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Abstract

The objective of this study was to examine both the climatology of the residual mean circulation, and the roles of resolved

wave (RW) and unresolved wave (UW) forcings over four Mars years, based on the transformed Eulerian mean equation system

using the EMARS reanalysis dataset. While RW forcing was estimated directly as Eliassen–Palm flux divergence, the forcing

by UWs, including subgrid-scale gravity waves, was estimated indirectly using the zonal momentum equation. This indirect

method, devised originally for study of Earth’s middle atmosphere, is applicable to latitudinal regions having angular momentum

isopleths connected from the surface to the top of the atmosphere, which are usually mid- and high-latitude regions. In low

latitudes of the winter hemisphere, a strong residual mean poleward flow is observed at an altitude range of 40–80 km, where

the latitudinal gradient of the absolute angular momentum is small. The strong poleward flow crosses the isopleths of angular

momentum in the regions of its northern and southern ends, indicating the necessity of the wave forcing. Our results suggest

that the structure of the residual mean circulation at mid- and high-latitude regions is largely determined by UW forcing,

particularly above the altitude of 60 km, whereas the RW contribution is also large below the altitude of 60 km.
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Key Points: 8 

• Climatology of the residual mean circulation of the Martian atmosphere is revealed based 9 
on the EMARS reanalysis dataset.  10 

• Along with the resolved wave contribution, the subgrid-scale wave contribution to the 11 
residual mean circulation is estimated indirectly. 12 

• Results suggest that small-scale waves such as gravity waves have more impact on 13 
driving the residual mean circulation on Mars than on Earth. 14 

  15 
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Abstract 16 

The objective of this study was to examine both the climatology of the residual mean 17 

circulation, and the roles of resolved wave (RW) and unresolved wave (UW) forcings over four 18 

Mars years, based on the transformed Eulerian mean equation system using the EMARS 19 

reanalysis dataset. While RW forcing was estimated directly as Eliassen–Palm flux divergence, 20 

the forcing by UWs, including subgrid-scale gravity waves, was estimated indirectly using the 21 

zonal momentum equation. This indirect method, devised originally for study of Earth’s middle 22 

atmosphere, is applicable to latitudinal regions having angular momentum isopleths connected 23 

from the surface to the top of the atmosphere, which are usually mid- and high-latitude regions. 24 

In low latitudes of the winter hemisphere, a strong residual mean poleward flow is observed at an 25 

altitude range of 40–80 km, where the latitudinal gradient of the absolute angular momentum is 26 

small. The strong poleward flow crosses the isopleths of angular momentum in the regions of its 27 

northern and southern ends, indicating the necessity of the wave forcing. Our results suggest that 28 

the structure of the residual mean circulation at mid- and high-latitude regions is largely 29 

determined by UW forcing, particularly above the altitude of 60 km, whereas the RW 30 

contribution is also large below the altitude of 60 km. 31 

Plain Language Summary 32 

The Lagrangian mean general circulation is important in determining the distributions of 33 

mass and temperature in a planetary atmosphere. However, few studies have investigated the 34 

climatological seasonal mean features for Mars using reanalysis datasets. The purpose of this 35 

study was to use the EMARS reanalysis dataset to examine the general circulation of Mars and 36 

its driving mechanism based on the transformed Eulerian mean equation theory. We estimated 37 

the contribution of resolved waves (RWs) in the reanalysis dataset directly as Eliassen–Palm flux 38 

divergence, and that of unresolved waves (UWs) including subgrid-scale gravity waves using an 39 

indirect method devised originally for Earth atmosphere studies. The results suggest that the 40 

entire structure of the general circulation is largely determined by UW forcing, particularly at 41 

altitudes above 60 km, although the contribution of RWs is also large at altitudes below 60 km. 42 

1 Introduction 43 

The Lagrangian mean meridional circulation is important in determining both the 44 

distributions of mass and minor constituents and the thermal structure of a planetary atmosphere. 45 
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For Earth’s atmosphere, the transformed Eulerian mean (TEM) equation system (e.g., Andrews 46 

et al., 1987) is often used to examine the residual mean flow, which is a reasonable 47 

approximation of the Lagrangian mean flow (Dunkerton, 1983). This equation system can also 48 

be applied to the Martian atmosphere because of the similarity in the basic dynamical properties 49 

of both planets in terms of their physically and optically thin atmosphere with almost the same 50 

rotation rate and obliquity (e.g., Read et al., 2015).  51 

The residual mean circulation in Earth’s middle atmosphere is driven by momentum 52 

deposition associated with the breaking and/or dissipation of atmospheric waves such as Rossby 53 

waves and gravity waves (GWs) originating from the lower atmosphere as well as the diabatic 54 

heating due to radiation processes and phase change of atmospheric constituents (e.g., Plumb, 55 

2002). The role of wave forcing to the residual mean flow can be examined using the downward 56 

control principle derived by Haynes et al. (1991), which indicates that the Coriolis torque for the 57 

residual mean meridional flow in the mid- and high latitudes is balanced with the wave forcing, 58 

and that the resultant circulation is formed below the wave forcing in a steady state. 59 

Analyses on the residual mean circulation using this principle have been conducted for 60 

the Martian atmosphere but limited to specific seasons or phenomena. For example, based on the 61 

Martian general circulation model (MGCM), the residual mean circulation of the Martian 62 

atmosphere was investigated for cases when strong temperature inversions and warming were 63 

observed in the winter polar regions (e.g., Kuroda et al., 2009). Hartogh et al. (2007) suggested 64 

that planetary waves and thermal tides are the main contributors to the wave forcing that drives 65 

the circulation. Furthermore, Kuroda et al. (2009) showed that the contributions of resolved 66 

small-scale GWs and eddies to the Eliassen–Palm (EP) flux divergence in the MGCM are almost 67 

equal to those of thermal tides and planetary waves, at least in high winter latitudes during global 68 

dust storms. They also suggested that the contribution of GWs would be larger in simulations 69 

with higher model resolution. Specific phenomena such as the winter polar warming during 70 

global dust storm events as mentioned above have been studied extensively, whereas few studies 71 

have investigated the climatological, or in other words normal features of the meridional 72 

circulation. It should be noted that obtaining observations of physical quantities other than 73 

temperature is generally difficult, and that quantitative analysis based on such observations using 74 

the TEM equations is not easy. 75 
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Observations are usually not only limited for specific quantities but also sparsely 76 

distributed, meaning that reanalysis data produced by applying data assimilation techniques to 77 

such observations are commonly used in studies of Earth’s weather and climate. Reanalysis 78 

datasets for Mars have recently become available, thereby allowing more quantitative analysis of 79 

the climatology of the general circulation of the Martian atmosphere. The first reanalysis dataset 80 

made available for Mars is the Mars Analysis Correction Data Assimilation (MACDA; 81 

Montabone et al., 2014), which covers the period 1999–2004, corresponding to the period from 82 

the late northern summer of Mars Year (MY) 24 to the late northern spring of MY 27. Using 83 

MACDA, Mitchell et al. (2015) examined the climatological nature of the zonal mean state of 84 

the atmosphere, e.g., the zonal mean temperature, zonal wind, residual mean flow, and especially 85 

the Martian polar vortices, and compared them with those on Earth. The second publicly 86 

available reanalysis dataset is the Ensemble Mars Atmosphere Reanalysis System (EMARS; 87 

Greybush et al., 2019) that covers more than seven MYs, i.e., longer than the period covered by 88 

MACDA. The climatology of the circulation of Mars has not yet been examined using EMARS. 89 

Moreover, detailed TEM equation analyses of the relation between wave forcing and residual 90 

mean flow have not yet been conducted using a reanalysis dataset. 91 

Another advantage of TEM analysis using a reanalysis dataset is that every resolved wave 92 

(RW) forcing can be estimated piecewise as a form of the EP flux divergence. Additionally, it is 93 

possible to use the indirect method proposed by Sato and Hirano (2019) to estimate the 94 

contribution of unresolved processes to the residual mean flow. The unresolved process 95 

contribution reflects the parameterized GW forcing, the assimilation increment owing to the GW 96 

forcing that is not properly expressed by the GW parameterization, and model deficiency (Sato 97 

& Hirano, 2019). The potential contribution of unresolved waves (UWs) is large, as discussed by 98 

Kuroda et al. (2009) based on their MGCM study. Other modeling studies (e.g., Barnes, 1990, 99 

Joshi et al., 1995, Collins et al., 1997, Forget et al., 1999, Angelats I Coll et al., 2005) have 100 

shown the importance of GWs in determining the structure of the Martian atmosphere. However, 101 

the validity of the results of those model-based studies needs to be verified by observations. 102 

Observational studies showed that more than 10% of the amplitude of the oscillation in 103 

both temperature and density is due to components with vertical and horizontal wavelengths 104 

shorter than 10 and 200 km above the altitude of 60 km in the Martian mesosphere, respectively, 105 

suggesting the dominance of GWs (Fritts et al., 2006; Magalhães et al., 1999). Applying the 106 
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method by Sato and Hirano (2019) to examine the contribution of unresolved processes to 107 

reanalysis datasets will provide important information on the possible roles of such GWs in 108 

relation to the residual circulation of the Martian atmosphere. 109 

The present study examined the residual mean circulation of the Martian atmosphere for 110 

the annual mean and the seasonal mean climatology by following common methods based on the 111 

TEM equations used in studies of Earth’s middle atmosphere. We used EMARS (Greybush et al., 112 

2019) to examine both the climatological features of the zonal mean dynamical and thermal 113 

structures, and the contributions of resolved and unresolved processes quantitively. 114 

The present paper is organized as follows. Brief descriptions of the data and the method 115 

of analysis used in the study are provided in section 2. The fundamental characteristics of the 116 

zonal mean fields are described in section 3. The contributions of RWs and unresolved processes 117 

in the residual mean meridional circulation are examined in sections 4 and 5, respectively and 118 

results are discussed. A summary and our concluding remarks are presented in section 6. 119 

2. Method and Data description  120 

2.1 EMARS 121 

This study used temperature, zonal wind, meridional wind, and vertical velocity data 122 

extracted from the EMARS reanalysis dataset (Greybush et al., 2019). EMARS employs the 123 

Local Ensemble Transform Kalman Filter and assimilates atmospheric observations obtained 124 

using two instruments onboard Mars-orbiting spacecraft: the Thermal Emission Spectrometer 125 

(Smith, 2004) for MY 24–27, and the Mars Climate Sounder (McCleese et al., 2007) for MY 28–126 

33. The Geophysical Fluid Dynamics Laboratory Mars Global Climate Model (e.g., Wilson & 127 

Hamilton, 1996; Greybush et al., 2012; Hoffman et al., 2010) is used as the numerical weather 128 

prediction model for the assimilation system. This model includes parameterization for 129 

orographic GWs (Waugh et al., 2016). The horizontal grid spacing is 6° longitudinally and 5° 130 

latitudinally. A hybrid sigma-pressure coordinate with the transition pressure level at 2 Pa is 131 

employed in the vertical. The number of pressure levels of the model is 28. The time interval of 132 

the reanalysis data is a Martian hour, which is one twenty fourth of a Mars sol. In this study, for 133 

ease of analysis, linear interpolation in the vertical was performed to convert the data to log-134 

pressure coordinates taking a scale height of 10 km.  135 
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We analyzed EMARS data for MY 29–32. Data for the remaining MYs were not 136 

considered for the following three reasons. First, data for MY 24, 27, 28, and 33 contain many 137 

missing values. Second, MY 25 is exceptional because a global dust storm occurred. Third, the 138 

feature in the meridional cross sections of the zonal mean fields of MY 26 is different from that 139 

of the climatology based on MY 29–32, which might be attributable to differences between the 140 

data retrieval algorithm of the Thermal Emission Spectrometer (MY 24–27) and the Mars 141 

Climate Sounder (MY 28–33) (Greybush et al., 2019).  142 

Figure 1 shows meridional cross sections of the zonal mean temperature (𝑇) and the zonal 143 

mean wind (𝑢) in the Northern Hemisphere (NH) winter for each of MY 29–32, where the 144 

overbar denotes the zonal mean. It is evident that the structure of the temperature profile, 145 

including the locations and values of the maxima and minima, is very similar between the four 146 

years. The similarity in structure is also evident for the zonal mean zonal wind in terms of the 147 

location and strength of both the easterly jet in the Southern Hemisphere (SH) and the westerly 148 

jet in the NH, although slight differences are noted in the jet peak values. Thus, in our study, the 149 

data for MY 29–32 were used to elucidate the climatological features for the annual mean and 150 

the seasonal mean of typical years without a global dust storm. The thermal inertia of the 151 

Martian climate is small. Therefore, seasonal variations within a certain year are less sensitive to 152 

the climatic conditions in previous years, unlike the situation on Earth owing to the presence of 153 

oceans. Thus, obtaining an average over just four years can capture the principal climatological 154 

characteristics of the Martian atmosphere. EMARS contains two types of gridded data: an 155 

“analysis” dataset and a “background” dataset. We used the background dataset with hourly 156 

outputs from MGCM forecasts in the data assimilation. Different from the analysis dataset, the 157 

background dataset provides all the physical quantities including vertical winds that are needed 158 

for the TEM analysis. 159 
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(𝑅 = 191 J/kg K). The zonal mean zonal momentum equation in the log-pressure coordinate is 176 

expressed as follows: 177 𝜕𝑢𝜕𝑡 − 𝑓�̅�∗ + 𝑤∗ 𝜕𝑢𝜕𝑧 = 1𝜌 𝑎 cos 𝜙 ∇ ∙ 𝑭 + X,   (2) 𝑓 = 𝑓 − ( ),   (3) 178 

where �̅�∗ and 𝑤∗ are the residual mean meridional and vertical flows, respectively, which are 179 

defined as follows: 180 �̅�∗ ≡ �̅� − 𝜌  and 𝑤∗ ≡ 𝑤 + cos 𝜙 ,   (4) 181 

where 𝜌  is the basic density, 182 𝜌 (𝑧) = 𝑝𝑅𝑇 𝑒 ,   (5) 

𝑎 is the radius of Mars, 𝑓 is the Coriolis parameter (𝑓 = 2Ω sin 𝜙), Ω is the rotation rate of Mars, 183 

and 𝑡 and 𝜙 are time and latitude, respectively. EP flux 𝑭 is defined as follows: 184 𝑭 ≡ 0, 𝑭( ), 𝑭(𝒛) ,   (6) 185 

𝐹( ) ≡ 𝜌 𝑎 cos 𝜙 𝜕𝑢𝜕𝑧 𝑣 𝜃𝜕𝜃𝜕𝑧 − 𝑣 𝑢 ,   (7) 

𝐹( ) ≡ 𝜌 𝑎 cos 𝜙 𝑓 − 𝜕(𝑢 cos 𝜙)𝜕𝜙 𝑣 𝜃𝜕𝜃𝜕𝑧 − 𝑤 𝑢 .   (8) 

EP flux divergence is written as ∇ ∙ 𝑭: 186 ∇ ∙ 𝑭 ≡ 𝑭( ) + 𝑭(𝒛)
   (9) 187 

and X is friction and/or viscosity. Note that the residual mean flow (�̅�∗, 𝑤∗) is a reasonable 188 

approximation of the Lagrangian mean flow (Dunkerton, 1983). The residual mean flow is the 189 

sum of the Eulerian mean flow �̅� and the Stokes correction. The Stokes correction tends to be 190 

large for Rossby waves and small for both GWs and tides (e.g., Sato et al., 2013).  191 

From the mean continuity equation:  192 
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1𝑎 cos 𝜙 𝜕(�̅�∗ cos 𝜙)𝜕𝜙 + 1𝜌 𝜕(𝜌 𝑤∗)𝜕𝑧 = 0,   (10) 

a mass stream function of the residual mean flow Ψ∗ is defined as follows: 193 �̅�∗ ≡ − 1𝜌 cos 𝜙 𝜕Ψ∗𝜕𝑧  and 𝑤∗ ≡ 1𝜌 𝑎 cos 𝜙 𝜕Ψ∗𝜕𝜙 .   (11) 

Approximately 25% of the Martian atmosphere decreases and increases due to condensation and 194 

sublimation of the CO2 atmosphere (Lewis et al., 1999, Haberle et al., 2017). Such notable mass 195 

change occurs in fall and spring. In the analysis of the present study, we assumed that the 196 

continuity equation is always satisfied because our focus was on the climatology of the annual 197 

mean and in the NH summer and winter. 198 

In the following analyses, we mainly examine the climatology for 𝑇, 𝑢, �̅�, �̅�∗, and Ψ∗. 199 

The zonal mean absolute angular momentum (𝑚) per unit mass (Haynes et al., 1991; Randel et 200 

al., 2002) is also shown as an essential quantity to discuss the role of wave forcing: 201 𝑚 = 𝑎 cos 𝜙 (𝑢 + 𝑎 cos 𝜙 Ω).   (12) 

2.3 Method of estimating unresolved waves (UWs) 202 

Theoretically, the first term ∇ ∙ 𝑭 on the right-hand side of Eq. (2) is the 203 

divergence of EP flux associated with all waves including tides, Rossby waves, and GWs. 204 

However, EMARS does not resolve all waves because of the coarse grid. Thus, only the part of 205 ∇ ∙ 𝑭 attributable to RWs such as tides and Rossby waves, whose EP flux is designated 206 

as 𝑭( ), can be calculated. The part of EP flux associated with UWs such as GWs is designated 207 

as 𝑭( ). Thus, ∇ ∙ 𝑭 can be written as follows: 208 ∇ ∙ 𝑭 = ∇ ∙ 𝑭( ) + ∇ ∙ 𝑭( ).   (13) 209 

EP flux divergence due to UWs (∇ ∙ 𝑭( )) cannot be calculated directly but can be 210 

estimated indirectly using Eq. (2) as follows: 211 ∇ ∙ 𝑭( ) = 𝑢 − 𝑓�̅�∗ + 𝑤∗𝑢 − ∇ ∙ 𝑭( ),   (14) 212 

and ignoring eddy viscosity X (Sato & Hirano, 2019). The contribution of UWs to Ψ∗ can also be 213 

estimated indirectly as follows: 214 
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Ψ∗(𝜙, 𝑧) = − cos 𝜙 𝜌0𝑣∗𝑑𝑧,∞𝑧    (15) 
Ψ∇∙𝑭( )∗ (𝜙, 𝑧) = − ∇ ∙ 𝑭( )𝑎𝑓 𝑑𝜁 ,   (16) 

and 215 Ψ∗ (𝜙, 𝑧) = cos 𝜙 ρ0𝑓 𝜕𝑢𝜕𝑡 𝑚 𝑑𝜁∞𝑧 ,   (17) 

as 216 Ψ∇∙𝑭( )∗ (𝜙, 𝑧) = Ψ∗(𝜙, 𝑧) − Ψ∇∙𝑭( )∗ (𝜙, 𝑧) − Ψ𝑢𝑡∗ (𝜙, 𝑧),   (18) 217 

where  𝑑𝜁 means vertical integration along a constant 𝑚. With this vertical integration 218 

along a constant 𝑚, instead of that along a constant 𝜙, the vertical advection of zonal wind 𝑤∗𝑢  219 

in Eq. (2) is properly included in the estimation. The stream function Ψ∗(𝜙, 𝑧) is calculated 220 

directly by integrating �̅�∗ in the vertical from the top where Ψ∗(𝜙, ∞) = 0. The contribution of 221 

RWs to Ψ∗(𝜙, 𝑧) (Ψ∇∙𝐅( )∗ (𝜙, 𝑧)) and the contribution of the 𝑢 tendency Ψ∗ (𝜙, 𝑧) are also 222 

calculated directly from ∇ ∙ 𝑭( ) and , respectively, using the reanalysis data. 223 

Note that this indirect method is applicable only for latitudes where vertical integration 224 

along a constant 𝑚 is possible. This is usually limited to mid- and high-latitude regions where 225 

the angular momentum isopleths are connected from the surface to the top of the atmosphere, 226 

and where 𝑓 is not too small. Thus, the results obtained in the present study are mainly for the 227 

off-equatorial region. Also note that the term ∇ ∙ 𝑭( ), estimated using Eq. (18) with reanalysis 228 

data, is the sum of the parameterized GW forcing and the assimilation increment, which is 229 

composed of the GW forcing that is not properly expressed by the GW parameterization or 230 

because of some model deficiency. 231 

2.4 Method of extracting tidal waves from resolved waves (RWs) 232 

The RWs are divided into tidal waves and other waves, and the contribution of each wave 233 

to the RW forcing (∇ ∙ 𝑭( )) is examined. Tidal waves are extracted using the method of Yasui 234 

et al. (2016), which is also used for Earth’s atmosphere. First, daily time series are constructed 235 

separately for each local time. Next, the long-period components are obtained from each daily 236 

time series using a lowpass filter with a cutoff period of 30 sols (Ls = ~15°). The lowpass-237 

filtered daily time series for the respective local times are combined into a single time series at 238 

the original time interval. The time series defined in this way is designated the tidal component. 239 
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3. Overview of the Zonal Mean Fields of the Martian Atmosphere Obtained from EMARS 240 

Before examining the residual mean circulation, the climatology of the basic zonal mean 241 

fields using EMARS is presented. Note that previous studies (e.g., Greybush et al., 2019) 242 

discussed the zonal mean temperature, meridional wind, and vertical wind fields for only a 243 

specific period. 244 

3.1 Characteristics of the climatology of the zonal mean zonal wind 245 

Figure 2 shows the climatology of zonal mean temperature (𝑇) and zonal wind (𝑢) in 246 

meridional cross sections for the annual mean, NH summer, and NH winter. The zonal wind 𝑢 is 247 

approximately in thermal wind balance with 𝑇 in the mid- and high latitudes. For the annual 248 

mean climatology, two westerly jets are observed in both the Northern and Southern hemispheres. 249 

The peak values of the two jets are ~72 m s−1 at 60°S (𝑧 = ~50 km) and ~80 m s−1 at 60°N (𝑧 = 250 

~50 km). Additionally, an easterly jet is present in the tropical region, the latitudinal width of 251 

which depends on altitude, i.e., it is ~60° at 𝑧 = ~40 km and 90° at 𝑧 = ~90 km. The peak value 252 

of the easterly wind is 56 m s−1 at 𝑧 = ~60 km near the equator. 253 

In the NH winter, a quite strong westerly jet is observed in the mid- and high latitudes of 254 

the NH. Additionally, an easterly jet is present over the NH low latitudes to the SH mid-latitudes. 255 

The 𝑢 structure in the NH summer is almost symmetric about the equator with that in the NH 256 

winter. However, the jet strengths are different: the westerly and easterly jets are stronger in the 257 

NH winter than in the NH summer. In the NH winter, the westerly jet peak value is ~140 m s−1 at 258 

~70°N (𝑧 = ~60 km) and the easterly jet peak value is 94 m s−1 at ~10°S (𝑧 = ~65 km); in the 259 

NH summer, the westerly jet peak value is ~110 m s−1 at ~70°S (𝑧 = ~45 km) and the easterly jet 260 

peak value is 74 m s−1 at ~5°N (𝑧 = ~60 km). 261 

Such a difference between the two solstitial seasons is likely related to the large 262 

eccentricity of the Mars orbit. The distance between Mars and the Sun is shorter in the NH 263 

winter than in the NH summer, causing a large latitudinal gradient in temperature that should be 264 

in thermal balance with the large vertical gradient of the zonal wind. These characteristics 265 

observed in 𝑢 are consistent with those determined in previous studies using models (e.g., Barnes 266 

et al., 1996; Lewis & Read, 2003) and those obtained using the MACDA reanalysis dataset 267 

(Mitchell et al., 2015). However, there are slight differences in the location and the peak value of 268 

the zonal wind jets depending on the model and reanalysis dataset. 269 
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flow with a distinct peak of 19.2 m s−1 at 20°S (𝑧 = ~50 km) is dominant, whereas a northward 286 

flow in the NH winter is more dominant and faster (28.5 m s−1 at its peak 20°N, 𝑧 = ~55 km) 287 

than the southward flow in the NH summer. It should be also noted that a strong counter flow is 288 

observed below 𝑧 = 10 km over a wide latitudinal range of approximately 60° around the 289 

equator in both solstitial seasons.  290 

The meridional flow from the summer hemisphere to the winter hemisphere at 291 

approximately 𝑧 = 50 km is similar to the deep branch of the Brewer–Dobson circulation in 292 

Earth’s stratosphere, although the latitudinal extension is wider on Mars. This result is consistent 293 

with that shown by Mitchell et al. (2015), indicating that the stratosphere and mesosphere of 294 

Earth are reasonably analogous to the Martian atmosphere. An interesting and notable feature is 295 

that the meridional flow is much stronger in the Martian atmosphere than it is on Earth. 296 

The characteristics observed in the structure of �̅� and �̅�∗ are reasonably similar in the 297 

altitude range of 10–90 km and the difference in magnitude is on the order of only a few meters 298 

per second or less (Figure 3). This similarity between �̅� and �̅�∗ is consistent with the findings of 299 

previous studies (e.g., Barnes et al., 2017), and is strikingly different to the situation in Earth’s 300 

stratosphere. Such a small Stokes correction corresponding to the difference between �̅� and �̅�∗ 301 

suggests that wave forcing caused by upward propagating Rossby waves is small. 302 
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latitudes of the NH and the SH are connected over the equator is shifted slightly toward the 341 

winter hemisphere.  342 

The stream function of the residual mean circulation Ψ∗ is almost parallel to the 𝑚 343 

contours at low latitudes at 𝑧 = 10–80 km in the solstitial seasons. It is interesting to note that the 344 

strong �̅�∗ toward the winter pole over the equatorial region is in the region of the 𝑚 minimum in 345 

the vertical in the low latitudes. Comparison of the distribution of 𝑚 between MACDA and 346 

EMARS for Ls = ~270° in MY 24, presented in Waugh et al. (2016; their Figure 8) and focusing 347 

on a specific year and season, reveals that the distribution of 𝑚 is not that similar for the two 348 

reanalysis datasets. The latitudinal range with the 𝑚 minimum in the vertical is wider for 349 

EMARS than for MACDA. This difference is attributable to the differences in the distribution of 350 

the zonal mean zonal wind (their Figure 5). It is also noteworthy that an area where the 𝑚 351 

contours are horizontal is also observed in Earth’s middle atmosphere but limited to a narrower 352 

latitudinal range than that in the Martian atmosphere (e.g., Haynes et al., 1991; Tomikawa et al., 353 

2008). 354 

4. Wave Forcing Associated with Resolved Waves (RWs) in EMARS 355 

In this section, we identify the area where the residual mean flow crosses the isopleths of 356 

angular momentum, because wave forcing is necessary to drive the circulation in such an area. 357 

Then, the distribution of wave forcing associated with the RWs in the EMARS reanalysis data is 358 

examined in terms of EP flux divergence. 359 

4.1 Residual mean mass stream functions and zonal mean absolute angular 360 
momentum 361 

The MGCM results for the NH winter with realistic dust distribution, presented by 362 

Wilson (1997), are consistent with a nearly inviscid Hadley circulation expected from the 363 

conservation of absolute angular momentum (e.g., Held & Hou, 1980) below 𝑧 = 50 km in the 364 

region of 60°S–60°N. In this region, the stream function and 𝑚 surfaces are approximately 365 

parallel. It is evident from Figures 4a–c that the residual mean stream function and absolute 366 

angular momentum are approximately parallel in the limited latitudinal region of 40°S–30°N 367 

below 𝑧 = 50 km in the NH summer and that of 30°S–50°N below 𝑧 = 45 km in the NH winter. 368 

However, the residual mean circulation in the other latitudinal and height regions crosses the 369 
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Figure 6. Latitude–height sections of EPFD of all RWs (colors) and residual mean meridional 408 

wind (contours): (a) the annual mean, (b) in NH summer, and (c) in NH winter. Contour interval 409 

for residual mean meridional wind is 2 m s−1. 410 

4.3 Role of the thermal tide and other waves 411 

Figures 7a–c show climatology of the EPFD associated with tidal waves in the 412 

meridional cross sections for the annual mean, NH summer, and NH winter, and Figures 7d–f 413 

show that of the other waves. It is evident that the overall structure of the total EPFD is well 414 

explained by the contribution of tidal waves (Figures 7a–c) in all climatologies, except for the 415 

mid- and high-latitude regions, particularly in the winter hemisphere where the contribution of 416 

the other component is dominant (Figures 7e and 7f).  417 

For the annual mean climatology, the total EPFD is mainly attributable to tidal waves 418 

above 𝑧 = 70 km. In the altitude range of 𝑧 = 40–70 km, the total EPFD is negative in most 419 

latitudes. At latitudes higher than 30°, this negative EPFD is attributable to the contribution of 420 

the other component, whereas the tidal wave contribution is large at lower latitudes. For 𝑧 = 20–421 

40 km, the negative area of total EPFD at low latitudes is mainly explained by the tidal 422 

component (Figure 7a), whereas the positive area at latitudes higher than 60° is mainly due to the 423 

other component (Figure 7d). Below 𝑧 = 20 km, the tidal wave is the main contributor to the 424 

total EPFD.  425 

For the NH summer, the EPFD attributable to the tidal component largely determines the 426 

total EPFD structure above 𝑧 = 70 km at most latitudes (Figure 7b), whereas the contributions of 427 

both the tidal wave and the other component are large above 𝑧 = 70 km at all latitudes in the NH 428 

winter (Figures 7c and 7f). The other component mainly contributes to the total EPFD in the 429 

mid- and high-latitude regions of the winter hemisphere in the entire altitude range, particularly 430 

in the NH winter. It is also worth noting that the EPFD attributable to the tidal component is 431 

largely negative at approximately 𝑧 = 40–50 km in the summer hemisphere.  432 
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5.1 Annual mean climatology of the mass stream function 467 

Figure 9 shows the annual mean climatology of Ψ∗(𝜙, 𝑧), Ψ∇∙𝐅( )∗ (𝜙, 𝑧), and 468 Ψ∇∙𝐅( )∗ (𝜙, 𝑧). The Ψ∗(𝜙, 𝑧) structure of the annual mean climatology is almost symmetric 469 

about the equator (Figure 9a). It is interesting that most of the Ψ∗(𝜙, 𝑧) structure is explained not 470 

by Ψ∇∙𝐅( )∗ (𝜙, 𝑧) but by Ψ∇∙𝐅( )∗ (𝜙, 𝑧). This is in marked contrast to the situation in Earth’s 471 

stratosphere but similar to that in Earth’s mesosphere (e.g., Plumb, 2002). However, it is worth 472 

nothing that even in the Earth stratosphere the summer hemispheric part of the deep branch of 473 

the Brewer–Dobson circulation is essentially driven by GWs (e.g., Okamoto et al., 2012). On 474 

Mars, the relative contributions of Ψ∇∙𝐅( )∗ (𝜙, 𝑧) and Ψ∇∙𝐅( )∗ (𝜙, 𝑧) to Ψ∗(𝜙, 𝑧) also depend on 475 

latitude and altitude. 476 

Although the contribution of UWs to Ψ∗(𝜙, 𝑧) is dominant, that of RWs is also important 477 

in some areas in both hemispheres. The contribution of UWs tends to be larger at higher latitudes. 478 

Small reversed circulations observed in the high latitudes at altitudes of 20–50 km in Ψ∗(𝜙, 𝑧) 479 

are due to RWs (i.e., Ψ∇∙𝐅( )∗ (𝜙, 𝑧)) in their lower part (Figure 9b) and due to UWs (i.e., 480 Ψ∇∙𝐅( )∗ (𝜙, 𝑧)) in their upper part (Figure 9c). Above the altitude of 𝑧 =50 km, the contribution 481 

of UWs mainly determines Ψ∗(𝜙, 𝑧), whereas the contribution of RWs is small, particularly at 482 

high latitudes. 483 
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at altitudes below 𝑧 = 50 km in Ψ∗(𝜙, 𝑧) reflects almost equal contributions by the RW and the 491 

UW components, although the RW contribution is slightly larger. The summer hemispheric part 492 

of the counterclockwise circulation toward the winter pole at its upper part is largely extended to 493 

high latitudes at 𝑧 > 50 km and has the largest contribution from the UW component. In the 494 

winter hemisphere (i.e., the SH), the UW contribution to the counterclockwise circulation is 495 

several times larger than the RW contribution in the region of 40°–80°S. It is interesting to note 496 

that a small clockwise circulation is present at approximately 60°–80°S below the altitude of 40 497 

km in Ψ∇∙𝐅( )∗ (𝜙, 𝑧). This circulation is largely canceled by Ψ∇∙𝐅( )∗ (𝜙, 𝑧) and is therefore not 498 

observed in Ψ∗(𝜙, 𝑧). It should be noted that Ψ (𝜙, 𝑧) is minor in most regions in this season 499 

compared with Ψ∇∙𝐅( )∗ (𝜙, 𝑧) and Ψ∇∙𝐅( )∗ (𝜙, 𝑧); hence, it is not shown here.  500 
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pole at its upper part extending to altitudes higher than 𝑧 = 90 km. In contrast, Ψ∇∙𝐅( )∗ (𝜙, 𝑧) 509 

consists of two large cells: a large clockwise winter circulation crossing the equator and a 510 

counterclockwise summer circulation restricted to mid- and high latitudes at approximately 60°S. 511 

For the winter circulation, the contribution of UWs is several times larger than that of RWs; 512 

hence, the structure of Ψ∗(𝜙, 𝑧) is predominantly determined by Ψ∇∙𝐅( )∗ (𝜙, 𝑧). A small 513 

clockwise circulation presented in Ψ∗(𝜙, 𝑧) at 60°S–80°S at altitudes below 30 km (Figure 11a) 514 

is attributable to Ψ∇∙𝐅( )∗ (𝜙, 𝑧) (Figure 11c). It should be noted that the strength of Ψ (𝜙, 𝑧) is 515 

weak, similar to that in the NH summer and thus it is also not shown here. 516 
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roles of RW and UW forcings in the residual mean circulation in mid- and high-latitude regions 524 

were evaluated quantitatively. 525 

In the altitude range of 10–90 km, the structures of �̅� and �̅�∗ were quantitatively similar 526 

in the annual mean, NH summer, and NH winter climatologies. This finding indicates that the 527 

Stokes correction is generally small and hence, the wave forcing caused by upward propagating 528 

Rossby waves is also small, which is strikingly different to the situation in Earth’s stratosphere. 529 

For the solstitial seasons, a residual mean meridional flow from the summer hemisphere to the 530 

winter hemisphere at approximately 𝑧 =50 km is evident, similar to the deep branch of the 531 

Brewer–Dobson circulation in Earth’s stratosphere. The latitudinal expansion of the winter 532 

circulation to the summer hemisphere is wider on Mars. In the NH winter, the residual mean 533 

northward flow amounts to 28.5 m s−1 at its peak at 20°N (𝑧 = ~55 km), whereas the southward 534 

flow in the NH summer is slightly weaker and amounts to 19.2 m s−1 at its peak at 20°S (𝑧 = ~50 535 

km). The magnitude of these meridional flows is notably stronger than of those in Earth’s middle 536 

atmosphere. Interestingly, the 𝑚 minimum in the vertical is observed over the equator at 𝑧 = 50–537 

70 km. The strong �̅�∗ toward the winter pole in the solstitial seasons crosses the equator in this 𝑚 538 

minimum region. At mid- and high-latitude regions, the residual mean flow crosses the isopleths 539 

of angular momentum, indicating that wave forcing is necessary to drive the meridional 540 

circulation there. The distribution of wave forcing associated with RWs was examined in terms 541 

of EPFD. The entire EPFD structure is mainly attributable to the contribution of the thermal tides 542 

for the annual mean, NH summer, and NH winter climatologies. However, the wave forcing in 543 

mid- and high latitudes in winter is dominated by the contribution of RWs other than the tidal 544 

component. The distribution of �̅�∗ is consistent with the sign of the EPFD associated with RWs 545 

in mid- and high latitudes. The 𝑞  distribution suggests that these RWs other than the tidal 546 

component are generated by baroclinic or barotropic instability depending on the dominant 547 

region. 548 

Furthermore, the role of the UW component in the meridional circulation was evaluated 549 

quantitatively. The contribution of RWs was calculated directly from the EPFD, whereas that of 550 

the UWs, including subgrid-scale GWs, was estimated indirectly using the zonal momentum 551 

equation of the TEM equation system following the method by Sato and Hirano (2019). This 552 

indirect estimation is possible only for mid- and high-latitude regions where the 𝑚 contours are 553 
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connected from the ground to the top altitude. Results suggest that the contribution of UWs is 554 

comparable to or larger than that of RWs for mid- and high latitudes. The fact that small-scale 555 

disturbances are the main driver is in marked contrast to the Earth’s stratosphere but similar to 556 

the Earth’s mesosphere. The entire structure of the residual mean circulation is mainly 557 

determined by the contribution of UWs, especially at altitudes above 𝑧 = 60 km, whereas the 558 

contribution of RWs is also important at 𝑧 <  ~60 km for the annual mean, NH summer, and NH 559 

winter climatologies. In the NH winter, the residual mean counterclockwise summer circulation 560 

in the SH is explained by the RW contribution, although its large part is canceled by the UW 561 

contribution. These results illustrate the importance of UWs in the climatological features of the 562 

residual mean circulation in mid- and high-latitude regions.  563 

In future work, we will investigate the climatology of the equinox seasons, i.e., NH 564 

spring and NH autumn, when the zonal wind tendency attributable to the seasonal time variation 565 

of solar radiative heating is important (Sato & Hirano, 2019). The robustness of the findings also 566 

needs to be confirmed using another reanalysis dataset. The present study examined the 567 

climatology of relatively calm years. However, it is expected that years with a global dust storm, 568 

such as MY 25, which represents one of the most spectacular events in the Martian atmosphere, 569 

will exhibit different and/or enhanced characteristics from the climatology described in this study. 570 

The residual mean circulation for MY 25 is one such important case that merits further detailed 571 

examination.  572 
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