Flare-up in Cordilleran arcs controlled by fluxes in subduction water budgets

Timothy Chapman¹, Luke A. Milan², Sabin Zahirovic³, Andrew Merdith⁴, Geoffrey L. Clarke³, Mingdao Sun⁵, and Nathan Robert Daczko⁶

¹University of New England ²The University of New England ³University of Sydney ⁴University of Leeds ⁵Guangzhou Institute of Geochemistry, Chinese Acadamy of Sciences ⁶Macquarie University

September 29, 2023

Abstract

The tempo of subduction-related magmatic activity over geological time is episodic. Despite intense study and their importance in crustal addition, the fundamental driver of these episodes remains unclear. We demonstrate quantitatively a first order relationship between arc magmatic activity and subduction flux. The volume of oceanic lithosphere entering the mantle is the key parameter that regulates the proportion of H2O entering the sub-arc. New estimates of subduction zone H2O budgets over the last 150 million-years indicate a three- to five-fold increase in the proportion of H2O entering the sub-arc during the most recent global pulse of magmatism. Step changes in H2O flux enable proportionally greater partial melting in the sub-arc. Similar magmatic pulses in the ancient Earth could be related to variability in subduction flux associated with supercontinent cycles.

Hosted file

974887_0_art_file_11419665_s1m8st.docx available at https://authorea.com/users/546035/ articles/669813-flare-up-in-cordilleran-arcs-controlled-by-fluxes-in-subduction-waterbudgets

Hosted file

974887_0_supp_11423565_s1kc8b.docx available at https://authorea.com/users/546035/articles/ 669813-flare-up-in-cordilleran-arcs-controlled-by-fluxes-in-subduction-water-budgets

1	Flare-up in Cordilleran arcs controlled by fluxes in subduction water
2	budgets
3	Timothy Chapman ^a *, Luke A. Milan ^a , Sabin Zahirovic ^b , Andrew S. Merdith ^c , Geoffrey L.
4	Clarke ^b , Mingdao Sun ^d , Nathan R. Daczko ^e
5	^a Earth Science, School of Environmental and Rural Science, University of New England
6	NSW, 2351, Australia
7	^b School of Geosciences, The University of Sydney; NSW, 2006, Australia
8	^d State Key Laboratory of Isotone Geochemistry, Guangzhou Institute of Geochemistry
9	Chinese Academy of Sciences: Guangzhou 510640. China
11	^e Department of Earth and Environmental Sciences, Macquarie University; NSW, 2109,
12	Australia
13	*Corresponding author. Email: <u>timothy.chapman@une.edu.au</u>
14	Abstract
15	The tempo of subduction-related magmatic activity over geological time is episodic. Despite
16	intense study and their importance in crustal addition, the fundamental driver of these
17	episodes remains unclear. We demonstrate quantitatively a first order relationship between
18	arc magmatic activity and subduction flux. The volume of oceanic lithosphere entering the
19	mantle is the key parameter that regulates the proportion of H_2O entering the sub-arc. New
20	estimates of subduction zone H_2O budgets over the last 150 million-years indicate a three- to
21	five-fold increase in the proportion of H_2O entering the sub-arc during the most recent global
22	pulse of magmatism. Step changes in H ₂ O flux enable proportionally greater partial melting
23	in the sub-arc. Similar magmatic pulses in the ancient Earth could be related to variability in
24	subduction flux associated with supercontinent cycles.
25	Keywords: magmatic flare-ups, magma flux, Continental arc, Earth's tempo, global water
26	budgets, phase equilibria
27	

30 Plain language summary

Volcanic activity over geological time is episodic. Typical background rates of activity are 31 32 punctuated by pulses involving 100–1000 times the volume of magma in volcanic arcs. Despite intense study, the main agent that controls this episodic behaviour remains unknown. 33 34 We demonstrate quantitatively a first order relationship between magmatic activity and the 35 volume of material being subducted. The volume of oceanic lithosphere entering the mantle is the key parameter that regulates the proportion of H₂O budgets. New estimates of 36 subduction zone H₂O budgets over the last 150 million-years indicate a three- to five-fold 37 increase in the proportion of H_2O entering the volcanic arcs. The timing corresponds to the 38 39 most recent global pulse of magmatism. Step changes in H₂O flux enable proportionally 40 greater partial melting and therefore more magma generation in the crust.

41 **1. Introduction**

42 Subduction zones are key locations for the net growth of continents and the long-term cycling of elements through the crust, mantle, and exosphere (Hawkesworth & Kemp, 2006; Till et 43 al., 2021). The tectonic process of subduction has been inferred to be continuous around the 44 globe for at least the last 2–3 billion years (Hawkesworth & Kemp, 2006; Campbell & Allen, 45 2008; Voice et al., 2011; Palin & Santosh, 2021). Records of magmatic activity along the 46 margin of continents, based on U-Pb crystallization ages from zircon, should present as a 47 48 broad continuum associated with ongoing subduction. However, the preserved geological record is marked by peaks of zircon crystallization ages that indicate changing tempos in 49 50 magmatic activity, whereby lower background rates of magmatism are punctuated by episodic pulses (Fig. 1) (Cagnioncle et al., 2007; Campbell & Allen, 2008; Voice et al., 2011; 51 52 Chapman et al., 2021). Aspects of the older geological record could reflect a preservation 53 bias, though the pattern is also retained by Phanerozoic aged subduction zone settings 54 (McKenzie et al., 2016; Cao et al., 2017). 55 The drivers of Phanerozoic episodes of magmatic flare-up remain contentious (see Chapman et al. 2021). This is despite higher resolution geological records of magmatic 56 57 activity and tectonic parameters for the Phanerozoic subduction zones, compared to those of 58 the Precambrian (Campbell & Allen, 2008; McKenzie et al., 2016; Palin & Santosh, 2021). The causes of episodic magmatic activity are generally ascribed to variations of heat-flux in 59 60 one part of the subduction system: (1) changes in cycles of compression or extension in the 61 crust (DeCelles et al., 2009; Chapman et al., 2021); or (2) changes in the mantle heat-flux, related to the behaviour of the down-going slab or melting in the mantle wedge (Cagnioncle 62 et al., 2007; Martínez Adrila et al., 2019; Till et al., 2021). Simultaneous increases in 63 magmatic activity along disparate arcs across the globe indicates a fundamental change in 64 65 mantle heat-flux associated to plate tectonics (Fig. 2). The principal control on mantle

Л

66	melting in subduction zones is the fluid and/or melt capacity of the downgoing slab
67	(Ringwood, 1974; Grove et al., 2006). Deep-time estimates of the H ₂ O capacity of global
68	subduction zones are determined here based on full-plate reconstructions (Müller et al., 2016)
69	and phase equilibria modelling. The first prediction of long-term variability in H_2O -budgets
70	is correlated to both global and regional magmatic arc activity supporting a first-order
71	tectonic control.
72	2. Methods
73	2.1. Global plate reconstructions
74	Parameters for global subduction zones and three specific arc segments (New Zealand,
75	Antarctica-Patagonia, East Asia) were extracted using the open-source and cross-platform
76	GPlates software (www.gplates.org) (Müller et al., 2016). Subduction zone kinematics
77	encompassing the subducting plate area, age, thickness as well as obliquities and
78	convergence rates were collated at 1 Myr intervals from the global plate reconstruction (Figs
79	1 & 2). The slab flux was determined as the product of segmented arc length, lithospheric
80	thickness, and orthogonal convergence rate, summed for all subduction zone segments (Fig.
81	1) (East et al., 2019).
82	The modelled seafloor ages in the plate reconstructions are based on seafloor
83	spreading isochrons from c. 230 Ma (Fig. 2: East et al., 2019). The spreading rates generate
84	predictions of subduction convergence in a globally consistent model. The subducting plate
85	thickness is calculated based on the cooling of at maximum a 125 km thick lithosphere, with
86	a basal mantle potential temperature of 1350°C (Grose et al., 2012). The crustal thickness

87 includes oceanic basement and sediment. Sediment thickness estimates are based on model

88 predictions after Zahirovic et al. (2022). Animations of the subduction zone convergence,

89 lithospheric age and sediment thickness are presented in the supplement (S1 & S2).

Restricted preservation of ancient seafloor presents the biggest limitations in the plate reconstruction further back in geological time. The Pacific Plate motion is connected through a plate circuit from 83 to 0 Ma, but for earlier times it moves independently, and the motion is less well constrained. Seafloor ages become less well constrained before 150 Ma as only a small portion of the Pacific Plate triangle is preserved. The plate motions between ~120 and 83 Ma during the Cretaceous Normal Superchron are interpolated as there are no magnetic polarity reversals in this timeframe.

97 2.2. Seafloor hydration

Initial budgets of H₂O in the oceanic crust and lithosphere were calculated based on global 98 plate reconstructions to c. 230 Ma (Fig. 3). The model estimates assume that the proportion 99 100 of fluid-saturated basaltic crust and extent of serpentinisation varies in relation to mid-ocean 101 ridge spreading rate based on time-dependent calculations of Merdith et al. (2019). Sediment 102 was assumed to be fluid saturated. The models generate a proportion of saturation of oceanic 103 lithosphere that is equivalent to previous estimates (van Keken et al., 2011; Faccenda, 2014). 104 Uncertainty on the estimates is cumulative in relation to error on spreading rates, 105 lithosphere thicknesses and predicted extent of hydration. Conditional probability was 106 determined based on the range of spreading rates to account for uncertainty on these values 107 (Merdith et al., 2019). A second stage of seafloor hydration associated to trench flexure is 108 poorly constrained but assumed to accounting for an additional 0-2% hydration of the top 109 10 km of lithospheric mantle (Hacker, 2008; Faccenda, 2014; Cerpa et al., 2022). The 110 assumption of uniform hydration remains limiting on a global deep-time scale. Trench 111 flexure estimates were capped at 2% in the top 10 km in this work. Uncertainty estimates 112 from modern subduction zones show variation in hydration extent in the same range as those 113 used in the calculations of this work (van Keken et al., 2011; Cerpa et al., 2022).

114 2.3.Phase equilibria modelling

115	Phase equilibria modelling was performed using THERMOCALC in the NCKFMASHTO
116	chemical system utilising version 3.47i (Powell & Holland, 1988) and the internally
117	consistent thermodynamic dataset 6.2 (updated 6 th February 2012) (Holland & Powell, 2011).
118	The modelled bulk rock compositions are based on a MORB (Chapman & Clarke, 2021),
119	pelagic sediment from ODP site 800 (Plank & Langmuir, 1998), and the KLB-1 lherzolite
120	(Davies et al., 2009) (Fig. S1). The utilisation of pelagic sediment was preferred to GLOSS-
121	type to avoid artefacts in the phase equilibria modelling association to oversaturation of that
122	bulk-composition to calcium carbonate (Coulthard et al., 2020). The modelled redox
123	conditions for the MORB were fixed at $Fe^{3+}/[Fe^{3+}+Fe^{2+}] = 0.15$, the metasediments at 0.05,
124	and the serpentinite at 0.03. Fluid was considered in excess. The relative proportion of free
125	H ₂ O was determined by setting H ₂ O at molar proportions that just saturated the low-
126	temperature and high-pressure equilibria (Clarke et al., 2006).
127	Pressure uncertainties for the assemblage field boundaries are approximately
128	± 0.1 GPa at the 2σ level associated to propagation of thermodynamic uncertainties (Powell &
129	Holland, 2008; Chapman et al., 2019). The uncertainties account for ~10% variability in H_2O
130	modes in the calculations, which is within that expected for varying bulk compositions in
131	typical ranges for subducted lithologies (Evans & Bickle, 2006; Palin et al., 2016; Chapman
132	et al., 2019). At high-P, sediments would approach the solidus (Hermann & Spandler, 2008),
133	current limitations in phase equilibria models makes assessing the effects of such high-
134	pressure melting difficult (Fig. S1b) (White et al., 2014).
135	2.4.Subducted H ₂ O budgets
136	Utilising modern subduction zone variables and predicted slab thermal histories (Syracuse et
137	al., 2010), H ₂ O contents across typical $P-T$ arrays of modern sub-arcs were calculated based
138	on the phase equilibria (Fig. S1). Average H ₂ O released based on phase equilibria modelling

of slabs from modern systems with fast (>90 km Myr⁻¹), intermediate (60 > x < 90 km Myr⁻¹)

140	and slow (<60 km Myr ⁻¹) convergence rates were extracted using two of the end-member
141	thermal models (D80 and W1300) of Syracuse et al. (2010). The H_2O released by MORB for
142	these thermal models in each of the respective bins is as follows: 15.10 ± 1.51 , 0.04 ± 0.004 and
143	0.004±0.0004 Mole %. The H ₂ O released from pelagic sediment is: 0.047±0.0047,
144	0.064 ± 0.0064 and 0.068 ± 0.0068 Mole %. The proportions for serpentinite relate to thermal
145	conditions predicted at the Moho of the downgoing lithosphere resulting in the release of the
146	following proportions of H ₂ O: 31.03 ± 3.1 , 31.03 ± 3.10 and 15.77 ± 1.577 Mole %. Uncertainty
147	on these estimates was based on 2 sigma distributions on the estimates of modes from the
148	thermodynamic modelling.
149	The bins of H ₂ O release proportions were utilised in the determination of the sub-arc
150	budgets via the integration with subduction kinematic data (Fig. 3). The portion of H_2O
151	entering the sub-arc region was determined based on the slab flux rate, densities of the
152	modelled bulk rocks, normalised to global length of arcs at each million-year time bin. The
153	estimates consider H ₂ O liberated from structurally bound minerals across typical subduction
154	heating arrays based on predictions from the phase equilibria modelling (Fig. S1).
155	The method cannot incorporate undetermined physical subduction variables of
156	ancient systems, such as slab dip that also influence sub-arc depth conditions (Syracruse et
157	al., 2010). The time-dependent constraints on the slabs reaching the sub-arc were based
158	therefore on the convergence rates to a nominal depth of 125 km, consistent with most
159	predictions of sub-arc depths (100–150 km). These descent rates are like those established in
160	modern subduction zones (Müller et al., 2016).
161	Total uncertainty on the subduction zone H ₂ O budgets was determined using the
162	propagation of error function assuming 2σ level error at each step. The overall uncertainty
163	varies between 30–70% of the calculated values. To assess the validity of the results, the new
164	calculations are compared to previous predictions of H_2O release in modern subduction zones

- 165 by van Keken et al. (2011). Integration of these values to subduction flux over time produces
- similar trends to the results of this work (Fig. 1d). 3. Results
- 167 2.5. Magmatic pulses and lulls

168 Phanerozoic magmatic activity on the continents has shown regular temporal fluctuation that 169 can be broadly linked to the dispersion or amalgamation of supercontinents (Fig. 1). The 170 most recent pulses in subduction magmatism occurred at c. 150–160 Ma and c. 100–130 Ma 171 (Fig. 1) (Voice et al., 2011). Similar magmatic peaks are observed at c. 250 and 350 Ma (Fig. 172 1) (McKenzie et al., 2016; Cao et al., 2017; Chapman et al., 2022). Drivers of these magmatic 173 pulses have been variously linked to estimates of the rate of subduction (Fig. 1: Kirsch et al., 174 2016), its angle of dip (Gorzyk et al., 2007), or the length of subduction segments (Domeier et al., 2018) with mixed results across different arcs. The variability is in part related to 175 176 uncertainty in the determination of tectonic parameters in local arc segments, like that of 177 western North America (Ducea et al., 2007; Martínez Adrila et al., 2019), associated to 178 sparsely preserved seafloor or the effects of multiple terrane collisions. Furthermore, the rate 179 of subduction presents only one of the important parameters that influence fluid capacity in 180 subduction zones (Fig. 1a). 181 2.6. Subduction flux

The slab flux at convergent margins is directly related to long-term tectonic cycles (Fig. 1b)
(Domeier et al., 2018; East et al., 2019). The breakup of Pangea, beginning in the Triassic,

184 induced faster global average convergence rates at subduction zones and a contemporaneous

doubling of mid-ocean ridge lengths (Müller et al., 2016). These dynamics compounded to

- 186 produce a peak in circum-Pacific subducted slab volume in the Early Cretaceous (c. 130 Ma)
- 187 (Figs 1b & 2). The subsequent slowing of convergence rates and the subduction of younger,
- thinner slabs along longer subduction zone lengths have contributed to a general decline in
- 189 slab flux until the present day (East et al., 2019).

190	The temporal evolution of the subduction flux between 230 Ma and the present day
191	shows a first order correlation with the Cretaceous pulses in global magmatism (Fig. 1b).
192	Evidence for the correlation is preserved in flare-up events identified in c . 100–130 Ma
193	segments of Antarctica, North and South America, New Zealand, Antarctica and northern
194	China, Korea, and Japan (Figs 1 & 2) (Kirsch et al., 2016; Cao et al., 2017; Milan et al.,
195	2017; Tang et al., 2018). Predictions of peaks in subduction flux further back in time also
196	show good correlation with pulses in magmatism in the Phanerozoic at c. 250 and 350 Ma,
197	associated with the assembly of Pangea and Laurussia (Domeier et al., 2018; Chapman et al.,
198	2022).
199	Variation in subduction flux is mostly controlled by convergence rates but is
200	enhanced by the thickness of the oceanic crust and the overlying sediment. Unlike oceanic
201	thickness that varies consistently with its age of formation, subducted sediment volume
202	displays more variability over time that can match both high and low magnitude pulses in

203 magmatic activity (Fig. 1d). Periods of thick sediment subduction correlate well with

identified episodes of wedge thickening and related metamorphism on arc margins (Fig. 3)

(Iwasaki et al., 1995; Gray & Foster, 2004). However, it remains difficult to fully assess the
deep burial of sediment due to the uncertainties in the extent of subduction erosion (Clift &

207 Vannucchi, 2004).

208 2.7. Fluid budgets

209 The capacity of subducted lithosphere to carry substantial fluid volumes is dependent on the

210 extent of hydration of its differing lithologies and their absolute volumes. The main

211 influential fluid-bearing components are the lithospheric mantle, the MORB-like crust, extent

- of abyssal serpentinite, and the overlying pelagic sediments. The age of the subducting
- 213 oceanic crust influences lithospheric thickness, the extent of hydration, and the lithospheric
- 214 geotherm (van Keken et al., 2011; Schmidt & Poli, 2014; Syracuse et al., 2019). In turn, the

215	thickness of the sedimentary cover varies not only in relation to seafloor age, but also
216	latitude, and proximity to prominent deltaic systems (Fig. 1c) (Zahirovic et al., 2022). In
217	combination these all control the capacity to carry and release H ₂ O and other fluids (CO ₂ ,
218	H_2S , SO_2) during subduction.
219	The location of fluid release from a subducted slab is dependent on the $P-T$ path and
220	intersected of multivariant dehydration reactions (Fig. S1) (Clarke et al., 2006; Schmidt &
221	Poli, 2014). The specific depth of the sub-arc region on different margins is primarily
222	dependent on convergence rate as well as slab dip and oceanic crust age (Schmidt & Poli,
223	1998; Syracuse et al., 2010; van Keken et al., 2011; Cerpa et al., 2022). Higher convergence
224	rates, or the subduction of older lithosphere induce colder geothermal gradients in the
225	downgoing plate in modern systems (Peacock et al., 1999; Syracuse et al., 2010).
226	Subduction zones with fast convergence of old oceanic lithosphere retain greater-
227	water capacities at sub-arc depths (~30 mol.% H_2O : Fig. 3) compared to slower convergence
228	of younger oceanic lithosphere (~4–15 mol.% H_2O : see also van Keken et al., 2011). Colder
229	geothermal conditions enable retention of hydrous phases to deeper conditions (Schmidt &
230	Poli, 1998; Grove et al., 2009; van Keken et al., 2011; Poli & Schmidt, 2014; Chapman et al.,
231	2021). The T-sensitive dehydration reactions are inhibited, enabling phases like lawsonite,
232	zoisite, phengite, chlorite, and antigorite to persist to greater depths (Fig. S1). In comparison,
233	in warmer subduction geotherms these hydrous phases breakdown at shallower conditions
234	(Poli & Schmidt, 2014).
235	During high slab flux events it is predicted 500–840 \pm 100 Tg km ⁻² Myr ⁻¹ of H ₂ O
236	would be entering the sub-arc from the entire downgoing slab (Figs 1 & 3). The background
237	amount of H_2O entering the sub-arc is less (40–200±30 Tg km ⁻² Myr ⁻¹). The relative
238	contributions to the H ₂ O budget from the lithospheric components during background
239	subduction is mostly related to serpentinite (97-99%: chlorite and antigorite), less so basaltic

240	(~0.5–2%) and sediment (~0.5–1%) contributions (Fig. S2). In a high slab flux event, the
241	contributions of basaltic (60-90%) and sedimentary (9-50%) sources increase drastically,
242	with proportional less from serpentinite $(0-40\%)$ (Figs S2). Due to the colder and deeper
243	subduction of the crustal components.
244	Progressive fluid release from the slab during subduction is known to hydrate or
245	metasomatise the mantle wedge (Grove et al., 2009; Scambelluri et al., 2019). Hydration
246	results in the production of serpentinite that will have a volume proportional to the fluid
247	budget of the downgoing slab (Spandler & Pirard, 2015). Any displacement of hydrated
248	portions of the mantle wedge or metasomatic rock to higher- P during the channel flow will
249	provide additional H ₂ O release at sub-arc depths (Scambelluri et al., 2019). Although, the
250	physical, chemical, and thermal behaviour of this portion of the subduction system remains
251	poorly constrained and difficult to implement in the calculated budgets (Spandler et al., 2008;
252	Spandler & Pirard, 2015).
253	3. Discussion
254	3.1. Deep time H_2O budgets and magmatism
255	The production of arc magma is dependent on the liberation of H ₂ O-rich fluid from the
256	downgoing oceanic plate into the mantle wedge (Ringwood, 1974). Progressive release of
257	fluid from the subducting plate occurs during its metamorphic transformation from blueschist
258	to eclogite (Fig. S1: Schmidt & Poli, 2014; Chapman et al., 2019). Temporal increases in the
259	volume of fluid entering zones of partial melting in the mantle wedge can thus drive the
260	generation of greater volumes of magma (Ringwood, 1974; Grove et al., 2006). Increasing
261	the amount of H_2O in the sub-arc permits proportionally greater melt production (upwards of
262	5 times) from that associated with a less hydrated peridotite (Schmidt & Poli, 1998;

263 Cagnioncle et al., 2007; Grove et al., 2009).

264	The first order correlation between periods of greater slab flux and the volume of
265	magmatism in the overriding plate supports a causal relationship (Fig. 1b). Changes in the
266	volume and rate of subduction of oceanic lithosphere will have a direct bearing on the $\rm H_2O$
267	budget before accounting for other subduction variables. The thermal regime and angle of the
268	subducting plate strongly influence the position of fluid liberation and thus capacity for
269	related melting in the overlying mantle wedge (van Keken et al., 2011; Schmidt & Poli, 2014;
270	Chapman et al., 2019). Higher convergence rates, and/or the subduction of older lithosphere,
271	induce colder geothermal gradients in the downgoing plate and greater fluid liberation
272	(mostly H ₂ O-rich) from blueschist and eclogite (Fig. 3: Clarke et al., 2006; Grove et al.,
273	2009; Syracuse et al., 2010). Mantle wedge melting dynamics may also be compounded by
274	variations in the distribution of heat in the wedge associated with changing angles of
275	subduction (Gorczyk et al., 2007; Grove et al., 2009; England & Katz, 2010; Perrin et al.,
276	2018).
277	To account for some of these additional factors the first time-dependent global
278	estimate of H_2O budgets was established (Fig. 1d) by integrating predictions of H_2O -rich

279 fluid proportions from phase equilibria modelling (Powell & Holland, 1988; Chapman &

280 Clarke, 2021) with subduction volumes determined from plate reconstructions (Fig. 2)

281 (Müller et al., 2016). The tectonic variables of oceanic crust age, lithospheric thickness,

282 proportions of hydrated sediment, MORB and serpentinite, are directly related to rates of

seafloor spreading (Merdith et al., 2019, 2020). Each of these variables influence the extent

of hydration and alteration of the oceanic lithosphere. The effects of these variables have

been incorporated into the global models of H_2O capacity, based on calculations of seafloor hydration over the last 150 million-years (Merdith et al., 2019).

The integration of these datasets suggests that during high subduction flux periods, there is a three- to five-fold increase in the H₂O released (500–840 \pm 100 Tg km⁻² Myr⁻¹) into

289	the sub-arc relative to background subduction $(40-200\pm30 \text{ Tg km}^{-2} \text{ Myr}^{-1})$ (Fig. 1d). The
290	volume of subducted oceanic lithosphere, regardless of the thickness of sediment, controls
291	the magnitude of the H_2O available to drive magnatism (Fig. 2). The subduction flux is the
292	first order control, as similar variability in H ₂ O egress is apparent using other estimates of
293	fluid budgets (van Keken et al., 2011). Displacing the thermally controlled breakdown of
294	hydrous minerals to higher pressure conditions during high-convergence (>90 km Myr ⁻¹) is
295	also influential (Schmidt & Poli, 2014; Chapman et al., 2019). In high-flux episodes the main
296	contributors (>50%) to H ₂ O budgets is oceanic crust and sediment. This equates to \sim 2–6
297	times the volume of H ₂ O released compared with low-flux periods (Fig. S2).
298	Subduction zone fluid budgets directly contribute to the volume of primitive arc melt
299	generated in the mantle wedge (Grove et al., 2009). Fluid ingress enables more fertile melting
300	of common peridotite sources (Cagnioncle et al., 2007). Flow dynamics of the mantle
301	continually introduce fertile (potentially fluid saturated) material into zones of partial melting
302	in the wedge (Gorczyk et al., 2007; England & Katz, 2010). The mobility of trace elements in
303	supercritical fluids or melts could contribute to enrichment of arc magmas or the
304	metasomatism the sub-arc mantle (Ringwood, 1974; Wyllie & Sekine, 1982; Kessel et al.,
305	2004; Hermann et al., 2006). These additional melt sources could contribute to greater melt
306	productivity during flare-up episodes.
307	3.2. Magmatic pulses
308	Higher resolution testing of how the subduction parameters influence flare-up volcanism can
309	be established by comparing results from individual arc margins (Fig. 3). During the c . 100–
310	130 Ma 'flare-up' in magmatic activity, increases in magma volumes of the main continental
311	arcs reached 100-1,000 times background levels (Ducea et al., 2007; DeCelles et al., 2009;
312	McKenzie et al., 2016; Milan et al., 2017). Pulses in magmatism recorded along the
313	Cretaceous portions of New Zealand and Antarctica show weak correlations to predicted

314	periods of high convergence, and episodes for the subduction of thick piles of sedimentary
315	cover (Figs 3a & b). Instead, the flare-up magmatism at c. 100–130 Ma corresponds directly
316	to an episode of increased slab flux and the related surge in H_2O egress (Figs 3a & b). A
317	similar, though less pronounced association is apparent for volcanism at c. 150 Ma, plausibly
318	linked to higher subducted sediment volumes that match records of accretionary
319	metamorphism (Gray & Foster, 2004). The timing offset between peak slab flux and
320	magmatic pulse is consistent with the lags inferred to be associated with descent rates of the
321	subducting plate, and the timescales of magma and fluid egress (van Keken et al., 2011;
322	Kirsch et al., 2016).
323	The coupled relationship between subduction flux and magmatic pulses can be
324	observed along most of the circum-Pacific arcs in the Phanerozoic. The results of changing
325	subduction flux can be tracked in the arc magmatic sections of South America (Patagonia)
326	(Pepper et al., 2016) and north-eastern China-Korea-Japan (Tang et al., 2018). The
327	volumetric magnitude of the magmatism during a pulses event is more difficult to estimate
328	with respect to preservation biases in the magmatic record. Despite this, most prominent
329	increases in subduction H ₂ O budgets are associated to spikes in magmatic activity through
330	the circum-Pacific arcs (Fig. 3). Coupled episodes of metamorphism in the accretionary
331	wedges and subsequent arc migration are also supported by predictions of periods of thicker
332	sediment subduction. Such a causal relationship remains present in older (>150 Ma)
333	magmatic events even though subduction flux predictions are more uncertain (Fig. 3).
334	However, local-scale tectonic features on some margins makes comparative analysis on a
335	global scale problematic. Delayed flare-up age relationships (c. 90–130 Ma) in North
336	America are consistent with variability in global behaviour during the tectonic re-
337	organization (Kirsch et al., 2016; Cao et al., 2017; Martínez Adrila et al., 2019). However,
338	direct assessments of the slab flux are rendered difficult on account of assumptions regarding

local seafloor convergence that lacks paired isochrons in the North America region as well as
disturbances from terrane docking (Kirsch et al., 2016; Martínez Adrila et al., 2019).

An external underlying tectonic control on magmatic pulse events does not preclude 341 342 the operation of additional forcing mechanism associated with crustal processes in arcs (e.g. DeCelles et al., 2009; Ducea et al., 2015; Chapman et al., 2021). Triggering higher mantle 343 344 fluxes at subduction zones aids in the redistribution of heat and the production of melts and 345 fluids (Annen et al., 2006; DeCelles et al., 2009; Chapman et al., 2017; Chapman et al., 2021). Changes in heat flow regimes enable fertile crustal material to interact with mantle-346 347 derived liquids and produce additional volumes of magma via crustal anatexis. The processes 348 can be accentuated by arc compression cycles or the lateral migration of magma pathways 349 that enable fertile crustal material to interact with high-heat flow domains (DeCelles et al., 350 2009; Chapman et al., 2021). The cycles of arc compression or extension are linked to the 351 rate and style of subduction convergence, though they vary along individual margins (Ducea 352 et al., 2007; Kirsch et al., 2016). Predicted changes in subduction flux likely contribute to 353 these magmatic migrations in arcs.

The intensification of advective heat-flow in arc crust is predicted to be associated 354 with the influx of voluminous, hot, mantle-derived magma (Annen et al., 2006). Isotopic 355 ratios ($\varepsilon_{\rm Hf}$ and ${}^{143}\rm Nd/{}^{144}\rm Nd$) of magmas from pulses in Cretaceous arcs across the global are 356 consistent with the majority (80–90%) of the liquid source contribution being derived from 357 the mantle wedge (Fig. 3: Kirsch et al., 2016; Milan et al., 2017; Martínez Adrila et al., 358 359 2019). The ratios support an underlying driver associated to changes in mantle melting 360 dynamics. The evolution of isotopic ratios in arc magmas during a pulse event typically show 361 a progressive crustal inheritance (lower $\varepsilon_{\rm Hf}$) from the initial juvenile input (higher $\varepsilon_{\rm Hf}$) (Fig. 3). The spread in isotopic inheritance from New Zealand, Antarctica and East Asia arcs is 362 consistent with greater crustal interactions during prolonged high-heat magmatic flux, 363

364	associated to secondary melting processes in the arc crust (Fig. 3) (Milan et al., 2017; Tang et
365	al., 2018). Similar dynamics are observed in other margins, where the volume contributions
366	from crustal melts may be as large as 50% (e.g. Sierra Nevada) (Ducea & Burton, 2007;
367	DeCelles et al., 2009; Chapman et al., 2021). There is no consistent correspondence in the
368	generation of isotopically evolved magmas (low $\varepsilon_{\rm Hf}$) and the subduction of thick piles of
369	sediment (Fig. 3) (Herman et al., 2006; Ruscitto et al., 2012). This could relate to erosional
370	effects during accretion and subsequent delays in dragging of sediment deep into the
371	subduction system or limited isotopic influence in egressed fluids (Schmidt & Poli, 1998;
372	Hermann et al., 2006; Clift & Vannucchi, 2004).
373	
374	References
375	Annen, C. A., Blundy, J. D., Sparks, R. S. J. 2006. The genesis of intermediate and silcic
376	magmas in deep crustal hot zones. J. Petrol., 47, 505-539.
377	Cagnioncle, A. M., Paramentier, E. M., Elkins-Tanton, L. T. 2007. Effect of solid flow above
378	subducting slab on water distribution and melting at convergent plate boundaries. J.
379	Geophys. Res., 112, B09402.
380	Campbell, I. H., Allen, C. M. 2008. Formation of supercontinents linked to increases in
381	atmospheric oxygen. Nature Geo., 1 doi: 10.1038/ngeo259.
382	Campbell, M. J., Rosenbaum, G., Allen, C., Spandler, C. 2020. Continental crustal growth
383	processes revealed by detrital zircon petrochronology: insights from Zealandia. J.
384	Geophy. Res.: Solid Earth, doi: 10.1029/2019JB019075.
385	Cao, W., Lee, C-T., Lackey, J. S. 2017. Episodic nature of continental arc activity since
386	750 Ma: a global compilation. Earth Planet. Sci. Letts., 461, 85–95.

- 387 Cerpa, N. G., Arcay, D., Padrón-Navarta, J. A. 2022. Sea-level stability over geological time
- owing to limited deep subduction of hydrated mantle. *Nature Geo.*, doi:

389 10.1038/s41561-022-00924-3.

- Chapman, T., Milan, L. A., Metcalfe, I., Blevin, P. L., Crowley J. 2022. Arc eruptions deliver
 'first blow' in the pulsed end-Permian mass extinction. *Nature Geo.* 15, 411–416.
- 392 Chapman, T., Clarke. G. L. 2021. Cryptic evidence for the former presence of lawsonite in

blueschist and eclogite. *J, Metamorph. Geol.*, **39**, 343–362.

- Chapman, T., Clarke, G. L., Dazcko, N. R. 2017. The role of buoyancy in the fate of ultrahigh-pressure eclogite. *Sci. Reports.*, DOI: 10.1038/s41598-019-56475-y.
- Chapman, T., Clarke, G. L., Piazolo, S., Daczko, N. R. 2019. Evaluating the importance of
 metamorphism in the foundering of continental crust. *Sci. Reports*,
- 398 DOI:10.1038/s41598-017-13221-6.
- Chapman, J. B., Shields, J. E., Ducea, M. N., Paterson, S. R., Attita, S., Ardill, K. E. 2021.
- The causes of continental arc flare-ups and drivers of episodic magmatic activity in
 Cordilleran orogenic systems. *Lithos*, 398–399, 106307.
- 402 Clarke, G. L., Powell, R., Fitzherbert, J. A. 2006. The lawsonite paradox: a comparison of
- field evidence and mineral equilibria modelling. J. Metamorp. Geol., 24, 715–725.
- Clift, P., Vannucchi, P. 2004. Controls on tectonic accretion versus erosion in subduction
 zones: implications for the origin and recycling of the continental crust. *Rev. Geophy.*,
- 406 42, doi: 10.1029/2003RG000127.
- 407 Coulthard, D. A., Reagan, M. K., Shimizu, K., Bindeman, I. N., Brounce, M., Almeev, R.,
- 408 Ryan, J., Chapman, T., Shervais, J., Pearce, J. 2020. Magma source evolution
- 409 following subduction initiation: evidence from the element concentrations, stable
- 410 isotope ratios and water contents of volcanic glasses from the Bonin Forearc (IODP
- 411 Expedition 352). G^3 , doi: 10.1029/2020GC009054.

- Davies, F. A., Tangeman, J. A., Tenner, T. J., Hirschmann, M. H. 2009. The composition of
 KLB-1 peridotite. *Am. Mineral.* 94, 176–180.
- 414 DeCelles, P. G., Ducea, M. N., Kapp, P., Zandt, G. 2009. Cyclicity in Cordilleran orogenic
 415 systems. *Nature Geo.*, 2, 251–257.
- Domeier, M., Magni, V., Hounslow, M. W., Torsvik, T. H. 2018. Episodic zircon age spectra
 mimic fluctuations in subduction. *Sci. Reports*, doi: 10.1038/s41598-018-35040-z.
- 418 Ducea, M. N., Barton, M. D. 2007. Igniting flare-up events in Cordilleran arcs. *Geology*, 35,
 419 1047–1050.
- Ducea, M. N., Paterson, S. R., DeCelles, P. G. 2015. High-volume magmatic events in
 subduction systems. *Elements*, 11, 99–104.
- 422 East, M., Müller, R. D., Williams, S., Zahirovic, S., Heine, C. 2019. Subduction history
- reveals Cretaceous slab superflux as a possible cause for the mid-Cretaceous plume
 pulse and superswell event. *Gondwana Res.*, **79**, 125–139.
- England, P. C., Katz, R. F. 2010. Melting above anhydrous solidus controls the location of
 volcanic arcs. *Nature*, 467, 700–703.
- 427 Evans, K. A., Bickle, M. J. 2005. An investigation of the relationship between bulk
- 428 composition, inferred reaction progress and fluid-flow parameters for layered
- 429 micaceous carbonates from Maine, USA. J. Metamorph. Geol., 23, 181–197.
- Evans, K. A., Powell, R. 2015. The effect of subduction on the sulphur, carbon, and redox
 budget of lithospheric mantle. *J. Metamorph. Geol.* 33. 649–670.
- 432 Faccenda, M. 2014. Water in the slab: a trilogy. *Tectonophysics*, **614**, 1–30.
- 433 Gorczyk, W., Willner, A. P., Gerya, T. V., Connelly, J. D., Burg, J-P. 2007. Physical controls
- 434 on magmatic productivity at Pacific-type convergent margins: numerical modelling.
- 435 *Phys. Earth Planet. Inter.*, **163**, 209–232.

	436	Gray	, D. I	R., Foster	, D. A	A. 2004.	40 Ar/ 3	⁹ Ar	thermochron	ologic	constraints	on defor	mation.
--	-----	------	--------	------------	--------	----------	--------------------	-----------------	-------------	--------	-------------	----------	---------

- 437 metamorphism and cooling/exhumation of a Mesozoic accretionary wedge, Otago
 438 Schist, New Zealand. *Tectonophysics*, 385, 181–210.
- 439 Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., Palin, R. M.
- 2016. Activity–composition relations for the calculations of partial melting equilibria
 for metabasic rocks. *J. Metamorph. Geol.* 34, 845–869.
- Grose, C. J. 2012. Properties of oceanic lithosphere: revised plate cooling model predictions. *Earth Planet. Sci. Letts.*, 333, 250–262.
- Grove, T. L., Chatterjee, N., Parman, S. W., Médard, E. 2006. The influence of H₂O on
 mantle wedge melting. *Earth Planet. Sci. Letts.*, 249, 74–89.
- 446 Grove, T. L., Till, C. B., Lev, E., Chatterjee, N., Médard, E. 2009. Kinematic variables and
- water transport control formation and location of arc volcanoes. *Nature*, **459**, 694–
 697.
- 449 Hacker, B. 2008. H₂O subduction beyond arcs. G^3 , doi:10.1029/2007GC001707.
- 450 Hawkesworth, C. J., Kemp, A. I. S. 2006. Evolution of the continental crust. *Nature*, doi:
- 451 10.1038/nature05191.
- 452 Hermann, J., Spandler, C., Hack, A., Korsakov, A. V. 2006. Aqueous fluids, and hydrous
- 453 melts in high-pressure and ultra-high-pressure rocks: implications for element transfer
 454 in subduction zones. *Lithos*, **92**, 399–417.
- Hermann, J., Spandler, C. 2008. Sediment melts at sub-arc depths: an experimental study. J. *Petrol.*, 49, 717–740.
- 457 Holland, T. J. B., Powell, R. 2011. An improved and extended internally consistent
- thermodynamic dataset for phases of petrological interest, involving a new equation
 of state for solids. *J. Metamorph. Geol.* 29, 333–383.

460	Holland, T. J. B., Powell, R. 2003. Activity-composition relations for phases in petrological
461	calculations: an asymmetric multicomponent formulation. Cont. Mineral. Petrol 145,
462	492–501.
463	Iwasaki, I., Watanabe, T., Itaya, T., Yamazaki, M., Takigami, Y. 1995. Paleogene K-Ar ages
464	from Kamuikotan metamorphic rocks, southern area of the Kamuikotan Gorge,
465	central Hokkaido, northern Japan. Geol. J., 30, 281–295.
466	Jordan, T. A., Riley, T. R., Siddoway, C. S. 2019. The geological history and evolution of
467	West Antarctica. Nature Reviews, doi: 10.1058/s43017-019-00136.
468	Kessel, R., Schmidt, M. W., Ulmer, P., Pettke, T. 2004. Trace element signature of
469	subduction-zone fluids, melts, and supercritical liquids at 120-180 km depth. Nature,
470	437 , 724–727.
471	Kirsch, M., Paterson, S. R., Wobbe, F., Martínez Adrila, A. M., Clauses, B., Alsino, P. H.
472	2016. Temporal histories of Cordilleran continental arcs: testing models for magmatic
473	episodicity. Am. Mineral., 101, 2133–2154.
474	Ma, Q., Xu, Y-G. 2021. Magmatic perspective on subduction of Paleo-Pacific plate and
475	initiation of big mantle wedge in East Asia. Earth Sci. Rev., 213, 103473.
476	Martínez Adrila, A. M., Paterson, S. R., Memeti, V., Parada, M., Molina, P. G. 2019. Mantle-
477	driven Cretaceous flare-ups in Cordilleran arcs. Lithos, 326-327, 19-27.
478	McKenzie, N. R., Horton, B. K., Loomis, S. E., Stockli, D. F., Planavsky, N. J., Lee C-T.
479	2016. Continental arc volcanism as the principal driver of icehouse-greenhouse
480	variability. Science, 352 , 444–447.
481	Merdith, A. S., Atkins, S. E., Tetley, M. G. 2019. tectonic controls on Carbon and
482	serpentinite storage in subducted upper oceanic lithosphere for the past 320 Ma.
483	Front. Earth Sci., DOI: 10.3389/eart.2019.00332.

484	Merdith, A.S., del Real, P.G., Daniel, I., Andreani, M., Wright, N.M. and Coltice, N., 2020.
485	Pulsated global hydrogen and methane flux at mid-ocean ridges driven by Pangea
486	breakup. Geochemistry, Geophysics, Geosystems, 21(4), p.e2019GC008869
487	Milan, L. A., Daczko, N. R., Clarke, G. L. 2017. Cordillera Zealandia: A Mesozoic arc flare-
488	up on the palaeo-Pacific Gondwana margin. Sci. Reports, DOI:10.1038/s41598-017-
489	00347-w.
490	Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Mathews, K. J., Wright, N. M.,
491	Shephard, G, E., Maloney, K. T., Barnett-Moore, N., Hosseinpour, M. 2016. Ocean
492	basin evolution and global-scale plate reorganization events since Pangea breakup.
493	Annual Rev. Earth Planet. Sci., 44, 107–138.
494	Nelson, D. A., Cottle, J. M. 2018. The secular development of accretionary orogens: linking
495	the Gondwana magmatic arc record of West Antarctica, Australia, and South
496	America. Gond. Res., 63, 15–33.
497	Osozawa, S., Usuki, T., Usuki, M., Wakabayashi, J., Jahn, B. 2019. Trace elemental and Sr-
498	Nd–Hf isotopic compositions, and U–Pb ages for the Kitakami adakitic plutons:
499	insights into interactions with the early Cretaceous TRT triple junction offshore
500	Japan. J. Asian Earth Sci., 184, 103968.
501	Palin, R. M., Weller, O. W., Waters, D. J., Dyck, B. 2016. Quantifying geological uncertainty
502	in metamorphic phase equilibria modelling; a Monte Carlo assessment and
503	implications for tectonic interpretations. Geoscience Frontiers, 7, 591-607.
504	Palin, R. M., Santosh, M. 2021. Plate tectonics: what, where, why, and when? Gond. Res.,
505	100, 3–24.
506	Plank, T., Langmuir, C. H. 1998. The chemical composition of subducting sediment and its
507	consequences for the crust and mantle. Chem. Geol., 145, 325-394.

508	Pepper, M., Gehrels, G., Pullen, A., Ibanez-Mejia, M., Ward, K., Kapp, P. 2016. Magmatic
509	history and crustal genesis of western South America: Constraints from U-PB ages
510	and Hf isotopes of detrital zircons in modern rivers. Geosphere, 12, 1–24.
511	Powell, R., Holland, T. J. B. 1988. An internally consistent dataset with uncertainties and
512	correlations: 3. Applications to geobarometry, worked examples and a computer
513	program. J. Metamorph. Geol. 6, 173–204.
514	Powell, R., Holland, T. J. B. 2008. On thermobarometry. J. Metamorph. Geol., 26, 155–176.
515	Ringwood, A. E. 1974. The petrological evolution of island arc systems. J. Geol. Soc.
516	London, 130 , 183–204.
517	Ruscitto, D. M., Wallace, P., Cooper, L. B., Plank, T. 2012. Global variation in H ₂ O/Ce 2.
518	Relationships to arc magma geochemistry and volatile fluxes. G^3 , Q03025.
519	Spandler, C., Hermann, J., Faure, K., Mavrogenes, J. A., Arculus, R. 2008. The importance
520	of talc and chlorite "hybrid" rocks for volatile recycling through subduction zones;
521	evidence from the high-pressure subduction mélange of New Caledonia. Contrib.
522	Mineral. Petrol., 155, 181–198.
523	Spandler, C., Pirard, C. 2015. Element recycling from subducted slabs to crust: a review.
524	<i>Lithos</i> , 170–171 , 208–223.
525	Schmidt, M. W., Poli, S. 1998. Experimentally based water budgets for dehydrating slabs and
526	consequences for arc magma generation. Earth Planet. Sci. Lett., 163, 361-
527	379.Schmidt, M. W., Poli, S. 2014. Devolatilization during subduction. In. Rudnick
528	(Ed.) Treatise in Geochemistry, Elsevier, Amsterdam. 669-701.
529	Syracuse, E. M., van Keken, P. E., Abers, G. A. 2010. The global range of subduction zone
530	thermal models. Phys. Earth Planet. Interiors. 183, 73-90.

531	Tang, J., Xu, W., Wang, F., Ge, W. 2018. Subduction history of the Paleo-Pacific slab
532	beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast
533	Asia. China Earth Sci, 61, 527–559.
534	Till, C. B., Kent, A. J. R., Abers, G. A., Janiszewski, H. A., Gaherty, J. B., Pitcher, B. W.
535	2021. The causes of spatiotemporal variations in erupted fluxes and compositions
536	along a volcanic arc. Nature Comm., doi: 10.1038/s41467-019-09113-0.
537	van Keken, P. E., Hacker, B. R., Syracuse, E. M., Abers, G. A. 2011. Subduction factory 4:
538	depth dependent flux of H ₂ O from subducting slabs worldwide. J. Geophys. Res., 116,
539	B01401.
540	Voice, P. I., Kowalewski, M., Eriksson, K. A. 2011. Quantifying the timing and rate of
541	crustal evolution: global compilation of radiometrically dated detrital zircon grains. J.
542	<i>Geology</i> , 119, 109–126.
543	White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., Green, E. C. R. 2014. New
544	mineral activity-composition relations for thermodynamic calculations in metapelitic
545	systems. J. Metamorph. Geol. 32, 261–286.
546	Wyllie, P. J., Sekine, T. 1982. The formation of mantle phlogopite in subduction zone
547	hybridization. Contrib. Mineral. Petrol., 79, 375–380.
548	Zahirovic, S., Eleish, A., Doss, S., Pall, J., Cannon, J., Pistone, M., Fox, P. 2022. Subduction
549	and carbonate platform interactions. Geos. Data J. 00, 1-13.
550	
551	Captions
552	Figure 1 Global distribution of U–Pb zircon crystallisation ages representative of episodic
553	magmatic activity in relation to supercontinent cycles (amber bars) (Voice et al., 2011). (a)
554	Average convergence rates for global subduction zones over the last 230 million years. (b)
555	Calculated slab flux volumes over the last 500 million-years. Solid lines represent high-

556	confidence data established from plate reconstructions in the last 200 Ma and dotted lines are
557	projections based on longer term plate velocities after Domeier et al. (2018). (c) Predictions
558	of the average subducted sediment volume over the last 200 million years. (d) Calculation of
559	the time-dependent fluid flux entering sub-arcs (shadow encompasses uncertainties),
560	including estimates using H ₂ O input values of van Keken et al. (2011) (green).
561	Figure 2 Global tectonic plate reconstruction at c. 120 Ma showing arc convergence rates
562	and age of the oceanic crust.
563	Figure 3 Comparison of H ₂ O flux (top–line thickness encompasses uncertainties), subducted
564	sediment thickness (middle) and (bottom) ε Hf isotope relations against zircon age
565	distribution on (a) the New Zealand–Antarctica margin from c. 75–200 Ma (Nelson & Cottle,
566	2018; Campbell et al., 2020). (b) the Antarctica–Patagonia margin from c. 75–200 Ma
567	(Ducea et al., 2015; Pepper et al., 2016; Nelson & Cottle, 2018; Jordan et al., 2019;) and (c)
568	the East Asia (northern China, Korea, and Japan) margin from c. 75–200 Ma (Iwasaki et al.,
569	1995; Tang et al., 2018; Osozawa et al., 2019; Ma & Xu, 2021).
570	Acknowledgments: We appreciate helpful guidance on the specifics of some
571	THERMOCALC calculations provided by R. Powell, E. Green, and K. Evans. T. C. and L.
572	A. M. were supported via funding through the School of Environment and Rural Sciences at
573	University of New England. A. M. received funding from Marie Curie Fellowship
574	NEOEARTH, project 893615. G. L. C. received funding from the Faculty of Science at the
575	University of Sydney. S. Z. was supported by Australian Research Council grant
576	DE210100084 and a University of Sydney Robinson Fellowship. GPlates and pyGPlates
577	development is funded by the AuScope National Collaborative Research Infrastructure
578	System (NCRIS) program. N. D. was supported by Australian Research Council grant
579	DP200100482. We thank for R. Palin for helpful comments during revision.

- 580 **Data Availability Statement:** The data supporting this study can be found in the supporting
- 581 information and at the website
- 582 <u>https://osf.io/zxuwa/?view_only=b04200e1bf214612b70b4d90015cab1f with DOI:</u>
- 583 <u>https://doi.org/10.17605/OSF.IO/ZXUWA</u>. The GPlates reconstruction models (Global rotation
- 584 model, dynamic polygons, spreading ridge and isochron files) are available at
- 585 <u>https://www.earthbyte.org/gplates-2-3-software-and-data-sets/</u>. Thermodynamic data used in
- the study is available in the reference Holland & Powell (2011).
- 587 (*https://doi.org/10.1111/j.1525-1314.2010.00923.x*).

Figure 1.

Figure 2.

Figure 3.

