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Abstract

Specification and forecast ionospheric parameters, such as ionospheric electron density (Ne), have been an important topic in

space weather and ionosphere research. Neural networks (NNs) emerge as a powerful modeling tool for Ne prediction. However,

heavy manual attention costs time to determine the optimal NN structures. In this work, we propose to use neural architecture

search (NAS), an automatic machine learning method, to address this problem of NN models. NAS aims to find the optimal

network structure through the alternated optimization of the hyperparameters and the corresponding network parameters. A

total of 16-year data from Millstone Hill incoherent scatter radar (ISR) are used for NN models. One single-layer NN (SLNN)

model and one deep NN (DNN) model are trained with NAS, namely SLNN-NAS and DNN-NAS, for Ne prediction and

compared with their counterparts without NAS from previous studies, denoted as SLNN and DNN. Our results show that

SLNN-NAS and DNN-NAS outperformed SLNN and DNN, respectively. NN models can reveal more finer details than the

empirical ionospheric model developed using traditional data fitting approaches. DNN-NAS yields the best prediction accuracy

measured by quantitative metrics and rankings of daily pattern prediction. The limited improvement of NAS is likely due to

the network complexity and the limitation of fully connected NN without a memory mechanism.
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  8 

Key Points: 9 

• Neural architecture search (NAS) is used to automatically find the best network structure 10 

and hyperparameters for neural network (NN) models on incoherent scatter radar (ISR) 11 

electron density data. 12 

• A total of 16-year of data from Millstone Hill ISR are used for single-layer NNs 13 

(SLNNs), deep NNs (DNNs) and their NAS counterparts.  14 

• NN models can reveal more finer details of electron density patterns than the empirical 15 

ionospheric model and NAS models can improve over manually tuned NN models, but 16 

the improvement is limited. The limited improvement could be due to the network 17 

complexity and the limitation of fully connected NN without the time histories of input 18 

parameters. 19 

 20 

  21 
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Abstract 22 

Specification and forecast of ionospheric parameters, such as ionospheric electron density (Ne), 23 

have been an important topic in space weather and ionosphere research. Neural networks (NNs) 24 

emerge as a powerful modeling tool for Ne prediction. However, heavy manual adjustments are 25 

time consuming to determine the optimal NN structures. In this work, we propose to use neural 26 

architecture search (NAS), an automatic machine learning method, to mitigate this problem. 27 

NAS aims to find the optimal network structure through the alternate optimization of the 28 

hyperparameters and the corresponding network parameters. A total of 16-year data from 29 

Millstone Hill incoherent scatter radar (ISR) are used for the NN models. One single-layer NN 30 

(SLNN) model and one deep NN (DNN) model are trained with NAS, namely SLNN-NAS and 31 

DNN-NAS, for Ne prediction and compared with their manually tuned counterparts based on 32 

previous studies, denoted as SLNN and DNN. Our results show that SLNN-NAS and DNN-NAS 33 

outperformed SLNN and DNN, respectively. These NN models can reveal more finer details of 34 

Ne patterns than the empirical ionospheric model developed using traditional data fitting 35 

approaches. DNN-NAS yields the best prediction accuracy measured by quantitative metrics and 36 

rankings of daily pattern prediction. The limited improvement of NAS is likely due to the 37 

network complexity and the limitation of fully connected NN without the time histories of input 38 

parameters.  39 

 40 

  41 
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Plain Language Summary 42 

Neural network (NN) models have garnered significant attention for their application in 43 

predicting physical parameters in the ionosphere, notably ionospheric electron density (Ne). In 44 

this study, we introduce a novel approach aimed at enhancing the performance of NN models by 45 

employing the advanced technique known as neural architecture search (NAS). Leveraging a 46 

dataset spanning sixteen years of Ne measurements obtained from the incoherent scatter radar 47 

located at the Millstone Hill observatory, we conduct a comprehensive analysis. This analysis 48 

encompasses training both manually calibrated NN models and NN models optimized via NAS. 49 

The NN models fine-tuned through NAS achieve a notable improvement in their ability to 50 

predict Ne when compared to their manually adjusted counterparts. This improvement 51 

underscores the efficacy of NAS in optimizing neural network hyperparameters for ionospheric 52 

modeling. Furthermore, we delve into a thorough exploration of the factors contributing to the 53 

somewhat limited improvements observed in the context of our current dataset. This 54 

investigation yields valuable insights and prompts valuable discussions on the potential avenues 55 

for further refinement in ionospheric prediction methodologies.  56 



57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 
68 
69 
70 

71 

72 

 

1 Introd

The inco

such as e

(range) v

most ISR

Ne aroun

Therefor

solar/geo

research 

Figure 1
Horizonta
logarithm
of the reg

C

example,

duction 

oherent scatt

electron den

variation of t

Rs operate fo

nd 350 km 

e, a model 

omagnetic c

purposes. 

 The ISR re
al axis: day 

mic electron 
gion is in bla

Conventional

, a global m

er radar (ISR

sity (Ne), pl

these param

or campaign 

at the Mill

that can fil

onditions w

ecords of N
of year (DO
density (𝑙𝑜𝑔

ank, indicatin

lly, the emp

model, intern

AGU S

R) can prov

lasma tempe

meters is mea

purposes bu

lstone Hill 

ll the observ

would be de

Ne in the lo
OY); vertical 𝑔 𝑁𝑒), whil
ng the irregu

pirical mode

national refer

Space Weath

vide direct m

erature, and l

asured contin

ut not on a da

station in 2

vational dat

esired for v

ogarithmic s
axis: solar l
le the blank
ularity of ISR

ls were dev

rence ionosp

her 

measurement

line of sight

nuously ove

aily basis.  F

2012, where

ta gaps for 

various spac

scale around
local time (S

k space repre
R’s operation

veloped to p

phere (IRI) 

ts of ionosph

t ion velocity

er time by th

Figure 1 show

e a lot of d

these param

ce weather 

d 350 km a
SLT); the inte
esents missi
n. 

provide this 

Bilitza [200

heric param

y. The altitu

he ISR. How

ws an examp

data are mis

meters under

and ionosp

altitude in 2
ensity repre
ing records.

information

01] and IRI-

4

meters, 

udinal 

wever, 

ple of 

ssing. 

r real 

pheric 

 

2012. 
esents 

Most 

n. For 

-2016 



AGU Space Weather 

 5

[Bilitza et al., 2017], takes primarily ionosonde observations to generate 3D distributions of 73 

ionospheric parameters. The ISR ionospheric model (ISRIM) [Holt et al., 2002] has been built 74 

for multiple ISRs around the world developed initially for Millstone Hill ISR observations in the 75 

time and vertical domains [Holt et al., 2002]. Additional regional models beyond local vertical 76 

variations were also developed near Millstone Hill as well as in the North America longitudes. 77 

These statistical models took a binning and fitting approach to construct an empirical model in 78 

space and time [Zhang and Holt, 2007]. In each bin, the sequential least-squares fit is based on 79 

the normalized F10.7 and Ap3 indices, especially with the new introduced parameter F10.7p [Liu 80 

et al., 2006; Richards et al., 1994] for better linear fitting [Zhang and Holt, 2007]. However, 81 

ISRIM was designed to provide ionospheric climatology where altitudinal and temporal 82 

variations are represented by smooth analytical models. The artificial neural network (ANN) 83 

models may be trained to better fill the data gaps or to predict these parameters.  84 

The neural network regression models have been developed for space weather research 85 

(see for example [S Wing et al., 2005]). A single hidden layer ANN with 18 neurons was used to 86 

derive ionospheric models in order to evaluate the long-term trends of Ne for the DMSP data [Y 87 

Cai et al., 2019; Yue et al., 2018]. The deep neural network (DNN) was used to model Ne to 88 

reconstruct the dynamics in the plasmasphere [Bortnik et al., 2016]. To offer the short-term 89 

variations, a three-dimensional dynamic electron density (DEN3D) model [XN Chu et al., 2017; 90 

X Chu et al., 2017] is also developed for plasmasphere using DNN with enhanced number of 91 

drivers of F10.7 and AL apart from SYM-H. Several global ANN models have been proposed to 92 

predict ionospheric Ne. The ANN-based ionospheric models (ANNIM-2D and ANNIM-3D) 93 

have been proposed using a single-layer NN (SLNN) and more than 10-year data from the GPS-94 

RO missions [Gowtam et al., 2019; Sai Gowtam and Tulasi Ram, 2017; Tulasi Ram et al., 2018] 95 
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(CHAMP, GRACE, and COSMIC) and the ground-based Digisonde GIRO (with 864 spatial 96 

grids for ANNIM-3D). Another global model (with 864 sub-models) was also proposed using 97 

COSMIC data [Habarulema et al., 2021], where each sub-model adapted a SLNN. A three-98 

hidden-layer DNN was used for a global 3D model (“ANN-TDD”) based on COSMIC, Fengyun-99 

3C and Digisonde data [Li et al., 2021]. The most recent work combined DNN with IRI (“ANN-100 

IRI”) to improve Ne prediction compared to pure data-driven ANNs, particular in the lower 101 

ionosphere [Yang and Fang, 2023]. These pioneer models reproduce the large-scale ionospheric 102 

phenomena and generally outperform the monthly-average model of IRI-2016 during the quiet 103 

time. However, firstly, the radio occultation (RO) measured Ne assumes the spherical symmetry 104 

which is the major source of errors when retrieving from vertical profiles [Lei et al., 2007]. 105 

Secondly, the aforementioned NN models usually have a worse prediction performance during 106 

the storm time than IRI-2016 with the STORM option on (specifically tailored for predictions 107 

during the storm time). One reason is that the storm events are comparatively taking up a smaller 108 

percentage in all the data used for the model training (i.e. not focusing on storm time behaviors), 109 

thus leading to inferior Ne prediction of these NN models during the storm time. Furthermore, 110 

these NN models usually chose the network structures and hyperparameters manually. Not only 111 

is the manual tuning tedious (e.g. thousands of experiments were used to find a good 3-hidden-112 

layer network structure [Li et al., 2021]), but also these models could only achieve sub-optimal 113 

prediction performance.  114 

 115 

To address this issue with NN models for Ne prediction, we use an automatic optimization 116 

algorithm, so called neural architecture search (NAS) to optimize a single hidden layer NN 117 

(SLNN) and a deep NN (DNN) model and compare their performance. As our goal is to 118 
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introduce NAS for optimization of NN models of Ne prediction, we used Millstone Hill ISR data 119 

at a fixed altitude (~350 km) from 2003 to 2018 since the data around this altitude are abundant 120 

and likely relevant to the low-earth-orbit (LEO) missions, such as CHAMP and the upcoming 121 

Geospace Dynamics Constellation (GDC) mission. In Section 2, we introduce neural network 122 

and NAS for network structure and hyperparameter optimization. Then we describe the 123 

Millstone Hill ISR data and experiments in Section 3. The summary results and cases study 124 

results are presented in Section 4. The discussion and conclusion are given in Sections 5 and 6, 125 

respectively. 126 

 127 

2 Methodology 128 

2.1 Neural networks (NNs) 129 

Neural network (NN) is one of the most powerful machine learning methods for regression and 130 

classification. Usually, the neural network consists of the input layer, the hidden layer(s), and the 131 

output layer. Each hidden layer is made of multiple nodes, so called neurons. Each neuron 132 

performs a non-linear activation of the weighted sum of outputs from the previous layer. When 133 

the number of the hidden layers is equal to or greater than two, the NN is called the deep neural 134 

network (DNN) otherwise the single-layer neural network (SLNN). Given the input and output 135 

variables x and y, respectively, a DNN model makes prediction as 𝒚 = 𝑓(𝛩, 𝒙|𝛬), where 𝛩 is the 136 

trainable parameters (i.e. weights and biases connecting neurons) and 𝛬 is the hyperparameters 137 

defining the network structure and training conditions (such as the number of layers, the number 138 

of neurons in each layer, dropout, optimizer, learning rate, etc.). If  𝛬 is fixed and the training 139 

data are Xtrain and Ytrain, 𝛩 can be optimized by the following training: 140 
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𝛩∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑙𝑜𝑠𝑠 𝑦 , 𝑓 Θ, 𝑥 Λ , 𝑓𝑜𝑟 𝑥 , 𝑦 ∈ {𝑋 , 𝑌 }#(1)  

where “loss” is the loss function measuring the overall difference between the observations and 141 

the model predictions on the training data.    142 

However, Equation (1) only optimizes on 𝛩 for a fixed network, i.e., fixed 𝛬. Based on the task 143 

and data, the performance of DNN is also dependent on the hyperparameters 𝛬. Manually tuning 144 

these hyperparameters could become tedious and time consuming and lead to unsatisfactory 145 

results. The search algorithms were developed to obtain the optimal solution automatically in a 146 

pre-defined hyperparameter space as described in the next section.   147 

 148 

2.2 Neural Architecture Search (NAS) through AutoKeras 149 

Automatic machine learning (AutoML) has become a viral research topic as machine learning is 150 

widely applicable in many fields [Hutter et al., 2019]. It enables researchers in the field other 151 

than machine learning to build their models more efficiently. Neural architecture search (NAS) 152 

[Elsken et al., 2019] is one subject of AutoML and aims to search to the best NN for a given task 153 

and dataset, whose flow chart is summarized in Figure 2. Reinforcement learning [Baker et al., 154 

2016; Zoph and Le, 2016] was first proposed for NAS, followed by gradient methods [H Cai et 155 

al., 2018a; Luo et al., 2018], evolutionary algorithms [Desell, 2017; Guo et al., 2020; Real et al., 156 

2017; Suganuma et al., 2017], and network morphism [H Cai et al., 2018b; Elsken et al., 2017; 157 

Jin et al., 2019]. NAS aims to find the optimal network structure through the following 158 

alternative optimization, 159 

Λ∗ = 𝑎𝑟𝑔 min 𝑐𝑜𝑠𝑡 𝒚 , 𝑓(𝛩∗, 𝒙 |Λ) , 𝑓𝑜𝑟 (𝒙 , 𝒚 ) ∈ {𝑋 , 𝑌 }#(2)  
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𝛩∗ = 𝑎𝑟𝑔 min 𝑙𝑜𝑠𝑠 𝒚 , 𝑓 𝛩, 𝒙 𝛬∗ , for 𝒙 , 𝒚 ∈ {𝑋 , 𝑌 }#(3)  

where the data are divided into the training set {Xtrain, Ytrain} and the validation set {Xval, Yval}. 160 

While “cost” is the cost function measuring the model prediction error on the validation data 161 

{Xval, Yval}, and “loss” is the loss function measuring the model fitting error on the training data 162 

{Xtrain, Ytrain} with a fixed 𝛬∗. 163 

 164 

Figure 2 Flow chart of Neural Architecture Search (NAS). 165 

AutoKeras [Jin et al., 2019] with a high-level user interface is a NAS method based on network 166 

morphism, which modifies the NN using the morphism operations, such as inserting a layer or 167 

adding a skip-connection. To search the optimal network structure, a hierarchical tree structure is 168 

used, whose basic component is the node. For instance, the mother node is an abstract idea of the 169 

NN configuration, which is followed by a child node consisting of dense layers, activation layers, 170 

normalization layers, etc. The other child nodes include learning rate and training optimizer. 171 

Define initial 
hyperparameter 

space

Choose one point in the 
space and train until the 

early stop criteria met  

Searched all 
points?

Output the best 
model

No

Yes
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Each child node can serve as the parent node for the nodes connected at the next level, and a tree 172 

structure is conducted. Finally, the leaf is an end node without any child node. The 173 

hyperparameter space defined in Table 1 is the result of large number of empirical searches with 174 

different combinations. Neuron number no greater than 64 has already offered decent result for 175 

both SLNN and DNN. For DNN, the layer number is refrained to no more than 4 based on the 176 

literatures and our preliminary trials. The most noticeable is the learning rate search polls. To 177 

achieve stable and converging models, larger learning rates fit the SLNNs while DNNs prefers 178 

comparatively smaller ones. The reason is that a more complicated neural network structure 179 

requires more fine tuning, and hence a smaller learning rate will have a higher chance of leading 180 

to a more stable model as judged by the loss curves. However, a lower learning rate does not 181 

guarantee a smaller converged loss value. Thus, manual tuning on learning rates becomes 182 

undesirable with consideration on the efficiency.  Besides, Adam optimizer [Kingma and Ba, 183 

2014] is fixed as the training optimizer for all the models which is not explicitly mentioned in the 184 

table. 185 

Table 1 Hyperparameter space of NAS. The candidates in each hyperparameter poll are the 186 
optimal results of multiple trials. For instance, the single layered architecture prefers a larger 187 
learning rate than the deep neural architecture. 188 

Hyperparameter Range 

Number of layers 
SLNN: [1] 

DNN: [2, 3, 4] 

Neuron number [16, 18, 20, …, 64] 

Learning rate 
SLNN: 9e-04, 8e-04, …, 1e-04 

DNN: 5e-04, 4e-04, …, 5e-05 

 189 
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Three representative search algorithms in AutoKeras for NAS are: random search, greedy search, 190 

and Bayesian optimization. A trial is defined as a round of optimization of Equation. (2) with a 191 

single set of hyperparameter configuration when the early stopping criterion, i.e., no significant 192 

improvement of the objective function, is met. Besides, the maximum allowed number of trials is 193 

defined at the beginning. For those three search algorithms, random search randomly picks a 194 

hyperparameter configuration without repetition for each trial until the number of trials is 195 

reached. Apparently, the random search suffers the inefficiency. The greedy search selects a 196 

node with a probability inversely proportional to the number of leaves of that node. The other 197 

hyperparameters in the search space will be picked randomly first, then as the previous best trial 198 

to form a trial configuration. Therefore, the advantage for the greedy search over the random 199 

search is that the search can always return to the best trial when the new configuration does not 200 

offer better performance. Each trail of the Bayesian optimization (BO) consists of a loop of 201 

update, generation, and observation. A neural network kernel function is defined to measure the 202 

edit-distance between two network structures, which will enable the Gaussian process-based 203 

update of the network architecture. Upper-confidence bound is used for the cost function, whose 204 

optimization leads to generation of the next network architecture 𝛬∗. The observation is to obtain 205 

the optimal weights 𝛩∗ for the new network architecture as shown in Equation. (3). These three 206 

steps repeat until the pre-defined trial number is reached. More details of AutoKeras can be 207 

found in [Jin et al., 2019]. During the trials, we found that the greedy algorithm had the 208 

advantage over the remaining search algorithms. Thereafter, the greedy algorithm is fixed for all 209 

the following experiments. 210 

 In this work, we developed several models for Millstone Hill Ne prediction: 1) single-211 

layer neural network with an arbitrary structure (SLNN) (18 neurons in the hidden layer [Y Cai et 212 
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al., 2019; Yue et al., 2018]); 2) SLNN with NAS (SLNN-NAS); 3) deep neural network with an 213 

arbitrary structure (DNN) (three hidden layers with 24, 22, and 20 neurons, respectively [Li et al., 214 

2021]); and 4) DNN with NAS (DNN-NAS). 215 

 216 

3 Data and experiments 217 

The Millstone ISR Ne data at the fixed altitude of ~350 km from 2003-2018 were used for 218 

training and test of different NN prediction models. The input variables are year, day number of 219 

year (DOY), solar local time (SLT, hour), daily F10.7 index (solar flux unit or sfu), and 3-hourly 220 

Ap index (Ap3), in which the cyclic sine and cosine are applied on DOY (DOYs and DOYc in 221 

equation. (4)) and SLT (SLTs and SLTc in equation. (5)) to reflect the periodic changes of these 222 

two input variables as suggested by previous studies [Athieno et al., 2017; Habarulema et al., 223 

2021] as well as more stable training. If not specifically elaborated, the output variable Ne stands 224 

for the logarithmic electron density (i.e. Ne is equivalent to log10Ne, particularly for the 225 

numerical values) in the following sections.  226 

𝐷𝑂𝑌 = sin 2𝜋 × 𝐷𝑂𝑌365 + 1 /2, 𝐷𝑂𝑌 = 𝑐𝑜𝑠 2𝜋 × 𝐷𝑂𝑌365 + 1 /2 (4) 

𝑆𝐿𝑇 = sin 2𝜋 × 𝑆𝐿𝑇24 + 1 /2, 𝑆𝐿𝑇 = 𝑐𝑜𝑠 2𝜋 × 𝑆𝐿𝑇24 + 1 /2 (5) 

 227 
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Table 2 Data setting and the conditions to clean ISR data. The ISR data has the greatest number 228 
of observations near height of 350km, which indicates the data availability is of our major 229 
consideration. The filters on two F10.7 and Ap3 would rule out high intensity geophysical events.  230 

Parameter Values  

Years  
Training 2003 to 2018 except 

the val&test sets 
Validation [2010, 2015] 

Test [2007, 2012] 
F10.7 ≤ 300 sfu 

Ap3 ≤ 80 

Altitude ~350 km 𝑵𝒆 [log (5 × 10 ) , log (3 ×10 )] el/m^3 
 231 

A total of 16 years of ISR data from 2003 to 2018 were used. Year 2010 and 2015 were selected 232 

as validation set, while year 2007 and 2012 were reserved as test set. Remaining 12 years of data 233 

were used for training. We first cleaned the ISR data following the conditions in Table 2. 234 

Specifically, the data corresponding to high solar activity and intense earth magnetic conditions 235 

(with F10.7 over 300 sfu and Ap3 greater than 80 units), which take about only 2% of whole 236 

dataset, were discarded following the previous work [Y Cai et al., 2019]. The Ne values were 237 

also confined to the range of [5 × 10 , 3 × 10 ] el/m^3. Furthermore, the noisy data that show 238 

isolated peaks/troughs or irregular time intervals in daily patterns were discarded. Finally, the 239 

remaining data were binned to a one-hour interval. One hour cadence was chosen to balance 240 

short-term variability in data and temporal resolution of the model. We also assured that the 241 

training, validation, and test sets followed the similar distribution of that of the overall Ne. After 242 

all these preprocessing of data, the training/validation/test set include 8,052/1,461/1,970 data 243 

records, respectively.  244 
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 We used the mean absolute error (MAE), root mean squared error (RMSE), and relative 245 

error (RE) of the test data as the quantitative measures for the prediction performance. The 246 

Bland-Altman plots were used to interrogate the agreement between model output and ground 247 

truth Ne. We also quantitatively compared the predicted annual and day-to-day variations for all 248 

models supplemented by rankings of a daily variation prediction. 249 

  250 

4 Results 251 

In this section, the best network structure for the NAS models and the search for the best learning 252 

rates for all the models are presented first. Then, the prediction performance is evaluated 253 

statistically using MAE, RMSE, RE, and Bland-Altman plot. Next, we compare the NN models 254 

with an empirical model in a climatological study. Finally, we analyze the prediction 255 

performance in a resolved temporal scale. The day-to-day electron density pattern prediction is 256 

shown for different models with a ranking study. 257 

 258 

4.1 Determination of the optimal number of epochs through validation loss dips 259 

In Table 3, the number of hidden layers and the number of neurons in each layer are shown. For 260 

the NAS models, these numbers were determined by the best validation loss from eight 261 

independent randomly initialized AutoKeras trainings. Since the early stop was used in NAS, a 262 

fine tune of learning rate was conducted using the training and validation loss curves where each 263 

tuning run consists of 8,000 epochs, after the network structures were determined. The training 264 

and validation loss curves for the best learning rate of each model (the last row of Table 3) are 265 

shown in Figure 3. As demonstrated, the validation loss curve floats slightly above the faster 266 

converging training loss and keeps decreasing until reaching the black dot. As the increase of the 267 
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 279 

 280 

4.2 Overall prediction performance 281 

Their quantitative metrics, MAE, RMSE, and RE, on the test data are shown in  282 

Table 4 below. 283 

Table 4 Prediction errors for four models in mean absolute error (MAE), root mean square error 284 
(RMSE), and relative error (RE) percentage. 285 

 SLNN DNN SLNN-NAS DNN-NAS 
MAE 0.1399 0.1312 0.1307 0.1250 
RMSE 0.1908 0.1805 0.1821 0.1784 
RE (%) 1.2667 1.1872 1.1844 1.1327 

 286 

Two NAS models have lower prediction errors than their counterparts with fixed architectures. 287 

For example, NAS results in 6.6% reduction on MAE of Ne for SLNN and 4.7% reduction for 288 

DNN, respectively. DNN-NAS achieves the best prediction performance, i.e. lowest MAE, 289 

RMSE, and RE. Its improvement over SLNN is more than 10% on MAE and RE. 290 

 291 
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The Bland-Altman (BA) plots in Figure 4 show the agreement between each model prediction 299 

and the ground truth Ne from ISR observation. SLNN shows the least agreement with the largest 300 

bias and the widest 95% limits of agreement (± 1.96 SD). SLNN-NAS is better than SLNN, but 301 

still worse than DNN and DNN-NAS. DNN-NAS has a slightly larger bias but a narrower 95% 302 

limits of agreement than DNN. Again, DNN-NAS achieves the best agreement between the 303 

prediction and the ground truth since DNN-NAS adapts an optimal network structure and other 304 

hyperparameters, such as learning rate.  305 

 306 

4.2 Climatological analysis  307 

The climatological study can verify whether the NN models can keep track of Ne characteristics 308 

at a long temporal scale. For comparison, the ISRIM [Holt et al., 2002; Zhang and Holt, 2007; 309 

Zhang et al., 2005] was used, which is an open-source online tool for Ne climatological study 310 

under different conditions (altitude, geodetic latitude, F10.7, and Ap3). The annual Ne patterns 311 

from ISRIM (Figure 5 (a)) and four NN models (Figure 5 (b) and (c)) in 2012 are all plotted for 312 

24 hours × 365 days (or 366 for the leap years). The temporal resolution of ISRIM is 18-minute 313 

which is practically the finest to achieve, while the temporal resolution of NN models are as fine 314 

as 4 minutes. Note that as ISRIM used the fixed altitude, F10.7, and Ap3, and the four NN 315 

models were run with the same fixed values to obtain Figure 5 (b). All NN models reproduce an 316 

asymmetric semi-annual pattern of Ne as shown in ISRIM, which resembles as a saddle-like 317 

structure with Ne concentration peaks in Spring and Fall. The two SLNN models show more 318 

choppy edges on the crests, which could imply the incapability of the simple architecture to fully 319 

catch the data characteristics. DNN-NAS seems to have two more appealing crests, while the 320 

other three NN models suffer a star like artifact at the center. Furthermore, the NN models 321 
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provide a detailed prediction (Figure 5 (c)) to fill the limited observation (Figure 1), using real-322 

time F10.7 and Ap3. The 14 isolated thread-like enhancements in Figure 5 Error! Reference 323 

source not found.(c) could be the indication of 27-day mid-latitude topside ionospheric electron 324 

variation [Rich et al., 2003]. 325 

 326 
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pattern. As can be seen, DNN-NAS has a dominatingly good prediction performance with 61 377 

(48%) for CC (rank #1) and 54 (42%) for MAE (rank #1).  378 

 379 

Table 5 The ranks for daily pattern predictions. Among the 128 days in the test set, the Pearson 380 
correlation coefficients (CCs) and mean absolute errors (MAEs) are calculated and sorted from 381 
best (highest CC or lowest MAE). The DNN-NAS shows the greatest number of rank 1 cases. 382 

  SLNN DNN SLNN-NAS DNN-NAS 

CC 

Rank 1 25 16 26 61 (48%) 
Rank 2 26 35 41 26 
Rank 3 32 48 31 17 
Rank 4 45 29 30 24 

MAE 

Rank 1 17 30 27 54 (42%) 
Rank 2 34 32 33 29 
Rank 3 29 32 44 23 
Rank 4 48 34 24 22 

 383 

To assess the performance of NN models during several continuous days, the duration with 384 

decent observation coverage is selected for a further comparison. Two indices as drivers (F10.7 385 

and Ap3) are shown in the upper panel of Figure 7. A cubic interpolation is applied to the Ap3 386 

index for the reference purpose. In Figure 7, both model predictions and observations show a 387 

strong correlation to Ap3. When the Ap3 index increases from quiet time to moderate active 388 

value, the increase on Ap3 tends to cause a decrease in Ne at the three post-midnights from 389 

September 3rd to September 5th, which indicates a negative ionospheric storm phase. All NN 390 

models seem to track these changes well, while DNN-NAS seems to track the observation best 391 

(with the highest CC and the second lowest MAE). 392 

 393 
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refined to reach the optimal neural architect. The multiple GPU cores facilitated this hierarchic 407 

search. The manual determination of the optimal network structure is a daunting work. For 408 

example, with a fixed number of three hidden layers, thousands of full trainings were performed 409 

to obtain the number of neurons in each layer  [Li et al., 2021]. Even the simple selection of the 410 

optimal learning rate could involve a substantial amount of manual work as we did for the two 411 

manual models. The NAS provides an efficient way to identify the optimal hyperparameters for 412 

NN models. For the current simple application of NAS for Ne prediction at the fixed geophysical 413 

location and altitude, the search process is fast (about 33 minutes on NVIDIA A6000, 22 minutes 414 

for NAS search and 11 minutes for additional epochs). However, the converging status of 415 

training and validation curves is absent in the early-stopping search. Considerate amount of 416 

manual work is still required to run additional epochs based on the NAS guided architectures and 417 

analyze the loss curves. Thus, we would assume more advanced NAS application could further 418 

reduce the tedious work spent in optimizing the neural networks. 419 

Overfitting remains a general concern with machine learning models. As shown in Figure 420 

3, the training loss could be continuously reduced. As a matter of fact, when we used a complex 421 

NN model, the fitting error can approach a very low value at the cost of reducing model 422 

generalization to an acceptable level with high prediction errors. Thus, the validation dip in 423 

Figure 3 alleviates this issue. Furthermore, NAS uses an early-stopping criterion for an efficient 424 

search. For highly nonlinear problems, NAS could trap in a local minimum. We used multiple 425 

random initializations for NAS to avoid this problem. DNN-NAS stands out in the overall 426 

quantitative measurements, climatological study, and prediction rankings of daily patterns. 427 

 All NN models predict Ne well during the moderate event in the daytime section (Figure 428 

7). This is consistent with previous studies of Ne prediction using NN models and due to a 429 
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couple of reasons. First, the training data are confined to the condition (Ap3 ≤ 80 in Table 2), 430 

which causes the NN models to be prone to these cases. Secondly, the physical drivers are not 431 

fine enough in time, e.g. F10.7 is a daily average and Ap3 is 3-hour average. We conducted an 432 

additional training of DNN-NAS without the restriction on Ap3 (i.e, Ap3 could be larger than 80 433 

which covers intense storm periods), namely DNN-NAS*. The comparison between DNN-NAS 434 

and DNN-NAS* is shown in Figure 8. The shade region is approximately from 05UT to 15UT 435 

on March 9th, 2012. Though DNN-NAS has overall better CC and MAE, DNN-NAS* showed a 436 

much larger CC and lower MAE than DNN-NAS in the shade region. However, both models 437 

struggle to track the Ne dip around 08UT on March 10th. As the ISR data with Ap3 ≥ 80 are only 438 

account for less than 2% of the total data, it is not a surprise that DNN-NAS* only improved 439 

over DNN-NAS in certain regions and suffered performance loss in other regions. In future work, 440 

either a separate model for major geomagnetic events or a general model with different weights 441 

on these events should be built with more event data to address this challenging problem. 442 

 443 
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change is a dynamic process, influenced by different geomagnetic parameters or other factors at 495 

different space and time scales. For example, the increase of Ap3 affects neutral density, which 496 

can cause the electron density change over the next few hours rather than the instant change. 497 

Though the geophysical indices serve as the drivers in many developed models [XN Chu et al., 498 

2017; X Chu et al., 2017; Habarulema et al., 2021; Li et al., 2021], the atmospheric neutral 499 

components at Millstone Hills, which have shown strong correlations with electron density, may 500 

not be accurately described by the current input parameters of the NN models (F10.7 and Ap3). 501 

Technically, the more advanced generative models with the time histories of the input parameters 502 

may lead to much more improved prediction than the fully connected NN models without 503 

memory mechanism. Besides, this study examined the feasibility of applying NAS in identifying 504 

an optimal network structure of future works on either building electron density vertical profile 505 

based on ISR or other electron density models. Combined with aforementioned technical 506 

advancement, electron density prediction offered by deep learning could be significantly 507 

improved. And new drivers may be needed to accommodate the resolved temporal resolution, 508 

such as adding the 81-day average F10.7 (F10.7p) for the historical information or the 509 

geomagnetic AE index, and the physical processes, such as neutral composition, in our future 510 

work.  Last but not least, information theory can help identify and select the drivers and their 511 

time histories that are relevant for predicting the output parameter, e.g., solar wind parameters 512 

[Simon Wing et al., 2016; Simon Wing et al., 2022a; Simon Wing et al., 2022b].   513 

 514 

6 Conclusion 515 

We demonstrate that neural architecture search (NAS) that can identify the optimal network 516 

structure automatically for Ne prediction at a fixed height using 16-year ISR observations at 517 
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Millstone Hill. In addition to modeling efficiency, NAS derived DNN models also lead to better 518 

prediction performance than manually tuned SLNN (more than 10% improvement on MAE and 519 

RE) and rank the highest for daily Ne pattern prediction based on CC and MAE. The 520 

climatological Ne patterns from different NN models reveal the two crests in Spring and Fall 521 

seasons in general. We also investigated the reason for limited improvement of NAS due to the 522 

network complexity and the lack of memory mechanism of the fully connected NN. In future, the 523 

more advanced generative models with a memory mechanism and better resolved and understood 524 

physical drivers of these models will be pursued for a much-improved 3D Ne prediction. 525 
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Figure S1. The ISR records of Ne in the logarithmic scale around 350 km altitude in 2012. 
Horizontal axis: day of year (DOY); vertical axis: solar local time (SLT); the intensity represents 
logarithmic electron density (𝑙𝑜𝑔10𝑁𝑒), while the blank space represents missing records. Most of 
the region is in blank, indicating the irregularity of ISR’s operation. 

 

 

Figure S2. Flow chart of Neural Architecture Search (NAS). 
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Figure S3. The training (red) and validation (blue) loss curves of four NN models (the optimal 
number of epochs marked as the black dot). The two DNN models take more epochs to evolve the 
optimal results due to more complexity than SLNNs, while the NAS guided models lead to better 
model generality (lower possible validation loss). 

 

 

Figure S4. BA-plots of the four optimal models (SLNN, DNN, SLNN-NAS, and DNN-NAS), in 
which the calculations are based on the test set. DNN tends to have the lowest averaged difference 
(green line in the upper right subplot) and the DNN-NAS owns the narrowest limits of agreements 
(distance between two red lines in the lower right subplot). The Y-axis is the Ne difference between 
the model prediction and the observation. The X-axis is the average of the model prediction and 
the observation. 
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(a) ISRIM climatological pattern of medium solar activity. 

 

(b) semi-annual patterns of climatological study. 

 

(c) semi-annual patterns based on external geophysical indices. 

 

Figure S5. Annual electron density patterns of year 2012 from different sources: (a) ISR empirical 
model (ISRIM), (b) four model predictions based on the fixed F10.7 and Ap3, (c) four model 
predictions based on the real-time F10.7 and Ap3. Based on the nature of neural network models, 
the input can be arbitrary values. We set the evenly distributed temporal information to get the time 
related drivers (year, DOY, and SLT), while comparison between (a) and (b) serves as the 
comparison on the climatological study, while (c) demonstrates a more realistic case of Ne annual 
pattern with real-time F10.7 and Ap3 inputs. 
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(a) 2007-07-06 

 

(b) 2012-01-15 

 

(c) 2012-08-01 

 

Figure S6. Daily Ne pattern prediction on three different days: (a) 2007-07-06, (b) 2012-01-15, 
and (c) 2012-08-01. Gray cross: the ISR observation; red triangle: SLNN; cyan star: SLNN-NAS; 
blue circle: DNN; green square: DNN-NAS. The two parameters (Pearson correlation coefficients 
and MAE) help evaluate how well model outputs predict the observed diurnal Ne pattern. 
Generally, all model outputs follow the observed diurnal pattern well, while DNN-NAS predicts 
the best. 
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Figure S7. Ne patterns during 2012-09-02 to 2012-09-09. The two geophysical drivers are drawn 
in the upper panel. Four model outputs are of different markers followed with CCs and MAEs 
(based on observational values) in parentheses. Clearly, we see the Ap3 serves as the major driver 
effect to the model outputs as the predictions dip down when Ap3 reaches its peak at early time of 
September 5th. 

 

 

Figure S8. DNN-NAS trained with Ap3≤80 and DNN-NAS* trained without the restriction on 
Ap3., the DNN-NAS models trained with and without filter on Ap3 have the prediction results in 
green and purple color. The CC and MAE calculated on the observational data are in the 
parentheses (the whole curve after the model name and the shade region after “shade”). 
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Figure S9. Prediction performance changes along with the model complexity. The complexity is 
defined as the total number of trainable weights of the NN model. The mean absolute error of the 
validation set serves as the loss function, where the less loss indicates the better performance. 

 

 

(a)        (b) 

Figure S10. Overfitting of DNN (architecture: [512, 512, 512, 512, 32], green) (a) fitting and (b) 
prediction. SLNN (18 hidden neuron, blue) is served as a benchmark. DNN can fit the ISR data 
more closely than SLNN as shown in (a). However, DNN leads to an unrealistic wavy pattern for 
prediction as shown in (b). 
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Hyperparameter Range 

Number of layers 

SLNN: [1] 

DNN: [2, 3, 4] 

Neuron number [16, 18, 20, …, 64] 

Learning rate 
SLNN: 9e-04, 8e-04, …, 1e-04 

DNN: 5e-04, 4e-04, …, 5e-05 

Table S1. Hyperparameter space of AutoKeras. The candidates in each hyperparameter poll are 
the optimal results of multiple trials. For instance, the single layered architecture prefers a larger 
learning rate than the deep neural architecture. 

 

Parameter Values  

Years  
Training 2003 to 2018 except 

the val&test sets 
Validation [2010, 2015] 

Test [2007, 2012] 

F10.7 ≤ 300 sfu 

Ap3 ≤ 80 

Altitude ~350 km 

𝑵𝒆 [log10(5 × 109) , log10(3 ×
1012)] el/m^3 

 

Table S2. Data setting and the conditions to clean ISR data. The ISR data has the greatest number 
of observations near height of 350km, which indicates the data availability is of our major 
consideration. The filters on two F10.7 and Ap3 would rule out high intensity geophysical events. 
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 SLNN DNN SLNN-NAS DNN-NAS 

# of layers and 
neurons [18] [24, 22, 20] [52] [60, 32] 

Learning rate 5e-04 9e-05 1.6e-04 7.7e-05 

# of epochs 2195 4444 2116 6046 

Table S3. The hyperparameters for four NN models, which are the optimal results of each category 
in architecture, learning rate, and validation loss dip epoch. 

 
 SLNN DNN SLNN-NAS DNN-NAS 

MAE 0.1399 0.1312 0.1307 0.1250 
RMSE 0.1908 0.1805 0.1821 0.1784 
RE (%) 1.2667 1.1872 1.1844 1.1327 

Table S4. Prediction errors for four models in mean absolute error (MAE), root mean square error 
(RMSE), and relative error (RE) percentage. 

 
  SLNN DNN SLNN-NAS DNN-NAS 

CC 

Rank 1 25 16 26 61 (48%) 
Rank 2 26 35 41 26 
Rank 3 32 48 31 17 
Rank 4 45 29 30 24 

MAE 

Rank 1 17 30 27 54 (42%) 
Rank 2 34 32 33 29 
Rank 3 29 32 44 23 
Rank 4 48 34 24 22 

Table S5. The number of ranks for daily pattern prediction. Among the 128 days in the test set, 
the Pearson correlation coefficients (CCs) and mean absolute errors (MAEs) are calculated and 
sorted from best (highest CC or lowest MAE). The DNN-NAS shows the greatest number of rank 
1 cases.   
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