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Abstract

Numerical simulations of weather and climate models are conventionally carried out using double-precision floating-point num-
bers throughout the vast majority of the code. At the same time, the urgent need of high-resolution forecasts given limited
computational resources encourages development of much more efficient numerical codes. A number of recent studies has
suggested the use of reduced numerical precision, including half-precision floating-point numbers increasingly supported by
hardware, as a promising avenue. In this paper, the possibility of using half-precision calculations in the radiation scheme
ecRad operationally used in the ECMWF’s Integrated Forecasting System (IFS). By deliberately mixing half-, single- and
double-precision variables, we develop a mixed-precision version of the Tripleclouds solver, the most computationally demand-
ing part of the radiation scheme, where reduced-precision calculations are emulated by a Fortran software rpe. By employing
two tools that estimate the dynamic range of model parameters and identify problematic areas of the model code using ensemble
statistics, the code variables were assigned particular precision levels.

It is demonstrated that heating rates computed by the mixed-precision code are reasonably close to those produced by the double-

precision code. Moreover, it is shown that using the mixed-precision ecRad in OpenIFS has a very limited impact on the accuracy

of a medium-range forecast in comparison to the original double-precision configuration. These results imply that mixed-precision

arithmetic could successfully be used to accelerate the radiation scheme ecRad and, possibly, other parametrization schemes

used in weather and climate models without harming the forecast accuracy.
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Abstract14

Numerical simulations of weather and climate models are conventionally carried out us-15

ing double-precision floating-point numbers throughout the vast majority of the code.16

At the same time, the urgent need of high-resolution forecasts given limited computa-17

tional resources encourages development of much more efficient numerical codes. A num-18

ber of recent studies has suggested the use of reduced numerical precision, including half-19

precision floating-point numbers increasingly supported by hardware, as a promising av-20

enue. In this paper, the possibility of using half-precision calculations in the radiation21

scheme ecRad operationally used in the ECMWF’s Integrated Forecasting System (IFS).22

By deliberately mixing half-, single- and double-precision variables, we develop a mixed-23

precision version of the Tripleclouds solver, the most computationally demanding part24

of the radiation scheme, where reduced-precision calculations are emulated by a Fortran25

software rpe. By employing two tools that estimate the dynamic range of model param-26

eters and identify problematic areas of the model code using ensemble statistics, the code27

variables were assigned particular precision levels. It is demonstrated that heating rates28

computed by the mixed-precision code are reasonably close to those produced by the double-29

precision code. Moreover, it is shown that using the mixed-precision ecRad in OpenIFS30

has a very limited impact on the accuracy of a medium-range forecast in comparison to31

the original double-precision configuration. These results imply that mixed-precision arith-32

metic could successfully be used to accelerate the radiation scheme ecRad and, possi-33

bly, other parametrization schemes used in weather and climate models without harm-34

ing the forecast accuracy.35

Plain Language Summary36

Weather and climate forecasts can be made more realistic by using more complex37

models of physical processes or by resolving finer scales. Any of these approaches requires38

a significant increase of computational power. Recent studies have demonstrated that39

the accuracy may be improved at no computational cost by reducing numerical preci-40

sion which defines the accuracy of individual arithmetic operations. In particular, it looks41

attractive to replace double-precision numbers (a single number is stored in 64 bits) with42

half-precision ones (a single number is stored in 16 bits) whose support by new hardware43

is increasingly being expanded. This papers describe how this can be done for the ra-44

diation scheme ecRad operationally used in ECMWF’s Integrated Forecasting System45

(IFS). By estimating the spread of values of code variables and identifying problematic46

code parts using ensemble statistics, all the variables were assigned half-, single- or double-47

precision levels. The resulting mixed-precision version of ecRad is shown to produce the48

output which barely differs from the original one even if the majority of variables are stored49

as half-precision numbers. Moreover, replacing the original radiation scheme in the full50

forecasting model with the mixed-precision one has negligible effect on the accuracy of51

the 10-day forecast.52

1 Introduction53

Weather and climate prediction simulations are known to be computationally de-54

manding and can require petascale computing facilities and large data storage to pro-55

duce high-resolution forecasts. Further progress in their quality and realism, often at-56

tributed to the use of much higher resolution and model complexity, is largely limited57

by the available computational resources. To overcome this problem, a number of im-58

provements of computational efficiency has been proposed, from porting the code to het-59

erogeneous hardware architectures to replacing some of the model components with machine-60

learning surrogate models (Bauer et al., 2021). Among these suggestions, one of the most61

promising directions is reduction of the numerical precision of variables used through-62

out the code (T. N. Palmer, 2014; T. Palmer, 2015). Traditionally, most of the variables63
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are represented by double-precision floating-point numbers. Given their extremely wide64

dynamic range and tiny relative error, one may find that computations performed with65

respect to this format are overly accurate and turn the code variables to single- or half-66

precision floating-point numbers, bfloat16 (Kalamkar et al., 2019) or posits (Gustafson67

& Yonemoto, 2017; Klöwer et al., 2019) without a notable loss of accuracy thereby sig-68

nificantly accelerating the simulation. For example, replacing double-precision variables69

with half-precision ones can theoretically lead to 4x memory saving and computation speedup.70

An important assumption behind the successful use of precision reduction is that induced71

rounding errors must not exceed the level of uncertainties associated with initial condi-72

tions and physical parametrizations of the model (T. Palmer, 2015).73

Reduced precision has already been used to improve the performance of numeri-74

cal codes in linear algebra algorithms (Baboulin et al., 2009; Abdelfattah et al., 2021)75

and machine learning (Gupta et al., 2015) where the working precision of neural networks76

in both training and inference modes can be as low as one bit (Hubara et al., 2017). In77

the realm of weather and climate modelling, reduction from double to single precision78

has proved to be widely successful. Performing the vast majority of operations in sin-79

gle precision in ECMWF’s Integrated Forecasting System (IFS) led to about 40% reduc-80

tion of the run time with no forecasting skill degradation in comparison to double pre-81

cision (Düben & Palmer, 2014; Váňa et al., 2017) which enabled higher vertical resolu-82

tion in operational forecasts making them substantially more accurate despite the same83

computational time (Rodwell et al., 2021; Lang et al., n.d.). A similar runtime reduc-84

tion was observed in the MeteoSwiss’s COSMO forecasting system where single preci-85

sion was introduced in all parts of the code except for the radiation scheme and is now86

used operationally (Rüdisühli et al., 2013). A similar mixed-precision approach efficiently87

combining the use of single- and double-precision variables was employed to speed up88

the linear solver in the dynamical core of the Met Office’s Unified Model (Maynard &89

Walters, 2019) and the ocean model NEMO (Tintó Prims et al., 2019).90

More radical precision reduction in weather and climate applications, typically im-91

plying the use of 16-bits floating-point numbers, may be a non-trivial task requiring a92

deeper understanding of how the rounding errors spread through the code. It is addi-93

tionally complicated by the fact that there are several alternative formats of floating-94

point numbers (see Klöwer et al. (2020) for a brief review). Even though 16-bits floating-95

point numbers become increasingly supported by GPUs (e.g., NVIDIA P100, V100 and96

A100), Google Tensor Processing Units and even general-purpose CPU (e.g., Fujitsu pro-97

cessor A64FX implementing Armv8.2-A instruction set architecture), most of the stud-98

ies exploring the prospects of half-precision arithmetic have been carried out using soft-99

ware emulators (Dawson & Düben, 2017) owing to their flexibility. Reducing precision100

in an atmospheric general circulation model with simplified parametrizations SPEEDY101

down to 10 significant bits, which is equivalent to half precision, demonstrated that the102

resulting rounding errors do not exceed the model uncertainty and, thus, half- and double-103

precision medium-range ensemble forecasts appear to be statistically equivalent. Low-104

precision climate simulations of the same model lead to similar conclusions (Paxton et105

al., 2021). The potential of using low-precision calculations in the Open Integrated Fore-106

casting System (OpenIFS), a portable version of IFS, was studied by Chantry et al. (2019)107

who demonstrated that calculations in the spectral space in OpenIFS can be done mostly108

in half precision if the largest scales are represented with double precision.109

Importantly, while reducing the number of bits in the significand, the aforemen-110

tioned studies set the exponent of floating-point numbers to be equivalent to that of sin-111

gle or double precision. Forcing the exponent also to comply with a half-precision for-112

mat dramatically decreases the dynamic range of variables which often leads to large er-113

rors or even program crashes due to overflow floating-point exceptions. Rescaling and114

shifting as well as promoting variables with a large dynamic range to single precision are115

possible remedies as was demonstrated by Klöwer et al. (2020) who managed to run a116
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shallow water equation model using 16-bits arithmetic with a control of exponent and117

ported a half-precision version of this model on real hardware reporting about 4x speedup118

(Klöwer et al., 2021).119

In this paper, we build on this body of research and explore the perspective of us-120

ing reduced precision in ecRad, a radiation scheme used operationally in the IFS from121

July 2017 (Hogan & Bozzo, 2018). Compared to other parametrization schemes, it con-122

sumes a significant amount of computational time which causes the use of a coarser grid123

and calling it with a time step several times larger than the main model. Making its com-124

putations more efficient would allows for more frequent calls of the radiation scheme which125

would improve the accuracy of weather forecasts. This makes the radiation scheme an126

appropriate candidate for acceleration. For example, the gas optics module of ecRad has127

recently been a target for neural-networks acceleration (Ukkonen et al., 2020). In con-128

trast, we will focus on longwave and shortwave solvers, the most time-consuming parts129

of the radiation scheme as measured by Hogan and Bozzo (2018), and explore how we130

can make use of precision reduction there. In the next section, we explain how reduced131

precision was introduced in the code and then, in Section 3, discuss “naive” precision132

reduction in ecRad which appeared to be unsatisfactory. To develop a more advanced133

mixed-precision version of the code, we needed to explore typical issues caused by us-134

ing half-precision floating-point numbers (the lowest levels of precision investigated in135

our work), and possible ways to overcome them. This topic is covered in Sections 4 and136

5 where the latter introduces ensemble-based rounding error analysis, a useful approach137

for finding variables and operations causing numerical instabilities in the context of re-138

duced precision. In Sections 6 and 7, we provide evidence that an advanced mixed-precision139

version of ecRad, where half-precision variables are deliberately mixed with single- and140

double-precision variables, yields adequate accuracy compared to the double-precision141

version both in terms of instantaneous heating rates and medium-range forecast skill.142

Finally, we summarize our results and discuss possible caveats on the way towards port-143

ing this mixed-precision version on the real hardware in the last section concluding the144

paper.145

2 Implementing reduced precision146

Real numbers are typically represented using floating-point numbers as defined by
the IEEE 754 standard (Zuras et al., 2008). An N -bits floating-point number x consists
of one sign bit, r bits of the exponent and p bits of the significand which we will refer
to as sbits. Its decimal representation has the following form:

x = (−1)s2e−ebias

1 +

p∑
j=1

mj2
−j

 , (1)

where s is the sign bit, e is the exponent stored as an integer number, ebias is the expo-
nent bias as defined by the IEEE standard and mj is the jth bit of the significand. For-
mula (1) represents normalized numbers when e 6= 0. To reduce the number of under-
flow exceptions, subnormal numbers were introduced in the IEEE 754 standard to rep-
resent numbers smaller than the smallest normalized number. Subnormal numbers are
represented by an N -bits floating-point number x when e = 0 using the following for-
mula:

x = (−1)s2−ebias+1

 p∑
j=1

mj2
−j

 . (2)

We are particularly interested in double- (64 bits), single- (32 bits) and half-precision147

(16 bits) formats defined by the standard. Their corresponding characteristics are shown148

in table 1. It is important to say that the relative error of the approximation of an ar-149

bitrary real number lying within the dynamic range of normalized numbers with a floating-150

point number is bounded by a constant known as the machine epsilon and equal to 2−p.151
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Table 1: Characteristics of floating-point types defined by the IEEE 754 standard. Only
positive numbers are considered for convenience.

Type
Total
bits

Exponent
bits

Significant
bits

Machine
epsilon

Smallest
subnormal

number

Dynamic range
without

subnormals

Double 64 11 52 2.22× 10−16 4.94× 10−324 2.23× 10−308 to
1.80× 10308

Single 32 8 23 1.19× 10−7 1.40× 10−45 1.18× 10−38 to
3.40× 1038

Half 16 5 10 9.77× 10−4 5.96× 10−8 6.10× 10−5 to
65504

In this study, we aimed at keeping most of the variables in half precision. The hard-152

ware support of half precision is limited which motivated us to use the Fortran library153

rpe allowing for the emulation of half precision (Dawson & Düben, 2017). In addition154

to the IEEE half-precision emulation, it offers a combined floating-point number format155

where one can arbitrarily vary the number of sbits while using the IEEE double-precision156

exponent thereby eliminating potential issues with the dynamic range and focusing only157

on studying the effect of reduced precision on computations. To introduce the emula-158

tion of floating-point arithmetic in the code, one only needs to replace types in decla-159

rations of real variables with a special derived type rpe var. The assignment, arithmetic160

and logic operators as well as many Fortran intrinsic procedures are overloaded for this161

type so that precision reduction is applied at all the intermediate operations in compound162

expressions thereby emulating similar processes in hardware (Dawson & Düben, 2017).163

For all rpe var’s, the number of sbits can be adjusted individually, and a fine-grained164

precision analysis can be performed. It should be noted that it is usually impractical to165

replace all the real types with rpe var since any complicated code is likely to call either166

intrinsic procedures, not overloaded in the rpe library, or procedures from external li-167

braries, for example, related to the input-output operations.168

3 Naive precision reduction in ecRad169

Using the rpe library, we explored to which extent the radiation scheme ecRad can170

benefit from low-precision computations. We focused on its most computationally ex-171

pensive part, the shortwave and longwave solvers computing the radiative transfer. In172

particular, we developed a reduced-precision version of the Tripleclouds solver (Shonk173

& Hogan, 2008) which, being relatively slow in comparison to the operationally used solver174

McICA as shown by Hogan and Bozzo (2018), was a good target for improvement in terms175

of computational efficiency. This required turning 80 real variables to type rpe var which176

allowed us to control their precision via the number of significant bits. To test the ac-177

curacy of the reduced-precision version of ecRad, we compare the shortwave and long-178

wave heating rates profiles computed by the reduced-precision and double-precision ver-179

sions. As test inputs, we use a set of vertical profiles prepared for ecRad from the ERA5180

reanalysis data for the year 2001 with 6-hour step and 1.5-degree resolution. After com-181

puting the heating rate profiles for each time, latitude and longitude, we calculate the182

root-mean-square error (RMSE), averaged over time and horizontal coordinates, with183

respect to the double-precision outputs and report the resulting error profiles in figure184

1. Here, we present the error profiles for versions with intermediate precision, gradually185

decreasing from single precision (23 sbits) to half precision (10 sbits) while keeping the186

double-precision exponent for all of the rpe var variables. Apart from changing the num-187
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Figure 1: Space- and time-averaged root-mean-square errors of profiles of instantaneous
longwave (left) and shortwave (right) heating rates computed with different versions of
the Tripleclouds solver (coloured curves) with respect to its double-precision version. The
black dashed curve denotes a reference for comparisons: the root-mean-square deviation of
profiles computed with the double-precision McICA solver from those computed with the
double-precision Tripleclouds solver.

ber of sbits for all the rpe var variables, no additional interventions to the code were188

made in these versions of ecRad which allows us to treat them as examples of “naive”189

precision reduction. It is important to note that, instead of heating rates, the ecRad ra-190

diation scheme outputs irradiance flux profiles which then need to be differentiated with191

respect to the pressure and scaled to get heating rate profiles. As a result, differentia-192

tion additionally amplifies intrinsic errors of ecRad calculations. Nonetheless, we demon-193

strate all the error plots with respect to the heating rate since it is the quantity that is194

eventually used to update the tendencies of the prognostic variables in IFS.195

We first read from figure 1 the general pattern of the precision-induced error which
tends to be smaller in the troposphere and larger closer to the surface and in the strato-
sphere and mesosphere. Reducing the number of significant bits unsurprisingly leads to
the overall increase of the RMSE from O(10−5 K×d−1) (single precision) to O(10−1 K×
d−1) (half precision) in the midtroposphere. The error magnitude becomes significantly
larger in the stratosphere and mesosphere taking unacceptable values up to O(10 K×
d−1) in the mesosphere for the 10-sbits version. The physical reason of this susceptibil-
ity of the stratosphere and mesosphere to reduced precision lies in the calculation of heat-
ing rate which, for the i-th layer, reads

HR = − g

Cp
·
F net
i+1/2 − F net

i−1/2

pi+1/2 − pi−1/2
, (3)

where F net
i+1/2 is the net flux (down flux minus up flux) between layers i and i+1 (count-196

ing down from the top), pi+1/2 is the pressure between layers i and i + 1, g is the ac-197

celeration due to gravity and Cp is the specific heat of air. Based on our observations,198

the numerator F net
i+1/2−F net

i−1/2 takes O(10−4) values at 0.1 hPa thereby leading to large199
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errors in heating rates. In contrast, the numerator value is of order of O(10−1) at 750200

hPa which is easier to handle in half precision.201

One can also note error spikes in the shortwave heating rates especially pronounced202

for the 23-sbits and 16-sbits curves. These are the consequence of numerical instabili-203

ties occurring in a subroutine computing the shortwave reflection and transmission.204

To make sense of the magnitude of RMSE values shown in figure 1, we introduce205

a new reference: a root-mean-square difference between the heating rates produced by206

the ecRad radiation scheme with double-precision McICA and Tripleclouds solvers (dashed207

black line in figure 1). It should be noted that the McICA solver is stochastic and has208

noise in cloudy profiles which should average to zero over a long period (Räisänen et al.,209

2005; Hill et al., 2011; Hogan & Bozzo, 2018). Therefore, our reference measures rather210

the instantaneous noise in McICA (e.g., as shown by blue curves in figures 4(c) and 4(d)211

by Hogan and Bozzo (2018)) than the systematic difference between McICA and Triple-212

clouds solvers which is in fact much smaller. It is reasonable to expect that RMSE val-213

ues of a reduced-precision version of the Tripleclouds solver should not exceed this ref-214

erence measuring the difference between two solvers. We can however observe that this215

clearly does not hold for the 10-sbits version.216

4 Difficulties in using IEEE half precision217

There are two challenges when running a numerical code in IEEE half-precision.218

(1) The dynamic range: Half precision can only represent numbers (other than zero) with219

absolute values between 5.96×10−8 (including subnormals) and 65504. Smaller num-220

bers will be truncated to zero, which can cause model crashes in subsequent divisions.221

Larger numbers will cause an overflow which will also result in a crash of the program.222

(2) The decimal precision: Half precision numbers can only represent a decimal preci-223

sion of three digits. Rounding errors will therefore grow quickly. In particular, for sub-224

tractions of similar numbers or summations of a small to a large number.225

Due to the limited dynamic range, it is crucially important to be able to control226

the range of values taken by IEEE half-precision variables. A practical way of doing this227

is multiplicative rescaling, i.e. multiplying a variable by a constant to shift the variable228

range so that it fits the half-precision range. Rescaling has two important limitations.229

First, while changing the range in absolute values, rescaling preserves the dynamic range230

of the variable, i.e. the ratio between the largest and smallest absolute values, and, there-231

fore, cannot fit variables whose dynamic range exceeds 109 into the half-precision nor-232

malized number range. Since we must guarantee that all half-precision variable values233

are less than 65504, the compromise would be to tolerate an increased number of sub-234

normal and flushed-to-zero values.235

The second limitation stems from the fact that rescaling is difficult to employ un-236

less the variable transformations occurring between scaling and unscaling are linear as237

in the Legendre transform (Hatfield et al., 2019), linear terms of differential equations238

(Klöwer et al., 2020) or derivatives in training neural networks (Micikevicius et al., 2018).239

In contrast to these examples, the ecRad radiation scheme, as many other physical parametriza-240

tion schemes, contains a long sequence of both linear and nonlinear calculations accom-241

panied with conditional statements seriously complicating the use of rescaling. As a re-242

sult, if rescaling or expression reordering cannot be used, we simply promote problem-243

atic variables to single precision.244

It is now clear that prior to any decision regarding the choice of precision for a par-245

ticular variable, we need to assess its range. To facilitate this assessment, we extended246

the rpe software and added an automatic collection of statistics of values assigned to any247

rpe var variable. This extension to the rpe library, akin in spirit to the package Sher-248

logs.jl written in Julia (Klöwer et al., 2021), provides sufficient amount of information249
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about the range of values assigned to a particular rpe var variable to conclude whether250

the variable can in principle be turned to half precision. Since the sign of values does251

not provide any useful information, all the collected statistics are related to absolute val-252

ues only. The quantities gathered for all the rpe var variables include the total num-253

ber of assignments, minimum, maximum and mean absolute values, the number of zero254

assignments and the histogram of absolute values with bins defined by ±∞ and 10±k,255

where k ∈ {1, 3, 5, 7, 16}. The statistics are dumped to a file individually for each vari-256

ables by calling a dedicated subroutine. To collect this information, the extension up-257

dates internal data of an rpe var variable every time some value is assigned to it which258

of course slows down the overall calculations.259

We collect necessary statistics by running the code with the ecRad input data cor-260

responding to a single day from the ERA5 reanalysis data mentioned above with all the261

rpe var variables set to double precision. An example of the resulting statistics can be262

seen from figure 2 where we demonstrate statistics of all the real variables used in a sub-263

routine computing the shortwave irradiances for both double- and mixed-precision ver-264

sion of the ecRad shortwave solver. One can observe that several variables, e.g. od total265

(optical depth of gas+aerosol+cloud in a given layer and given spectral interval), tend266

to take values close to the largest normalized half-precision number and, therefore, re-267

quire either rescaling or promoting to single precision. At the same time, the majority268

of variables are likely to take values below the smallest normalized half-precision num-269

ber. Turning some of them to half precision, e.g. scat od (scattering optical depth of270

gas+aerosol) and od total involved into the calculation of single-scattering albedo and271

asymmetry factor of gas-cloud combination within a given layer of the atmosphere, sig-272

nificantly increase the relative error of computations and may lead to division-by-zero273

exceptions. For scat od and od total, two different strategies were used to mitigate these274

issues: scat od was rescaled (see the right part of figure 2) and od total was promoted275

to single precision because its dynamic range appeared to be greater than that of half276

precision. Other variables were analysed in a similar fashion. While our extension for277

the variable statistics collection does not allow us to obtain any information about the278

range of temporary variables, it still provides us with enough knowledge to conclude what279

variables could potentially be turned to half precision and, if appropriate, how they should280

be rescaled.281

It is worth pointing out that some variables, such as fluxes or albedo values, can282

be flushed to zero without underflow exceptions because it would never make physical283

sense to divide by these numbers which makes them perfect candidates for half-precision284

conversion. However, higher precision can still be necessary for them to guarantee the285

required accuracy of further calculations (e.g., higher precision of fluxes is important for286

computing heating rates).287

5 Ensemble-based rounding error analysis288

Without additional tools, the identification and localization of errors caused by the289

extensive use of reduced-precision calculations requires a lot of manual labour. More-290

over, these errors may be invisible for typical measures of accuracy, such as the root-mean-291

square error (RMSE), smoothing out extreme fluctuations of the error occurring, for ex-292

ample, due to their spatial localization. Figure 3 demonstrates the most prominent ex-293

ample of such a localized error we identified while adapting the radiation scheme ecRad294

to reduced precision. It was a spontaneous error occurring at specific latitude, longitude295

and time, i.e it was localized both in space and time. The source of this error was found296

in a subroutine computing the shortwave reflection and transmission for a given level us-297

ing the formulas from Meador and Weaver (1980). To solve the problem, the computa-298

tion was changed to be calculated at native precision which did not only eliminate this299

error, but also improved the overall accuracy of the results.300
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Figure 2: Histograms of all the absolute values assigned to the local variables used in the
main subroutine of the shortwave Tripleclouds solver. They were built by running double-
precision (left) and mixed-precision (right) versions of the solver. Red dots show the sam-
ple mean of distributions whereas red dashes show the maximum and minimum non-zero
absolute values. The rightmost color bar is associated with the probability of getting the
value lying in a histogram bin. Note that the presented histograms only weakly depend on
a choice of inputs from the prepared ERA5 dataset (see the main text for details), but do
vary if the radiation scheme is used within the OpenIFS.
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Figure 3: Comparison of profiles of instantaneous shortwave heating rates computed at a
fixed latitude and longitude with double- and mixed-precision versions of the Tripleclouds
solver. Gray regions on the left show the cloud cover spanning from 0 to 1. Note that the
numerical instability observed around 500 hPa is a rare event: there is no similar
instability at any of the nearby latitudes nor longitudes.

Searching for particular places in the code causing errors similar to the one shown301

in figure 3 can be extremely laborious, especially if the code is used to simulate nonlin-302

ear dynamics and is heterogeneous with respect to arithmetic operations and intrinsics303

being involved in calculations. We have therefore developed a tool to find parts of the304

code where rounding errors start growing excessively. A straightforward approach to au-305

tomating this process would be to modify the rpe software so that it could compute ev-306

ery operation in double precision in parallel to emulating reduced precision, track the307

difference between the reduced-precision and double-precision outcomes, and alerting the308

user when they diverge too much. However, in the presence of sensitivity to tiny per-309

turbations in initial conditions typical for chaotic systems, this approach fails to recog-310

nize problematic code lines since double-precision and reduced-precision forecasts may311

start diverging due to chaotic properties of the underlying system completely unrelated312

to the quality of computation. An alternative approach taking into account this feature313

and introduced in this paper as ensemble-based rounding error analysis is to compare314

ensemble predictions, i.e. double-precision and reduced-precision distributions of each315

variable, at every operation in the code. Its core idea is illustrated by figure 4 where two316

modes of rounding error analysis are presented. The first mode, shown in sketch 4(c),317

implies comparing a single computation in reduced precision to the double-precision en-318

semble which is suitable for non-chaotic calculations. However, if the variable follows chaotic319

dynamics, this mode may not be able to detect a significant deviation of the reduced-320

precision forecast from the reference since the former still fits well into the double-precision321

distribution of the variable. In this case, the second mode, shown in sketch 4(d), should322

be used: it implies comparing reduced-precision and double-precision ensembles. In both323

modes, we identify the problematic line of code as follows: if the reduced-precision value324

(or ensemble mean) deviates from the double-precision mean by more than 3σ, where325

σ is the double-precision ensemble standard deviation, the program is interrupted due326

to either an artificially introduced floating-poing exception or debugger breakpoints. Both327

ways output a particular file and line whose inspection should help identify problematic328

operation and variables. The aforementioned approach was implemented as an exten-329
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Figure 4: Illustration of deterministic (sketch (a)) and ensemble (sketch (b)) prediction
modes together with two types of rounding error analysis: deterministic (sketch (c)) and
ensemble-based (sketch (d)). Blue (orange) curves correspond to forecasts of some vari-
able made by a double-precision (reduced-precision) code. The left part of each sketch
display the time-evolution of the variable, whereas the right part shows its probability
density function (PDF) estimation.

sion to the rpe library where each rpe var variable stores an ensemble of values in a way330

akin to the ensemble format suggested by Düben (2018).331

In combination with the variable statistics, this tool helped find parts of the code332

causing a sudden increase of the error and mitigate it using rescaling, reordering or pro-333

moting to single precision. In particular, we found several places where operations in-334

volving subnormal numbers resulted in a several order-of-magnitude increase of the rel-335

ative error spreading further in the code which reinforces the importance of rescaling the336

corresponding variables (Klöwer et al., 2021). Figure 5 shows a particular scenario of how337

a significant growth of the relative error can occur during the calculations and how it338

can be identified using our extension. It is exemplified by a simple piece of code aimed339

at computing the centre of mass where all the variables are represented by half-precision340

floating point numbers. Its first four lines correspond to simple assignments within the341

dynamic range of normal numbers, so that the rounding error inevitably introduced in342

each assignment is bounded by the machine epsilon ε ≈ 9.8× 10−4 (see the right plot343

showing the relative error of computations). The scaling employed then in the fifth line344

pulls the value of the variable out of the normal range making it subnormal. Given that345

there is only a limited and very sparse set of subnormal numbers, the consequence of this346

operation is a drastic increase of the relative error of the computation. This is exactly347

the place where our extension will throw an exception warning about an error since the348

reduced-precision value has dropped out of the 3σ-window of the reference ensemble. If349

we ignored it, the final line of the code would yield the value inheriting a large relative350

error from the previous line. In this particular case, the problem can be solved by a proper351
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Figure 5: Code example leading to a significant growth of the relative rounding error
of calculations. Numbered codes lines are shown on the left. The left plot shows values
assigned at each line of the code while computing in double (blue) and half (orange) pre-
cision. The right plot shows the relative difference between double- and half-precision
computations.

rescaling of variable m since it its dynamic range is smaller than that of half-precision352

floating-point numbers.353

6 Mixed-precision version of ecRad354

Making use of the aforementioned techniques and tools, we developed a mixed-precision355

version of the Tripleclouds solver with IEEE half-precision variables. Native precision356

was still kept in three subroutines: one of them computes the delta-Eddington scaling357

(Joseph et al., 1976) and two other ones compute the shortwave and longwave reflection358

and transmission at a given height. They all appeared to be particularly sensitive to low-359

ering precision of their variables. The extensions to the rpe library helped identify a set360

of variables requiring either rescaling or promoting to single precision which was impor-361

tant to avoid floating-point overflows and improve the accuracy of results. After all ad-362

justments, about 75% of rpe var variables in the mixed-precision version of the solver363

were handled in half precision and the rest in single precision (see Appendix A for de-364

tails on precision of subroutines used within the solver). Importantly, these include op-365

tical and cloud properties, the key inputs necessary for the Tripleclouds solver to com-366

pute the shortwave and longwave irradiance profiles. They are listed in table 2 along-367

side their variable precision used in the mixed-precision version of the code. Almost all368

of the variables could be reduced to half precision. Two exceptions, optical depth and369

single scattering albedo, are characterized by a wide dynamic range whose truncation370

directly affects the accuracy which urged us to use single precision for them.371

The RMSE of the heating rate profiles for the mixed-precision version is shown in372

purple in figure 1. When compered to naive 10-sbits precision reduction (red curve), it373

does in general decrease the RMSE and, importantly, reduces the overly large errors in374

the mesosphere by two orders-of-magnitude. RMSE values of the mixed-precision ver-375

sion are smaller than the reference (RMSE values for the McICA solver) in the tropo-376

sphere, but they clearly exceed the reference values in the stratosphere and mesosphere.377

The latter however is related to the fact that the McICA and Tripleclouds solvers only378

differ in how they represent cloud structure. As a result, the reference errors tend to be379

smaller above the troposphere which is especially pronounced for longwave heating rates.380

Taking this into account, we can conclude that the mixed-precision version of the Tripleclouds-381

powered radiation scheme compares well with the reference.382
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Table 2: Precision of input variables passed to the Tripleclouds solver

Name Number of significant bits
Longwave solver Shortwave solver

Layer optical depth (od) 10 23
Single scattering albedo (ssa) 10 23
Asymmetry factor (g) 10 10
In-cloud optical depth (od cloud) 10 10
In-cloud single scattering albedo (ssa cloud) 10 10
In-cloud asymmetry factor (g cloud) 10 10
Planck function at half levels (planck hl) 10 –
Longwave emission from the surface (lw emission) 10 –
Longwave albedo of the surface (lw albedo) 10 –
Direct shortwave albedo of the surface (sw albedo direct) – 10
Diffuse shortwave albedo of the surface (sw albedo diffuse) – 10
Incoming shortwave flux at top-of-atmosphere (incoming sw) – 10

It is also important to ensure that the bias, caused by precision reduction and shad-383

owed by the RMSE measure, does not become unreasonably large. This information can384

be deduced from figure 6 showing the difference between double-precision Tripleclouds385

outputs and various reduced-precision versions of the code as a function of pressure. For386

the case of longwave heating rates and the mixed-precision solver (left plot), we can clearly387

observe a cooling bias growing with height whose magnitude however is bounded by −0.2388

K×d−1, the value achieved in the middle mesosphere where the temperature prediction389

is known to tend to be unrealistic (Hogan & Bozzo, 2018). We need to mention that it390

is typical for the ecRad radiation scheme to develop an increasing warming bias in the391

upper stratosphere and above (Hogan & Bozzo, 2018). Therefore, we may consider a slight392

longwave cooling induced by the mixed-precision ecRad as acceptable. At the same time,393

no shortwave bias is observed even though the bias variations become unreasonably large394

for 12-sbits and 10-sbits results (right plot in figure 6). However, using the mixed-precision395

solver drastically decreases their magnitude making them at least one order-of-magnitude396

smaller. This gives a strong evidence that the mixed-precision version of the Tripleclouds397

solver can successfully be used for weather and climate forecasting.398

7 Influence of precision reduction on medium-range forecast399

So far we have been examining the deviation of instantaneous heating rates cal-400

culated by the ecRad radiation scheme subject to precision reduction from their double-401

precision companions. In this Section, we take a step forward and assess the influence402

of reduced-precision outputs of the radiation scheme on the forecast skill of OpenIFS,403

a portable version of IFS. Namely, we make 10-day weather forecasts based on the lat-404

est available version of OpenIFS corresponding to IFS Cycle 43R3 used operationally405

from July 2017 to June 2018 and for the first time employing ecRad as the operational406

radiation scheme. The resolution being used in our study is Tl255 corresponding to 78-407

km horizontal spacing and 91 vertical levels. The time step of the model is 45 minutes,408

and the radiation scheme is invoked every 3 hours. We embed the reduced-precision code409

of ecRad into OpenIFS and run this model for 10 days starting from 1 November 2019.410

We start from exploring the difference in the geopotential height, 2-meter temper-411

ature and surface downwelling shortwave and longwave radiation being formed after 10412

days of forecast. The corresponding maps are shown in figure 7. As usual, the double-413
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Figure 6: Space- and time-averaged difference between profiles of instantaneous longwave
(left) and shortwave (right) heating rates computed with the double-precision version of
the Tripleclouds solver and its reduced-precision modifications (coloured curves). The
black dashed curve is a reference as explained in figure 1.

precision calculations obtained with the Tripleclouds solver act as a ground truth to which414

we compare 23-sbits and mixed-precision results. For reference, we compare to an alter-415

native solver,McICA, run at double precision. One can easily observe that no strong bias416

is developed in either configuration. For the geopotential height, occasional regions where417

they differ start developing roughly between 50◦ and 70◦ latitudes in both hemispheres.418

Noticeable deviations can be found at the same latitudes for the 2-meter temperature419

and surface downwelling longwave radiation, but only in the Northern Hemisphere. How-420

ever, these regions also appear in our reference calculations where the McICA solver is421

used in ecRad which implies that these deviation patterns are likely to stem from mere422

chaotic sensitivity to perturbations in the radiation scheme rather than any systematic423

bias induced by precision reduction. Observed differences can be acceptable as long as424

they remain small compared to the uncertainty of predictions which can be quantified425

by the impact of stochastic parametrization schemes such as stochastically perturbed parametriza-426

tion tendency (SPPT) routinely used in ECMWF for medium-range probabilistic fore-427

casts (Buizza et al., 1999). This is a driving motivation for the successful use of impre-428

cise computing in weather forecasting (Düben & Palmer, 2014; T. N. Palmer, 2014).429

Similar conclusions can be drawn if we examine the time-evolution of the forecast430

error of the temperature at different heights. To make a fair comparison, we track how431

the root-mean-square (RMS) forecast error, i.e. the RMS deviation of the forecast from432

the ERA5 data, computed for the reduced-precision Tripleclouds or double-precision McICA433

changes with respect to the double-precision Tripleclouds. The corresponding changes434

are shown in figure 8. As expected from a perturbed chaotic system, they typically grow435

with time for all the considered ecRad configurations with 300-hPa temperature display-436

ing marginally larger variations. We can note that the mixed-precision change does not437

seem to differ significantly from the single-precision and McICA values neither in the trend438

nor magnitude. This provides additional evidence that the inaccuracy induced by care-439

ful precision reduction in the radiation scheme is likely to be sufficiently small for fore-440

casting in the presence of uncertainties.441
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Figure 7: Geopotential height at pressure 500 hPa, 2-meter temperature and surface
downwelling shortwave and longwave radiation after 10 days of the OpenIFS simulation
displayed for double-, single- and mixed-precision versions of the Tripleclouds solver (the
first, third and forth columns) and the McICA solver (the second column) where the
latter serves as a reference. Fields for McICA, single- and mixed-precision Tripleclouds
solvers are shown as deviations from the forecast made with the double-precision Triple-
clouds solver. Deviation values are described by color bars on the right.
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Figure 8: Time evolution of the change in root-mean-square forecast error of the temper-
ature at pressure 300 and 700 hPa and at 2 meters induced by reduced precision in the
radiation scheme and computed with respect to the double-precision version of the radia-
tion scheme. The forecast error is defined as the deviation of the forecast from the ERA5
data. As a reference, same quantity is plotted for the change induced by replacement of
the double-precision Tripleclouds solver with the double-precision McICA solver.
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8 Conclusion442

In this paper, we have considered the reduced-precision versions of the radiation443

scheme ecRad operationally used in the ECMWF’s IFS. Namely, we introduced preci-444

sion reduction in the Tripleclouds solver, the most computationally expensive compo-445

nent of the radiation scheme, using a Fortran emulator of reduced precision named rpe446

(Dawson & Düben, 2017). We have demonstrated that “naive” precision reduction, where447

the number of significant bits is reduced and fixed for all the real-valued variables, leads448

to a strong deviation of the resulting heating rates from the ground-truth double-precision449

calculations. To overcome this problem, we explored a mixed-precision approach where450

the whole set of real-valued variables is split into three subsets containing variables with451

double, single and half precision respectively. The flexibility of the mixed-precision ap-452

proach allows one to adjust a trade off between the accuracy and the speed of compu-453

tations by changing the ratio of double-, single- and half-precision variables. Splitting454

was performed based on the dynamic range of variables and the effect of their precision455

on the overall accuracy of calculations. To facilitate the process of finding a proper par-456

tition, we developed two extensions to the rpe library: the first one automatically gath-457

ers all the necessary statistics about the range of values assigned to reduced-precision458

variables, and the second one helps tracking the divergence between double- and reduced-459

precision calculations line-by-line thereby making it possible to localize particular parts460

of the code and even variables causing undesirable loss of accuracy. Based on ERA5 re-461

analysis data for the year 2001, we have demonstrated that heating rates produced by462

the resulting mixed-precision version of the Tripleclouds solver are close to their double-463

precision companions if measured relative to the inter-model difference between the double-464

precision McICA and Tripleclouds solvers. Additionally, we have shown that replacing465

the OpenIFS’ radiation scheme with its mixed-precision version has only a small influ-466

ence on the accuracy of a medium-range forecast well comparable to the difference ap-467

pearing when the Tripleclouds solver is replaced with McICA in the radiation scheme.468

It is important to say that as we have only emulated reduced precision in this work,469

we cannot present any assessments of speed-up which is an ultimate goal of introduc-470

ing precision reduction. This can only be done if the radiation scheme together with OpenIFS471

are ported on the hardware natively supporting half-precision floating-point numbers.472

A notable example of such hardware is the Fujitsu microprocessor A64FX. This process473

may require additional changes of the mixed-precision radiation scheme because mixing474

variables of various precision levels may slow down certain parts of the code diminish-475

ing the potential speed-up. Moreover, the A64FX microprocessor is known to handle half-476

precision subnormal numbers slowly which may become another obstacle to successful477

porting (Klöwer et al., 2021). Subnormal numbers are unlikely to be encountered when478

dealing with double- or single-precision variables, but they appear much more frequently479

for half precision. A possible solution is to try to avoid using subnormal numbers for half-480

precision variables, which can be achieved by a proper rescaling of variables, and flush481

them to zero if they occasionally appear (Klöwer et al., 2021).482

Another avenue to explore is the use of stochastic rounding instead of currently used483

round-to-nearest approach. There is now a growing body of evidence suggesting that round-484

ing errors can efficiently be mitigated if stochastic rounding is used for half-precision vari-485

ables (Croci & Giles, 2020; Paxton et al., 2021). We performed a set of experiments sim-486

ilar to that in Section 3 on a limited set of data with enabled stochastic rounding and487

found that, even though stochastic rounding does not improve the RMSE values, it com-488

pletely removes the longwave cooling bias observed in Figure 6 which is an undoubtedly489

significant improvement of the mixed-precision radiation scheme. Further investigation490

is however needed to come to a final conclusion.491

We believe that our results are promising enough to suggest that mixed-precision492

arithmetics can be useful for the radiation scheme ecRad and, in perspective, other parametriza-493
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radiation tripleclouds lw:solver tripleclouds lw

radiation regions:calc region properties

radiation overlap:calc overlap matrices

radiation overlap:calc beta overlap matrix

radiation overlap:calc alpha overlap matrix

radiation matrix:singlemat x vec

radiation two stream:calc two stream gammas lw

radiation two stream:calc no scattering transmittance lw

radiation two stream:calc reflectance transmittance lw

radiation lw derivatives:calc lw derivatives region

radiation matrix:singlemat x vec

radiation tripleclouds sw:solver tripleclouds sw

radiation regions:calc region properties

radiation overlap:calc overlap matrices

radiation overlap:calc beta overlap matrix

radiation overlap:calc alpha overlap matrix

radiation matrix:singlemat x vec

radiation two stream:calc two stream gammas sw

radiation two stream:calc reflectance transmittance sw

Native-precision subroutines

Mixed-precision subroutines

Half-precision subroutines

Single-precision subroutines

Figure A1: Call structure of Tripleclouds subroutines showing precision used within.
Only subroutines where there exist local or allocated variables are presented.

tion schemes used in weather and climate models. More extensive benchmarking is how-494

ever necessary to continue towards operational use.495

Appendix A Local precision of the Tripleclouds subroutines496

In this Appendix, we present a detailed arrangement of local precision in all the497

subroutines used in the mixed-precision version of the Tripleclouds solver. By local pre-498

cision, we understand precision of local variables used in a subroutine whereas precision499

of input variables is assumed to be set in the outer scope of a subroutine. The informa-500

tion about local precision of subroutines is summarized in figure A1 where single-, mixed-501

and half-precision subroutines are highlighted with yellow, blue and green colours. Some502

subroutines particularly sensitive to precision reduction are left in native precision (gray).503
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Klöwer, M., Düben, P., & Palmer, T. (2020). Number formats, error mitigation, and569

scope for 16-bit arithmetics in weather and climate modeling analyzed with a570

shallow water model. Journal of Advances in Modeling Earth Systems, 12 (10),571

e2020MS002246.572
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