter-deep channel aligned with the estuary's primary stem. Our findings 28 
indicate that the impact of CDOM on nutrient dynamics and productivity varies significantly 29 
across different regions of Chesapeake Bay. In the upper Bay, the removal of CDOM reduces 30 
light limitation, thus promoting increased productivity, resulting in the generation of more 31 
detritus and burial, which, in turn, contributes to elevated levels of hypoxia. As we transition to 32 
the middle and lower Bay, the removal of CDOM can cause a decline in integrated primary 33 
productivity due to nutrient uptake in the upper Bay. This decrease in productivity is associated 34 
with reduced burial and denitrification, ultimately leading to a decrease in hypoxia levels. 35 
Streamflow modulates this impact. The time integral of the hypoxic volume during low-flow 36 
years is particularly sensitive to CDOM removal, while in high-flow years, it is relatively 37 
unchanged. This research underscores the necessity for a comprehensive understanding of the 38 
intricate interactions between CDOM and hypoxia in coastal ecosystems. 39 

Plain Language Summary 40 

Too many nutrients in water can cause a problem called hypoxia, where there is not enough 41 
oxygen for aquatic life. Scientists have recently discovered that a substance called Chromophoric 42 
Dissolved Organic Matter (CDOM) can make this problem worse, especially in lakes. But when 43 
it comes to the coastal ocean, it is not clear that how CDOM affects hypoxia. This study tried to 44 
figure out how CDOM and hypoxia are related in Chesapeake Bay, a large inlet with some 45 
unique features. We found that CDOM affects nutrient levels and how much life can grow in 46 
different parts of the bay. We remove that part of CDOM associated with “refractory” dissolved 47 
organic carbon delivered by rivers. The impact on hypoxia is different in various parts of the bay. 48 
In regions in and near rivers removing CDOM promotes light penetration and causes more 49 
particles to sink to the bottom because of increased productivity thus leads to more hypoxia. 50 
However, because nutrients cannot escape, this would in turn lower overall productivity in 51 
middle and lower Bay, which results in less burial and less hypoxia in this region. Different 52 
amounts of flow will also cause year-to-year variability in hypoxic volume. 53 

 54 

1 Introduction 55 

Coastal regions around the world are facing an increasing concern with the emergence of "dead 56 
zones" in the ocean. These areas suffer from critically low oxygen levels, below 60-80 μM, 57 
which are necessary for the survival of organisms like crabs and shrimp (Diaz and Rosenberg, 58 
2008). The frequency of reported dead zones has doubled every decade since the 1960s, 59 
occurring when the supply of oxygen from mixing and circulation fails to meet the demand 60 
caused by the decomposition of organic matter. The growing occurrence of dead zones is often 61 
attributed to an elevated oxygen demand, which in turn is linked to an increased supply of 62 
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nutrients to coastal waters as a result of intensified human activities since World War II, 63 
commonly referred to as the "Great Acceleration" (Steffen et al., 2007; Rabalais et al., 2009; 64 
Fennel and Testa, 2019). Hypoxia in these zones has significant implications for fisheries, as it 65 
limits available habitats, disrupts food webs, diverts primary production, and occasionally leads 66 
to large-scale fish mortality events (Luther and Church, 1988; Kemp et al., 2005). 67 

 68 

One particular ecosystem of great importance in this context is Chesapeake Bay, the largest 69 
estuary in continental North America. It serves as a crucial habitat supporting highly productive 70 
fisheries for crabs and oysters, while also playing a vital role as a recreational resource (Brown et 71 
al., 2012). Physically, the Bay experiences an inflow of dense, salty Atlantic Water, which 72 
gradually mixes and dilutes as it moves northwards through the channel, with the Susquehanna 73 
River being the most significant contributor at the head of the Bay. During the summer season, 74 
reduced winds lead to strong stratification within the Bay. The presence of hypoxia, 75 
characterized by low oxygen levels, was first identified in Chesapeake Bay in 1930 (Kemp et al., 76 
2005) and has shown a substantial increase over time. Since 2015, the maximum estimated 77 
hypoxic volume in the Bay, determined by the Virginia Institute of Marine Science (VIMS 78 
2023), has ranged from 6.8 to 17 km3, accounting for approximately 8 to 21% of the total volume 79 
of the Bay. Fluctuations in wind-driven mixing and the riverine nitrogen loading (Scavia et al., 80 
2006) are regarded as major drivers of the variability of hypoxic conditions within the Bay. 81 
Understanding and addressing the factors contributing to hypoxia in Chesapeake Bay are crucial 82 
for the conservation and management of this ecologically significant estuarine system. 83 

 84 

While nutrients and sediments are recognized as crucial factors in the degradation of coastal 85 
water quality, it is widely acknowledged that they do not provide a complete explanation for the 86 
clarity of coastal waters. Additional factors, such as the presence of natural water compounds, 87 
significantly contribute to this phenomenon. Chromophoric or colored dissolved organic matter 88 
(CDOM) is a collective term for compounds like humic, protein-like, and pigment-like 89 
substances that have a preference for absorbing light on the blue end of the spectrum (Green and 90 
Blough, 1994). CDOM is known for its significant refractory nature (Yamashita and Tanoue, 91 
2008), although it gradually degrades through photobleaching processes (Yamashita et al., 2013).  92 
CDOM produces substantial levels of light absorption in open-ocean waters (Siegel et al., 2005) 93 
and may exert a dominant influence on absorption in coastal waters, including Chesapeake Bay 94 
(Cao et al., 2018, Fig. 1). Figure 1 demonstrates that the rivers serve as significant sources of 95 
CDOM, resulting in elevated absorption coefficients as one moves up the estuary. The 96 
absorption coefficient exhibits a gradual decline as one progresses towards the main stem of the 97 
Bay. However even within the central region of the Bay, a substantial absorption coefficient of 98 
approximately 4 m-1 is observed (Miller et al 2002). Generally, the absorption coefficient for 99 
CDOM at 300nm is a factor of ~5 larger than that of Photosynthetically Active Radiation (PAR) 100 
absorption, which is dominated by longer wavelengths. 101 

 102 
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Maine and certain areas of the Baltic Sea (Balch et al., 2016; Kahru et al., 2022). Removing 125 
CDOM has been found to increase productivity in the upper water column, leading to elevated 126 
surface nutrients, biomass, and chlorophyll, albeit with lower integrated biomass throughout the 127 
water column (Kim et al., 2015). Furthermore, the trapping of solar radiation near the surface by 128 
CDOM amplifies the seasonal temperature cycle (Gnanadesikan et al., 2019), resulting in 129 
warmer summers and colder winters. Consequently, increasing trends in CDOM could 130 
potentially contribute to the occurrence of marine heatwaves. In the Arctic region, characterized 131 
by high CDOM levels, these temperature changes are mitigated by the annual sea ice cycle, 132 
resulting in increased sea ice concentration (Kim et al., 2016). Previous research (Gallegos, 133 
2001) has examined the influence of CDOM on optical properties in Chesapeake Bay. However, 134 
the parameterization approach used to characterize CDOM absorption in these studies did not 135 
explicitly incorporate CDOM. Instead the effect of CDOM on absorption is implicitly modeled 136 
by fitting observed light attenuation to hydrographic parameters (generally total suspended solids 137 
and salinity as in Cerco and Noel, 2017).  However this makes it difficult to explicitly model the 138 
impact of changing CDOM inputs to the Bay.  139 

 140 

Although current models exhibit some skill in simulating coastal environments, the 141 
representation of CDOM absorption remains rudimentary. This is particularly true for one of the 142 
leading models of Chesapeake Bay (Chesroms_ECB, Feng et al., 2015), which represents the 143 
impacts of CDOM in terms of salinity-dependent absorption. While this approach is sensible for 144 
simulating the current state of the Bay considering the limited knowledge of CDOM dynamics, a 145 
more explicit representation of CDOM/Chl absorption has been shown to improve physical 146 
simulations (Kim et al., 2020). However, the standard version of Chesroms_ECB basically 147 
assumes that the impacts of CDOM absorption can be captured by using salinity. This restricts 148 
our ability to examine its separate impact on water clarity and quality. In this study, we aimed to 149 
provide a more accurate representation of CDOM absorption in Chesapeake Bay. We also 150 
conducted a series of experiments to investigate the dynamics between CDOM and coastal ocean 151 
hypoxia. 152 

2 Methods 153 

2.1 Physical model 154 

The model utilized in this study is derived from the Chesroms_ECB model, which was 155 
developed and described in Da et al. (2018). The coupled physical-biogeochemical models 156 
employed in this work were created using the Regional Ocean Modeling System (ROMS). The 157 
physical circulations of the models are based on ROMS revision 898, a three-dimensional, time-158 
dependent simulation utilizing hydrostatic primitive equations (Shchepetkin and McWilliams, 159 
2005) as described in Da et al. (2018). The following description closely follows that from these 160 
manuscripts as well as two recent papers (Jin et al., 2023a,b). 161 

The model domain covers the region from 77.2°W to 75.0°W and from 36°N to 40°N, 162 
encompassing the main stem and primary tributaries of the Chesapeake Bay. To prevent 163 
contamination of tracers and mean velocities by boundary effects, the model extends seaward to 164 
the mid-Atlantic Bight. The horizontal grid consists of orthogonal curvilinear coordinates, with 165 
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the highest resolution (430m) in the northern Bay, the lowest resolution (approximately 10 km) 166 
in the southern end of the mid-Atlantic Bight, and an average grid spacing of 1.7 km within the 167 
Chesapeake Bay. The governing equations are discretized using a stretched terrain-following s-168 
coordinate system with 20 vertical levels. To account for varying resolutions between the surface 169 
and bottom boundary layers in deep waters and maintain relatively constant resolution in shallow 170 
waters, the standard stretching function in ROMS was employed with values of θs=6.0 and 171 
θb=4.0 (standard values in this version of ROMS), along with a minimum grid cell thickness 172 
ℎ𝑐=10𝑚. 173 

Tidal constituents were adopted from the Advanced Circulation (ADCIRC) model (Leuttich et 174 
al., 1992), and observed nontidal water levels from Duck, NC, and Lewes, DE (Scully, 2016), 175 
were imposed on the model at the open boundary. Atmospheric forcing, including winds, air 176 
temperature, relative humidity, pressure, precipitation, short-wave radiation, and longwave 177 
radiation, was obtained from the North American Regional Reanalysis (Mesinger et al., 2006). 178 
The MPDATA 3-D advection scheme was employed for tracers, a third-order upstream 179 
advection scheme for 3-D horizontal momentum, and a fourth-order centered difference scheme 180 
for 3-D momentum in the vertical. The vertical turbulent mixing scheme and background mixing 181 
coefficients for both momentum and tracers were all set to the same values as in Feng et al. 182 
(2015). 183 

2.2 Biological cycling 184 

 185 

Figure 2. Schematic of biogeochemical nitrogen cycling in the model 186 

The biogeochemical processes incorporated in our model are primarily centered around the 187 
nitrogen-based biogeochemical cycle, encompassing various biological interactions and 188 
transformations. Figure 2 illustrates the nitrogen cycling process within the water column. 189 
Ammonium, nitrate, and dissolved organic nitrogen (DON) are transported to the ocean through 190 
river inputs (depicted by light blue lines), and the fluxes of these three components are adopted 191 
from a climatology of RIM data from USGS (Zhang and Blomquist, 2018). Subsequently, 192 
ammonium and nitrate are assimilated by phytoplankton, whose growth is constrained by both 193 
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nitrogen availability and light. A portion of this uptake is associated with zooplankton, while the 194 
primary loss mechanism involves the coagulation of phytoplankton into small and large detritus 195 
(represented by red lines). Additional loss pathways include sinking to the bottom and exudation 196 
of organic matter to DON. An approximate equilibrium can be assumed between the uptake, 197 
which depends on the growth rate multiplied by phytoplankton biomass, and the coagulation, 198 
which is quadratic in biomass (𝝁𝑷~𝝀 𝒄𝑷𝟐 where 𝑷 represents biomass and 𝝀 𝒄 is the coagulation 199 
coefficient). Consequently, the phytoplankton biomass 𝑷 is roughly proportional to the growth 200 
rate. A portion of the detritus undergoes solubilization, resulting in the formation of DON. Both 201 
DON and a proportion of the residual detritus undergo remineralization, utilizing oxygen in the 202 
presence thereof and denitrification in its absence. The remaining fraction settles to the sediment 203 
bed at rates of 0.1 m/day for smaller particles and 5 m/day for larger ones. Upon reaching the 204 
sediment bed, it may either be resuspended as smaller detrital particles, the extent of which is 205 
contingent upon the degree of bottom turbulence, or undergo burial. The burial fraction (𝒇𝒃𝒖𝒓) 206 
adheres to the model proposed by Henrichs and Reeburgh (1987), wherein it is influenced by the 207 
carbon flux reaching the sediment bed. 208 𝑓௕௨௥ = min(0.75,0.023 ∗ 𝑐𝑎𝑟𝑏𝑜𝑛 𝑓𝑙𝑢𝑥 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚଴.ହ଻ଽ଻) (1) 

Consequently, as material flux increases, the burial (fraction*flux) increases even faster. It is 209 
worth noting that this implies a positive correlation between local productivity, detritus 210 
production, the flux of materials to the sediment bed, and the magnitude of burial. In other 211 
words, higher productivity levels result in increased detritus production, subsequently leading to 212 
augmented material flux towards the sediment bed and a correspondingly greater quantity being 213 
subjected to burial processes. 214 

2.3 Optics in the model 215 

In the Da et al. version of the model, the absorption of PAR is given by an exponential decay, 216 
with a diffuse attenuation coefficient 𝑘௉஺ோ which is a function of space and time. Based on 217 
Chesapeake Bay Program data (see Feng et al. 2015) 𝑘௉஺ோ is described by the equation 218 𝑘௉஺ோ = max(1.4 + 0.063 ∗ 𝑇𝑆𝑆 − 0.057 ∗ 𝑆, 0.6)  (2) 

As already alluded to, the negative dependence on salinity in this equation is a parameterization 219 
of the impact of CDOM, which as shown in Fig. 1 is high in the rivers entering the Bay. Note 220 
that the Chesroms_ECB code we use does have the ability to include absorption by chlorophyll, 221 
but that this is set to zero in the Da et al. (2018) simulations. An alternative formulation (see 222 
Feng et al. 2015), provided in the same code, explicitly relates the absorption to refractory DOC 223 
delivered down rivers and semilabile DOC that is both delivered down rivers and produced in the 224 
Bay.   225 𝑘௉஺ோ = 0.04 + 0.0037 ∗ max(0, 𝐷𝑂𝐶 − 70.11) + 0.024 ∗ 𝐶ℎ𝑙   (3) 

In this study, we employed equation (3), while putting back the effects of total suspended solids 226 
(TSS). The formulation is then as follows 227 𝑘௉஺ோ = 0.04 + 0.0037 ∗ max(0, 𝐷𝑂𝐶 − 70.11) + 0.024 ∗ 𝐶ℎ𝑙 + 0.063 ∗ 𝑇𝑆𝑆   (4) 
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 257 

Figure 5. Annually integrated refractory DOC (Gmol C) and total nitrogen input (Gmol N) for 258 
2015, 2016, 2017 and 2018 259 

Figure 5 further illustrates the input of refractory DOC and total nitrogen for all four years. The 260 
concentrations of refractory DOC and total nitrogen in riverine systems exhibited consistent 261 
levels of input during the years 2015, 2016, and 2017. Despite the presence of seasonal 262 
variations in river transport, these variations appeared to mitigate each other when considering 263 
the total inputs of refractory DOC and total nitrogen. However, an anomaly was observed in 264 
2018, where the concentrations of refractory DOC and total nitrogen were approximately twice 265 
as high as those observed in any of the preceding three years. This discrepancy suggests that the 266 
inputs of refractory DOC and total nitrogen may be primarily influenced by riverine inputs 267 
occurring between the months of July and September. 268 

 269 

3 Results and Discussion 270 

Two simulation runs were conducted spanning the period from 2015 to 2018 to investigate the 271 
influence of CDOM associated with riverine refractory DOC. The two runs used distinct riverine 272 
inputs, with the control simulation incorporating refractory DOC (control simulation) as 273 
measured by USGS and the other run setting the concentration of refractory DOC in river water 274 
to zero. This approach enabled a comprehensive comparison of the impact of refractory DOC on 275 
the system dynamics and CDOM behavior across multiple years. 276 

3.1 Distribution and intensity of hypoxia 277 
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denitrification (wo) 0.076 0.049 0.08 0.079 

denitrification 1.442 1.365 1.553 2.383 
denitrification (wo) 1.273 1.177 1.419 2.379 

Table 2. Comparisons of annually integrated water column denitrification between simulations 368 
with and without refractory DOC: Head of the Bay (Upper) vs. Other parts of the Bay (Lower). 369 

Values shown are in Gmol. 370 
 371 

Table 2 and Table 1 provide a comprehensive overview of the changes observed in the nitrogen 372 
budget for the Bay when refractory DOC is removed. On a broader scale, the nitrogen burial for 373 
the entire Bay exhibits an overall increase following the removal of refractory DOC. However, 374 
upon closer examination of specific regions within the Bay, notable variations are observed. In 375 
the main channel of the Bay, we observe an increase in nitrogen burial in the upper Bay, while a 376 
decrease in burial is evident when moving towards the middle and lower Bay regions as shown 377 
in Fig. 10. Moreover, within the estuaries, a significant increase in nitrogen burial is observed. 378 
We get an about 30% increase in burial, but this is partially offset by a decrease in main stem of 379 
the Bay. 380 
 381 
To gain further insights into the processes at play, we divided water column denitrification into 382 
two distinct regions: the head of the Bay (north of 39.0 N°) and the other parts of the Bay. 383 
Corresponding to the findings depicted in Fig. 9, when removing refractory DOC, we observe a 384 
higher magnitude of both burial and denitrification at the head of the Bay. However, as we move 385 
towards the middle and lower Bay regions, there is a gradual reduction in both burial and 386 
denitrification rates. These results indicate that limiting the input of refractory DOC leads to 387 
increased burial of nitrogen at the rivers, with variations observed across different parts of the 388 
Bay and the water column. 389 
 390 
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impacts in subsequent models. In our research, we address this limitation by employing a more 436 
accurate representation of CDOM absorption specifically tailored for the Chesapeake Bay. 437 
Through a series of experiments, we investigated the intricate dynamics between CDOM and 438 
coastal ocean hypoxia, allowing for a comprehensive comparison of the effects of refractory 439 
Dissolved Organic Carbon (DOC) on system dynamics and CDOM behavior across multiple 440 
years. Our findings highlight that the impact of CDOM on nutrient dynamics and productivity is 441 
highly dependent on the region and exhibits multifaceted characteristics. Furthermore, we 442 
observed that the removal of refractory DOC is significantly influenced by flow dynamics, 443 
resulting in varying magnitudes of changes in the system. 444 

So far, our findings indicate that refractory DOC input is a major contributor to the overall 445 
hypoxia levels in both the lower Bay and tributaries, although the specific impacts of CDOM 446 
associated with refractory DOC on hypoxia dynamics may differ between these regions since the 447 
impact of CDOM on nutrient dynamics and productivity varies significantly across different 448 
parts of Chesapeake Bay. In the upper Bay, the mitigation of CDOM leads to a reduction in light 449 
limitation, thereby fostering heightened primary productivity. Consequently, this heightened 450 
productivity gives rise to increased detritus production and subsequent burial processes, thereby 451 
contributing to elevated hypoxia levels. Conversely, as we move towards the middle and lower 452 
reaches of the Bay, CDOM mitigation can induce a decline in integrated primary productivity 453 
due to nutrient absorption occurring primarily in the upper Bay. This reduction in productivity is 454 
concomitant with diminished burial and denitrification processes, ultimately resulting in a 455 
decrement in hypoxia levels. Therefore, future research should aim to elucidate the relative 456 
importance of refractory DOC and associated CDOM in driving hypoxia intensity and 457 
distribution across the main stem of the Bay versus tributary systems. 458 

Additionally, our investigation highlights the potential for streamflow and mixing to drive 459 
significant variability in hypoxic volume over time. As such, it will be crucial to evaluate the 460 
impact of changing environmental conditions and inter-annual variability on hypoxia dynamics 461 
to gain a more comprehensive understanding of the underlying mechanisms driving these 462 
dynamics. Ultimately, such efforts will be essential for developing effective strategies for 463 
mitigating and managing hypoxia in the Chesapeake Bay and other estuarine systems facing 464 
similar challenges.   465 

An additional concern that warrants attention in this study is the assumption made regarding the 466 
independence of CDOM concentration and composition (50% of DOC is assumed to be 467 
refractory) from flow rate. Additionally, the compostion is the same for all rivers. It is important 468 
to acknowledge that future iterations of this research should consider both flow rate and land use 469 
partterns, as there is evidence that both of these influce the concentration and composition of 470 
CDOM (S. Kaushal, pers. Comm.). 471 

The observed findings also raise a pertinent question regarding the inclusion of refractory DOC 472 
management in estuary management practices. It becomes crucial to consider whether the 473 
removal of DOC is a viable strategy, particularly when applied to estuaries of varying sizes. For 474 
smaller estuaries, the removal of DOC could potentially yield positive outcomes. However, in 475 
the context of larger estuaries, such a strategy may not be as beneficial. 476 

  477 
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Data Availability Statement 479 

Data will be available on Zenodo. Codes can be access from ROMS repository.  480 
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