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Abstract

The boron isotope ratio of seawater (δ11Bsw) is a parameter which must be known to reconstruct palaeo pH and CO2 from

boron isotope measurements of marine carbonates. Beyond a few million years ago, δ11Bsw is likely to have been different to

modern. Palaeo δ11Bsw can be estimated by simultaneously constraining the vertical gradients in foraminiferal δ11B ([?]δ11B)

and pH ([?]pH). A number of subtly different techniques have been used to estimate [?]pH in the past, all broadly based on

assumptions about vertical gradients in oxygen, and/or carbon, or other carbonate system constraints. In this work we pull

together existing data estimates alongside limitations on the rate of change of δ11Bsw from modelling, and combine these into

an overarching statistical framework called a Gaussian Process. The Gaussian Process technique allows us to bring together

data and constraints on the rate of change in δ11Bsw to generate random plausible evolutions of δ11Bsw. We reconstruct

δ11Bsw, and by extension palaeo pH, across the last 65Myr using this novel methodology. Reconstructed δ11Bsw is compared

to other seawater isotope ratios, namely 87/86Sr, 187/188Os, and δ7Li, which we also reconstruct with Gaussian Processes. Our

method provides a template for incorporation of future δ11Bsw constraints, and a mechanism for propagation of uncertainty in

δ11Bsw into future studies.
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gation in calculation of palaeo pH16
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Abstract17

The boron isotope ratio of seawater (δ11Bsw) is a parameter which must be known to18

reconstruct palaeo pH and CO2 from boron isotope measurements of marine carbonates.19

Beyond a few million years ago, δ11Bsw is likely to have been different to modern. Palaeo20

δ11Bsw can be estimated by simultaneously constraining the vertical gradients in foraminiferal21

δ11B (∆δ11B) and pH (∆pH). A number of subtly different techniques have been used22

to estimate ∆pH in the past, all broadly based on assumptions about vertical gradients23

in oxygen, and/or carbon, or other carbonate system constraints. In this work we pull24

together existing data estimates alongside limitations on the rate of change of δ11Bsw25

from modelling, and combine these into an overarching statistical framework called a Gaus-26

sian Process. The Gaussian Process technique allows us to bring together data and con-27

straints on the rate of change in δ11Bsw to generate random plausible evolutions of δ11Bsw.28

We reconstruct δ11Bsw, and by extension palaeo pH, across the last 65Myr using this novel29

methodology. Reconstructed δ11Bsw is compared to other seawater isotope ratios, namely30

87/86Sr,
187/188Os, and δ7Li, which we also reconstruct with Gaussian Processes. Our method31

provides a template for incorporation of future δ11Bsw constraints, and a mechanism for32

propagation of uncertainty in δ11Bsw into future studies.33

Plain Language Summary34

Boron naturally exists in two forms - 11B and 10B. Measuring the ratio of these two35

forms of the element boron within marine shells allows us to estimate how alkaline the36

ocean was in the past, which is related to how much carbon dioxide is in the atmosphere.37

Before we can do this calculation, though, we need to know some other parameters, one38

of which is the relative abundance of the two forms of boron in the ocean at the time39

(which we call δ11Bsw). Preexisting studies have estimated δ11Bsw at particular times,40

and here we combine them to generate a full reconstruction across the last 65 million years,41

accounting for uncertainties. Our reconstruction is informed by limiting the rate at which42

δ11Bsw can change, based on model simulations. We provide statistical samples which43

can be used in future work when calculating past ocean pH.44

1 Introduction45

Boron, and its two isotopes (10B and 11B), exist in seawater with speciation gov-46

erned by acid-base equilibrium. There are four degrees of freedom in the boron isotope47

system, which we typically express with the following five parameters: δ11B4 (the iso-48

topic composition of borate), δ11Bsw (the isotope composition of seawater), ε (the frac-49

tionation factor), pK∗
B (the apparent equilibrium constant for boron in solution), and50

pH. Knowing any four of these parameters allows us to calculate the fifth (Zeebe & Wolf-51

Gladrow, 2001). For a typical palaeoclimatological application, we wish to determine palaeo52

pH, which is done by measuring δ11Bcalcite and translating this to to δ11B4 (potentially53

requiring a species specific calibration). δ11B4 is then combined with the fractionation54

factor (ε - known from Klochko et al. (2006); Nir et al. (2015)), the apparent equilibrium55

constant for boron in seawater (pK∗
B - which is estimated from temperature, pressure,56

and seawater composition (Dickson & Goyet, 1994)), and the boron isotope ratio of sea-57

water (δ11Bsw). We refer the interested reader to Marschall and Foster (2018) for a full58

description of boron systematics in seawater, but for the purposes of this work it is suf-59

ficient to say that one of the key parameters that must be established in order to recon-60

struct palaeo ocean pH is δ11Bsw. Modern day seawater has a δ11Bsw of 39.61±0.04 ‰61

(Foster et al., 2010) - however δ11Bsw is very likely to have been different in the past (Lemarchand62

et al., 2000).63

Based on assessments of the relevant input and output fluxes to the ocean, boron64

is thought to have a relatively long residence time in seawater of roughly 10 million years65

(Broecker & Peng, Tsung-Hung, 1982) - that is, the average amount of time an atom of66
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Figure 1. Schematic of the processes which cause vertical gradients in oceanic properties

as harnessed in reconstructions of δ11Bsw. Oxygen and carbon dioxide concentrations are set

in surface waters by the atmospheric concentrations and Henry’s Law (which is temperature

dependent). Surface ocean carbon is taken up by biomass to form organic tissues, which are pref-

erentially enriched in the lighter carbon isotope. When that biomass is exported to depth and

remineralised, organic carbon is oxidised (consuming oxygen) and releasing CO2 , which drives

acidification. These processes cause correlated gradients in pH, aqueous CO2 , aqueous O2 , satu-

ration state, and δ13C. As δ11Bsw is a well mixed signal, differences in δ11B4 between the surface

and subsurface are primarily driven by the gradient in pH.

boron spends in the ocean. It is estimated from geochemical box modelling of the boron67

cycle that δ11Bsw might have changed by up to 0.1 ‰/Myr (Lemarchand et al., 2000).68

This means that beyond a few million years ago, ocean δ11Bsw might have been appre-69

ciably different to modern day seawater, which must be taken into account when calcu-70

lating palaeo pH. While halites show some promise as a direct proxy for δ11Bsw (Paris71

et al., 2010), uncertainty remains about the observed variability in halite δ11B recon-72

structions, so δ11Bsw is currently estimated using more indirect techniques.73

The primary technique for estimating, or placing limits on, palaeo δ11Bsw is to ex-74

ploit vertical gradients in the ocean (Palmer et al., 1998; Greenop et al., 2017; Anagnos-75

tou et al., 2016; Henehan et al., 2019). This works due to the sigmoidal relationship be-76

tween δ11B4 and pH (as shown in Figure 2). The non-linearity of this relationship makes77

it possible to calculate δ11Bsw given two estimates of δ11B4 and an estimate of the change78

in pH across this δ11B4 gradient. The vertical gradient in pH (∆pH) is correlated to the79

vertical gradients in carbon isotopes (∆δ13C), carbon concentration (∆DIC), and oxy-80

gen concentration (∆[O2 ] , linked with Apparent Oxygen Utilisation - AOU) due to their81

shared controlling processes (see Figure 1). Vertical gradients in all of these parameters82

can therefore be related to δ11Bsw.83

The simplest option for reconstructing palaeo δ11Bsw from measured δ11B in car-84

bonates is to assume a constant ∆pH through time equal to modern, an approach used85

in Raitzsch and Hönisch (2013). By combining this with the sigmoidal relationship of86

δ11B4 and pH, it is possible to estimate δ11Bsw (see Figure 2). To improve upon the as-87

sumption of a constant ∆pH through time, one can use foraminiferal ∆δ18O and ∆δ13C88

to guide identification of palaeo depth habitats of particular species, and to place rea-89

sonable limits on ∆pH (Palmer et al., 1998; Anagnostou et al., 2016; Greenop et al., 2017).90

For δ13C, this works because ∆δ13C and ∆pH are jointly controlled by subsurface rem-91
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ineralisation of organic carbon, which releases isotopically light carbon into the water92

and causes acidification (decreasing pH) - as illustrated in Figure 1. The rationale for93

such constraints is broadly justified by the difficulty of reversing the sign of the gradi-94

ents (which would require a fundamental change in biogeochemical dynamics), demon-95

strated by exploring a wide swath of model parameter space (Greenop et al., 2017) in96

carbon cycle models such as CYCLOPS (Hain et al., 2010), LOSCAR (Zeebe, 2012), and97

cGENIE (Ridgwell et al., 2007). That said, it is possible that models may not yet be ca-98

pable of representing the full plethora of possible carbonate chemistry states that the99

ocean can truly inhabit. Despite recent progress (Caves Rugenstein et al., 2019; Derry,100

2022) our understanding of Cenozoic carbon cycle fluxes, and their drivers, remains in-101

complete, as does our understanding of their relationship to oceanic properties such as102

DIC and pH, and by extension the vertical gradients in these ocean properties. There103

are circumstances which would result in the ‘normal’ relationships between these param-104

eters breaking down, for instance if organic carbon is predominantly respired by sulphate105

reducers (which would alter local alkalinity and pH). While these complications are rare,106

it is prudent to keep in mind their potential to impact estimates of δ11Bsw. Despite these107

challenges, using model predicted gradients in δ13C and pH with paired planktic-benthic108

(or surface-subsurface) foraminferal δ11B data remains attractive, as it requires only sta-109

ble carbon isotope data (analyses which are routinely performed), and a model capable110

of providing estimates of feasible ocean profiles of δ13C) and pH.111

δ11Bsw from paired surface-deep samples can also be refined by estimation of AOU112

(Anagnostou et al., 2016). Surface ocean water oxygen saturation is mainly controlled113

by temperature (which is already a requirement for the δ11B to pH calculation) and it114

is assumed based on modern observations that samples from deeper dwelling planktic115

foraminifera can not have inhabited anoxic waters (Hull et al., 2011). Similar to pH and116

δ13C, the vertical gradient in oxygen concentration is primarily a function of how much117

remineralisation of organic carbon has occurred (see Figure 1). Remineralisation adds118

CO2 to the water, increasing the DIC concentration. A Redfield Ratio can be used to119

convert constraints on ∆O2 to ∆DIC, however the impact on ∆pH is complicated by the120

buffering influence of alkalinity. The calculation therefore requires that we know (or as-121

sume) a second carbonate system parameter (in addition to pH) to make ∆DIC calcu-122

lable. This is not a major imposition, as quantification of palaeo CO2 from boron iso-123

tope derived pH already requires assumption or knowledge of a second carbonate sys-124

tem parameter. Such an estimate may itself be derived from the same type of carbon125

cycle models used to estimate ∆δ13C and ∆pH. Carbon cycle models have been used126

to provide an estimate of saturation state for specific sites or times in the past, or to pro-127

vide estimates of alkalinity (Anagnostou et al., 2016; Henehan et al., 2019), which simul-128

taneously informs δ11Bsw, and palaeo CO2 reconstructed from boron isotope derived pH.129

The requirement of a second carbonate system parameter to predict palaeo CO2130

from boron isotope derived pH presents a challenge due to various limitations in carbon-131

ate system reconstructions. For instance, although alkenone carbon isotopes can be used132

to reconstruct surface water CO2 (Stoll et al., 2019; Zhang et al., 2020), the pairing of133

pH and CO2 to determine the carbonate system tends to lead to large uncertainties due134

to their close covariance (J. W. B. Rae, 2018). While boron/calcium ratios show promis-135

ing relationships with carbonate system parameters (including DIC, ∆CO3
2-, and HCO3

-
136

(Yu & Elderfield, 2007; Haynes et al., 2017; Sosdian et al., 2020)), there is still some de-137

bate as to which of these parameters is most faithfully recorded, and Cenozoic-scale records138

remain fragmentory. Current approaches tend to centre on assumptions linked to the sat-139

uration state for calcite (denoted Ωcalcite). Saturation state can not have been too low,140

or carbonate would not have been preserved, nor can it have been too high, or abiotic141

carbonate would have precipitated. The precise limits on reasonable values of near-surface142

seawater Ωcalcite are somewhat subjective and are both context and site dependent, but143

a reasonable broad range is from 1 to 10. In some circumstances, such as when produc-144

ing estimates for the subtropical surface ocean or targeting background Cenozoic climates,145

–4–
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Figure 2. The left panel shows a graph of pH vs δ11B4 for three different δ11Bsw’s (indicated

by pink shades). A hypothetical 2‰ excursion from 22‰ to 20‰ is depicted by the black dot-

ted lines. The equivalent pH change for the same excursion at variable δ11Bsw is displayed in the

shaded region. Note this curve is symmetrical about the value of pK∗
B (roughly 8.6 for standard

modern open ocean conditions).

The right panel shows (for the same 22‰ to 20‰ excursion as shown in the left panel) ∆pH

as a function of δ11Bsw (pink line). A hypothetical constraint on ∆pH of 0.2±0.04 (at 2σ) is

shown by the black dashed lines, with uncertainty in the black dotted lines. Where this hypo-

thetical constraint intersects with the pink line gives the region of possible δ11Bsw’s. We illustrate

that a Monte Carlo approach, which samples possible ∆pH from the hypothetical constraint to

give probability distributions (shown in pink shaded regions) for δ11Bsw, aligns with the em-

placed constraint. Due to the symmetry of the curves shown in the left panel, there are often two

δ11Bsw’s compatible with a ∆pH constraint. Typically the lower window is rejected as it would

resolve to an unreasonably low pH.

–5–
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one can be more prescriptive - using a one or two unit range around the modern aver-146

age surface ocean saturation state of 6 (Ridgwell & Zeebe, 2005; Anagnostou et al., 2016;147

Boudreau et al., 2019). We note, however, that this assumption may not be valid dur-148

ing transient periods of acidification (e.g. PETM (Penman et al., 2014)) or alkalinity im-149

balance (e.g. early Danian (Henehan et al., 2019)). Crucially, quantification of carbon-150

ate system conditions using the saturation state approach depend on quantification of151

[Ca2+]sw , which is used in combination with the saturation state assumption to derive152

[CO3
2-] . For a given assumption or constraint on saturation state, any change in [Ca2+]sw153

thus translates almost linearly into a change in [CO3
2-]), meaning that accurately quan-154

tifying the concentration of [Ca2+]sw , and its uncertainty, is of paramount importance155

to saturation state based constraints on the past ocean carbonate system.156

Overall, it is therefore necessary to balance a number of requirements when recon-157

structing δ11Bsw. The estimated δ11Bsw must produce a reasonable: ∆pH, ∆δ13C, sat-158

uration state and AOU. Finding the space in which all these parameters are viable al-159

lows quantification of δ11Bsw with attendant uncertainty. The boron isotope proxy is for-160

tunate however, in that almost all data and assumptions required to estimate δ11Bsw are161

already a part of the δ11B4 to CO2 calculation.162

Most previous applications of the techniques described above have focused on in-163

dividual time slices of the Cenozoic (as described in Section 2 and Table 1). By combin-164

ing each of these individual studies, we are able to reach a critical mass of information,165

allowing us to produce an estimate for how δ11Bsw evolved throughout the Cenozoic. Our166

study represents an advance compared to two particularly relevant previous works that167

provided Cenozoic timescale estimates of δ11Bsw. Raitzsch and Hönisch (2013) predicted168

Cenozoic δ11Bsw by assuming a constant ∆pH and a linear trend in deep ocean pH, mean-169

ing reconstructions of pH using this δ11Bsw are only able to reconstruct the initial as-170

sumption (J. W. B. Rae, 2018) (further impacts of which are discussed in Section 5.3).171

Rae et al. (2021) compiled and renanalysed marine palaeo CO2 proxy data (including172

boron isotopes), and therefore required a curve for δ11Bsw. However, generation of a Ceno-173

zoic δ11Bsw curve was not the primary focus of that study and the authors noted the need174

to improve interpolation and constrain uncertainty. Here we provide a more robust es-175

timate of the evolution of δ11Bsw through time by bringing existing and updated δ11Bsw176

constraints together into a statistical framework called a Gaussian Process. The Gaus-177

sian Process is able to integrate both the expected smoothness of the δ11Bsw signal from178

modelling work and various forms of constraint from the available data.179

2 Data180

Data constraints on δ11Bsw are varied. Some previous works presented central es-181

timates of δ11Bsw (Gutjahr et al., 2017; Henehan et al., 2019, 2020), while another pro-182

vided lower or upper limits on δ11Bsw (Anagnostou et al., 2016), and another provided183

full probability distributions for possible values of δ11Bsw (Greenop et al., 2017). Two184

of those studies reconstructed δ11Bsw for a particular event (or short timeslice) (Henehan185

et al., 2019; Gutjahr et al., 2017), and two reconstructed δ11Bsw over a wider time win-186

dow, within which δ11Bsw might have evolved (Anagnostou et al., 2016; Greenop et al.,187

2017). Here we use δ11Bsw estimates from Greenop et al. (2017) exactly as presented in188

the original study. The original published estimate from Henehan et al. (2019), however,189

is based on carbonate system calculations whose equilibrium constants use fitting pa-190

rameters from the supplementary tables of (Hain et al., 2015). These tables have since191

been found to contain inaccuracies, and so here we update carbonate system calculations,192

and hence δ11Bsw constraints, based on corrected equilibrium constants packaged with193

Raitzsch et al. (2022). Updated carbonate system calculations and CO2 estimates for194

this time are provided in the Supplementary Materials, and are plotted in Henehan and195

Witts (2023). Anagnostou et al. (2016) is updated by modifying the calculation of vi-196

tal effects to account for changing seawater chemistry. With these recalculations,Henehan197
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Age Central Estimate 95% interval Form Source

0.0 39.61 0.04 Gaussian Foster et al. (2010)
0.68 39.69 4.28 Non-Gaussian Greenop et al. (2017)
1.14 38.55 3.74 Non-Gaussian Greenop et al. (2017)
1.16 41.60 3.27 Non-Gaussian Greenop et al. (2017)
1.45 40.51 2.00 Non-Gaussian Greenop et al. (2017)
2.27 41.57 1.66 Non-Gaussian Greenop et al. (2017)
2.87 39.82 2.05 Non-Gaussian Greenop et al. (2017)
5.37 40.38 2.78 Non-Gaussian Greenop et al. (2017)
8.67 42.30 1.88 Non-Gaussian Greenop et al. (2017)
9.33 40.22 2.28 Non-Gaussian Greenop et al. (2017)
10.14 36.35 5.98 Non-Gaussian Greenop et al. (2017)
11.62 40.34 2.05 Non-Gaussian Greenop et al. (2017)
12.27 35.69 5.99 Non-Gaussian Greenop et al. (2017)
12.80 37.47 2.53 Non-Gaussian Greenop et al. (2017)
13.53 36.43 5.89 Non-Gaussian Greenop et al. (2017)
16.39 36.49 5.76 Non-Gaussian Greenop et al. (2017)
17.69 37.00 5.66 Non-Gaussian Greenop et al. (2017)
19.00 41.10 1.95 Non-Gaussian Greenop et al. (2017)
19.67 40.44 1.93 Non-Gaussian Greenop et al. (2017)
22.62 39.41 4.47 Non-Gaussian Greenop et al. (2017)
22.98 34.65 6.10 Non-Gaussian Greenop et al. (2017)
23.08 39.11 3.50 Non-Gaussian Greenop et al. (2017)
37.00 37.63 2.36 Non-Gaussian Anagnostou et al. (2016)*
44.40 38.51 0.75 Non-Gaussian Anagnostou et al. (2016)*
45.60 37.81 1.18 Non-Gaussian Anagnostou et al. (2016)*
53.00 38.49 0.70 Non-Gaussian Anagnostou et al. (2016)*
55.80 38.94 0.41 Gaussian Gutjahr et al. (2017)
66.04 39.30 0.50 Uniform Henehan et al. (2019)*

Table 1. Table of data constraints with representative central values and standard deviations

as an indicator of uncertainty. * symbol indicates the values has been updated from the original

publication for this work.

et al. (2019)’s δ11Bsw estimate is updated from the originally published value of 39.05198

- 39.85 ‰ to 39.05 - 39.55 ‰, while estimates from Anagnostou et al. (2016) are inte-199

grated as full probability distributions instead of the lower/upper limits presented in the200

original study (see Table 1 and Supplement S1).201

To supplement these existing δ11Bsw constraints, we take planktic δ11B4 as pre-202

sented in Rae et al. (2021), based on original studies by Anagnostou et al. (2016, 2020);203

Badger et al. (2013); Chalk et al. (2017); de la Vega et al. (2020); Dyez et al. (2018); Fos-204

ter (2008); Foster et al. (2012); Greenop et al. (2014, 2017, 2019); Gutjahr et al. (2017);205

Harper et al. (2020); Henehan et al. (2019, 2020); Hönisch et al. (2009); Lemarchand et206

al. (2000); Mart́ınez-Bot́ı et al. (2015); Paris et al. (2010); Pearson et al. (2009); Pen-207

man et al. (2014); Raitzsch and Hönisch (2013); Sosdian et al. (2018), to calculate a range208

of valid δ11Bsw by exploiting the sigmoidal shape of the relationship between pH and δ11B4209

(as seen in Figure 2). The maximum offset between δ11B4 and δ11Bsw is seen at low pH,210

and is described by the fractionation factor ε (or α). For any given estimate of δ11B4,211

the minimum valid δ11Bsw is equal to δ11B4, and the maximum δ11Bsw can be calculated212

by combination with the fractionation factor. We first bin data into 1 Myr intervals, then213

take the maximum measured δ11B4 as the lower limit for δ11Bsw, and use the minimum214
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measured δ11B4 to calculate the maximum δ11Bsw. Uncertainty in measured δ11Bforam215

is propagated to uncertainty in the possible δ11Bsw, and the upper 99% quantile is used216

to estimate the maximum permissible δ11Bsw. As described, lower limits can be calcu-217

lated using this method, however these values are so low as to be uninformative across218

the Cenozoic. Upper limits created using this method are shown in Figure 3.219

In this work we therefore have four potential categories of constraint: constraints220

where the uncertainty is well represented by a Gaussian distribution (Gaussian constraints),221

constraints where the uncertainty is not well represented by a Gaussian distribution (non222

Gaussian constraints), lower and upper limits, and limitations on the rate of change in223

δ11Bsw from modelling.224

3 Methods225

Having assembled the data described in Section 2, we reconstruct δ11Bsw using a226

Gaussian Process (GP). The Gaussian Process is a statistical technique which allows us227

to generate smooth time series conditioned to match data constraints (for a fuller, more228

rigorous description of the Gaussian Process - see Supplement S1). In the case of δ11Bsw,229

we have an expectation of smoothness from the work of Lemarchand et al. (2000), which230

we combine with data constraints as described in Section 2 and shown in Figure 3. The231

Gaussian Process works by using a kernel function, which encodes structure into the re-232

construction, and hyperparameters which tune the behaviour. Uncorrelated Gaussian233

noise is transformed into autocorrelated values with the covariance structure prescribed234

by the kernel function and hyperparameters. Here we use the squared exponential ker-235

nel (also known as the Radial Basis Function), which expresses that nearby points are236

more likely to be similar to each other than distant points. There are two controlling hy-237

perparameters - one expresses the length scale over which there is significant correlation,238

which is related to the expected rate of change in a signal. The other parameter is the239

noise scale - which manifests as how much uncertainty is expected at a time where no240

data constraints are available. The Gaussian Process can be used to generate random241

smooth lines with the prescribed characteristics even in the absence of data constraints,242

however data can be incorporated by adapting the covariance structure such that the243

statistical samples it generates will go through datapoints where permitted by the cho-244

sen hyperparameters. Uncertainty in data constraints can be incorporated directly into245

the Gaussian Process if uncertainty in the estimates is Gaussian in nature, and other types246

of constraint can be incorporated by adapting the approach.247

The Gaussian Process is able to provide a number of equally likely, independent,248

stochastic time series, which are useful in reconstructing time series of palaeo data with249

an estimate of the uncertainty. Each obeys the smoothness constraint encapsulated by250

the kernel, while simultaneously attempting to match any available data. The result is251

that where a data constraint with low uncertainty is available, time series will be strongly252

influenced to go through this datapoint. Where data are sparse, or data constraints are253

uncertain, statistical replicates diverge to represent increasing uncertainty (see Supple-254

ment S1 for a demonstration of this behaviour). Because each sample drawn from the255

Gaussian process is independent and equally likely, we can straightforwardly apply fil-256

ters to reject any sample that has undesirable properties. As mentioned above, data con-257

straints where uncertainties can be well represented by a Gaussian distribution can be258

directly assimilated into the Gaussian Process. Here we also wish to enforce three other259

types of constraint, lower/upper limitations on δ11Bsw, limitations on the rate of change260

in δ11Bsw, and data constraints with a non Gaussian uncertainty structure. Limitations261

(either on the value of δ11Bsw or the rate of change in δ11Bsw) are relatively straight-262

forward to enforce - we can compare each Gaussian Process sample to the limitation and263

simply reject those which are outside the established limits. Non-Gaussian constraints264

are slightly more difficult to integrate, but can also be done within a rejection framework265

by approximating each non-Gaussian constraint with a Gaussian distribution. Here we266
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do this by creating Gaussian constraints with the same mean as their non-Gaussian coun-267

terpart, but with higher standard deviation. Samples can be then be strategically rejected268

to tweak the Gaussian Process such that it has effectively sampled from non-Gaussian269

constraints (the mechanics of this type of rejection sampling are clarified in Supplement270

S1).271

One difficulty of rejection sampling, however, is dealing with simultaneous but mu-272

tually exclusive data constraints. Gaussian distributions are nonzero across their domain,273

meaning no value (however unlikely) is truly impossible. The nature of the non-Gaussian274

constraints in this work though, suggests that at any given time some δ11Bsw values are275

impossible to reconcile with the data estimates. Given multiple constraints of this type,276

in close proximity to one another, it becomes exceedingly unlikely to draw samples from277

the Gaussian Process which have the requisite smoothness and pass through the possi-278

ble region of every datapoint. We overcome this difficulty by giving each non-Gaussian279

constraint the possibility of being an outlier value. In summary, Gaussian Process sam-280

ples are not always rejected completely where in disagreement with data, but the prob-281

ability of acceptance is highest where in agreement with the data constraints, and lower282

(but non zero) further from the data constraints.283

We reconstruct δ11Bsw by conditioning a Gaussian Process on the few available cen-284

tral estimates of δ11Bsw (shown in Table 1). Additional data constraints are integrated285

by filtering the generated statistical samples (as described above and in Supplement S1).286

Any samples which fall outside the lower or upper limits are rejected, and some samples287

are rejected to adjust the Gaussian Process such that it appropriately incorporates non288

Gaussian constraints. We use hyperparameters of 2 ‰ noise scale, and 10 Myr length289

scale. The Gaussian Process does not enforce a specific rate of change, but the chosen290

noise scale and length scale give an approximation of the rate of change, in this case roughly291

equivalent to a 0.2 ‰/Myr rate of change, which is on the faster end of agreement with292

the residence time and maximum rate of change from box modelling of the geochemi-293

cal cycle of boron (Lemarchand et al., 2000). Lemarchand et al. (2000) suggest an up-294

per limit to the rate of change of δ11Bsw of 0.1 ‰/Myr. This estimate is based on mod-295

ern day fluxes, so we allow greater uncertainty in the past when the boron fluxes in and296

out of the ocean may have been different, increasing the permissible maximum rate of297

change linearly to 0.7 ‰/Myr at 70 Ma (discussed further in Section 5.2). Output sam-298

ples are filtered such that those with a rate of change greater than the values described299

above are rejected. This, alongside the rejection strategy used to integrate non-Gaussian300

constraints, leaves a subset of the originally generated samples. Approximately 10 in each301

10,000 are accepted, and we run the algorithm until 10,000 samples have been accepted.302

4 Results303

Our reconstruction of δ11Bsw suggests rather muted change across the Cenozoic rel-304

ative to the change in δ11B4. δ
11B4 has changed by roughly 8 ‰, and we find that δ11Bsw305

has been responsible for a perhaps 2 ‰ of that change, leaving a 6 ‰ change driven pre-306

dominantly by pH. The pattern of change of δ11Bsw is non-linear, with a decline of roughly307

1 ‰ from the early to mid Cenozoic, followed by an increase of approximately 1 ‰ from308

30 Ma to 10 Ma, and a relatively stable value between those time periods and from 10 Ma309

until the present day. Our reconstruction generally matches the evolution curve used by310

Rae et al. (2021), except in the interval between 20 Ma and 10 Ma. Within this inter-311

val both curves are guided predominantly by the data from Greenop et al. (2017), but312

Rae et al. (2021) used Greenop et al. (2017)’s binned values whereas our approach uses313

the probability distribution of each individual estimate. Our Gaussian Process method-314

ology favours the higher δ11B values in this interval due to their lower reported uncer-315

tainty (relative to the lower δ11Bsw estimates from Greenop et al. (2017)). This results316

in an overall higher estimate of δ11Bsw during the Miocene, and implies pH was poten-317

tially lower than previously calculated at this time. However, we note the uncertainties318
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Figure 3. Our reconstruction of δ11Bsw is shown pink, with a central line depicting the me-

dian, and a window representing the 95 % confidence interval. Central data constraints are shown

by vertical pink bars representative of 95 % confidence intervals, and upper limits are shown by

horizontal pink bars. The grey line depicts δ11Bsw reconstructed by Rae et al. (2021) for com-

parison. δ11B4 datapoints from Rae et al. (2021) are shown as purple dots (interpolated in the

purple shaded region using a Gaussian Process), which are converted to pH using our δ11Bsw

(red points, line, and shaded region) and the δ11Bsw from Rae et al. (2021) (grey points and

line) for comparison. We note that our Gaussian Process interpolation of δ11B4 (and therefore

also pH) has difficulty during large data gaps. In particular during the Palaeogene (which we

have faded out), the large data gap is bounded by events with rapid changes in δ11B4, and our

reconstruction would be tempered by filling in this region with δ11B4 data.
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in both our reconstruction and the individual δ11Bsw constraints are high in the Neo-319

gene, and that some of the data constraints suggest rates of change in δ11Bsw exceed-320

ing those compatible with geochemical box model predictions (as discussed further in321

Section 5.2). Uncertainty on δ11Bsw is also particularly high in data gaps where δ11B4322

has yet to be measured. In particular we note a large window during the Oligocene within323

which no boron isotope data has yet been published, and which correspondingly has high324

uncertainty in δ11Bsw.325

We provide illustrative curves for δ11B4 and pH (see Figure 3) by using a Gaus-326

sian Process to interpolate δ11B4, then combining this with our predicted δ11Bsw and327

other ancillary parameters as in Rae et al. (2021). The Gaussian Process used to recon-328

struct δ11B4 uses a length scale of 2 Myr to target relatively long term changes in pH,329

rather than individual palaeoclimatic events.330

The pattern of change we find in δ11Bsw is very similar to temporal trends in a num-331

ber of other related biogeochemical signals, such as oceanic
87/86Sr,

187/188Os, and δ7Li.332

Here we take published
87/86Sr and δ7Li from Misra and Froelich (2012), and compile a333

new record of
187/188Os from Josso et al. (2019); Klemm et al. (2005); Oxburgh (1998);334

Oxburgh et al. (2007); Paquay et al. (2008, 2014); Pegram and Turekian (1999); Peucker-335

Ehrenbrink and Ravizza (2000, 2020); van der Ploeg et al. (2018); Ravizza (1993); Rav-336

izza and Turekian (1992); Ravizza and Peucker-Ehrenbrink (2003); Ravizza et al. (2001);337

Reusch et al. (1998); Robinson et al. (2009). For each signal, we assume that data con-338

straints have Gaussian uncertainty (with magnitude given with original estimates, ex-339

cept in the case of
87/86Sr where an illustrative uncertainty is used), which allows us to340

perform a straightforward Gaussian Process reconstruction, with the residence time of341

each element informing the length scale used (
87/86Sr - 5.1 Myr (Broecker & Peng, Tsung-342

Hung, 1982), δ7Li - 2.8 Myr (Stoffynegli & Mackenzie, 1984),
187/188Os - 1 Myr). Inter-343

polated data products for both
87/86Sr and δ7Li have been previously published (for in-344

stance in Misra and Froelich (2012)), but to our knowledge this is the first interpolated345

data product available for
187/188Os. There remains uncertainty in the residence time of346

osmium, but it is thought to be extremely short relative to the other signals shown here347

(all estimates are <100kyr - see e.g. Oxburgh (2001)). We use a length scale of 1 Myr348

in the reconstruction to balance the available data density against the short residence349

time. Overall, our reconstructions use a more sophisticated fitting strategy than previ-350

ous incarnations, which is guided primarily by the data and integrates information on351

residence time of each element. This allows us to provide a robust quantification of the352

uncertainty in each signal, within the limitations of currently available data density.353

Each of the seawater isotope signals we examine, like δ11Bsw, shows a long term354

increase over the Cenozoic. Oceanic strontium isotopes appear to show most similarity355

with our reconstructed δ11Bsw, while we note resemblance between the evolutions of pH,356

lithium isotopes, and osmium isotopes (as shown in Figure 4). We are able to provide357

an extremely narrow uncertainty window on our
87/86Sr reconstruction due to strontium’s358

long residence time and relatively high data density (and data quality) over the Ceno-359

zoic. By contrast,
187/188Os which has greater data density and comparable scale of un-360

certainty in datapoints, has more uncertainty in our reconstruction. This is due to os-361

mium’s extremely short residence time, and persists despite us using an artificially long362

length scale to reconstruct this signal. δ7Li by contrast has quite large uncertainties, due363

in large part to the uncertainty in the individual data constraints. We are unable to re-364

construct the rapid shift in δ7Li at the K-Pg boundary, which occurs faster than the mod-365

ern day residence time of lithium (see Section 5.2 for further discussion). Despite these366

challenges we believe reconstruction of these signals benefits from the Gaussian Process367

approach, in that uncertainties on our reconstruction are more representative, and the368

timescale of change in each signal aligns more closely to our expectations based on their369

residence times.370
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Figure 4. Our reconstruction of δ11Bsw is shown pink, with a central line depicting the me-

dian, and a window representing the 95 % confidence interval. Data constraints are shown by

the pink dots (here displayed without uncertainty for clearer comparison of signal trends). Other

related geochemical signals δ7Li,
87/86Sr, and

187/188Os are shown in yellow, green, and blue re-

spectively after Misra and Froelich (2012). Data constraining
87/86Sr and δ7Li is sourced from

Misra and Froelich (2012), while data constraining
187/188Os is compiled from a number of sources

(listed in the main text). We intepolate each of these signals with Gaussian Process with hyper-

parameters guided by the residence time of each signal.
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5 Discussion371

5.1 Decomposition of δ11B4372

δ11B4 is an integrated signal, combining the effects of δ11Bsw, pH, pK∗
B , and ε. Of373

these, only a few are time-variable (δ11Bsw, pH, and some of the factors which influence374

pK∗
B - temperature, and seawater elemental composition). The sensitivity of δ11B4 to375

these factors is such that only changes in δ11Bsw or pH would be of sufficient magnitude376

to drive the observed 8 ‰ change in δ11B4 across the Cenozoic, though temperature could377

have a non-negligible impact. To first order we might therefore simplify the δ11B4 record378

into two components, δ11Bsw and pH. Any change in δ11B4 not explained by changes in379

δ11Bsw must be the result of pH, and vice versa. Given the observed 8 ‰ change in δ11B4,380

and our reconstructed 2 ‰ change in δ11Bsw, this suggests roughly 6 ‰ of change has381

been driven by changing pH. That is roughly equivalent to an increase in pH of 0.4 units382

across the Cenozoic, or a decrease in hydrogen ion availability by 60%. By comparison,383

anthropogenic CO2 release has driven a surface ocean pH change of roughly 0.15 units,384

equivalent to a 41% increase in hydrogen ion availability (Findlay et al., 2022) relative385

to preindustrial conditions. Relative to their respective initial conditions, the anthropogenic386

surface ocean [H+] perturbation is therefore approximately two thirds the magnitude of387

long term change seen within the last 65 million years.388

5.2 δ11Bsw Rate of Change389

A key feature of the Gaussian Process methodology used here is the ability to draw390

smooth potential evolutions of δ11Bsw, which we augment by filtering samples to reject391

those with an unfeasibly high temporal gradient. The feasibility of the rate of change392

in δ11Bsw (and the hyperparameters which tune the Gaussian Process smoothness) are393

primarily based on the geochemical box modelling work of Lemarchand et al. (2000). Lemarchand394

et al. (2000) suggest that the likely maximum rate of change in δ11Bsw is 0.1 ‰/Myr.395

We acknowledge that this is based on modern fluxes – fluxes which are not exception-396

ally well constrained (Park & Schlesinger, 2002) – so (as described in Section 3) we al-397

low increasing maximum rates of change further back into the past - up to 0.7 ‰/Myr398

at 70 Ma. We choose the value of 0.7 ‰/Myr at 70 Ma because it allows us to enforce399

a rate limit near 0.1 ‰/Myr when we are most sure of that value (close to modern), with-400

out enforcing a strong limit earlier in the Cenozoic when we are much less certain about401

the residence time of boron and potential rate of change in δ11Bsw. 0.7 ‰/Myr is large402

enough that it does not result in rejection of potential evolutions in the earlier half of403

the Cenozoic, meaning the influence of the rate of change limit is mostly constrained to404

the rejection of samples as a result of their temporal gradient during the Neogene.405

Suggestions of a higher rate of change in δ11Bsw than previously recognised are present406

in the dataset of Greenop et al. (2017). The surface-deep δ11B4 pairs of Greenop et al.407

(2017) (as described in Section 2) appear to record a bimodal distribution, with some408

indicating δ11Bsw similar to modern, and others (mostly in the middle Miocene climatic409

optimum) suggesting δ11Bsw roughly 2 ‰ lower. These would appear to suggest oscil-410

lations in δ11Bsw more rapid than would be consistent with a rate of change of 0.1 ‰/Myr.411

We find that in order to match these data constraints, our Gaussian Process would need412

to have a length scale of approximately 3 Myr (which is very close to Park and Schlesinger413

(2002)’s estimate of the residence time of boron at 3.3Myr). Instead, we draw evolutions414

consistent with the rate of change suggested by (Lemarchand et al., 2000) - which re-415

quires that we give each non-Gaussian constraint (shown in Table 1) the possibility of416

being an outlier. The Gaussian Process then forges a path roughly through the centre417

of these constraints, drawn slightly high by the purportedly lower uncertainties in the418

higher δ11Bsw estimates.419

In summary, we proceed here under the existing paradigm of a long residence time420

for boron in seawater, and a slow rate of change in δ11Bsw. However, we acknowledge421
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the possibility that the rate of change in δ11Bsw is faster than currently appreciated, and422

look to further modelling efforts and an improved understanding of the boron cycle to423

guide future interpretation of the data collated here. Faster rates of change may be ex-424

plored with the algorithm presented here, but this increases the requirement for higher425

resolution data constraining δ11Bsw. Indeed our work underscores the value of, and need426

for more, data-derived δ11Bsw constraints outside of individual palaeoclimatic events.427

5.3 Comparison to
87/86Sr,

187/188Os, and δ7Lisw428

Figure 4 shows that there is a broad scale similarity between the temporal evolu-429

tion of δ11B, δ7Li,
87/86Sr and

187/188Os. In particular though, we observe greater sim-430

ilarity between δ11Bsw and
87/86Sr, and also between pH, δ7Li and

187/188Os. The sim-431

ilarity between
87/86Sr and δ11Bsw is present in the overall shape of both signals, and in432

both showing an inflection point at approximately the same time, around 35Ma. How-433

ever we note that
87/86Sr has been increasing continuously since 40 Ma, while our recon-434

struction of δ11Bsw begins to decline at approximately 10 Ma. Given
87/86Sr and δ11Bsw435

share many controls (such as weathering and hydrothermal influx), it is not surprising436

that their signals share some similarities.437

We note an excellent correspondence between δ11B4 and δ7Li (shown in Figures 3438

and 4, or together in Figure S1), in agreement with previous findings (Raitzsch & Hönisch,439

2013; Greenop et al., 2017) as well as similarity between δ11B4 and
187/188Os. Previously440

the correspondence between δ11B4 and δ7Li has been attributed to the overlap in drivers441

of δ11Bsw and δ7Li. Under the two component model described in Section 5.1, we pro-442

pose that similarity of δ11B4 and δ7Li could either be due to a relationship between δ7Li443

and δ11Bsw (as previously suggested by Raitzsch and Hönisch (2013)), or due to a re-444

lationship between δ7Li and pH, or a combination of both. δ11Bsw and δ7Li share drivers,445

as do pH and δ7Li, which are linked to weathering, clay formation, and seafloor spread-446

ing. These confounding factors make it difficult to ascribe this correlation to either the447

δ11Bsw or pH signals unambiguously (see Figure S1). If pH is prescribed to change slowly448

and linearly (as in Raitzsch and Hönisch (2013)), then, by necessity, δ11Bsw will reflect449

δ11B4 - requiring relatively rapid fluctuations in δ11Bsw. However, as discussed in Sec-450

tion 5.2, we proceed here under the assumption that the rate of change in δ11Bsw is as451

calculated in Lemarchand et al. (2000), removing the possibility of fast changes in δ11Bsw,452

and necessitating that δ11B4 and pH are tightly correlated. Therefore here, it is pH and453

δ7Li which have similar trajectories across the Cenozoic.454

Notwithstanding the broad scale correlation between δ7Li and δ11B4, we note an455

interesting divergence between these signals at the K-Pg boundary. At this time, there456

is a large excursion in δ7Li of approximately 5 ‰ in scale (almost as large as all the change457

which occurs during the rest of the Cenozoic). This excursion occurs at the same time458

as a large excursion in
187/188Os. While there is also a large perturbation in foraminiferal459

boron isotopes at approximately this time (Henehan et al., 2019), the temporal agree-460

ment is poor, and the nature of the two signals is different. δ11B4 undergoes an excur-461

sion but rapidly recovers to near pre-perturbation levels, whereas δ7Li values stay low462

for the next ∼15 million years. This indicates that the drivers of pH and δ7Li can be de-463

coupled. However, the recorded change in δ7Li at the K-Pg is extremely rapid, faster even464

than the modern residence time of lithium in seawater (approximately 1.2 Myr (Misra465

& Froelich, 2012)). It seems equally plausible that there is alternative, non-seawater, driver466

of foraminiferal δ7Li at this time. If this alternative control is linked to the carbonate467

system (as suggested by Vigier et al. (2015); Roberts et al. (2018)), similar effects could468

conceivably be influencing the correlation between δ11B4 and δ7Li more broadly during469

the Cenozoic. At present, however, studies disagree as to the nature of carbonate sys-470

tem control on foraminiferal δ7Li (Vigier et al., 2015; Roberts et al., 2018).471
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5.4 Palaeo pH and CO2472

pH is linked to the ocean carbonate system, with a particularly close relationship473

to atmospheric CO2 concentrations (Hain et al., 2018). The maximum offset between474

central estimates of the long term trajectory of the Cenozoic pH reconstruction of Rae475

et al. (2021) and our pH (shown in Figure 3) occurs during the Miocene (at approximately476

12 Ma) and is 0.15 units in scale. All other factors being equal, a fall in pH of 0.15 units477

would suggest an increase in atmospheric CO2 concentration of roughly 50%. Näıvely478

scaling Miocene CO2 estimates from Rae et al. (2021) results in CO2 concentrations of479

approximately 750 ppm after the Miocene Climatic Optimum (MCO). During the MCO,480

the offset between our predicted pH and previous work is slightly smaller, which would481

suggest (again, assuming all other factors are equal) an increase in atmospheric CO2 of482

45% relative to Rae et al. (2021). These suggestions of increased CO2 relative to pre-483

vious work come with the important caveat that, as mentioned above, the constraints484

on δ11Bsw in this interval are highly variable, perhaps suggesting additional complicat-485

ing factors which make δ11Bsw difficult to estimate at this time. Our reconstruction of486

δ11Bsw (and consequently pH) has high overall uncertainties during the Neogene to re-487

flect this. We encourage future work to provide additional constraints in this interval and488

across the Cenozoic.489

Secondly, uncertainties remain in estimates of the second carbonate system param-490

eter in the Miocene and throughout the Cenozoic. The difference in estimated CO2 from491

this work and Rae et al. (2021) may be partially or wholly ameliorated by changing our492

expectations of the second carbonate system parameter. In this case, the suggested higher493

atmospheric CO2 could be averted by a reduction in DIC relative to previous estimates494

- or the reality could lie somewhere in between, with atmospheric CO2 concentration mildly495

elevated compared to previous reconstructions, and DIC mildly lowered. Understand-496

ing of possible ocean DIC at this time is mostly derived from carbon cycle box models,497

supplemented by suggestions from the B/Ca proxy (Sosdian et al., 2018). The range in498

DIC estimates is from roughly 1200 µmol/kg to 2500 µmol/kg, meaning we are unable499

to disambiguate whether this record is truly indicative of higher CO2 concentrations at500

this time, or lower DIC concentrations, or a combination of both.501

6 Benefits of the Gaussian Process Approach502

The Gaussian Process methodology allows us to integrate data constraints with lim-503

itations on the rate of change in δ11Bsw from modelling, and (as described in Section 3)504

by tweaking the standard approach we are able to incorporate constraints with non-Gaussian505

uncertainty structures. Uncertainty in the reconstruction itself behaves intuitively, such506

that the spread in the reconstruction is guided by uncertainties in the data where avail-507

able, and grows larger with increasing separation from data constraints. The shape of508

the reconstruction is not specified a priori, as would be the case with parametric fits.509

Instead, the reconstruction can take on almost any shape as guided by the data constraints510

and chosen hyperparameters, allowing us to model arbitrary shapes in the evolution of511

δ11Bsw - and the other isotope systems reconstructed here (Figure 4).512

While the standard Gaussian process (constrained by data with Gaussian uncer-513

tainties) can directly predict the mean and variance of the signal being reconstructed,514

our approach is reliant on drawing samples from the Gaussian Process and then filter-515

ing them to adjust the posterior prediction. Once this process is complete we have 10,000516

possible time series which are plausible evolutions in δ11Bsw over the last 65 Myr. The517

10,000 possible evolutions can be summarised by their mean, median, and/or 95% con-518

fidence interval, but retaining each of the possibilities makes it possible to propagate un-519

certainties into future data products. For instance, uncertainty in palaeo pH can be prop-520

agated by using a Monte Carlo approach whereby each of these evolutions is sampled521

alongside other required parameters to provide 10,000 possible evolutions of pH. Keep-522
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ing each possible evolution maintains the embedded covariance structure, meaning that523

it is possible to calculate derivative properties (such as the change in δ11Bsw or pH be-524

tween one time and another), which would not be possible to do from metrics such as525

the mean and standard deviation. This is particularly beneficial in the context of recon-526

structing the palaeo carbonate system as trends in parameters are often more robust than527

their absolute value. For instance, for short time windows (relative to the residence time528

of boron), although we may not know the absolute value of δ11Bsw, we believe that it529

can not have changed substantially. Combining the δ11Bsw statistical samples generated530

here with a Monte Carlo approach allows uncertainty to be propagated in such a way531

as to explore the full range of absolute values for δ11Bsw while each sample preserves a532

reasonable ∆δ11Bsw (see Tierney et al. (2022) for an example of how an analogous ap-533

proach was used to constrain change in atmospheric CO2 concentration). As the 10,000534

possible evolutions of δ11Bsw that we provide are considered equally likely, it also allows535

further filtering. For instance if looking at a particular time period, or new information536

comes to light, which means we are able to be more certain about the rate of change in537

δ11Bsw, then the samples provided here can be refiltered to enforce the more restrictive538

condition - though naturally this will result in a decreased number of valid samples and539

weakened statistical power.540

In summary, we believe the Gaussian Process approach provides benefits both in541

being able to provide a holistic representation of our understanding of δ11Bsw from data542

and modelling, but also in terms of producing results which make facilitate more sophis-543

ticated forms of onward uncertainty propagation.544

7 Limitations545

The Gaussian Process methodology used in this work has many properties that make546

it ideal for geochemical data interpolation, but also has a few caveats. The first is that547

input data constraints are expected to be Gaussian distributions. As discussed above and548

in Supplement S1, we adjust the standard Gaussian Process methodology by using a re-549

jection sampling strategy to incorporate other types of constraint.550

The second limitation of the Gaussian Process is more fundamental. The two hy-551

perparameters which tune the fit describe the length scale and noise scale, as described552

above (Section 3). Here, we use the residence time of each element as the length scale553

of the Gaussian Process, however those concepts are not identical. In particular, as most554

signals we are reconstructing here are isotope ratios, the concept of elemental residence555

time is not necessarily directly applicable. Nonetheless, we believe that using the res-556

idence time as a guide for the rate of change in these signals is an improvement over us-557

ing parametric methods, or non-parametric methods with arbitrary smoothing param-558

eters. In particular, for δ11Bsw, we are not strongly reliant on the assumption that the559

Gaussian Process length scale is equivalent to the residence time because Lemarchand560

et al. (2000) provide a direct rate of change estimate which we use as a constraint. Given561

a residence time for boron of 10 Myr, and a rate of change of δ11Bsw of 0.1 ‰/Myr, this562

implies a noise scale of 1 ‰. However, 1 ‰ is a small range for uncertainty where there563

are no data constraints. Increasing the noise scale results in rates of change incompat-564

ible with rate of change presented in Lemarchand et al. (2000) unless the length scale565

is commensurately increased - however this is then inconsistent with our understanding566

of the residence time of boron in seawater. Our solution to this is to use values which567

permit slightly faster changes than suggested by Lemarchand et al. (2000) - a length scale568

of 10 Myr, but a noise scale of 2 ‰, then filtering out results which are incompatibly569

fast.570

Using the Gaussian Process with the methodology described here is highly com-571

putationally intensive. Each generated sample has only a small change of being accepted,572

and it is necessary to try tens of millions of possibilities to achieve 10,000 viable statis-573
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tical samples. It is inherent in the rejection sampling methodology to be inefficient in574

this way, and the more criteria that are used (or the more restrictive those criteria are)575

the less efficient this method becomes. In future, we may look to alternative statistical576

techniques to increase our efficiency and allow us to explore a greater range of possibil-577

ities, in particular with respect to gradient limitations and signal smoothness.578

Our reconstruction of δ11Bsw is also limited by our understanding of past ocean579

conditions. As discussed in Section 1, most constraints on δ11Bsw are at some level de-580

pendent on models. Typically, a wide range of model conditions were used to predict ver-581

tical gradients in δ13C and pH, and an even wider range was used in uncertainty prop-582

agation to calculate these estimates (see for instance, Greenop et al. (2017)). Nonethe-583

less, it would be remiss not to acknowledge that models are a simplification of reality,584

meaning it is possible that ocean occupied a different mode in the past where the ver-585

tical gradients in δ13C and pH were decoupled or otherwise difficult to predict. Over-586

all, the data constraints in this work are contingent upon carbon cycle model simulations587

producing realistic ranges for the δ13C vs pH gradient, and the validity of assumptions588

which determine AOU, while our reconstruction itself is dependent on these data and589

the rate of change determined from modelling of the boron cycle.590

8 Conclusions591

We provide Cenozoic reconstructions of δ11Bsw by collating existing data constraints592

and integrating these into a Gaussian Process based statistical approach. This allows us593

to bring together varying types of constraint (including central estimates, lower and up-594

per limits, and other forms of distribution) while rigorously propagating uncertainties.595

Our results suggest that δ11Bsw was slightly higher than previously thought during the596

Miocene, but are generally in agreement with previous estimates of δ11Bsw during the597

remainder of the Cenozoic. Generally speaking, uncertainties on δ11Bsw are approximately598

1 ‰, apart from during the Neogene where large uncertainties on data constraints prop-599

agate to large uncertainties in our reconstruction. Our higher estimated δ11Bsw is indica-600

tive of lower Miocene pH than previously thought, though we acknowledge high uncer-601

tainties during this time.602

We see an notable correspondence between δ11B4 and δ7Li, something which has603

previously been used to infer that δ11Bsw likely followed a similar trajectory to δ7Li (Raitzsch604

& Hönisch, 2013). However the evolution of δ11Bsw constrained here shows that the ma-605

jority of the Cenozoic change in δ11B4 was driven by pH, indicating that links between606

the controls on pH and δ7Li are perhaps the more important control on the similar tra-607

jectories of δ11B4 and δ7Li.608

Uncertainties in our reconstruction are largest where boron isotope data are sparse,609

such as during the Oligocene, or where datapoints are in disagreement with one another,610

such as during the Neogene, and we encourage the generation of future records to tar-611

get these intervals. Looking forward, it would undoubtedly be helpful to find more di-612

rect proxies for δ11Bsw, and to improve constraints on the various models which guide613

both the data constraints, and limits on the rate of change in δ11Bsw. However, using614

this method we are able to constrain δ11Bsw to a range of ±1 ‰ across most of the Ceno-615

zoic, improving current estimates. Results from this study can be used to propagate un-616

certainties in δ11Bsw into future reconstructions of palaeo pH from boron isotopes and,617

by extension, palaeo CO2 . We provide both the metrics which describe our reconstruc-618

tion of δ11Bsw (the median, and 95% confidence interval), but also provide 10,000 sta-619

tistical samples of possible evolutions of δ11Bsw. Uncertainty in δ11Bsw can then be prop-620

agated into future data products using a Monte Carlo approach as described in Section 6.621

In addition we provide analogous information for all signals reconstructed here using the622

Gaussian Process (δ11B4, pH,
87/86Sr,

187/188Os, and δ7Li).623
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9 Open Research624

9.1 Data Availability625

All code used in and produced by this project is stored within our GitHub Repos-626

itory: https://github.com/St-Andrews-Isotope-Geochemistry/d11Bsw-Gaussian627

-Process and a final version will be archived on Zenodo on publication. Data files as-628

sociated with this project are currently privately shared at the following link: https://629

figshare.com/s/043a054532aea2348125, and by the time of publication will be per-630

manently and publically archived. Three data files are provided which include:631

• Data output for δ11Bsw in the form of a .xlsx file, which contains both summary632

metrics and all 10,000 time series realisations.633

• Original data, metrics summary of the reconstruction, and 10,000 individual sta-634

tistical samples for
87/86Sr,

187/188Os, and δ7Li in a .xlsx file.635

• Metrics summary of the reconstruction, and individual statistical samples for δ11B4636

and pH in a .xlsx file.637

Two forms of output for δ11Bsw are given, because while the median and 95% confidence638

interval give a sense of reasonable values and allow easy plotting, they are unable to con-639

vey the covariance embedded in each Gaussian Process sample. Thus for uncertainty prop-640

agation in future calculations, we recommend using the time series contained within the641

.xlsx file. This methodology allows propagation of both uncertainties in δ11Bsw and also642

the rate of change of δ11Bsw as described in Section 6.643

9.2 Software Availability644

Software used in the project is written in Python, and is available on our GitHub645

repository during peer review: https://github.com/St-Andrews-Isotope-Geochemistry/646

d11Bsw-Gaussian-Process, and will be permanently archived on Zenodo on publica-647

tion. It uses a software package we’ve written to perform the statistical calculations, in648

particular representing distributions, drawing samples, and performing the Gaussian Pro-649

cess interpolation. Scripts to perform the calculation, analyse the output, and display650

the results are also included.651
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1. Gaussian Processes With Non-Gaussian Constraint Noise

1.1. Introduction

In the main text, we gave a brief overview of the Gaussian Process methodology as it

related to reconstruction of δ11Bsw. Here we give a fuller, more generalised and statistically

rigorous description of the Gaussian Process methodology, including how it was adapted

to incorporate each style of constraint mentioned in the main text. We then illustrate

how this technique works in practice by testing it against a hypothetical signal with noisy

constraints, with a step by step walkthrough of integrating various forms of information

analogous to the types of constraint we have on δ11Bsw.

Suppose that we observe a function f(·) subject to (potentially non-Gaussian) noise in

constraints at a set of known times ti, i.e.,

yi = f(ti) + ϵi for i = 1, . . . ,M.

Here, ϵi can be a general probability distribution and is not required to be a standard

Gaussian. Furthermore, suppose that we may have some further constraints on the value

of f(t) for certain values of t (e.g. lower/upper bounds), or additional non-standard

information on the values of f(t) (such as constraints on the change in value over time

df
dt
).

We wish to obtain a non-parametric posterior estimate of the function f(·) modelled

as a Gaussian Process (GP) given both the potentially complex observations yi and any

additional non-standard information. In the standard GP setting, the function f(·) is

assumed to be observed subject to normally distributed noise. As a consequence, the

exact posterior for f given y can be easily calculated directly. However, when the available

September 22, 2023, 10:13am



: X - 3

constraints ϵ are non-Gaussian, the GP’s posterior can not be written down exactly and

is much more challenging to calculate, as it does not take a standard form. To obtain

posterior samples under such a non-Gaussian constraint model, we therefore implement

a rejection sampling approach. Specifically, we aim to draw from a nearby distribution

(from which it is possible to sample directly) and then reject/accept these samples using

rejection sampling principles to obtain the correct GP posterior under our non-Gaussian

constraint model.

To explain our approach in this Supplementary Information, we will first provide a

brief background to Gaussian Processes and explain how they are usually fitted in the

context of non-parametric regression given a set of constraints with Gaussian noise. We

then introduce the idea of rejection sampling before going on to show how this idea can be

used to sample from the posterior of a Gaussian Process in the presence of constraints with

non-Gaussian uncertainty (or when additional, non-standard information is available).

1.2. Definition of a Gaussian Process (GP) Prior

A (one-dimensional input) zero-mean Gaussian Process f(z) ∼ GP(0, k(t, t′)) is a col-

lection of random variables, any finite number of which have a joint Gaussian distribution

(Rasmussen & Williams, 2006). It is completely specified by its covariance function:

k(t, t′) = E[f(t)f(t′)].

When using a Gaussian Process to perform regression, the random variables represent the

values of the function f(t) at time t. For a set of N times t⋆ = (t⋆1, t
⋆
2, . . . , t

⋆
N)

T , our prior

specifies

f⋆ = f(t⋆) ∼ N (0, Kt⋆,t⋆),

September 22, 2023, 10:13am



X - 4 :

where Kt⋆,t⋆ denotes the matrix of the covariances evaluated at all pairs of the times t⋆i .

1.3. Updating the GP Prior under a Normal Observational Model

Typically, when performing non-parametric regression, we assume that we observe the

function f(t) subject to normally-distributed noise, i.e.,

y = f(t) + η

where the noise η ∼ N (0,Σ). This observational noise may have dependence encoded in

the covariance matrix Σ but critically is assumed to be normally distributed. In such a

situation, we can use the standard properties of the multivariate normal distribution to

derive the posterior distribution for our function values at our times of interest t⋆ exactly:

f⋆|t,y, t⋆ ∼ N (f̄⋆, cov(f⋆)),

where

f̄⋆ = KT
t,t⋆ [Kt,t + Σ]−1y,

cov(f⋆) = Kt⋆,t⋆ −KT
t,t⋆ [Kt,t + Σ]−1Kt,t⋆ .

See Rasmussen and Williams (2006) for full details. However, as soon as the observational

model becomes non-normal, i.e., it is no longer the case that yi|f(ti) ∼ N(f(ti), σ
2
i ) then

the GP posterior becomes much more complex and will no longer take the form of a

simple multivariate normal. To estimate the posterior distribution in such instances, we

will therefore take a different approach based upon rejection sampling.

1.4. Rejection Sampling

Rejection sampling is a general purpose method that enables sampling from non-

standard distributions. Suppose we wish to sample X from a particular target probability
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density fX(x) but, for some reason, we cannot do so directly. However, suppose there

exists an alternative envelope density function gZ(z) from which we can sample that satis-

fies the condition fX(x)
gZ(x)

bounded ∀x. For any constant c ≥ supx
fX(x)
gY (x)

, we can then obtain

samples from our desired target fX(x) using the following rejection method:

1. Sample z from an envelope density that is proportional to gZ(z), and a uniform u

from U [0, 1].

2. If u ≤ fX(z)
c gY (z)

, state X = z, otherwise return to step 1.

For maximum efficiency we therefore want c, i.e., supx
fX(x)
gZ(x)

as small as possible. We

therefore aim to find an envelope density function gZ that is both easy to sample from

and mimics the target fX as closely as possible. The concept of rejection sampling is

shown graphically in Figure S3.

2. Rejection Sampling GPs with Non-Gaussian Noise

Returning to our specific non-parametric regression, suppose that we observe a function

subject to (potentially non-Gaussian) noise at a set of known times ti,

yi = f(ti) + ϵi for i = 1, . . . ,M.

We wish to place a Gaussian Process prior on the values of f(t) and then sample from

the posterior under the (potentially non-Gaussian) observational model ϵ,

pϵ(f |y) =
pϵ(y|f)π(f)

pϵ(y)
∝ pϵ(y|f)π(f). (†)

Due to the non-Gaussian nature of ϵ, we cannot directly sample from this posterior dis-

tribution. However we can sample from an alternative distribution of our choosing and

then use rejection sampling principles. We will typically use the GP posterior under a
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normally-distributed error model for this envelope distribution. This η-error model as

discussed in Section 1.3 can be calculated precisely and, in general, will hopefully be close

to the true target posterior. Having chosen a suitable envelope density, proportional to

g(f |y), the rejection algorithm thus becomes:

1. Calculate c‡ = supf
pϵ(y|f)π(f)

g(f |y)

2. Sample from the envelope density g(f ‡|y) a potential f ‡ at both times of interest t⋆

and the times t at which we have observations y

3. Sample u ∼ U [0, 1], if u ≤ pϵ(y|f‡)π(f‡)
c‡g(f‡|y) then accept f = f ‡ as a draw from the correct

posterior, otherwise return to step 2.

The calculation of both c‡ and the acceptance criteria in step 3 will generally only de-

pend upon the sampled values of f ‡ at the times t with observations. This will reduce

calculation. Furthermore, we note that pη(y|f) =
∏N

i=1 pηi(yi|f(ti)) if the observations

are independent. Exceptions may however occur if we have additional, non-standard,

constraints such as on the range or variation of the function f(·).

We can repeat this rejection sampling technique until we obtain a large number of

posterior realisations f from the target distribution (that corresponds to the general ob-

servational noise model). These can then be summarised by Monte Carlo to provide

posterior means and variances for any f(t).

2.1. Rejection Sampling Implementation

Our rejection sampling algorithm to sample from the correct posterior under a general

observational error model ϵ then becomes (after cancelling common terms):
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1. Sample fη at times of interest t⋆ and also times t at which we have observations y

from GP posterior under normally-distributed η error model.

2. Sample u ∼ U [0, 1], if u ≤ pϵ(y|fη)
c⋆ pη(y|f) (where, as defined above, c⋆ = supf

pϵ(y|fη)
pη(y|f) ) then

accept f = fη as a draw from the correct posterior, otherwise return to step 1. Again, we

note that this only depends upon the sampled values of fη at the times t with observations

and that, e.g., pη(y|f) =
∏N

i=1 pηi(yi|f(ti)) if those observations are independent.

We repeat this sampling technique until we obtain a large number of posterior realisa-

tions f from the target distribution (that correspond to the general observational noise

model) which can then be summarised by Monte-Carlo.

3. Specific Examples

While the rejection sampling approach may appear complicated, in many instances it

will simplify considerably. We discuss some specific examples below.

3.1. Incorporating Upper and Lower Bounds

Suppose that we have a set of normally-distributed observations y but, in addition, a

further set of values z = (z1, . . . , zK)
T that operate as upper bounds on the unknown

function, i.e., it is the case that f(tbj) < zj for given times tb1, . . . , t
b
K . In this case, we

consider that these K additional values are entirely uninformative about the value of f(t)

beyond providing such a bound. Consequently, the target posterior is:

p(f |y, z) ∝

{
M∏
j=1

1[f(tbj)<zj ]

}
pη(y|f)π(f),

where pη(y|f) is the usual normal likelihood function for the observations y. For our

envelope function, we can sample directly from the GP posterior considering just the
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regular, normally-distributed, observations y, i.e., g(f |y) ∝ pη(y|f)π(f) so that our c‡ = 1.

Our algorithm then becomes simply:

1. Sample f ‡ from the standard GP posterior based upon normally-distributed obser-

vations y at both times of interest t⋆ and the times tb at which there are upper bounds.

This can be done as described in Section 1.3

2. Accept f ‡ as a draw from the true target posterior if it satisfies all the constraints

z; otherwise reject and return to step 1.

This has a straightforward analogue when we have combinations of upper and lower

bounds.

3.2. Incorporating Non-Gaussian Observations

When our observations y are subject to non-normal noise (which we have denoted by

η) then an appropriate envelope density to use for rejection sampling might be the GP

posterior for f had the noise been normally distributed (see Figure S3). In other words, we

use might use a GP conditioned on observations with normal noise as our initial estimate

of the posterior, then refine this through rejection sampling, i.e., the posterior for f(·)

under the model:

yi = f(ti) + ηi for i = 1, . . . , n.

where η ∼ N(0, σ2
i ). In this case the envelope function is g(f |y) = pη(f |y) = pη(y|f)π(f).

This distribution is known, see Section 1.3, and it is easy to sample from it directly. To

perform rejection sampling, we are required to calculate

c† = sup
f

pϵ(y|f)π(f)
pη(y|f)π(f)

= sup
f

pϵ(y|f)
pη(y|f)

.
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Since pη(y|f) is a normal distribution with infinite support, this supremum will exist

for almost all alternative errors models (unless they have different tail behaviour). The

calculation of c† only depends upon the sampled values of f at the times t for which we

have observations y. Furthermore, if the observations yi are independent, the numerator

and denominator in the supremum can be calculated as independent products since, e.g.,

pη(y|f) =
∏N

i=1 pηi(yi|f(ti)). Our rejection sampling algorithm to sample from the correct

GP posterior under a general observational error model ϵ then becomes:

1. Sample f ‡ at times of interest t⋆ and also times t at which we have observations y

from GP posterior under normally-distributed η error model.

2. Sample u ∼ U [0, 1], if u ≤ pϵ(y|f‡)
c† pη(y|f‡) , then accept f = f ‡ as a draw from the correct

posterior. Otherwise return to step 1.

Again, the acceptance criteria in step 2 only depends upon the sampled values of f ‡ at the

times t corresponding to the observations y. Also, if the observations y are independent,

then the likelihood terms reduce to products, e.g., pη(y|f) =
∏N

i=1 pηi(yi|f(ti)).

Modelling Outlying Observations: A specific instance where we may wish to consider

non-normal noise occurs if we believe that some of the observations y may be outliers.

In such situations, we are required to select both the probability w of an observation yi

being an outlier and, when it is an outlier, its specific distribution. We will denote the

observational noise in an outlier model as ζ. Our likelihood for the observed yi given f(ti)

then becomes a mixture:

pζ(yi|fi) = (1− w)pϵ(yi|fi) + wpo(yi|fi)
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Here, pϵ(yi|fi) is the quoted non-outlier likelihood; and po(x) the selected outlier likeli-

hood. A natural choice for po(yi|fi) may be a uniform distribution U [fi − a, fi + b] where

a and b are chosen suitably (or even simply U [a, b]). We can then proceed as above using

the mixture pζ(x) as our observational model.

3.3. Additional Constraints

We are also able to incorporate additional types of constraints on the value of the

function beyond simply direct observations of the function at individual times. Examples

might include additional prior information, or observed information that might depend

upon the value of the function at multiple times. For example, suppose that we have a

belief that the gradient of the pH function should not change by more than x per million

years. This can be encapsulated by modifying π(f), the standard GP prior, to instead be

π′(f) ∝ 1[max gradient<x]π(f). To include this additional belief, we can simply sample from

the standard (non-gradient-constrained) GP posterior, and then reject those realisations

for which the maximum gradient is greater than x per million years. We note that, in

practice, we estimate the maximum gradient of the function by sampling the GP extremely

densely in time.

Aside: We can build up our posterior by using the GP posterior from a subset of

the observations; and then use rejection sampling to adjust/update this for the full set of

observations. Suppose that we observe yi = f(ti) + ϵi for i = 1, . . . ,M . We can sample

from a reduced posterior considering all the observations excluding one, without loss of

generality we suppose this is yM :

g(f |y1, . . . , yM−1) ∝
M−1∏
i=1

pϵ(yi|fi)π(f).

September 22, 2023, 10:13am



: X - 11

To update this preliminary distribution to the full target posterior using all the obser-

vations, we sample from the reduced posterior g(f |y1, . . . , yM−1) ensuring we include the

value at fM = f(tM). We then accept this draw with probability pϵ(yM |fM )
maxf pϵ(yM |fM )

. Other-

wise we sample from the reduced envelope again. This reduced-to-full approach is however

likely to be much less efficient than sampling from an appropriate envelope based upon

all the samples.

4. Rejection Sampling for δ11Bsw with Diverse Constraints

When reconstructing δ11Bsw we have multiple types of constraints: non-Gaussian ob-

servations, upper/lower bounds, and restrictions on the maximum rate of change over

time. We are required to integrate all these varied constraints into our GP posterior. We

illustrate how this is achieved in Figure S4. The large upper panel shows a hypothetical

signal (in the thick black line) which is assumed unknown. We wish to reconstruct this

function using a Gaussian Process and five noisy observations. Three observations, shown

in blue, are subject to Gaussian noise (displayed at 1 standard deviation uncertainty).

The other two observations, shown in green, are subject to non Gaussian noise reminis-

cent of a Tukey window - derived from a uniform distribution with Gaussian noise in the

end members.

Here a Gaussian Process with prescribed hyperparameters (length scale of 15, noise

scale of 30) assimilates the three observations with Gaussian uncertainty. This will be our

envelope density. Three proposed samples are drawn from the Gaussian Process, shown

in grey and labelled: a (dashed line), b (dotted line), and c (solid line). Looking at each

sample in the upper panel, we see that:
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• Gaussian Process sample a is completely inconsistent with the non-Gaussian obser-

vation around t = 70.

• Gaussian Process sample b is potentially consistent with both non-Gaussian observa-

tions, but is right at the limits of the possible outcomes for the constraint around t = 30.

• Gaussian Process sample c is consistent with both non-Gaussian observations - pass-

ing through a high probability region of both.

Each of the five observations is shown in a separate subpanel beneath the main time

series. We might consider these as time slices through the main panel, displaying each

observation probabilistically. The true value of the signal at these times is shown by the

black horizontal line in each panel. The value of each Gaussian Process sample at the

time slices is shown in the panels with the corresponding line style.

To assimilate observations with non-Gaussian uncertainties (shown in green), we use

a rejection sampling strategy described above. To calculate a probability of acceptance,

first each non-Gaussian distribution is scaled such the the maximum is equal to one (as

shown in the lower panels). Then for each sample drawn from the Gaussian Process, the

relative likelihood of the sample is calculated (this is shown numerically for each sample

in the lower panels). The relative likelihood of each sample from the Gaussian Process is

the product of the likelihoods at each of these individual timeslices.

• Gaussian Process sample a has a 1.0× 0.0 = 0 probability of acceptance.

• Gaussian Process sample b has a 0.56× 1.0 = 0.56 probability of acceptance.

• Gaussian Process sample c has a 1.0× 1.0 = 1.0 probability of acceptance.
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This strategy allows us to draw samples which are consistent with different types of

observation - though we note there are potential failure conditions. If one of the non-

Gaussian observations were much higher than the Gaussian observations, every sample

would receive a 0 probability of acceptance. We mitigate against this failure condition by

giving non-Gaussian constraints the possibility of being an outlier (as described above in

Section 3.2).

In addition to the types of constraints shown above, we also place limitations on the

rate of change in δ11Bsw. The same technique as shown for the non-Gaussian constraints

is used to enforce these constraints. Using the same synthetic example, this would appear

as in Figure S5.

Here the gradient in each of the samples is calculated using the first difference, and a

weight for each sample can be determined by comparing this gradient to the constraints.

In both the synthetic data example and the δ11Bsw reconstruction we place a uniform

prior on the gradient, which effectively describes the maximum rate of change (either

in a negative or positive direction). This is displayed using horizontal bars in the large

panel, within which the signal must fall, and each uniform window is plotted in individual

subpanels underneath. We see that two samples remain within the imposed constraints,

whereas the sample a is incompatible with both the earliest and latest constraint.

The prescribed maximum rate of change in both the synthetic example and the recon-

struction of δ11Bsw depends on time. In the synthetic example, the gradient is constrained

in three places, with increasing acceptable range from ±0.2 units in the earliest constraint

to ±0.6 units in the latest. For δ11Bsw, the maximum rate of change is constrained for each
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discretised age window (at a resolution of 0.1Myr), and grows linearly from 0.1‰/Myr in

the modern day to 1‰/Myr at 100Ma to account for increasing uncertainty in this limit.

If we run the algorithm described above for 10,000 Gaussian Process samples, accepting

and rejecting the proposed samples according to the rejection algorithm, we can obtain

a set of realisations from the complete posterior that incorporate all the various forms of

information we have on its value: the three Gaussian observations, the two non-Gaussian,

and the gradient constraints. We can then summarise these using a median and 95%

pointwise posterior probability window and compare agreement to the underlying original

signal as shown in Figure S6. We see a good match, within the limitations imposed by

not having many observations on which to base our reconstruction, and considering that

each of these observations has substantial uncertainty.
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5. Data File Description

5.1. Data Supplement S1

Data Supplement S1 is an excel file containing two worksheets. The first has every

accepted reconstructed δ11Bsw time series, with age in each column, and an independent

statistical sample in each row. The second worksheet contains summary metrics, specif-

ically the median and 5% and 95% quantiles of the time series. These quantiles give a

sense of uncertainty at any individual time, and can be used to propagate uncertainties

when targeting absolute pH reconstructions from δ11B4 within a narrow time window.

When looking at longer term trends, or robustly assessing uncertainty in change in pH,

the full time series should be integrated by sampling from the time series presented in the

former tab.

5.2. Data Supplement S2

Data Supplement S3 is an excel file containing three triples of worksheets (nine in total)

which contain the data, summary metrics for fits, and 10,000 Gaussian Process samples

for the evolution of 87/86Sr, δ7Li, and 187/188Os (as shown in Figure 4 and Figure S1).

Strontium and lithium signals are taken from Misra and Froelich (2012). Osmium

deserves special mention here as no Cenozoic compilation was found in an accessible

format. Our Cenozoic 187/188Os record was constructed from previously published data

in Josso et al. (2019); Klemm, Levasseur, Frank, Hein, and Halliday (2005); Oxburgh

(1998); Oxburgh, Pierson-Wickmann, Reisberg, and Hemming (2007); Paquay, Ravizza,

Dalai, and Peucker-Ehrenbrink (2008); Paquay, Ravizza, and Coccioni (2014); Pegram

and Turekian (1999); Peucker-Ehrenbrink and Ravizza (2000, 2020); van der Ploeg et al.
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(2018); Ravizza (1993); Ravizza and Turekian (1992); Ravizza and Peucker-Ehrenbrink

(2003); Ravizza, Norris, Blusztajn, and Aubry (2001); Reusch, Ravizza, Maasch, and

Wright (1998); Robinson, Ravizza, Coccioni, Peucker-Ehrenbrink, and Norris (2009).

Ages of the data from Paquay et al. (2008) were adjusted to match the age model of

the record of Paquay et al. (2014). Our 187/188Os compilation integrates data from pelagic

sediments and Fe-Mn crusts into a single record. The trends are broadly consistent with

those previously reported in Peucker-Ehrenbrink and Ravizza (2020), however we are able

to produce a representative curve with propagated uncertainties using a Gaussian Process.

For most signals in this work we have used the residence time of the element in question

to determine the length scale of the Gaussian process, however in the case of osmium

the residence time is too short (Oxburgh, 2001) for this to be viable given the current

data density. Instead we choose a low (1 Myr) but still inflated value which bridges the

gaps between data without overly smoothing the signal, in order to produce the curve we

believe to be most representative.

5.3. Data Supplement S3

Data Supplement S3 is an excel file containing four worksheets describing summary

metrics and 10,000 possible evolutions of δ11B4 and pH (as shown in Figure 3 and Fig-

ure S1).
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Figure S1: δ11Bsw (pink), δ11B4 (purple), pH (red), 87/86Sr (yellow), δ7Li (green), and
187/188Os (blue) are shown here with the same style as shown in the two separate plots in
the main text. We provide an large summary figure here for easy comparison of the six
signals.
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Figure S2: The temporal gradient in our δ11Bsw samples is shown by the blue window, with
the mean average shown in grey. Our imposed limitation on the gradient of δ11Bsw through
time is shown by the dotted black lines. Any sample drawn outside of these bounds would
be rejected. It can be seen that the limitations have most influence between the Neogene
and modern, and further back do not result in rejection of any samples.
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Figure S3: An illustration of rejection sampling. We aim to sample from the dotted
blue saw-tooth density (shown as a dotted blue line) using a Gaussian distribution as
the envolope (shown in solid blue). The Gaussian envelope has been rescaled from a
standard Gaussian distribution so it encapsulates the target sawtooth density. To obtain
a sample from the sawtooth distribution, we first sample a value envelope density. We
show hypothetical three values z1 = 30, z2 = 45 and z3 = 60. The probability of accepting
each sample zi as a draw from the sawtooth distribution is then the ratio of the height
of the target (dotted line) compared to the height of the envelope (solid blue line). These
probabilities are 0.3, 0.83, and 0 respectively for our three hypothetical zi samples.
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Figure S4: Calculating the GP posterior by rejection sampling that combines multiple
constraints of both Gaussian and non-Gaussian types. Multiple samples are taken using
a Gaussian Process conditioned on only the Gaussian constraints (samples are shown
in the grey lines), and for each we quantify the probability of that sample at each data
constraint (the blue and green windows). The probability of each sample is the product of
the probabilities of that sample at each data constraint, meaning that sample a is rejected
(it does not match the fourth data constraint), while other are likely to be accepted. This
is described further in Section 3.3.
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Figure S5: Incorporating constraints on the gradient into estimation of δ11Bsw. The main
plot shows the estimated gradient ∆Value of our function over time. The subplots shown
the gradient constraint we impose upon the signal, and the probability of observing each
statistical sample at that time. Note that here we impose gradient constraint only a three
discrete locations, whereas in the main text we apply a continuous limitation on the rate
of change in δ11Bsw.
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Figure S6: Reconstruction of the function shown in black incorporating information from
noisy Gaussian observations (in blue) and non-Gaussian observations (in green) and gra-
dient restrictions (in purple in Figure S5). The yellow line shows our central estimate,
with a 95% confidence interval shown in the yellow shaded region.
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