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Abstract

Geophysical granular flows generate seismic signals known as ‘slidequakes’ or ‘landquakes’, with low-frequency components
whose generation by mean forces is widely used to infer hazard-relevant flow properties. Many more such properties could be
inferred by understanding the fluctuating forces that generate slidequakes’ higher frequency components and, to do so, Arran
et al. (2021, https://doi.org/10.1029/2021JF006172) (A21) compared the predictions of pre-existing physical models to the
forces exerted by laboratory-scale flows. However, A21 was unable to establish whether the laboratory flows exhibited basal slip,
and the conditions for applying its results are therefore unclear. Here, we describe discrete-element simulations that examined
the fluctuating forces exerted by steady, downslope-periodic granular flows on fixed, rough bases that prevented basal slip. We
show that, in its absence, A21’s results do not hold: simulated basal forces’ power spectra have high-frequency components more
accurately predicted using mean shear rates than using depth-averaged flow velocities, and can have intermediate-frequency
components which we relate to chains of prolonged inter-particle contacts. We develop a ‘minimal model’, which uses a flow’s
collisional properties to even more accurately predict the high-frequency components, and empirically parametrize this model
in terms of mean flow properties. Finally, we demonstrate that the bulk inertial number determines not only the magnitude
ratio of rapidly fluctuating and mean forces on a unit basal area, consistent with A21, but also the relative magnitudes of the
high and intermediate-frequency force components.

Plain Language Summary

Any geophysical granular flow-such as a landslide, rockfall, or debris flow-exerts fluctuating forces that cause the ground to

vibrate, in a ‘slidequake’ that can provide useful information about the flow. Here, we examine simulated slidequakes: computer

models of the individual particles within idealized flows, the collisions between them, and the rapidly fluctuating forces they

exert on the flow’s base. By recording particle and collision properties throughout the flow, we examine pre-existing models

for the fluctuating forces; develop, test, and simplify a new model; and relate ratios between forces to an ‘inertial number’ that

characterizes different flows. Our results differ from those of laboratory experiments that previously investigated slidequakes,

but the two sets of results can be combined to provide information about real geophysical flows.
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Key Points:

• We used discrete-element simulations to examine the fluctuating forces exerted
by steady granular flows on fixed, rough bases

• Without basal slip, results differ from Arran et al. (2021)’s and a new model
most accurately predicts high-frequency forces

• A bulk inertial number determines the relative magnitudes of mean, intermediate-
frequency, and high-frequency forces
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Abstract
Geophysical granular flows generate seismic signals known as ‘slidequakes’ or ‘landquakes’,
with low-frequency components whose generation by mean forces is widely used to in-
fer hazard-relevant flow properties. Many more such properties could be inferred by
understanding the fluctuating forces that generate slidequakes’ higher frequency com-
ponents and, to do so, Arran et al. (2021, https://doi.org/10.1029/2021JF006172)
(A21) compared the predictions of pre-existing physical models to the forces exerted
by laboratory-scale flows. However, A21 was unable to establish whether the labora-
tory flows exhibited basal slip, and the conditions for applying its results are therefore
unclear. Here, we describe discrete-element simulations that examined the fluctuating
forces exerted by steady, downslope-periodic granular flows on fixed, rough bases that
prevented basal slip. We show that, in its absence, A21’s results do not hold: sim-
ulated basal forces’ power spectra have high-frequency components more accurately
predicted using mean shear rates than using depth-averaged flow velocities, and can
have intermediate-frequency components which we relate to chains of prolonged inter-
particle contacts. We develop a ‘minimal model’, which uses a flow’s collisional prop-
erties to even more accurately predict the high-frequency components, and empirically
parametrize this model in terms of mean flow properties. Finally, we demonstrate that
the bulk inertial number determines not only the magnitude ratio of rapidly fluctuat-
ing and mean forces on a unit basal area, consistent with A21, but also the relative
magnitudes of the high and intermediate-frequency force components.

Plain Language Summary

Any geophysical granular flow - such as a landslide, rockfall, or debris flow - exerts
fluctuating forces that cause the ground to vibrate, in a ‘slidequake’ that can provide
useful information about the flow. Here, we examine simulated slidequakes: computer
models of the individual particles within idealized flows, the collisions between them,
and the rapidly fluctuating forces they exert on the flow’s base. By recording particle
and collision properties throughout the flow, we examine pre-existing models for the
fluctuating forces; develop, test, and simplify a new model; and relate ratios between
forces to an ‘inertial number’ that characterizes different flows. Our results differ from
those of laboratory experiments that previously investigated slidequakes, but the two
sets of results can be combined to provide information about real geophysical flows.

1 Introduction

1.1 Background

Geophysical granular flows such as landslides generate seismic waves, otherwise
referred to as ‘slidequakes’ or ‘landquakes’, and the properties of landquakes’ low-
frequency components have been linked to the flows’ properties for over a century.
Following Galitzine (Golitsyn) (1915)’s association of the 1911 Sarez earthquake with
a landslide in the Pamir mountains, articles initially focussed on linking large land-
slides with their landquakes, as in Weichert et al. (1994)’s review and analysis. But
Kanamori and Given (1982)’s detailed analysis of a rock avalanche’s low-frequency
seismic waves, using the theoretical framework of a single time-dependent point force,
led to other reconstructions of landslides’ force histories (e.g. Hasegawa & Kanamori,
1987; Eissler & Kanamori, 1987). And this single-force framework, described by e.g.
Kawakatsu (1989) and Dahlen (1993), has permitted the detection of geophysical flows
from seismic signals both locally (Lin et al., 2010; Chao et al., 2017) and globally
(Ekström & Stark, 2013), while force inversion with single-block landslide models has
allowed approximate reconstruction of flows’ evolution or of certain flow parameters
(Brodsky et al., 2003; La Rocca et al., 2004; Gualtieri & Ekström, 2017; Ekström &
Stark, 2013; Allstadt, 2013; Yamada et al., 2013; Coe et al., 2016).
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However, landquakes’ low-frequency components provide information about only
the flow processes with long timescales and large lengthscales by which they are pre-
dominantly generated. Applying the single-force framework to continuum simulations
of landslides, rather than single-block models, permits more accurate flow and pa-
rameter reconstruction, and inference about processes with smaller extents than the
landslide’s (e.g. sub-event evolution, erosion, or spatial variation in friction, in Favreau
et al., 2010; Moretti et al., 2012, 2015, 2020; Yamada et al., 2016, 2018; Zhao et al.,
2020). But short-lengthscale, short-timescale processes are not modeled by such sim-
ulations and cannot be resolved from low-frequency components of landquakes, which
therefore cannot be used to infer particle sizes, vertical flow profiles, or many other
flow properties. Furthermore, Allstadt et al. (2018) suggests that low-frequency com-
ponents of landquakes, at frequencies < 0.1 Hz in the field, can typically only be
detected for landslide volumes over 107 m3.

Landquakes’ high-frequency components are predominantly generated by flow
processes with short timescales and small lengthscales, so research into such compo-
nents offers a means of inferring flow properties that may otherwise be inaccessible.
Arran et al. (2021) provides a brief review of the empirical relations observed between
the properties of a landslide and those of its landquake’s high-frequency components’
envelope (by Norris, 1994; Deparis et al., 2008; Schneider et al., 2010; Hibert et al.,
2011; Levy et al., 2015; Hibert et al., 2015, 2017; Allstadt et al., 2020), and a de-
tailed review of five different models, based on the ‘stochastic impact framework’ of
Tsai et al. (2012), that predict a landquakes’ high-frequency power spectrum from a
landslide’s properties (those of Kean et al., 2015; Lai et al., 2018; Farin, Tsai, et al.,
2019; Bachelet, 2018; Bachelet et al., 2023). The Supplementary Information of Arran
et al. (2021) includes a discussion of the conditions under which the stochastic impact
framework will be valid, while the bulk of the paper tests the different models using
experimental data for which those conditions were satisfied, from laboratory flows of
monodisperse glass spheres.

Of the models it compares, Arran et al. (2021) finds the ‘thin-flow’ model of
Farin, Tsai, et al. (2019) to predict most accurately the high-frequency seismic signals
produced by the laboratory-scale flows, but cannot discriminate between two alter-
native explanations for this accuracy. In the ‘thin-flow’ model, the particles within a
flow that impact its base have velocities distributed around the flow’s depth-averaged
downslope velocity, and the laboratory flows could have exhibited the plug-like velocity
profiles this implies. Alternatively, flow velocities could have decreased towards zero
towards the flow’s base, consistent with the ‘no-slip’ condition documented, for rough
flow bases such as that used in the laboratory experiments, by e.g. GDR MiDi (2004);
Jing et al. (2016). But in the latter case, the accuracy of the ‘thin-flow’ model’s pre-
dictions can be explained only by non-basal particles making significant contributions
to seismic signals, as in the models of Bachelet (2018); Bachelet et al. (2023) and, more
recently, Zhang et al. (2021)’s model of single-body impacts by chains of particles.

To determine the applicability of Arran et al. (2021)’s results and link the prop-
erties of flows to the properties of the high-frequency seismic signals they produce, it’s
necessary to establish which explanation is correct. If the ‘thin-flow’ model’s predic-
tions owe their accuracy to basal slip, then the model will apply only to flow regions
over which basal friction is insufficient to restrain basal flow velocities, and a different
model will be required elsewhere. If, on the other hand, non-basal particles contribute
significantly to seismic signals, then conditions must be established under which such
contributions compensate for basal velocities lower than those theorized by the ‘thin-
flow’ model.

We therefore investigate the production of high-frequency seismic signals by flows
for which the absence of basal slip can be confirmed, and the contributions of non-
basal particles quantified. Because we’re concerned with particle velocities in the
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interior of a granular flow, which physical experiments on flow seismology have been
unable to interrogate (Huang et al., 2007; Taylor & Brodsky, 2017; Farin et al., 2018;
Farin, Mangeney, et al., 2019; Allstadt et al., 2020; Bachelet et al., 2023), we conduct
numerical simulations using a discrete element method (DEM), in which all variables
are accessible.

We structure our paper as follows. After introducing and justifying the variety of
DEM we use, in section 1.2, we describe our DEM implementation, in section 2.1, and
simulation protocol, in section 2.2. Section 2.3 describes how we calculate different
models’ predictions for the seismic signal-determining power spectra PF· , of the forces
each flow exerts on its base. Then, sections 3.1 and 3.2 describe the properties of the
different flows and of their signals, respectively, via the depth profiles of kinematic and
collisional properties and via the measured power spectra PF· . We compare, in section
3.3, the measured power spectra with the predictions of section 2.3 and introduce,
in section 3.4, a semi-empirical parametrization of the most successful model. The
following sections, 4.1 and 4.2, then discuss Arran et al. (2021)’s experiments in the
context of our measurements. Section 4.1 addresses the two possible interpretations
of Arran et al. (2021)’s model comparison, while section 4.2 investigates another of
Arran et al. (2021)’s results: that the inertial number I, a non-dimensional quantity
that describes a granular flow’s flow state (GDR MiDi, 2004; da Cruz et al., 2005;
Jop et al., 2006), determines the squared ratio δF2 between the mean and fluctuating
forces exerted by a granular flow. Finally, section 4.3 discusses the signals we observe
at intermediate frequencies, and section 5 concludes.

1.2 DEM Simulations

In a DEM simulation, each particle within a flow has a specified position, velocity,
orientation, and angular velocity, which evolve over time as a result of interactions with
other particles, boundaries, a medium, and/or external forces. Since being proposed
by Cundall (1971) and examined by Cundall and Strack (1979), such methods have
been used and validated in contexts both industrial (e.g. Daraio et al., 2019; Gao
et al., 2021) and geophysical (e.g. Wu et al., 2016; Sun et al., 2016), with modellers
having access to all state variables, both of individual particles and of the interactions
between them. Local weighted averages of these particle-scale properties, calculated
through the coarse-graining process described by e.g. Goldhirsch (2010); Weinhart et
al. (2012), can then be compared to the predictions of continuum theories or to similar
averages from physical experiments.

To perform simulations in a given situation, interparticle interactions must be
simplified. The experiments of Arran et al. (2021) involved approximately spherical
particles with mean diameter d = 2 mm, composed of soda lime glass with density
ρ ≈ 2500 kg/m3, Young’s modulus E ≈ 70 GPa, and Poisson’s ratio ν ≈ 0.2 (Sigmund
Lindner, 2018). In such soda lime glass, neglecting itsO(105)-year structural relaxation
at room temperature, the Rayleigh wave velocity would be around 5000 m s−1 and the
strain relaxation time would be of order 10−9 s (Hunklinger & Arnold, 2012). In
comparison, typical collision velocities will have been of order

√
gd ≈ 0.1 m s−1, for

gravitational acceleration g = 9.81 m/s2. Therefore, noting that a normal deformation
δn is associated with a contact area of order δnd, by geometry, and so an elastic force
of order Eδ2

n, we can equate the order-Eδ3
n elastic energy at the point of maximum

deformation with the order-ρgd4 kinetic energy at the point of impact, indicating
that typical particle deformation will have been of order O(δn) = (ρgd4/E)1/3 ≈
2× 10−6 m, during collisions of duration of order O(δn)/

√
gd = 10−5 s. Consequently,

particles will have deformed approximately quasi-statically during each collision, with
deformation independent of other collisions. With peak contact pressures of order
(ρgd4/E)1/3E/d ≈ 1 GPa and the compressive yield stress of soda lime glass reportedly
between 0.25 GPa and 4.5 GPa (Meredith & Swab, 2020), some deformation may have
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been plastic, but we show in section S2 of the Supplementary Information that the
plastic yield consistent with experimentally observed coefficients of restitution will have
had a negligible effect on particle collisions. Particles were sufficiently large, dense,
and dry that air resistance, capillary forces, van der Waals forces, and external forces
other than gravity will also have been negligible. We believe that similar arguments will
apply to many geophysical flows, and therefore consider only binary, contact-mediated,
quasi-static interactions between particles, without adhesion or plastic deformation.

Dividing such interactions into those that exert forces at the idealized point of
contact and those that exert only torques, each is separable into normal and tan-
gential components, and elastic and viscous contributions, with previous authors de-
scribing and using a wide range of interaction models. Kruggel-Emden et al. (2007,
2008); Thornton et al. (2011, 2013) review and examine normal, tangential, elas-
tic, and viscoelastic contact forces, respectively, from simple models with normal and
tangential spring constants to models derived from Hertz (1881) and Mindlin and
Deresiewicz (1953)’s elasticity-theoretic analyses, in which effective stiffnesses are a
function of normal deformation. Notably, Kruggel-Emden et al. (2007) recommends
the use of Kuwabara and Kono (1987)’s Hertzian, viscoelastic model for the normal
contact force, as theoretically justified by Brilliantov et al. (2015); Kruggel-Emden et
al. (2008) demonstrates the importance of representing local slip by limiting tangential
forces with Coulomb friction; and Thornton et al. (2011) shows that, to ensure energy
conservation when the effective tangential stiffness varies, any tangential force must
be updated incrementally and relaxed whenever the normal force decreases.

Among interactions that exert only torques, the separation into normal and tan-
gential components divides torsional resistance from rolling resistance, with Lubkin
(1951) deriving Hertz theory’s prediction for the former and Dintwa et al. (2005) deriv-
ing and validating a quasi-static, viscoelastic extension and simplification. Brilliantov
and Pöschel (1998) derives an equivalent quasi-static, viscous resistance to rolling, but
Ai et al. (2011)’s review shows purely frictional or purely viscous rolling resistances
to be insufficient for realistic, imperfectly spherical particles. Instead, Ai et al. (2011)
recommends a model ‘C’ that uses Iwashita and Oda (1998)’s general framework of
visco-elastic, friction-limited rolling resistance; Jiang et al. (2005)’s correction of the
rotation velocity for particles of differing radius; incremental calculation to account for
rollback; and Bardet and Huang (1993)’s expression for rolling stiffness, which is con-
sistent with the rocking of smooth, imperfectly spherical particles about local minima
of curvature.

In most applications of DEM simulations, authors are concerned with granular
flows’ macroscopic behavior, so use interactions that are conducive to simulating large
numbers of particles over long periods of time. Most commonly, the normal and
tangential spring constants for contact forces are taken to be constant and torsion and
rolling resistance are neglected (Kuhn et al., 2020). Simulations often use effective
particle stiffnesses far lower than are realistic, lengthening collision durations and
permitting larger timesteps (Lommen et al., 2014).

However, we are concerned with the rapid processes with short lengthscales that
generate the high-frequency components of granular flows’ seismic signals, so want to
accurately model the microscopic interactions between particles. Only by modeling
particles’ resistance to torsion and rolling can we accurately simulate such microme-
chanics, and only by simulating Hertzian interactions with realistic particle stiffnesses
can we correctly model impact-dependent collision durations, recovering a realistic
separation between the timescales of particle rearrangement and of Hertzian collisions
(
√
d/g ≈ 10−2 s and (ρ2d5/E2g)1/6 ≈ 10−4 s, respectively, for the experiments of

Arran et al. (2021)).
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Figure 1. Schematic of simulations’ interparticle interactions. Between two particles in con-

tact, the simulated normal and tangential forces (Fn and Ft) and couples (Mn, Mt, and Mr)

depend on the particles’ normal and tangential deformations (δn and δt) and angular deforma-

tions (θn and θr). Behavior is viscoelastic and, except in the case of the normal reaction force,

friction-limited, so interactions can be modeled at each timestep by the systems of springs, dash-

pots, and friction elements that we represent below each force diagram, with viscosities βκn, βkt,

βkn, and βrkr proportional to the δn-dependent spring stiffnesses κn, kt, kn, and kr, and friction

coefficients µt, µn, and µr.

2 Methods

2.1 Simulation conditions

We conduct simulations using a fork (Arran, 2023) of MercuryDPM (Weinhart
et al., 2020), which simulates particle interactions and evolution using the formalism
described by Luding (2008) and the velocity Verlet algorithm (Allen & Tildesley,
1989). Particles’ interactions, the interactions’ parameters, and boundary conditions
are chosen for consistency with Arran et al. (2021)’s experiments.

Particles are simulated as spheres, with corresponding quasi-static, contact-mediated
interactions: normal forces, tangential forces, torsional resistance, and rolling resis-
tance. Specifically, between any two particles in contact, we apply i) the viscoelastic
normal force introduced by Kuwabara and Kono (1987); ii) the incremental Mindlin
tangential sliding resistance described as the TM model in Thornton et al. (2013),
but with consistent, quasi-static viscous dissipation; iii) an incremental, linearized
Lubkin (1951) friction-limited torsional elasticity with viscous dissipation as described
by Dintwa et al. (2005); and iv) Ai et al. (2011)’s model ‘C’ for rolling resistance, ex-
cept with the equation for damping given, for consistency, by Brilliantov and Pöschel
(1998). Figure 1 illustrates the four interactions simulated between particles in contact,
while section S3 of the Supplementary Information describes them in detail.

Parameters for particle interactions are standard values for 2-mm soda lime glass
beads (Seward & Vascott, 2005), other than the damping parameter β; the stiffness,
damping, and friction parameters for rolling resistance κ, βr, and µr; the coefficient of
sliding friction µt; and derived parameters such as µn. Simulated particle diameters
are drawn from a normal distribution with mean d = 2 mm and standard deviation
0.1 mm, with simulated density ρ = 2530 kg/m3, Young’s modulus E = 74 GPa, and
Poisson’s ratio ν = 0.22, and with gravitational acceleration g = 9.81 m/s2. The val-
ues of β = 4.5× 10−8 s; κ = 0.742, βr = 0.002 s, and µr = 0.0175; and µt = 0.237
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are calibrated in order that simulations are consistent with, respectively, Foerster
et al. (1994)’s measurements of glass beads’ coefficient of restitution; Arran et al.
(2021)’s particles’ steady and transient resistances to rolling in single-bead exper-
iments; and these particles’ angle of repose. To accurately resolve collisions, the
timestep is δt = 1.75× 10−5

√
d/g = 2.5× 10−7 s. Section S4 of the Supplemen-

tary Information describes the details of parameter selection, with Table S1 listing
their values. In all calculations, parameters are non-dimensionalized by the mass scale
ρd3 = 0.02 kg, the length scale d = 0.002 m, and the time scale

√
d/g = 0.014 s.

We conduct simulations in 3D, with a domain periodic in the downslope and
cross-slope directions, x and y, and a fixed, rough bed with mean surface the plane
z = 0. The domain extends distances nxd and nyd in the x and y directions, with
different simulations having nx = ny = 10, nx = ny = 14, and nx = ny = 20.
For each domain, the bed is roughened using a preparatory simulation, in which a
number 2nxny of non-intersecting particles are initialized above a rigid, frictional,
planar base at z = −d, with uniformly distributed random offsets in x and y from
a pattern of regular lines. These particles are allowed to settle under a uniform,
vertical gravitational force, and fixed in place if and when they make contact with
the base. When motion has ceased, we record the positions and radii of all those
fixed particles, which are kept fixed in future simulations, and henceforth referred to
as basal particles. Interactions with basal particles are identical to those with non-
basal particles, while interactions with the base are identical to those with a particle of
infinite radius and interactions across the periodic boundary are handled using ’virtual’
particles: copies of near-boundary particles translated in x and/or y as applicable, for
which all interactions across the opposite boundary are calculated and then applied to
the original particles.

For comparison with the experiments of Arran et al. (2021), we also simulate flow
in a channel. In this case, we maintain periodicity in the x direction but take nx = 10
and ny = 50, and simulate a PMMA wall at cross-slope position y = 0 and a plane of
symmetry at y = nyd, by setting interaction parameters as described in section S4.4
of the Supplementary Information. The rough bed is prepared in the same manner as
for the doubly periodic simulations.

2.2 Simulation protocol

To ensure that analysis is performed on a steady-state flow, we perform a prepara-
tory simulation for each domain size, bed angle, and flow depth. To attain a flow of
approximate depth nzd in a domain of size nxd by nyd, we initialize and fix in place
the corresponding basal particles, before initializing nxnynz non-overlapping particles
above the rough bed, with their x and y offsets from a pattern of regular lines taken
from a uniform distribution. We define a uniform gravitational field, directed at an an-
gle θ to the vertical in the x-z plane, and run the simulation with parameters identical
to those that will be used for the main experiment. As the simulation progresses, we
record the mean particle velocity every 10−3 simulated seconds and calculate the mean
and standard deviation of this mean velocity over consecutive 2-simulated-second in-
tervals. The simulated flow is considered to have attained a steady state at the end of
an interval over which this mean and standard deviation are both within 5% of their
values over the previous interval. Simulations that attained a steady state, without
the flow stopping entirely, are indicated in Figure 2, while a video of steady flow is
available as Movie S1 of the supplementary material.

Starting from the final system state of each preparatory simulation, we simulate
∆t = 2 seconds of steady flow and record the properties of the flow, of the collisions
between particles within it, and of the forces it applies to the base. Specifically, every
10−3 simulated seconds, we record each particle’s volume Vj , position xj , and velocity
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Figure 2. Preparation of steady-state flows. a) Evolution of the mean particle velocity ū over

the 4 simulated seconds before the time t0 at which the flow is considered to be in a steady state,

for nx = ny = 10, θ = 23.5◦ and nz = 11. b) Simulated system state at t0, with the fixed basal

particles in black and other colors indicating the magnitudes of particle velocities ui. c) Positions

in θ − nz parameter space of simulations that are conducted, and considered to attain a steady

state.
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uj , as well as the list of contacts between particles and hence the set C of particles
that are connected to the base by a chain of contacts. Whenever a particle collides
with another particle or with the base, we record the time of the collision, the position
xcj of the point of contact, and the normal and tangential relative velocities δ̇n,j and

δ̇t,j of the colliding particles. Finally, after each timestep of δt = 2.5× 10−7 simulated
seconds, we record the total force F(t) exerted by the flow on the basal particles and,
in the few places where these basal particles do not screen the base from the flow, on
the base itself.

From these recorded data, for each simulation, we reconstruct base-normal pro-
files of the flow’s kinematic and collisional properties, and calculate the mean values
and power spectra of the base-normal force exerted on the base by the flow. With the
rough bed’s surface at z = 0 as origin, spatially and temporally averaged profiles of
volume fraction φ, flow velocity u, and granular temperature T are calculated from
the particle position and velocity records using MercuryDPM’s inbuilt coarse-graining
program, with truncated Gaussian weight functions wz of width d and volume integral
V and with 3ρφT/2 the density of fluctuating kinetic energy. Using a newly writ-
ten implementation of an equivalent procedure, which is described in section S5 of
the Supplementary Information, we calculate the depth-dependent proportion Pc(z)
of particles connected to the base by a chain of contacts. We then use collision records
to calculate the wz-weighted mean number nI(z) of interparticle collisions per unit
volume and unit time, as well as the similarly weighted mean squared normal and
tangential relative velocities of colliding particles, 〈δ̇2

n〉(z) and 〈||δ̇t||2〉(z), at the point
of contact and the instant of collision. Finally, the power spectrum PF· of each com-
ponent of the force exerted by the flow is calculated by taking the discrete Fourier
transform of each component of F, as

PF·(j/∆t) =
δt2

∆t

∣∣∣∣∣∣
∆t/δt−1∑
k=0

F·(kδt)e
−2πijkδt/∆t

∣∣∣∣∣∣
2

, (1)

with each component of the mean force 〈F〉 having squared magnitude |〈F·〉|2 =
PF·(0)/∆t.

In simulating flow in a channel, we divide the domain cross-slope, into an ‘outer’
region y < nyd/2 and an ‘inner’ region y > nyd/2, so that the base of the inner region
corresponds to the location of the instrumented plate described by Arran et al. (2021).
Arran et al. (2021) studied the power spectra of the base-normal force exerted on this
plate by experimental flows, so we both record and calculate the power spectrum of
each component of the corresponding net force F: that exerted on each simulation’s
fixed base via any contact points within the inner region. To assess models for these
power spectra PF· , we seek profiles of the kinematic and collisional properties only of
the flow region responsible for F, and therefore calculate coarse-graining averages only
over particles with centers in the inner region or over collisions with contact points in
the inner region. This is illustrated in section S4.4 of the Supplementary Information.

2.3 Model predictions

From the profiles of kinematic properties φ, u and T , we are able to calculate
the predictions of the models of Kean et al. (2015); Lai et al. (2018); Farin, Tsai, et al.
(2019); Bachelet (2018); Bachelet et al. (2023) for the high-frequency power spectrum
PFz (f) of the base-normal force Fz exerted by each flow on its fixed base. To do so,
we first define quantities analagous to those used in section 2.3 of Arran et al. (2021):

–9–
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the surface area over which the force F is measured

A =

{
nxnyd

2 for doubly periodic domains

nxnyd
2/2 for the simulated channel;

(2)

the mean basal pressure
p = 〈Fz〉/A; (3)

the flow depth, defined as the distance from the rough bed’s surface to the surface at
which the flow ceases to be dense (see Figures 3a,g),

h = min{z > argmaxφ|φ(z) < max(φ)/2}; (4)

the bulk volume fraction

φ̄ =
1

h

∫ ∞
−d

φ(z) dz; (5)

and the mean downslope velocity

ū =
1

φ̄h

∫ ∞
−d

φ(z)ux(z) dz. (6)

We also define a non-dimensional function ζ that describes the frequency de-
pendence of models’ predictions for PFz . Writing FI(t) for the normal force between
two particles of density ρ and diameter d, undergoing a Hertzian collision with impact
velocity δ̇n, we note that its spectral density |F̃I(f)|2 depends on frequency f only via
a collision timescale τ determined by the Young’s modulus E and Poisson’s ratio ν of
the particles’ material (Hertz, 1881):

τ(δ̇n) =

[
π2ρ2(1− ν2)2

4E2δ̇n

]1/5

d. (7)

Consequently, we can introduce a non-dimensional frequency f and define

ζ(f) = |F̃I(f/τ(δ̇n))|2/

(
πρd3δ̇n

3

)2

. (8)

As described in section S6 of the Supplementary Information, ζ(f) is approximately
equal to 1 for f� 1 and is characterized by its rapid drop-off beyond a corner frequency

fc = min{f > 0|ζ(2f) ≤ ζ(f)/10} = 0.200, (9)

with ζ(fc) = 0.529 and ζ(f)� 1 for f� fc.

From these quantities, we follow Arran et al. (2021) in calculating various mod-
els’ predictions for the base-normal force’s power spectral density P 0

F , at frequencies
that are high enough for the stochastic impact framework to apply but below those
corresponding to the durations of individual collisions. Kean et al. (2015)’s model’s
prediction for a flow’s seismic signal is

P̂ 0
F = KAūp2/d3, (10)

for arbitrary fitting parameter K; Lai et al. (2018)’s model’s is

P̂ 0
F = π2ρ2Ad3ū3/9; (11)

and Farin, Tsai, et al. (2019)’s models’ predictions are

P̂ 0
F = π2ρ2φ̄Ad3(1 + e)2ξ(υ)u3

b/36, (12)

–10–
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for e = 0.9 a constant coefficient of restitution and ξ(υ) ≈ 0.053(1 + 5.6υ2) a non-
dimensional function of fitting parameter υ. In the ‘thin-flow’ model, the mean downs-
lope velocity of basal particles ub = ū while, in the ‘thick-flow’ model, ub = χūd/h for
velocity profile shape factor χ = 1.25. The parameter υ corresponds to the relative
standard deviation of basal particle velocities, so realism requires that υ < 1.

We also calculate the more general predictions that Arran et al. (2021) infers for
the power spectral density PFz (f), applicable at all frequencies for which the stochastic
impact framework is valid. Extending the work of Farin, Tsai, et al. (2019) recovers
predictions

P̂Fz (f) =

∫
S2 d2eυ

∫
S2
π/6

d2en

(
δ̇nen · ez

)2

ζ(τ(δ̇n)f)H
(
δ̇n

)
∫
S2 d2eυ

∫
S2
π/6

d2en

(
δ̇nen · ez

)2

H
(
δ̇n

) P̂ 0
F , (13)

for unit sphere S2; unit spherical cap S2
π/6 with maximum polar angle π/6; normal

impact velocity δ̇n = ub(ex + υeυ) · en; and Heaviside step function H. Meanwhile,
the comparable prediction from Bachelet (2018) is

P̂Fz (f) =
4π

3
φ̄Aρ2d3

∫ h

0

u′x(z)T (z)ζ
(
τ(
√

3T )f
)
e−γz dz, (14)

where u′x is the derivative of ux with respect to z, and γ is a constant fitting parameter
representing acoustic wave attenuation.

Finally, we develop a new model. We calculate predictions for PFz (f) derived
from the profiles of collisional properties, with the minimal assumption that the high-
frequency signal is generated by the uncorrelated normal components of the forces
exerted during elastic, Hertzian collisions of individual, diameter-d particles. In this
case, using equation (8)’s definition of ζ, the total power spectral density of the base-
normal basal force will be

P̂Fz (f) :=
1

∆t
|F̃z|2 =

1

∆t

∑
j

(πρd3δ̇n,j/3)2ζ(fτ(δ̇n,j))ιjη(f)
zcj
d , (15)

where δ̇n,j and zcj are the normal impact velocity and base-normal position of the jth
collision during a time interval ∆t, ιj is a binary variable indicating whether the force
exerted during this collision is transmitted to the base via a network of connected
particles, and η is the fraction of the spectral power transmitted a distance d towards
the base via this network. Assuming that attenuation is purely geometric and applying
the arguments of the Supplementary Information’s section S7, we expect the typical
base-normal distance between the centers of two particles in contact to be d/2 and the
typical fraction of spectral power transmitted between these particles to be 1/3, so
that we take a constant η = (1/3)d/(d/2) = 1/9. Consequently, noting that ζ(fτ(δ̇n,j))

is sufficiently insensitive to δ̇n,j to be approximable by ζ(fτ(
√
〈δ̇2
n(zcj )〉)), we replace

the sum over collisions in equation (15) with an integral over base-normal length
elements dz, with associated numbers of collisions nI(z)∆tA dz and probabilities of
force transmission to the base Pc

(
z − 1

4d
)
, to recover the prediction

P̂Fz (f) =
π2ρ2d6

9
A

∫ ∞
0

I(f, z) dz (16)

for

I(f, z) = nI〈δ̇2
n〉ζ

(
fτ

(√
〈δ̇2
n〉
))
Pc
(
z − 1

4d
)
e−z ln 9/d. (17)
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3 Results

Full results are available in the interactive Jupyter notebook at https://gitlab
.com/M Arran/simulated-slidequakes (Arran et al., 2023). Here, we provide a
summary, describing the depth profiles of kinematic properties (volume fraction φ,
downslope velocity ux, and granular temperature T ) and of collisional properties (the
probability Pc that a particle is connected to the base, the mean squared normal and
tangential impact velocities 〈δ̇2

n〉(z) and 〈||δ̇t||2〉(z), and the rate nI of interparticle
collisions per unit volume). We describe the power spectra PF· of the components of
the basal forces exerted by simulated flows and, for the base-normal components, we
compare the high-frequency components of the power spectra to the predictions listed
above.

3.1 Kinematic and collisional profiles

Figures 3a-c and 3g-i present the depth profiles of φ, ux, and T for two different
combinations of slope angle θ and overburden nz, and illustrate the range of variation
among all simulations. Most importantly for our purposes, the profiles demonstrate
that basal slip is consistently negligible, with ux(z) decreasing towards zero as z → 0,
and that the flow depth h and bulk volume fraction φ̄ are appropriately defined,
with φ(z) well approximated by φ̄ for z ∈ (0, h) and decreasing rapidly towards zero
for z > h. Furthermore, within the bulk of each flow, granular temperature T is
reasonably well approximated using the shear rate u′x(z), by

T̂ (z) =

(
gT d

tan θ
u′x(z)

)2

(18)

for some gT ≈ 0.3, as suggested by e.g. Woodhouse et al. (2010). As section S8 of
the Supplementary Information demonstrates, increasing nx and ny has no systematic
effect on the profiles for a given θ and nz, indicating that the domain with nx = ny = 10
is sufficiently large for our results to be generally applicable.

Meanwhile, with increasing θ and nz, the function ux(z) transitions from being
mostly convex to mostly concave, with T (z) changing in a corresponding fashion.
Monotonically increasing for all z < h − d when slope angles and overburdens are
low, both u′x(z) and T (z) become decreasing functions within the bulk of each flow.
This change does not apply close to the rough bed, where both u′x(z) and T (z) are
increasing for all θ and nz, or in a boundary layer at the flow’s surface, in which φ
decreases from φ̄ to zero and T (z) diverges from T̂ (z). However, increasing θ and nz
increases the depth of this surficial boundary layer.

Moving to the depth profiles of Pc, 〈δ̇2
n〉(z), and 〈||δ̇t||2〉(z), as illustrated by

Figures 3d, e and 3j, k, we observe similar transitions with increasing θ and nz. Pc(z)
decreases more rapidly from Pc(−d/2) ≈ 1 and is increasingly well approximated by
an exponential with least-squares best-fit non-dimensional decay length λ(θ, nz):

P̂c(z) = e−(2z+d)/2λd. (19)

As flows become more energetic, the fraction of particles that at a given time are in
contact with an underlying particle decreases, and depends less on particles’ distances
from the base. Meanwhile, decreasing correlation between the velocities of colliding
particles is evident in the increasing validity of the ‘molecular chaos’ approximation, in
which the components of colliding particles’ mean-flow-corrected velocities are uncor-
related and each have mean squared value T , so that 〈δ̇2

n〉(z) ≈ 〈||δ̇t||2〉(z)/2 ≈ 2T (z).

As illustrated in Figures 3f and 3l, profiles of nI(z) do not resemble those of
u′x(z)/d3 (as would be the case if the rate of collisions were determined by particles’
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advection, with the mean flow, across underlying layers), but are instead well approx-
imated by considering the kinetic theory of pressure that we introduce here. In a flow,
the mean steady-state overburden pressure at a base-normal position z0 is

p̂(z0) = ρg cos θ

∫ ∞
z0

φ(z) dz (20)

and, if a proportion Pc(z0) is borne by force chains of particles connected to the base,
the vertical impulse that must be transferred by collisions, per unit area and time,
through the surface z = z0, is (1 − Pc(z0))p̂(z0). Applying the geometric arguments
of the Supplementary Information’s section S7, perfectly elastic collisions with normal

impact velocity
√
〈δ̇2
n〉 and with no mean tangential force would each transfer a mean

base-normal impulse J = πρd3

√
〈δ̇2
n〉/12 over a mean base-normal distance d/2. The

number of such collisions transferring an impulse through the surface z = z0, per unit
area and time, would therefore be equal to both (1 − Pc(z0))p̂(z0)/J and d/2 times
the local rate of collisions per unit volume, which is therefore

n̂I(z0) =
24g cos θ(1− Pc(z0))

πd4

√
〈δ̇2
n〉(z0)

∫ ∞
z0

φ(z) dz. (21)

For all simulations, n̂I(z) well approximates the profile nI(z).

3.2 Power spectra of the basal force

At zero frequency, macroscopic force balances accurately predict the power spec-
tra PF· of the downslope, cross-slope, and base-normal components, Fx, Fy, and Fz,
of the basal forces exerted by the steady flows. Mean basal pressure

p =
1

A

√
PFz (0)

∆t
≈ p̂(0) =

π

6
ρgdnz cos θ, (22)

while PFx(0) ≈ PFz tan2 θ and PFy (0) � PFz (0), with error in the approximations
consistent with the at-most-5% variation in each flow’s mean downslope velocity.

Turning to higher frequencies, Figure 4 presents the power spectra of the basal
forces exerted by two simulated flows, chosen to represent the range of variation over
our simulations. Spectra are noisy but, since signal-to-noise ratios are comparable for
all flows, components, and frequencies, we calculate ∆f =

√
g/d moving averages

〈PF·〉(f)∆f =
1

∆f∆t

∑
|j/∆t−f |<∆f/2

PF·(j/∆t) (23)

to note that, for any given flow, PFz (f) > PFx(f) > PFy (f) at most frequencies f , with
the ratios between these power spectral densities approximating unity with increasing
f .

Using the timescale
√
d/g of particle rearrangement under gravity to classify

frequencies as low (f
√
d/g < 1), intermediate (1 < f

√
d/g < 100), and high (100 <

f
√
d/g), each power spectrum’s spectral density generally decreases from one fre-

quency range to the next, so we view the power spectral density in each frequency
range as composed of signals from all frequency ranges at least as high. This can be
motivated by considering the power spectrum of a superposition of boxcar functions
with uncorrelated parameters and varying interval lengths and, from this perspective,
the observed power spectra are composed of three types of signal: low-frequency sig-
nals, which contribute significantly to PFx and PFz for all flows; intermediate-frequency
signals, whose contributions to PFx and PFz decrease in significance with increasing
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Figure 4. Power spectra of basal forces. Thin lines indicate the power spectral densities

PF·(f) of the downslope, cross-slope, and base-normal forces exerted by simulated flows on their

base, at various frequencies f , for nx = ny = 10 and (a) θ = 22.0◦ and nz = 8 and (b) θ = 24.5◦

and nz = 16. Thick lines represent simple central moving averages 〈PF·〉∆f , dotted lines indicate

the corner frequency fc and high-frequency spectral amplitude P 0
F of the base-normal compo-

nent, and black lines indicate the corresponding Hertzian power spectrum P 0
F ζ(fcf/fc) and its

high-frequency asymptote 0.33P 0
F (f/fc)

−5 (see Supplementary Information section S6).
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slope angle θ; and high-frequency signals, which contribute significantly to the power
spectra of all force components, for all flows. It is the high-frequency signals on which
we shall concentrate our attention.

For each power spectrum PF· , the high-frequency signal is characterized by a
rapid drop-off beyond a corner frequency and, if we extract the corner frequency fc
and corresponding low-frequency amplitude P 0

F for each spectrum PFz , is very well
approximated by the signal of a representative Hertzian collision with corresponding
fc and P 0

F . On the basis of section 2.3, we define the corner frequency of a power
spectrum PF·(f) as the frequency at which a frequency doubling first corresponds to
a 10 dB decrease in 〈PF·〉∆f , so that

fc = min{f |〈PFz 〉∆f (2f) = 〈PFz 〉∆f (f)/10}, (24)

and we use this to define, for ζ defined in equation (8) and fc in equation (9),

P 0
F = 〈PFz 〉∆f (fc)/ζ(fc). (25)

The corresponding power spectrum, for a signal generated by identical, Hertzian inter-
particle collisions, is then P 0

F ζ(fcf/fc), which Figure 4 shows to be a reasonable approx-
imation to the power spectrum of any force component wherever the high-frequency
signal is dominant, and a very good approximation to PFz at high frequencies.

Having verified that each simulation’s power spectra PF· are consistent with a
high-frequency signal generated by interparticle collisions, and extracted each signal’s
low-frequency amplitude P 0

F and corner frequency fc, we can compare these values to
the predictions of ‘stochastic impact’ models for such signals.

3.3 Model comparison

To compare the accuracy of the models described in section 2.3, we extract
predictions P̂ 0

F for the low-frequency amplitude of the ‘stochastic impact’ signal. For
the models of Kean et al. (2015) and Lai et al. (2018), we calculate these predictions
directly while, for the models of Farin, Tsai, et al. (2019) and Bachelet et al. and
when using the profiles of collisional properties within our minimal model, we extract
the predicted corner frequencies f̂c and values P̂ 0

F from the predicted power spectra
P̂Fz , using the exact equivalents of equations (24) and (25). If a model has a free
parameter, we use the parameter value that minimizes the sum over all simulations of
ln(P 0

F /P̂
0
F )2, with the resulting best-fit values listed in Table 1.

Figures 5a-e,g-i compare observed values of P 0
F and fc to the predictions of

previous models, showing that the ‘thin-flow’ model of Farin, Tsai, et al. (2019) is
poor at predicting power spectral amplitudes for our simulated flows and that, instead,
the most accurate predictions are those of the same paper’s ‘thick-flow’ model. The
‘thin-flow’ model and the model of Lai et al. (2018), which suppose that the impulse
transferred by a representative basal impact is proportional to the mean downslope
velocity ū, overestimate the basal force’s spectral amplitude P 0

F for thick (high-nz)
flows relative to that for thin flows, and the same is true for the model of Kean
et al. (2015), which supposes impact impulses to be proportional to the mean basal
pressure p ∝ nz. In contrast, the ‘thick-flow’ model and the model of Bachelet et al.
assume representative impulses proportional to the local shear rate, of order ū/dnz,
and make predictions that accurately capture P 0

F ’s dependence on nz, differing from
observations by typical factors of only 1.7 and 2.0 respectively, over two orders of
magnitude of variation of P 0

F .

However, the ‘thick-flow’ and Bachelet et al. models’ predictions for P 0
F are ac-

curate only if model parameters take unrealistic values. Figures 3b,c,h,i indicate that
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Figure 5. Comparison between models’ predictions (x-axes) and simulation outputs (y-axes)

for the low-frequency amplitudes (a-f) and corner frequencies (g-j) of high-frequency signals. The

gray lines represent perfect agreement, while marker size indicates measurement area A (with

A/d2 = 250 for channel flows) and colors indicate flow overburden nz. For each nz, P
0
F and fc

increase with θ.
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Table 1. Comparison of models. For each model whose predictions are described in section 2.3

and for the semi-empirical model of section 3.4, we list the equation used to calculate those pre-

dictions, the free parameter value for which such predictions best fit measurements, the geometric

standard error of these predictions, ε = exp

[√
1
N

∑
ln(P 0

F /P̂
0
F )2

]
, and the value of the Akaike

information criterion (AIC), calculated as in Arran et al. (2021)’s section S9.3.

Model Equation Best-fit parameter ε AIC

Kean et al. (2015) (10) K = 0.015d5/g 3.6 102
Lai et al. (2018) (11) n/a 9.0 132
Farin, Tsai, et al. (2019) (13)

‘thick-flow’ υ = 21 1.7 47
‘thin-flow’ υ = 1.1 4.6 112

Bachelet et al. (14) γ = 0/d 1.9 59
Minimal model (16) n/a 1.4 14
Semi-empirical model (27) (C, a, b) = (9.8, 2.08,−2.70) 1.13 -33

√
3T/ux, the relative standard deviation of particle velocities, is typically much less

than one. But the ‘thick-flow’ model’s predictions for P 0
F are of the correct order of

magnitude only when the corresponding parameter υ > 10, resulting in strong overes-
timates of impact velocities and so of corner frequencies fc, as observed in Figure 5g.
Similarly, Bachelet et al.’s model’s predictions for P 0

F are only of the same magnitudes
as observations if the attenuation constant γ is taken to be much less than 1/max(h),
implying that all forces at a flow’s surface are transmitted unaltered to the flow’s base.
Such values of γ are unrealistic, especially given Bachelet et al. (2018)’s measurements
of γ = 0.44/d in static bead packs, and result in Figure 5i’s inflated predictions f̂c for
low-fc flows, within which any impact velocities associated with near-surface shear are
much higher than those associated with basal shear.

To recover accurate predictions without unrealistic fitting parameters, we turn to
the profiles of collisional properties. From these profiles, without any fitting parameter,
the minimal model introduced in section 2.3 predicts P 0

F to within a factor of 2.0
(Figure 5f), with geometric standard error 1.4, while underestimating fc by factors
between 1.1 and 1.3 (Figure 5j). With all quantities having been non-dimensionalized,
this accuracy holds for any values of particle density ρ and mean diameter d, as well
as over factor-4 variation in surface area A and overburden nz, and the entire range
of slope angles θ for which steady flow can be sustained. We believe the main cause of
corner frequencies’ underestimation to be that, at each base-normal position z, high-
velocity collisions make contributions to the very-high-frequency component of PF that
exceed those of even a suitably weighted representative impact at velocity

√
〈δ2
n〉(z).

3.4 Parametrization of the minimal model

For the minimal model’s accuracy to be useful for physical flows, within which
collisional properties are very rarely accessible, the contributions in equation (16) must
be described in terms of bulk flow parameters.

Figures 6a,b demonstrate the difficulty of such parametrization, as each predicted
high-frequency signal P̂F is dominated by contributions from a basal layer in which
collisional properties are hard to model. For 0 < z0 < h,

∫∞
z0
φ dz and the volumetric

impact rate nI are well approximated by φ̄h(1 − z0/h) and equation (21)’s kinetic-
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Figure 6. Attempts at parametrization of the minimal model. a, b) Approximants to the inte-

grand I of equation (17), for nx = ny = 10 and (a) θ = 22.0◦ and nz = 8 and (b) θ = 24.5◦ and

nz = 16. In̂, IP̂c , and IT are defined by equation (26) with, respectively and cumulatively: no

changes, Pc replaced with equation (19)’s P̂c, and 〈δ̇2
n〉 replaced with 2T . Iψ̂V̂ is defined by re-

placing, in equation (26), ψ(z)
√
〈δ̇2
n〉 with equations (29)’s ψ̂V̂ . c, d) Equivalents of Figures 5f,j,

except for the semi-empirical model of equation (27) rather than the minimal model of equation

(16).

theoretic n̂I , so that the integrand I of equation (17) approximately equals

In̂(f, z) =
24g

πd4
φ̄h cos θ

(
1− z

h

)
(1−Pc(z))Pc(z− 1

4d)

√
〈δ̇2
n〉ζ

(
fτ

(√
〈δ̇2
n〉
))

e−
z ln 9
d . (26)

Furthermore, the probability Pc that a particle is connected to the base has profiles that
are reasonably well parametrized by decay lengths λ, using equation (19). But velocity
correlations prevent 〈δ̇2

n〉/2 from being consistently well approximated by granular
temperature T (as would be the case for ‘molecular chaos’) or by the estimator T̂ ∝
(du′x)2 of equation (18). Since the models of which we’re aware approximate even less
well the near-base granular temperature and shear rates u′x(z) (see Arran et al. (2023)
for details), the simple theoretical considerations in this paper do not allow In̂ to be
parametrized.

We therefore use a semi-empirical parametrization. Since the integral in equa-
tion (16) is dominated by contributions from a basal layer whose width is limited by
geometric attenuation, then we can use equation (26) to derive the prediction

P̂Fz (f) =
4π

3 ln 3
ρ2d3gφ̄Ah cos θψ̂V̂ ζ(fτ(V̂ )), (27)

for some representative impact velocity V̂ and representative value ψ̂ of the profile
ψ(z) =

(
1− z

h

)
(1− Pc(z))Pc(z − 1

4d). Then, supposing that these are linked to bulk
flow parameters and standard lognormal error εj by

ln
(
ψ̂V̂ /

√
gd
)

= lnC + a ln
(
ū/
√
gd
)

+ b ln (h/d) + ln εj , (28)

we use a linear regression to calculate the parameters C = 9.8e±0.16, a = 2.08 ± 0.05
and b = −2.70 ± 0.08 that best fit low-frequency predictions P̂Fz (0) to observations
P 0
F . Finally, approximating ψ(z) by ψ(0) and Pc by equation (19)’s P̂c, we recover
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Figure 7. Profiles (a, c) and colorplots (b, d) of mean downslope velocities in simulated chan-

nels, for either (a, b) � = 22� and nz = 16 or (c, d) � = 24:5� and nz = 4. In a and c, u(z) is the

average over the inner region (right of the dashed line in b, d), while u0(z) is the velocity profile

next to the simulated sidewall (red line in b, d), and uw (z) is a matching profile observed at the

experimental sidewall of Arran et al. (2021), with (a) � = 23:7� and release gate height hg = 20d

and (c) � = 24:7� and release gate height hg = 5d. Horizontal dotted lines indicate flow depths h.

predictions

ψ̂ = (1− e−1/2λ)e−1/4λ, V̂ =
Ce1/4λ

(1− e−1/2λ)

(
ū√
gd

)a(
h

d

)b
, (29)

which may be substituted into equation (27). The accuracy of this semi-empirical
parametrization is demonstrated by Figures 6c,d, with predictions of P 0

F having geo-
metric standard error 1.13. Such accuracy suggests some degree of overfitting, with
equation (27) making more accurate predictions than the equation (16) that it approx-
imates, but the additional fitting parameters C, a, and b are justified by the Akaike
information criterion (see Table 1).

4 Discussion

4.1 Comparison to Arran et al. (2021)

Arran et al. (2021) describes laboratory experiments that closely match our sim-
ulations in several respects. Our simulations accurately reproduce the interparticle
interactions responsible for seismic signal generation in experiments, with the prop-
erties of our simulated particles corresponding to those of the experimental particles.
The experiments’ range of slope angles θ and flow depths h overlaps with this study’s,
leading to velocity profiles at the experimental channel’s sidewall that are close to
those observed at the corresponding boundary of the simulated channel (see Figure
7a,c). And Arran et al. (2021) measures basal forces’ power spectral densities over a
frequency range 30 < f

√
d/g < 1700, so considers the same high-frequency signals as

this study.

However, the relationship this study observes between a flow’s bulk parameters
and its signal’s properties is substantially different from that observed in Arran et al.
(2021). At θ ≤ 23◦, we observe distinct intermediate-frequency signals, at f

√
d/g <

100, which have no equivalent in Arran et al. (2021) (as illustrated by comparing our
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a b c

Figure 8. Relations to the bulk inertial number Î of other non-dimensional quantities: the

slope gradient tan θ (a), contact network decay length λ (b), and squared ratio of high-frequency

force fluctuations to mean forces δF2 (c). Marker size indicates measurement area A, colors in-

dicate flow overburden nz, and unfilled points represent experimental results from Arran et al.

(2021), with marker size reduced and ‘transitional-regime’ flows excluded for clarity.

fc independent, as predicted by the stochastic impact framework, while equations
(3) and (22) confirm the implication of a static force balance, that basal pressure p
is independent of A. Therefore, we expect P 0

F fc/(Ap)
2 ∝ 1/A and, to recover an

A-independent local-variable estimate, exchange Arran et al. (2021)’s ratio between
squared forces on area A for a ratio between the inferred squared forces on a particle
area d2. Consequently, we define

δF2 =
2P 0

F fc
Ad2p2

(31)

and examine its relation to Î.

Figure 8c demonstrates that, as for Arran et al. (2021), δF2 is strongly correlated
with Î. Over an order of magnitude of change in simulations’ Î, the power-law fit
δF2 ∝ Î2.4 has a geometric standard error of 1.3. Furthermore, the experimental and
simulation-derived relationships agree over much of the range of Î where they overlap,
despite the differing flow behavior discussed in section 4.1. Observed disagreement, at
the low end of Î’s experimental range, may be due to that differing flow behavior or
to experimental anomalies.

Given the close relationship between a flow’s bulk inertial number Î and its
high-frequency signal, we investigate its relationship with the intermediate-frequency
signals introduced in section 3.2.

4.3 Signals at intermediate frequencies

The intermediate-frequency signals we observe in e.g. Figure 4a, contributing to
basal-force power spectral densities PFx(f) and PFz (f) at frequencies f < 100

√
g/d,

can be explained neither by the single-particle, basal impacts considered by Kean et
al. (2015), Lai et al. (2018) and Farin, Tsai, et al. (2019), nor by the coherent motion
with which the single-force framework explains low-frequency signals. The forces ex-
erted during binary collisions make contributions to the power spectra PF· that are
approximately constant over all frequencies less than the collision timescale’s associ-
ated corner frequency, equations (7) and (9)’s fc/τ(δ̇n), which in our case is less than
100
√
g/d only for the rare and insignificant impacts at velocities δ̇n < 1.3× 10−8

√
gd.

But signal frequencies significantly greater than
√
g/d cannot be due to coherent mo-
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a b

c d e

Figure 9. Association of force chains and intermediate-frequency signals. a, b) Taking flows

with nx = ny = 10, nz = 8 and either θ = 22◦ (a) or θ = 24.5◦ (b), at the times t0 at

which each is considered to be in a steady state, each pair of particles in contact is indicated

by a line segment joining their centres. Opacity and color correspond to the interparticle nor-

mal force Fn, with case-b forces frequently exceeding the saturation value of 400ρgd3. c, d,

e) Ratios of smoothed power spectral densities 〈PFj 〉∆f (f) of downslope (j = x), cross-slope

(j = y), and base-normal (j = z) basal forces, at intermediate (f = 10
√
g/d) and high (f = fc,

P 0
F ∝ 〈PFz 〉∆f (fc)) frequencies, as functions of force chain decay length λ, bulk inertial number

Î, and slope gradient tan θ. Marker size indicates measurement area A and colors indicate flow

overburden nz.

tion, whose minimum timescale is that of gravitational acceleration over the flow’s
roughness-d base.

Instead, intermediate-frequency signals appear to be associated with the dynam-
ics within a flow of multi-particle chains, along which forces propagate: ‘force chains’.
Figures 9a,b illustrate, at a given instant, the interparticle forces within two flows
with power spectra corresponding to those in Figures 4a,b, demonstrating that the
relative magnitude of intermediate-frequency signals corresponds to the prevalence
of such force chains. Figure 9c shows that this relation holds across all flows, with a
Spearman rank correlation coefficient of 0.98 between the ratio 〈PFz 〉∆f (10

√
g/d)/P 0

F ,
a measure of the relative magnitude, and the decay length λ, which by equation (19)
approximates the typical base-normal extent of basal force chains.

This relationship is unlikely to be due to the single-body force-chain impacts
considered by Zhang et al. (2021). If n density-ρ particles in a force chain impact
the base as a single body, at velocity δ̇n, then the duration of the collision will be
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that which equation (7) specifies for a single density-ρn particle’s impact. The corner
frequency associated with this impact will therefore be lower than that associated
with an equivalent single-particle impact, but even for a 10-particle chain will only be
less than 100

√
g/d for the still-rare impacts with δ̇n < 1.3× 10−6

√
gd. Furthermore,

no single-body impacts of force chains are evident in Movie S1 and Movie S2 of the
supplementary material, from which Figures 9a and 9b are frames.

Intermediate-frequency signals are more likely induced by force chains’ trans-
mission of force to each flow’s base. The supplementary videos show that contact
networks evolve over timescales between those of individual collisions and of particle
rearrangement, altering the transmission of prolonged-contact forces, and this could
induce basal-force signals at the corresponding intermediate frequencies. Less prob-
ably, if transmission attenuates the high-frequency components of forces more than
the intermediate-frequency components (contrary to the assumptions of Bachelet et
al. (2023) and our minimal model), then the transmission of non-basal, single-particle
impact forces could be responsible for relative magnitudes 〈PFz 〉∆f (10

√
g/d)/P 0

F > 1.
Since Hertz theory predicts power spectra’s high-frequency components well, such
frequency-dependent attenuation would have to be constant for f > 100

√
g/d, but

this explanation cannot be ruled out without further work.

Even without explaining intermediate-frequency signals, we can describe their
properties. Figure 9d shows the relative magnitude of intermediate-frequency signals
to decrease with the bulk inertial number Î and increase slightly with overburden
nz, while demonstrating that intermediate-frequency signals have no significant cross-
slope component (〈PFy 〉∆f (10

√
g/d)/P 0

F ≈ 0.3, regardless of intermediate-frequency
signals’ magnitude). Figure 9e, meanwhile, examines the relative magnitudes of inter-
mediate signals’ downslope and base-normal components: while PFx ≈ 0.6PFz at high
frequencies, intermediate-frequency signals appear to contribute to 〈PFx〉∆f (10

√
g/d)

approximately tan2 θ as much as to 〈PFz 〉∆f (10
√
g/d). This may reflect the difference

between the orientations of single-particle impacts, which are widely distributed, and
those of force chains, which are preferentially aligned with the mean force (Campbell,
2006; Thomas & Vriend, 2019). Furthermore, all aforementioned relative magnitudes
are independent of A, indicating that spatially separated contributions to intermediate-
frequency signals are as uncorrelated as the individual impact forces that contribute
to high-frequency signals.

5 Conclusion

With the properties of intermediate-frequency signals described, we conclude by
reviewing our work. We simulated steady flows of spherical, diameter-d particles under
gravitational acceleration g and over rough bases towards which downslope velocities
approached zero. Slope angles spanned the range that supported steady flow and flow
depths h were between 4d and 15d (see Figure 2). Writing Fz for the base-normal
force exerted by a flow upon its base, we considered its power spectrum PFz (f) as the
sum of three components: a low-frequency component which vanishes for frequencies
f >

√
g/d, an intermediate-frequency component which is constant for f <

√
g/d

and vanishes for f > 100
√
g/d, and a high-frequency component which is constant

for f < 100
√
g/d and vanishes as f → ∞ (see Figure 4). Various models use a

flow’s properties to predict the properties of this high-frequency component, resulting
from the forces exerted during individual interparticle collisions, and we compared our
observations to these predictions.

Our results differ from those of Arran et al. (2021)’s laboratory experiments, to
which our simulations closely correspond, and we link these differences to differences
in basal flow velocities. While the most accurate predictions in the laboratory were
those of Farin, Tsai, et al. (2019)’s ‘thin-flow’ model, in which basal impact velocities
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vary around the depth-averaged flow velocity ū, we find the most accurate pre-existing
model to be the corresponding ‘thick-flow’ model, in which base-impacting particles’
velocities are approximately ūd/h (see Table 1 and Figure 5). This supports the
argument that, in laboratory flows, vibration-induced friction weakening led to basal
slip that wasn’t observed in our fixed-base simulations. Instead, at low slope angles,
simulated flows exhibited prolonged interparticle contacts, and force chains of multiple
such contacts were associated with intermediate-frequency components of PFz that
were absent in the laboratory.

However, we propose generally applicable relations between the properties of a
flow and those of the basal forces it exerts. We derive a ‘minimal model’ that, from
depth profiles of particle collisions’ properties but without fitting parameters, predicts
the high-frequency component of PFz more accurately than any pre-existing model.
Our empirical parametrization, replacing the minimal model’s inputs with ū and h,
works well for our simulated flows (see Figure 6), and other parametrizations will apply
to flows with slip or slow creep at their base. Furthermore, we demonstrate a relation
between the bulk inertial number Î and the ratio δF2 of mean squared fluctuating and
mean forces on a basal area d2, consistent with the relation described in Arran et al.
(2021).

These relations are not applicable to geophysical flows without further work.
Firstly, geophysical signals are considered ‘low-frequency’ up to an approximately
0.1 Hz threshold, below which spatially separated forces are strongly correlated, whereas
we consider the ‘low-frequency’ component of PFz to vary up to a

√
g/d threshold,

above which such forces are almost uncorrelated, and the ‘high-frequency’ component
to be that with a collision-related corner frequency of order given by section 2.3:

fc ≈ fc/τ(0.1
√
gd) ≈ 0.11[E/ρ(1− ν2)]2/5[g/d9]1/10, (32)

for material density ρ, Young’s modulus E, and Poisson’s ration ν. These frequen-
cies correspond to 70 Hz and 40 kHz for the experimental particles of Arran et al.
(2021) but 3 Hz and 140 Hz for 1 m-diameter blocks of rock with similar properties.
Secondly, changes in material properties will change flow parameters and hence signal
frequencies, as well as the relation δF2(Î). And finally, we simulate dense, dry flows of
monodisperse spheres, so our results are not directly applicable to saltating particles
at or ahead of a geophysical flow’s front, to collisions significantly affected by a fluid
medium or by asphericity, or to flows altered by polydisperse particles’ segregation by
size.

We nevertheless suggest areas of application. Given the differences between our
results and Arran et al. (2021)’s, seismic signals can indicate the basal velocities within
an experimental flow, which are otherwise hard to measure. Alternatively, one can
combine our results with Arran et al. (2021)’s to estimate the high-frequency seis-
mic signals produced by flows for which the basal boundary condition is known: use
Farin, Tsai, et al. (2019)’s ‘thin-flow’ model if there is basal slip and the empirical
parametrization of our ‘minimal model’ if not. Finally, even if the conditions for Î and
δF2’s relation are unknown, we show that the same relation applies to purely granular
flows with quite different velocity profiles, while Piantini et al. (2023) suggests that an
analogous relation underlies a different observation: an inverse relationship between
the solid concentrations of laboratory-scale sand-and-cobble sediment flows and the
fluctuating forces they exert. Consequently, Î may be useful for predicting the inter-
mediate and high-frequency force signals generated by a broad range of geophysical
granular flows.
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6 Open Research

V1.0 of the SimSlidequakesMercuryDPM software (Arran, 2023), forked from
MercuryDPM (https://www.mercurydpm.org, Weinhart et al., 2020) and used for
DEM simulations, is preserved at https://doi.org/10.5281/zenodo.8125567 and
available under an attribution licence.

The Jupyter Notebook to execute the analysis in the paper can be found at
https://mybinder.org/v2/gl/M Arran\%2Fsimulated-slidequakes/HEAD?labpath=

.\%2FSimulated slidequakes.ipynb and is hosted with its input data, scripts for
their creation, and output figures at https://gitlab.com/M Arran/simulated-slidequakes.
This repository is preserved along with datafiles and scripts for using SimSlidequakesMer-
curyDPM at https://doi.org/10.5281/zenodo.8219510 (Arran et al., 2023).
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