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Key Points:11

• A U-Net is refined to forecast seven atmospheric variables on global scale, falling12

behind the state-of-the-art by only one day.13

• Forecasts are generated on the HEALPix mesh, facilitating the development of lo-14

cation invariant convolution kernels.15

• Without converging to climatology, the model produces stable and realistic states16

of the atmosphere in 365-days rollouts.17
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Abstract18

We present a parsimonious deep learning weather prediction model on the Hierarchical19

Equal Area isoLatitude Pixelization (HEALPix) to forecast seven atmospheric variables20

for arbitrarily long lead times on a global approximately 110 km mesh at 3h time res-21

olution. In comparison to state-of-the-art machine learning weather forecast models, such22

as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and23

far fewer prognostic variables. Yet, at one-week lead times its skill is only about one day24

behind the state-of-the-art numerical weather prediction model from the European Cen-25

tre for Medium-Range Weather Forecasts. We report successive forecast improvements26

resulting from model design and data-related decisions, such as switching from the cubed27

sphere to the HEALPix mesh, inverting the channel depth of the U-Net, and introduc-28

ing gated recurrent units (GRU) on each level of the U-Net hierarchy. The consistent29

east-west orientation of all cells on the HEALPix mesh facilitates the development of location-30

invariant convolution kernels that are successfully applied to propagate global weather31

patterns across our planet. Without any loss of spectral power after two days, the model32

can be unrolled autoregressively for hundreds of steps into the future to generate stable33

and realistic states of the atmosphere that respect seasonal trends, as showcased in one-34

year simulations. Our parsimonious DLWP-HPX model is research-friendly and poten-35

tially well-suited for sub-seasonal and seasonal forecasting.36

Plain Language Summary37

Weather forecasting is traditionally realized by numerical weather prediction mod-38

els that solve physical equations to simulate the progression of the atmosphere. Numer-39

ical methods are compute intense and their performance is increasingly challenged by40

less compute demanding but still highly sophisticated machine learning approaches. Yet,41

a downside of these new models is their reliability: They are not guaranteed to gener-42

ate physically plausible states, which often prevents them from generating stable and re-43

alistic forecasts beyond two weeks into the future. Here, a parsimonious machine learn-44

ing model is developed to forecast just seven variables of the atmosphere (compared to45

more than 800 in numerical models and 67 or 218 in competitive machine learning mod-46

els) over an entire year. Despite the small number of variables, our model generates fore-47

casts that only fall behind expensive state-of-the-art predictions by a single day. That48

is, our error in a seven-days forecast matches that of a state-of-the-art forecast at day49

eight. Advancing weather forecasts with research friendly and parsimonious machine learn-50

ing models beyond two weeks promises to extend horizons for planning in various fields51

that impact environment, economy, and society.52

1 Introduction53

Four years ago, Weyn et al. (2019) posed the question “Can machines learn to pre-54

dict the weather?” and demonstrated that data driven convolutional neural networks can55

forecast the evolution of the 500 hPa surface much better than the alternative dynam-56

ical model, the barotropic vorticity equation, which was used in the first numerical weather57

prediction (NWP) model (Charney et al., 1950). An extremely rapid evolution of deep58

learning weather prediction (DLWP) models followed, culminating in the recent Pangu-59

Weather (Bi et al., 2023) and GraphCast models (Lam et al., 2022), which outperform60

the deterministic forecast from the state-of-the-art Integrated Forecast System (IFS) of61

the European Centre for Medium-Range Weather Forecasts (ECMWF).62

NWP has continuously improved over the seven decades since the first barotropic63

model forecast (Benjamin et al., 2019). Current state-of-the-art models typically provide64

skillful predictions of global weather patterns at effective grid point spacings of roughly65

0.1 ◦ of latitude (about 10 km) through at least seven days of forecast lead time (Bauer66

et al., 2015). The computational effort required to generate such global high-resolution67
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forecasts is enormous and only available at a handful of advanced dedicated centers. En-68

semble forecasts, which provide an important way to account for uncertainty by gener-69

ating a set of equally plausible predictions and extend the limit of skillful forecasts be-70

yond that of a single deterministic model run, are also limited by the computational bur-71

den of high-resolution NWP to about 50 members (Palmer, 2019).72

Global NWP models represent 3D fields as sets of nested spherical shells in which73

the distance between each shell is the local vertical grid spacing. On every time step, the74

ECMWF Integrated Forecasting System (IFS), as configured for sub-seasonal forecast-75

ing, updates 10 prognostic 3D variables defined at 91 vertical levels. Along with surface76

pressure, this totals to over 900 spherical shells of data. Here, we use “spherical shell of77

data” to describe a single variable defined at a single vertical level on a spherical shell78

covering the globe. The large number of spherical shells of data (combined with the fine79

horizontal resolution) in NWP models is required to produce acceptably accurate numer-80

ical solutions to the equations governing atmospheric motions. The data at each indi-81

vidual point, however, cannot be independently perturbed while maintaining a meteo-82

rologically relevant atmospheric state. For example, on horizontal scales larger than about83

10 km, the temperatures throughout a vertical column and the heights of constant pres-84

sure surfaces must satisfy hydrostatic balance.85

The actual number of independent degrees of freedom required to represent the pre-86

dictable components of the global atmosphere is unknown, but it clearly decreases with87

increasing forecast lead times (Lorenz, 1969). GraphCast (Lam et al., 2022), for exam-88

ple, has achieved success at lead times as short as 6 h with 227 spherical shells of data.89

It can produce forecasts using much less computation time than the ECMWF IFS, but90

it still requires large computing resources for training: 3 weeks using 32 TPU 4 proces-91

sors. Pangu-Weather (Bi et al., 2023) cuts the number of spherical shells by almost 2/392

to 69. The spherical Fourier neural operator (SFNO) version of FourCastNet compared93

with the IFS in (Bonev et al., 2023) uses 73 spherical shells of data. Here, we take this94

reduction much farther, presenting a parsimonious DLWP model that uses just 7 spher-95

ical shells of data to efficiently provide forecasts approaching the skill of ECMWF. While96

not as accurate as GraphCast or Pangu-Weather for medium range forecasts with lead97

times less than two weeks, we demonstrate that our model generates far less bias in fore-98

casts of 500 hPa height in one-year iterative forecasts. In addition, our model is poten-99

tially better suited for research applications such as computing the sensitivities of its com-100

pact state vector to custom diagnostic functions by backpropagation.101

In contrast to many of the recent DLWP architectures, our approach relies on con-102

volutional neural networks (CNN), building on early work by Scher and Messori (2018)103

and Weyn et al. (2019) and the U-Net configuration in Weyn et al. (2020) and Weyn et104

al. (2021). Here, we document substantial improvements over Weyn et al. (2021), obtained105

by replacing the cubed sphere data representation with the HEALPix mesh, which is widely106

employed in astronomy (Gorski et al., 2005). In addition, we improve the former model107

by implementing physically motivated modifications in form of residual connections, re-108

current modules, and inverting the channel depth as compared with a standard U-Net.109

2 Related Work110

Pioneering efforts to create machine learning models to forecast the weather from111

reanalysis or general circulation model (GCM) output include the dense neural network112

of Dueben and Bauer (2018) and the CNN models of Scher and Messori (2019) and Weyn113

et al. (2019), all of which employed latitude longitude (lat-lon) meshes. Weyn et al. (2020)114

obtained significantly improved forecasts by switching to a cubed sphere mesh with a115

CNN in the standard U-Net architecture (Ronneberger et al., 2015). Their model was116

capable of generating realistic weather patterns when stepped forward for a full year (730117

12 h steps). Retaining the cubed sphere, Weyn et al. (2021) produced forecasts out to118
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sub-seasonal time scales using large multi-model ensembles, and Lopez-Gomez et al. (2022)119

migrated from the U-Net into a U-Net 3+ architecture (Huang et al., 2020)—which adds120

connections between multiple hierarchical levels in the U-Net—to generate forecasts of121

extreme surface temperatures.122

Returning to the lat-lon mesh, Rasp and Thuerey (2021) demonstrated that a deep123

Resnet could be pre-trained on GCM data and then fine-tuned by transfer learning on124

ERA5 data to produce up to 5-day forecasts at coarse 5.65 ◦ grid spacing. Building on125

transformer models from computer vision (Dosovitskiy et al., 2020; Guibas et al., 2021),126

Pathak et al. (2022) and Kurth et al. (2022) used Fourier neural operators (Li et al., 2020)127

to develop FourCastNet on a 0.25 ◦ lat-lon mesh to generate forecasts approaching the128

accuracy of ECMWF’s IFS. FourCastNet was not, however, capable of stable long-lead-129

time autoregressive rollouts. This difficulty was overcome by switching from 2D Fourier130

modes on a lat-lon mesh to spherical harmonic functions Bonev et al. (2023). The result-131

ing SFNO model eliminated much of the vision transformer architecture while improv-132

ing accuracy and remaining stable for one-year forecasts.133

Again on a 5.65◦ lat-lon mesh, Hu et al. (2022) used a shifted window (Swin) trans-134

former (Liu et al., 2021) to produce single forecasts as well as ensembles generated by135

perturbing the latent state using samples from their learned distribution. Bi et al. (2023)136

also applied Swin transformers on a lat-lon mesh, but used a fine 0.25 ◦ lat-lon grid spac-137

ing, 3D transformers, and included latitude and longitude fields as input to train a “3D138

Earth-specific transformer” at four different forecast lead times of 1, 3, 6, and 24 h, which139

are used in combination to span an arbitrary hourly forecast period with minimal model140

steps. If the ECMWF IFS NWP forecasts are averaged to the coarser 0.25 ◦ lat-lon mesh,141

Pangu-Weather outperforms NWP on several metrics.142

In contrast to the preceding approaches, graph neural networks (Gori et al., 2005;143

Scarselli et al., 2008; Kipf & Welling, 2016; Battaglia et al., 2018; Pfaff et al., 2020) where144

applied on icosahedral meshes at course resolution by Keisler (2022) and at fine resolu-145

tion in the Graphcast model (Lam et al., 2022). Similarly to Pangu-Weather, GraphCast146

appears to outperform the coarsened ECMWF IFS forecast on several metrics.147

3 Methods148

3.1 Data149

3.1.1 Choice of Variables150

Beginning with the same six prognostic variables used in Weyn et al. (2021)—geopotential151

height at 1000 hPa and 500 hPa (Z1000, Z500),1 700 hPa to 300 hPa thickness (τ700−300)152

defined as Z300−Z700, temperature at 2m height above ground (T2m), temperature at153

850 hPa (T850), and total column water vapor (TCWV )—we add Z250 based on its im-154

portance in the model of Rasp and Thuerey (2021) and to provide an upper tropospheric155

variable. As in Weyn et al. (2021), three prescribed fields are also provided: topographic156

height, land-sea mask, and top-of-atmosphere (TOA) incident solar radiation. We do not157

include prescribed or predicted sea-surface temperature or surface fluxes above the land158

or ocean. No specific information about position on the globe, such as latitude and lon-159

gitude, is provided. Three-hourly data from the ERA5 reanalysis (Hersbach et al., 2020)160

provide training data from 1979-2012, a validation set from 2013-2016, and a test set from161

2017-2018.162

1 The related variable in the ERA5 dataset is geopotential and named z, whereas the geopotential
height, typically referred to as Z, represents the actual height above sea level of the respective pressure
surface and is obtained by dividing geopotential by the gravitational constant.
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3.1.2 HEALPix Mesh163

We discretize all fields using the Hierarchical Equal Area isoLatitude Pixelization164

(HEALPix) (Gorski et al., 2005). As depicted in Figure 1, a HEALPix mesh is formed165

by dividing the sphere into twelve equal-area diamond-shaped faces, with four faces ly-166

ing in the northern and southern hemispheres, and four in the tropics. According to Gorski167

et al. (2005), the HEALPix mesh has three important properties. (1) Hierarchical struc-168

ture of the database: Each of the twelve base faces can be progressively subdivided into169

smaller patches. (2) Equal areas for the discrete elements of the partition: All patches170

are the same size. (3) Isolatitude distribution for the discrete area elements on the sphere:171

The patches line up with lines of latitudes, facilitating the computation of zonal averages172

and one-dimensional zonal spectra. Importantly, this last property makes the HEALPix173

mesh an “east is to the right” grid, which facilitates the training of CNN kernels to cap-174

ture the motion of typical weather disturbances, as discussed in subsection 4.1.175

The HEALPix can be considered a graph and does not allow a seamless applica-176

tion of convolution operations. Thus, Perraudin et al. (2019) explicitly define a graph177

from the HEALPix—by connecting adjacent neighbors with weighted edges—and per-178

form a graph convolution to classify weak lensing maps from cosmology. In a different179

approach, Krachmalnicoff and Tomasi (2019) classify digits and determine cosmic param-180

eters from simulated cosmic microwave background maps. They apply 1D convolutions181

to the flattened HEALPix data with a kernel size k and stride s both equal to 9, append-182

ing a zero to those cases where only seven instead of eight neighbors are defined (top cor-183

ner of the tropical faces). In contrast, we treat the twelve faces as distinct images and184

pad their boundaries using data from neighboring faces to allow the computation of 2D185

convolutions and averaging operators directly, as detailed in section Appendix A. To ac-186

celerate the padding operation, we have implemented a custom CUDA kernel, which is187

available in our repository.2188

The grid spacing, or shortest inter-node spacing, on the HEALPix mesh is the di-189

agonal distance between a pair of nodes on adjacent latitude lines. Denoting a HEALPix190

mesh with n divisions along one side of the original 12 faces as HPXn. The grid spac-191

ing is approximately 220 km (≈ 2◦) for HPX32 and 110 km (≈ 1◦) for HPX64.3192

3.2 Machine Learning Architecture193

Relating to Tobler’s first law of geography: “All things are related, but nearby things194

are more related than distant things.” (Tobler, 1970), we mostly retain the comparably195

simple U-Net structure from Weyn et al. (2020). U-Nets (Ronneberger et al., 2015) are196

hierarchically structured feed-forward convolutional neural networks that were originally197

proposed for segmenting biomedical images. The U-Net structure proposed here intro-198

duces several physically motivated advancements to the vanilla U-Net used by Weyn et199

al. (2021) for time-series forecasting. The advancements and model configurations are200

visualized in Figure 2, detailed in Table B1, and described in the following.201

3.2.1 Residual Prediction202

We switch to a residual prediction approach both for the full predictive step and203

within each ConvNeXt block.4 Predicting changes over a time step, instead of the full204

fields, is similar to the discretization of time derivatives when solving partial or ordinary205

2 https://github.com/CognitiveModeling/dlwp-hpx
3 We provide download explanations and projection scripts in our repository. The 3D HEALPix figures

are drawn in Blender 3.4.1; respective Blender files are provided in the repository too.
4 As detailed in Figure 2, we modify the original ConvNeXt block from Liu et al. (2022) by removing

the bottleneck and employing a two-stage convolution as done in Weyn et al. (2021).
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(a) (b) (c) (d)

Figure 1: Division of the sphere into twelve faces according to the HEALPix. Four faces
to represent either the northern (blue) and southern extratropics, while four more faces
arrange around the equator to represent the tropics (yellow). Each face can be subdivided
into patches with divisions along the side of each face given by powers of two. The sphere
in (a) has a pixel-count of one per face side; we call it hpx1. The sphere in (b) counts
two pixels per side (hpx2), whereas the two spheres in (c) and (d) have eight pixels per
side, i.e., hpx8. Several latitude lines in red emphasize the iso-latitudinal arrangement
of the patches. The saturated blue area depicts a 3 × 3 stencil, as applied by a standard
convolution. To apply the 3× 3 stencil at the top corner of the equatorial faces, i.e., stencil
position in (d), we simulate a hypothetical patch by computing the average from the
according extratropical face patches.

differential equations, and has been used successfully in previous deep-learning weather206

prediction models (Pathak et al., 2022; Keisler, 2022; Hu et al., 2022; Lam et al., 2022).207

3.2.2 Inverting the Ordering of Channel Depth208

The standard U-Net for semantic segmentation (Ronneberger et al., 2015) and its209

successors (Zhou et al., 2018; Huang et al., 2020) employ relatively few channels on the210

highest level and successively double the channel depth, while halving the spatial reso-211

lution in each deeper layer. This ordering is useful in image segmentation tasks, where212

deeper channels are required to create increasingly abstract filters to identify semantic213

features and express complex objects. In weather prediction, however, we find it is bet-214

ter to devote more capacity to the layers in the first level, where a wide variety of fine215

grained weather phenomena must be captured. Deeper layers at coarser resolution, on216

the other hand, need only encode larger scale atmospheric motions, which can be ade-217

quately represented with comparably fewer channels.218

Thus, we invert the channel order, employing 136, 68, and 34 channels in each con-219

volution on the first, second, and third layer, respectively (cf. Figure 2). While this mod-220

ification improves the model performance significantly, it also increases the computational221

burden, since more computations and data processing are required to evaluate the ad-222

ditional convolutions at fine spatial resolution. Tests which preserved the total number223

of trainable parameters, but completely eliminated the deeper layers in the U-Net gave224

worse results, demonstrating that the longer-range connections and richer latent space225

structures enabled by the full U-Net architecture remain important.226

3.2.3 Recurrent Modules227

The vanilla U-Net is a feed-forward network, which treats successive inputs inde-228

pendently even if the data represents a continuous sequence over time. Feed-forward net-229

works do not have any memory capacity. They do not maintain an internal state between230

time steps. To enable the exploitation of information from previous latent states, we in-231

clude a gated recurrent unit (GRU) (Cho et al., 2014) at the end of each decoder block232
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Figure 2: Schematic representation of the DLWP-HPX architecture for our best per-
forming model. There is one ConvNeXt block at each level in both the encoder and the
decoder. In contrast to the con�guration in typical image processing applications, the
channel, or latent-layer, depth decreases from 136 to 68 to 34 at deeper layers in the
U-Net.

with kernel size k = 1 . We chose GRUs over LSTMs(Hochreiter & Schmidhuber, 1997)233

since we re-initialize the recurrent data over each24 h-cycle, and therefore do not require234

forget-gates (as con�rmed experimentally, not shown).235

3.2.4 Miscellaneous Modi�cations236

Several other components of the original Weyn et al. (2021) model were modi�ed237

based on recent results from deep learning research: the capped leaky ReLU was replaced238

by capped GELU activations (Hendrycks & Gimpel, 2016); upsampling was changed from239

nearest-neighbor sampling (knn-sampling withk = 1 ) to a transposed convolution; �-240

nally, the pairs of two successive convolutions were replaced at each encoder and decoder241

level in the U-Net by a modi�ed ConvNeXt block (Liu et al., 2022), as visualized in Fig-242

ure 2.243

3.2.5 Time Stepping Scheme244

Similarly to Weyn et al. (2021), we apply a two-in-two-out mapping with a tem-245

poral resolution twice as �ne as the actual time step. For example, two atmospheric states246

3 h apart (each consisting of seven prognostic, along with three prescribed �elds) are con-247

catenated and input to the model, which generates a new pair of states, each character-248

ising the atmosphere6 h later in time. This strategy is observed to stabilize and accel-249

erate the training, since the model receives additional information about the atmosphere's250

rate of change and only has to be called half as often.251

�7�
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Table 2: Root mean squared errors (RMSE) and anomaly correlation coefficient (ACC)
scores for Weyn et al. (2021) (W21), our HPX64, and ECMWF’s IFS models, evaluated
on geopotential at 500 hPa (Z500), temperature 2m above ground (T2m), and temperature
at 850 hPa (T850) on lead times of 3 and 5 days.

Z500 T2m T850

Lead time W21 HPX64 IFS W21 HPX64 IFS W21 HPX64 IFS

R
M

SE 3 days 36.26 21.88 14.91 1.17 0.82 1.02 1.95 1.49 1.35
5 days 59.01 41.91 31.30 1.67 1.27 1.27 2.83 2.28 1.96

A
C

C 3 days 0.90 0.96 0.98 0.84 0.92 0.91 0.84 0.91 0.94
5 days 0.70 0.84 0.92 0.66 0.78 0.83 0.64 0.76 0.84
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Inversion
GRU
2.7m  9.8m params
Add Z250
HPX32  HPX64

t6h 3h

Figure 5: Impact of successive model improvements on the accuracy of Z500 building
from WDCC to our HPX64 model with ∆t = 3h. Each successive change builds on top of
the previous architecture, adding the modification indicated in the legend: (a) RMSE, (b)
ACC. Inset in (a) provides a magnified view of the error growth between 5 and 6 forecast
days.

field, increasing the horizontal resolution to HPX64 (which is more important for ACC394

than RMSE particularly on T2m), and decreasing the time resolution to 3 h. Benefits from395

the use of 3 h time resolution were only obtained if the model was configured with the396

GRUs.397

The single most effective modification in the preceding set of successive improve-398

ments is the migration from the cubed sphere to the HEALPix mesh, even though the399

64 × 64 cubed sphere has twice the total number of grid-points as the HPX32 mesh.400

The most likely explanation for the superiority of the HEALPix mesh is not simply that401

it is a more uniform covering of the globe than that provided by the cube-sphere, but402

that east and west have the same orientation in every HEALPix cell; we refer to this prop-403

erty as “east to the right.” In particular, the center and the east and west corners of each404

HEALPix cell are all at the same latitude. (A similar relationship holds in the north-south405

direction for meridians passing through those cells lying equatorward of the maximum406

north-south extent of the four equatorial faces in Figure 1 (a).) Thus, on the HEALPix407

mesh, eastward motion at all points and at all latitudes would be in the same direction408
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Figure 6: HPX64 simulation of the diurnal cycle of T2m (solid curves) at the four loca-
tions shown in the insets starting from 00 UTC on 12 March 2018. ERA5 values for the
same 1◦ × 1◦ lat-lon cell are shown as dashed lines. Values are plotted every 3 h.

across the diamond-shaped 3×3 stencil in Figure 1 (c). In contrast, at any point on ei-409

ther of the polar faces on the cubed sphere, east could map to any of four directions along410

the axes of the 3× 3 convolutional stencil, depending on its longitude, as visualized in411

section Appendix A.412

In mid- and high-latitudes, most large-scale weather systems move in a generally413

eastward direction. We believe this allows a fixed number of kernel elements to more ef-414

ficiently and effectively produce the required set of flow evolutions in the latent layers.415

To a lesser extent, this same consideration also applies to the four equatorial faces of the416

cubed sphere, where, for example, eastward flow near the northeastern corner of a face417

would need to move at an angle relative to the northern side of the stencil that is oppo-418

site in sign to that required in the northwestern corner.419

4.2 Eliminating the Need for Boundary-Layer Parameterizations420

Accurate forecasts of surface temperatures in NWP models rely on the empirical421

parameterization of multi-scale processes near the Earth’s surface in the atmospheric bound-422

ary layer (ABL). The bottom of the ABL includes the roughness layer (2–5 times the423

height of roughness elements such as vegetation), and the surface layer (often 10–100m424

deep), where shear-driven turbulence dominates generation by convection. The depth425

of the full ABL, where larger-scale eddies and circulations communicate the processes426

in the surface layer to the free atmosphere, can vary from O(100)m in calm stable night-427

time conditions to several kilometers during the day over deserts.428
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No effort is made to explicitly account for ABL processes in our model; the T2m429

field is treated the same as the other six prognostic fields. The same CNN kernels are430

employed everywhere over the globe on the HEALPix mesh; the only data that might431

distinguish one location from another are the land-sea mask, the terrain elevation, and432

the TOA solar forcing; neither longitude nor latitude are provided. Yet our model does433

a good job of capturing the diurnal cycle in multi-day forecasts over very different sur-434

faces. Figure 6 shows the diurnal cycle in T2m at locations over the Amazon forest, the435

Australian desert, and two adjacent oceans over a 4-day simulation starting at 00 UTC436

on 12 March 2018.437

Compared to over land, the diurnal T2m variations are modest over the oceans, and438

they are well captured by our model. The land-sea mask is undoubtedly important in439

distinguishing the ocean locations from those over land. More interestingly, the model440

does an excellent job of capturing the large diurnal temperature range over the Australian441

desert, while correctly generating a much lower amplitude signal over the Amazon. The442

prognostic field that has most likely facilitated this distinction is TCWV , which is sig-443

nificantly higher over the Amazon than over the Australian desert. The model also cap-444

tures the 4-day trend for increasing temperatures over Australia, which is linked to the445

evolution of larger-scale weather systems. Overall, the ability of the model to capture446

the diurnal T2m cycle with just seven prognostic fields, without any special treatment447

of the ABL, and without geo-specific inputs such as latitude and longitude is suggestive448

of the power and potential of DLWP-HPX.449

4.3 Iterative Rollouts Over Subseasonal to Annual Time Scales450

There are three time scales of primary interest for global atmospheric simulations:451

medium-range weather forecasting for lead times of up to two weeks, sub-seasonal and452

seasonal forecasts for lead times up to 6–9 months, and climate simulations over periods453

of tens to hundreds of years. Our focus is on the sub-seasonal to seasonal time scale; there-454

fore, in this section we examine the model’s performance in iterative rollouts over peri-455

ods up to one year.456

To investigate the stability and drift in model simulations over a full annual cycle,457

we initialize it using ERA5 data for 00 UTC on 1 June 2017 (together with the 21 UTC458

fields on 31 May). Using 6 h time steps (with 3 h time resolution), we perform 1460 it-459

erations to generate a 365-day simulation. The three-day running mean of Z500, aver-460

aged around each latitude, is plotted as a function of latitude and time in Figure 7, along461

with the corresponding averages from the ERA5 data. Despite being trained to minimize462

RMSE over a single day and not enforcing any physical constraints, the DLWP-HPX sim-463

ulation responds to the TOA solar forcing to generate the annual cycle reasonably well.464

One region where the errors are significant is the arctic. About 5 months into the465

simulation, the simulated heights in the arctic region drop as much as 60 m below those466

in the reanalysis during the boreal winter. In contrast, at 5–8-month lead times, the heights467

in the antarctic region increase to approximately correct values in the austral summer.468

The asymmetry between the response in arctic and antarctic flips if the one-year rollout469

begins six months later. When the simulation is initialized on January 2, 2018, the heights470

in the arctic during boreal winter are approximately correct, while those in the antarc-471

tic are too cold (Figure 8d).472

There is also a long-term drift toward lower heights in the subtropics and mid-latitudes,473

creating a roughly 30m loss in Z500 by the end of the 1-year forecast.7 Climate models474

are tuned to avoid long-term drift in the predicted fields, but operational NWP models475

7 30m deviation amounts to 0.5% of the full Z500 value and to 8.7% of the Z500 standard deviation
(computed from the reanalysis data of the forecasted period).
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Figure 7: Zonally averaged three-day mean of Z500 plotted as a function of time and
latitude for one year beginning on July 1 2017 for: (a) the ERA5 reanalysis, and (b) a
recursive one-year rollout of the DLWP-HPX model. Also shown are 15-day averaged
values of the 5600m contour of Z500 for the ERA5 data (black lines) the DLWP-HPX
simulation (white dashed lines).

are not so tuned. For example, significant model biases that grow over a time scale of476

several weeks are removed to create sub-seasonal ECMWF IFS S2S forecasts (Vitart, 2004;477

Weigel et al., 2008). To facilitate comparison of model drift with the ERA5 reanalysis,478

the pair of black lines in both panels show the 15-day mean of the zonally averaged 560-479

dam Z500 contours in the northern and southern hemisphere. The white lines in Figure 7b480

show the corresponding 560-dam Z500 contours for the DLWP-HPX simulation. The drift481

toward lower heights starts to become evident after two months in the northern hemi-482

sphere and continues to grow slowly for the remainder of the year. Differences show up483

earlier in the southern hemisphere, but the average drift is smaller and even disappears484

at a few times later in the year. As will be discussed in a forthcoming paper, both the485

errors near the poles and the drift in the tropics in Z500 can be corrected by incorporat-486

ing SST forecasts from a coupled atmosphere-ocean model.487

The performance of three additional state-of-the-art DLWP models is compared488

with our model using this same metric in Figure 8, which shows the evolution of zonally489

averaged Z500 heights over a one-year rollout beginning January 2, 2018. This year is490

part of the test set for all of the models: our DLWP-HPX, Pangu-Weather, GraphCast,491

and FourCastNetv2 based on spherical Fourier neural operators (SFNO) (Bonev et al.,492

2023). Details about the code used to generate these rollouts can be found in section Ap-493

pendix B.494

The Pangu-Weather model does not include solar forcing, and therefore, it does not495

follow the annual cycle. When stepped forward with a 24-h time step (Figure 8b), sig-496

nificant drift is apparent after about 1.5 months, which grows through the year without497

pushing the simulation into grossly unrealistic states. Based on the discussion of Extended498

Data, Fig. 7a in (Bi et al., 2023), one would not expect good performance from Pangu-499

Weather if rolled out with a 3-h time step, and indeed the 3-h rollout starts to produce500

significant errors after 1.5 months and generates completely unrealistic results after about501

5 months (Figure 8f). We nevertheless, show its performance to contrast it with our 3-502

h-time-resolution rollout (Figure 8e).503

The version of GraphCast from NVIDIA’s Earth2MIP gives reasonable results for504

just the first 1.5 months (Figure 8c), while that from DeepMind goes bad after a cou-505
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Figure 8: Zonally averaged three-day mean of Z500 plotted as a function of time and
latitude: (a) for ERA5 reanalysis, (b)-(h) for recursive one-year simulations for each
model as identified in the titles, initialized on January 2, 2018. Also shown are 15-day
averaged values of the 5600m contour of Z500 for the ERA5 data (black lines) each model
simulation (white dashed lines).

ple weeks (Figure 8g). The SFNO Earth2MIP model (FourCastNetv2-small) shows es-506

sentially no drift over a full year (Figure 8d), although surprisingly, it does not follow507

the annual cycle despite including solar zenith angle as an input field. Some artifacts (hor-508

izontal stripes) are visible near the south pole within a month and at the north pole much509

later in the simulation. In contrast, the SFNO Makani model (Figure 8h), also includes510

solar zenith angle as an input field, and it does follow the annual cycle reasonably well.511

On balance, the performance of the SFNO Makani model is roughly similar to our DLWP-512

HPX model; it has larger errors near the poles, but less drift in the tropics.513

In an ablation study (not shown), we investigated the effect of the top-of atmosphere514

solar forcing input on the 365-day DLWP-HPX rollout by training a model that did not515

receive solar forcing input. In that case, the model still generated a stable forecast over516

the entire rollout period, but did not produce the full annual cycle. Interestingly, that517

simulation did roughly approximate the transition from summer into a perpetual autumn.518

One qualitative way to appreciate the stable behavior of our one-year simulations519

is illustrated by comparing a 360.5 day simulation initialized on 1 April 2017 (with 6 h520

time steps and 3 h resolution) and the corresponding 27 March 2018 reanalysis in Fig-521

ure 9. The roughly one-year lead time is well beyond the limits of atmospheric predictabil-522

ity, so there is no reason to expect a close match between simulation and reanalysis. The523

360.5-day simulation time was chosen to display the simulated strong low-pressure cen-524

ter in the northeastern Pacific. The intensity of the system is typical for strong systems525

in our simulation, but about 40m higher than the strongest systems periodically appear-526

ing in the ERA5 reanalysis. Lower-amplitude signals also appear in the Z1000 field, which527

is somewhat less than 50m too low in the tropics. On balance, the overall character of528

this late-March weather pattern is quite plausible.529

A more quantitative assessment of any tendency of our model to distort the atmo-530

spheric state by damping or amplifying mid-latitude perturbations at different wavelengths531

is provided by the plots of the Z500 power spectral density around 45 ◦N in Figure 10.532

These spectra are averaged over 208 biweekly forecasts from the 2017-2018 test set; as533

such, the initial spectrum in black represents the average state of the atmosphere in the534

ERA5 reanalysis.535
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Figure 9: Z500 (color fill: 50 dam contour interval) and Z1000 (black contours: 40m inter-
val) for a free-running 360.5-day simulation and the corresponding ERA5 reanalysis for 00
UTC on 27 March 2018. Dashed black lines indicate values of Z1000 ≤ 40m (correspond-
ing to sea-level pressures less than roughly 1008 hPa).
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Figure 10: One dimensional power spectral density of the Z500 field around the 45◦ N
latitude, averaged over 208 bi-weekly forecasts from 2017-2018 at: initialization (black),
and at forecast lead times of 12 h, 2 d, 2, and 8 weeks.
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Twelve hours (2 recursive steps) after initialization there is very little change in the536

spectra for wavelengths λ longer than 500 km (roughly 5 grid intervals), but the power537

in the shorter waves is amplified. Over the next 36 h, there is a gradual reduction in the538

amplitude at wavelengths λ < 1800 km to yield a spectrum that is modestly damped539

over the interval 380 < λ < 1800 km and amplified at the shortest wavelengths. Sur-540

prisingly, the spectral distribution at two days remains essentially unchanged through541

at least sub-seasonal forecast lead times of eight weeks, which is consistent with the im-542

pression obtained examining images such as those in Figure 9. There is no gradual am-543

plification or loss of amplitude in the simulated atmospheric systems after the first two544

days.545

5 Conclusion546

We have presented an improved CNN-based DLWP-HPX model that stably fore-547

casts atmospheric evolution over a full one-year cycle using a very limited set of prog-548

nostic variables. The number of actual degrees of freedom characterising predictable at-549

mospheric states at forecast lead times beyond 3–5 days is not known, but is far less than550

the total number of prognostic variables carried at every grid cell in state-of-the-art NWP551

models. Here, we have demonstrated that realistic atmospheric simulations can be per-552

formed using just seven prognostic variables above each node on a HEALPix mesh with553

110 km between the nodes.554

The HEALPix mesh (Gorski et al., 2005) has been used in astronomy for almost555

two decades, but has previously seen very little use in atmospheric science. The mesh556

covers the sphere with a hierarchical grid of equal-area cells uniformly spaced along cir-557

cles at constant latitudes. A particularly important advantage of the HEALPix mesh for558

weather forecasting with CNNs is that it is an “east to the right” mesh, i.e., east has the559

same orientation in every HEALPix cell. Weather systems tend to travel west-to-east560

in mid- and high-latitudes and both east-to-west (tropical cyclones) or west-to-east (Madden-561

Julian Oscillation, convectively coupled Kelvin waves) in the tropics. The kernel weights562

in our convolutional stencils can more economically learn this behavior than on our pre-563

vious cubed sphere mesh in which the eastward orientation across the stencil varies with564

longitude, particularly on the polar faces. Although switching from a cube-sphere mesh565

with 64 × 64 cells on each of the six faces to a HEALPix mesh with 32 × 32 cells on566

each of the 12 faces reduces the total number of grid points covering the sphere by half,567

it improves the Z500 RMSE error by almost one day at a 4-day forecast lead time (Fig-568

ure 5).569

Two other significant improvements to our model architecture were obtained by adding570

recursion via GRUs and by inverting the standard way channel depth is refined at deeper571

layers in the U-Net. In contrast to the original U-Net architecture Ronneberger et al. (2015),572

our channel depth halves instead of doubles as the spatial resolution is also halved in each573

successively deeper U-Net layer. This allows the model to devote more trainable param-574

eters to describing the wide variety of fine-scale weather patterns while using compar-575

atively fewer parameters to describe the simpler set of global weather patterns. Although576

this modification pushes the U-Net toward the basic ResNet architecture (He et al., 2016),577

we find the deeper U-Net layers continue to provide significant skill to the forecasts.578

Additional modest improvements were implemented by switching to the GELU ac-579

tivation function and to 2×2 transposed strided convolutions when up-sampling; by in-580

creasing the total number of trainable parameters from 2.7M to 9.8M, adding the Z250581

field, increasing the resolution to HPX64, and increasing the time resolution to 3 h (which582

gives us a 6 h time step). The benefits of 3-h time resolution were only realized when the583

model included the GRUs. The 3-h time resolution gives a good forecast of the daily cy-584

cle of surface temperature, and the model also learns the difference in the range of that585

cycle between regions of tropical forest and desert without geo-specific input data.586
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Finally, we replaced the pairs of successive convolutions in Weyn et al. (2020) with587

modified ConvNeXt blocks. The switch to the ConvNeXt blocks was only advantageous588

at higher resolutions, where in addition to improving accuracy, it reduced the memory589

footprint.590

At one-week forecast lead time, the resulting model is roughly 1 day behind the591

ECMWF IFS S2S forecast error in Z500 RMSE and 1.5 days behind in ACC. These statis-592

tics are worse than those for Pangu-Weather (Bi et al., 2023) and GraphCast (Lam et593

al., 2022), both of which provide Z500 RMSE and ACC forecasts at 0.25◦ × 0.25◦ reso-594

lution that are superior to the deterministic ECMWF IFS high-resolution model aver-595

aged to the same 0.25◦×0.25◦ grid. Despite having less accuracy in medium range fore-596

casts, our model can be recursively stepped forward to generate better 500 hPa forecasts597

over seasonal and one-year rollouts than GraphCast and Pangu-Weather. It is also su-598

perior to the SFNO version of FourCastNetv2 currently on NVIDIA Earth2MIP, though599

it behaves similarly to the recently checkpointed version of SFNO Makani. Realistic low600

pressure systems and upper-level trough and ridge patterns continue to be generated by601

our model at the end of the one-year rollout.602

Deep learning models for weather forecasting are evolving rapidly, with important603

advancements using a wide variety of architectures. Our DLWP-HPX model provides604

an example of what can be achieved using a relatively parsimonius approach. As such,605

it may be particularly useful for scientific investigations where it is advantageous to work606

with a minimal set of unknown variables to more concisely characterize sensitivities that607

might be revealed by techniques such as backpropagation with respect loss functions cus-608

tomized for analysis (as opposed to model training).609

There are many avenues along which our DLPW-HPX model might be improved.610

One would be to adding additional prognostic fields while carefully examining the result-611

ing performance. Another one would lie in refining the CNN architecture, where the choice612

of particular inductive biases may be crucial (Thuemmel et al., 2023). A related impor-613

tant aspect of improving the modelled processes might be to incorporate explicit phys-614

ical constraints, yielding physics-informed differentiable artificial neural networks (Beucler615

et al., 2021; Shen et al., 2023). Other natural extensions of this work lie in examining616

the performance of the DLPW-HPX model in ensemble forecasts, which are crucial to617

sub-seasonal and seasonal prediction and to couple the atmospheric model with the ocean,618

thus moving toward a deep learning earth system model (Bauer et al., 2023). Prelimi-619

nary results suggest that coupling our model with a deep learning ocean model that pre-620

dicts sea surface temperatures (which are not incorporated in the current model) stabi-621

lizes the simulations and removes model drift in multi-decadal rollouts.622

Appendix A Deep Learning on the HEALPix623

A1 Seamless Evolution of Location Invariant Kernels624

The Hierarchical Equal Area isoLatitude Pixelization (HEALPix) is a partitioning625

of the sphere that has found wide application in astronomy since it was introduced by626

Gorski et al. (2005). It divides the sphere into 12 base faces that can be hierarchically627

subdivided into patches of equal size. A key property for training CNNs on this mesh628

is the isolatitudinal alignment, that is, patches are aligned along lines of latitude and each629

patch has the same orientation, which we describe as “east to the right” in subsection 4.1.630

To contrast and emphasize the difficulty that CNN kernels are facing on the cubed631

sphere mesh, we plot the lines of constant latitude on the six faces of the cubed sphere632

and on the twelve faces of the HEALPix in Figure A1. Except for the equator, all lines633

of constant latitude are bent on the cubed sphere, imposing challenges for a limited set634

of convolution kernels that must evolve location invariant pattern detectors and functions.635

For example, on the cubed sphere, kernels need to learn a wider range of behaviors to636
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Figure A1: Lines of latitudes depicted as blue streamline arrows on the cubed sphere
(a) and on the HEALPix (b). While the lines corresponding to constant eastward motion
describe arcs of different radii on the cubed sphere mesh, the same motion translates to
straight lines on the HEALPix mesh.

propagate eastward motions at the top-left versus the top right corners of the cubed sphere637

faces.638

On the other hand, lines of constant latitude map to straight lines on the HEALPix639

mesh. This facilitates the formulation of location-invariant convolutional kernels for the640

propagation of weather systems, which tend to migrate eastward outside the tropics.641

A2 Technical Implementation Details642

Since deep learning libraries are optimized for image processing tasks, we consider643

each of the HEALPix’s 12 base faces as a regular two-dimensional tensor, i.e., we inter-644

pret the sphere as a composition of twelve images (cf. Figure 1 and Figure A2).645

To simulate the spatial propagation of dynamics beyond individual faces, such that646

weather patterns can evolve globally on the sphere, we implement custom padding op-647

erations to concatenate the relevant information of all neighboring faces to each respec-648

tive face of interest.649

Figure A2 showcases our planet’s coastlines projected on the HEALPix faces in (a)650

and outlines the spatial organization of the twelve faces in (b). The arrangement of neigh-651

boring faces is exemplarily detailed for the northern (N) and southern (S) hemisphere,652

as well as for the equatorial faces (E). To simulate the neighborhood of, say, face E3, the653

face N2 must be concatenated to the left of E3, while face S3 is concatenated to the right.654

On the northern and southern hemispheres, neighboring faces are partially required to655

be rotated, as indicated in Figure A2 (c), (d), and (e).656

A particular case occurs in the north and south corners of the tropical faces, where657

no natural neighbor exists—cf. Figure 1 and Figure A2 (f) for an illustration. To sim-658

ulate the ninth neighbor of the respective corner, we interpolate the values from the ac-659

cording faces on the northern/southern hemisphere, by simply averaging the two corre-660

sponding values and writing the result in the simulated neighboring face. For example,661

to simulate the top left neighboring face of E3, we average the respective values from N2662

and N3, as detailed by the straight red arrows in Figure A2 (g). Values that do not lie663

on the main diagonal of the simulated face are not required to be interpolated, but are664

copied from the adjacent faces instead, denoted by the curved red arrows in Figure A2665

(g). The exemplary corner padding shows the case for the application of a 3× 3 kernel666

with dilation of 1 or 2. Note that a 5× 5 kernel could be applied in the same way. Im-667

portantly, the padding should not extend one neighboring face, which depends on the668
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resolution of the HEALPix mesh and the configuration of the applied convolution (ker-669

nel size and dilation). Otherwise, a hierarchy of padding operations would be required670

to be implemented and considered.671

Appendix B DLWP Model Details672

Configuration and parameter counts of all layers in our best performing model are673

detailed in Table B1, where cin denotes the number of input channels, k is the kernel size,674

s the stride, and d the dilation. The receptive field of each layer with respect to the net-675

work input is reported under RF and the output shape takes (F, H, W, C) with F the676

number of faces, H and W height and width, and C the number of output channels. The677

dashed line separates the model’s encoder (above) and decoder (below) components. All678

ConvNeXt- and GRU-blocks are additionally broken down into their operations, visualized679

by the indented layer names. Numbers in brackets following individual layer names cor-680

respond to outputs, which are concatenated to the respective Concat layers in the de-681

coder. All convolution layers with k = 3 are followed by GELU activation functions.682

Residual connections are not reported as they neither change the spatial resolution nor683

the number of channels, and they do not contribute to the parameter count. Color codes684

approximate those used in the model schematic in Figure 2.685

To generate 1-year rollouts for Pangu-Weather, GraphCast, and FourCastNet2 (SFNO),686

as plotted in Figure 8, we considered the respective public repositories with the pretrained687

model weights. More concretely, we generated the SFNO Earth2MIP (fcnv2_sm) and688

GraphCast Earth2MIP (graphcast) forecasts with NVIDIA’s earth2mip package,8 specif-689

ically developing a custom script for long rollouts.9 The SFNO Makani forecast, which690

responds reasonably to the solar forcing by receiving an additional cosϕ input (where691

ϕ is the solar zenith angle), was generated with NVIDIA’s Makani package.10 Interest-692

ingly, the original GraphCast DeepMind code base11 produced slightly different results693

and saturated even faster than the Earth2MIP version, which might result from differ-694

ent random seeds. For the DeepMind version of GraphCast, we downloaded the model695

weights12 provided through their repository. Pangu-Weather forecasts in 24 h and 3 h res-696

olution (with respective checkpoint files for the 24 h13 and 3 h14 models) were generated697

by using the original repository.15698

Open Research Section699

Instructions for training, and a trained model for inference, are available at https://700

github.com/CognitiveModeling/dlwp-hpx/. In addition, PyTorch code for training701

the DLWP-HPX models along with checkpoints of trained models will be provided via702

NVIDIA’s Modulus framework. Accompanying scripts for data preprocessing, including703

the projection to and from the HEALPix mesh, as well as postprocessing utilities, includ-704

ing evaluation routines, will be made available in the repository at https://github.com/705

NVIDIA/modulus/tree/main/examples/weather. All spherical shells of data from ERA5706

(Hersbach et al., 2020) were downloaded from Copernicus, where variables on various con-707

8 https://github.com/NVIDIA/earth2mip
9 https://github.com/NVIDIA/earth2mip/blob/main/examples/utils/workflows/1_year_run.py
10 https://github.com/NVIDIA/makani
11 https://github.com/google-deepmind/graphcast
12 https://storage.googleapis.com/dm_graphcast/params/GraphCast%20-%20ERA5%201979-2017%20

-%20resolution%200.25%20-%20pressure%20levels%2037%20-%20mesh%202to6%20-%20precipitation%
20input%20and%20output.npz

13 https://drive.google.com/file/d/1lweQlxcn9fG0zKNW8ne1Khr9ehRTI6HP/view
14 https://drive.google.com/file/d/1EdoLlAXqE9iZLt9Ej9i-JW9LTJ9Jtewt/view
15 https://github.com/198808xc/Pangu-Weather
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(a) (b)

(c) (d) (e)

(f) (g)

Figure A2: 2D HEALPix face arrangement and padding. (a) depicts the distribution
of coastlines over the twelve HEALPix faces. (b) enumerates the twelve faces of the
HEALPix with each four faces on the northern and southern hemisphere and around the
equator. (c), (d), and (e): Exemplary alignment and rotations of neighboring faces before
applying the padding operation on northern (c), equatorial (d), and southern faces (e). (f)
emphasizes the special corner case, which is detailed in (g) to visualize the padding, where
a ninth pixel is simulated by averaging the two respective values from the adjacent faces.
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Table B1: Details of the best performing model. Description of color codes and abbrevia-
tions are reported in section Appendix B

Parameter count

Layer cin k s d RF Output shape Weights Biases Σ

ConvNeXt
Conv2d 18 1 1 1 1× 1 (12, 64, 64, 136) 2 448 136 2 584
Conv2d 18 3 1 1 3× 3 (12, 64, 64, 544) 88 128 544 88 672
Conv2d 544 3 1 1 5× 5 (12, 64, 64, 544) 2 663 424 544 2 663 968
Conv2d (1) 544 1 1 1 5× 5 (12, 64, 64, 136) 73 984 136 74 120

AvgPool2d 136 2 2 — 6× 6 (12, 32, 32, 136) 0 0 0
ConvNeXt

Conv2d 136 1 1 1 6× 6 (12, 32, 32, 68) 9 248 68 9 316
Conv2d 136 3 1 2 14× 14 (12, 32, 32, 272) 332 928 272 333 200
Conv2d 272 3 1 2 22× 22 (12, 32, 32, 272) 665 856 272 666 128
Conv2d (2) 272 1 1 1 22× 22 (12, 32, 32, 68) 18 496 68 18 564

AvgPool2d 68 2 2 — 24× 24 (12, 16, 16, 68) 0 0 0
ConvNeXt

Conv2d 68 1 1 1 24× 24 (12, 16, 16, 34) 2 312 34 2 346
Conv2d 68 3 1 4 56× 56 (12, 16, 16, 136) 83 232 136 83 368
Conv2d 136 3 1 4 88× 88 (12, 16, 16, 136) 166 464 136 166 600
Conv2d 136 1 1 1 88× 88 (12, 16, 16, 34) 4 624 34 4 658

ConvNeXt
Conv2d 34 1 1 1 88× 88 (12, 16, 16, 68) 2 312 68 2 380
Conv2d 34 3 1 4 120× 120 (12, 16, 16, 136) 41 616 136 41 752
Conv2d 136 3 1 4 152× 152 (12, 16, 16, 136) 166 464 136 166 600
Conv2d 136 1 1 1 152× 152 (12, 16, 16, 68) 9 248 68 9 316

GRU
Conv2d 136 1 1 1 152× 152 (12, 16, 16, 136) 18 496 136 18 632
Conv2d 136 1 1 1 152× 152 (12, 16, 16, 68) 9 248 68 9 316

ConvTrans2d 68 2 2 1 154× 154 (12, 32, 32, 68) 18 496 68 18 476
Concat (2) — — — — — (12, 32, 32, 136) 0 0 0
ConvNeXt

Conv2d 136 3 1 2 154× 154 (12, 32, 32, 272) 332 928 272 333 200
Conv2d 272 3 1 2 162× 162 (12, 32, 32, 272) 665 856 272 666 128
Conv2d 272 1 1 1 170× 170 (12, 32, 32, 136) 36 992 136 37 128

GRU
Conv2d 272 1 1 1 170× 170 (12, 32, 32, 272) 73 984 272 74 256
Conv2d 136 1 1 1 170× 170 (12, 32, 32, 136) 36 992 136 37 128

ConvTrans2d 136 2 2 1 171× 171 (12, 64, 64, 136) 73 984 136 74 120
Concat (1) — — — — — (12, 64, 64, 272) 0 0 0
ConvNeXt

Conv2d 272 1 1 1 171× 171 (12, 64, 64, 136) 36 992 136 37 128
Conv2d 272 3 1 1 173× 173 (12, 64, 64, 544) 1 331 712 544 1 332 256
Conv2d 544 3 1 1 175× 175 (12, 64, 64, 544) 2 663 424 544 2 663 968
Conv2d 544 1 1 1 175× 175 (12, 64, 64, 136) 73 984 136 74 120

GRU
Conv2d 272 1 1 1 175× 175 (12, 64, 64, 272) 73 984 272 74 256
Conv2d 272 1 1 1 175× 175 (12, 64, 64, 136) 36 992 136 37 128

Conv2d 136 1 1 1 175× 175 (12, 64, 64, 14) 1 904 14 1 918

9 816 752 6 066 9 822 818
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stant pressure levels, such as Z500 or T850, and variables on single levels, such as T2m or708

TCWV , are hosted open to the public, available at https://cds.climate.copernicus709

.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form and https://710

cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels711

?tab=overview.712
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