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Abstract

In sparsely fractured crystalline rock, aperture variability exhibits significant control of the flow field through the fracture

network. However, its inclusion in models is hampered due to a lack of field measurements and adequate numerical representa-

tion. A model for aperture generation is developed based on self-affine methods which includes two key parameters, the Hurst

exponent and a scaling parameter, and which accounts for relative anisotropy and correlation between the adjacent surfaces

forming the fracture. A methodology for analysing and extracting the necessary parameters from 3D surface scans of natural

rock fractures is also developed. Analysis of the Hurst exponent and scaling parameter space shows that input combinations

following a linear upper bound can be used to generate aperture fields which accurately reproduce measurements. It is also

shown that the Hurst and scaling parameters are more sensitive than the correlation between the upper and lower fracture

surfaces. The new model can produce an aperture ensemble that closely corresponds with the aperture obtained from the

surface scans, and is an improvement on previous methods. The model is also successfully used to up-scale fracture apertures

based on measurements restricted to a small sub-section of the sample. Thereby, the aperture fields generated using the model

are representative of natural fracture apertures and can be implemented in larger scale fracture network models, allowing for

numerical simulations to included representation of aperture internal heterogeneity.
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Abstract13

In sparsely fractured crystalline rock, aperture variability exhibits significant control of14

the flow field through the fracture network. However, its inclusion in models is hampered15

due to a lack of field measurements and adequate numerical representation. A model for16

aperture generation is developed based on self-affine methods which includes two key pa-17

rameters, the Hurst exponent and a scaling parameter, and which accounts for relative18

anisotropy and correlation between the adjacent surfaces forming the fracture. A method-19

ology for analysing and extracting the necessary parameters from 3D surface scans of20

natural rock fractures is also developed. Analysis of the Hurst exponent and scaling pa-21

rameter space shows that input combinations following a linear upper bound can be used22

to generate aperture fields which accurately reproduce measurements. It is also shown23

that the Hurst and scaling parameters are more sensitive than the correlation between24

the upper and lower fracture surfaces. The new model can produce an aperture ensem-25

ble that closely corresponds with the aperture obtained from the surface scans, and is26

an improvement on previous methods. The model is also successfully used to up-scale27

fracture apertures based on measurements restricted to a small sub-section of the sam-28

ple. Thereby, the aperture fields generated using the model are representative of natu-29

ral fracture apertures and can be implemented in larger scale fracture network models,30

allowing for numerical simulations to included representation of aperture internal het-31

erogeneity.32

Plain Language Summary33

Understanding fluid flow through naturally fractured rock is important for several34

applications, including subsurface infrastructure and storage of nuclear waste. Many stud-35

ies assume fractures as smooth planes; however, it is known that real fractures have rough36

surfaces and a variable aperture, and this variability can significantly control water flow.37

It is difficult to include an accurate representation of aperture variability in models be-38

cause of a lack of field measurements, as well as difficulties in creating adequate model-39

based representations of the variable aperture field. In this study, improvements are made40

to a previously developed approach for aperture generation, which is based on self-affine41

theory. The theory is founded on observations of fractal behaviour exhibited by rock sur-42

faces. It is shown that parameter combinations that follow a linear upper bound can be43

used to generate aperture fields that accurately reproduce the measured apertures. The44

model is also successfully used to generate up-scaled aperture fields based on a subsec-45

tion of the fracture sample. Aperture fields generated using this model are representa-46

tive of natural fracture apertures and can be used in larger scale models, allowing for47

a realistic representation of aperture variability to be included when simulating flow in48

models for fractured rock.49

1 Introduction50

Understanding fluid flow through natural fractured rocks systems is important for51

several applications, including subsurface infrastructure, storage facilities for spent nu-52

clear fuel and other toxic waste, and hydrocarbon industries (Tsang & Neretnieks, 1998).53

Flow and transport through sparsely fractured rock is often modelled using a discrete54

fracture network (DFN) approach because it is well-suited to numerically represent the55

typically complex geometries observed in fractured bedrock (Cacas et al., 1990; Framp-56

ton & Cvetkovic, 2011; Lang et al., 2014). Representation of fractures in DFN models57

is typically based on the parallel-plate assumption (Witherspoon et al., 1980; Zimmer-58

man & Bodvarsson, 1996), where fracture permeability is often used to represent the aper-59

ture void space within fractures. However, DFN models often simplify the effect of in-60

ternal aperture variability by assuming constant or effectively homogeneous hydraulic61

properties within the plane of individual fractures. Although most DFN models are able62
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to numerically include internal variability, its representation is hampered by a lack of63

field measurements. Also, homogenisation allows for a computationally less demanding64

description of the fluid flow between fractures, which simplifies run times for large DFNs.65

Nonetheless, it is well known that fractures are rough walled conduits with varying aper-66

ture and multiple contact points (Durham & Bonner, 1994; Novakowski & Lapcevic, 1994;67

Hakami, 1995; S. R. Brown, 1998), and studies have shown that these features can ex-68

hibit control of the flow field through both single fractures (S. Brown, 1987; Nicholl et69

al., 1999; Zou et al., 2017) as well as fracture networks (Frampton et al., 2019).70

Fracture surface roughness has been shown to exhibit self-affine fractal properties71

(S. Brown, 1987; Power & Tullis, 1991; Renard et al., 2006). Self-affine differ from self-72

similar fractals as they scale anisotropically along horizontal and vertical reference axes73

whereas self-similar scale isotropically (Mandelbrot, 1982; Power & Tullis, 1991). The74

fractal dimension, D, of the surface describes the complexity of the fractal (Malinverno,75

1990; Power & Tullis, 1991), and the Hurst exponent, H = E–D (Hurst, 1951), is a mea-76

sure of the randomness, where E is the number of spatial dimensions in which the frac-77

tal is measured. The values of D for rock fractures typically range from 1-1.5 for pro-78

files and 2-2.5 for surfaces (S. Brown, 1987). This agrees with the definition of self-affine79

fractals where D = 1.5 for profiles compared to self-similar definition where D = 2 (S. Brown,80

1987). When describing fracture surfaces using fractals, the Hurst exponent is more con-81

venient (Gallant et al., 1994).82

Therefore, in order to generate fractures with internal variability, for example for83

use in numerical DFN models for flow and transport, the methods used should preserve84

the self-affine properties of the natural rough-surfaced fractures they aim to reproduce.85

This includes the Hurst exponent and scaling parameter, but also surface height vari-86

ability, relative anisotropy, and correlation between the upper and lower surfaces form-87

ing the fracture aperture (Ogilvie et al., 2006). Another aspect to take into considera-88

tion is the stochastic nature of aperture generation and its needs for numerical DFN mod-89

elling. Typically, a large number of fractures are used in models, far more than can re-90

alistically be sampled and studied from field investigation. Therefore it is desirable to91

be able to generate multiple fractures based off of a limited set of fracture aperture mea-92

surements, thereby using the same or small set of input parameters to generate multi-93

ple fracture realisations (Isakov et al., 2001; Ogilvie et al., 2003). Furthermore, DFN mod-94

els typically require fractures to be generated at multiple spatial scales, and often at a95

much greater scale than available from measurements. Thus there is a practical need to96

upscale fractures, and here, self-affine methods are well suited as spatial rescaling is in-97

herent to their design.98

Natural fractures are complex to replicate due to their anisotropy and the corre-99

lation exhibited between the upper and lower rough surfaces forming the aperture void100

space. A root-mean squared (RMS) correlation function has successfully been used to101

characterise anisotropy on exposed structures (Candela et al., 2009). To obtain variable102

aperture, two partially correlated rough surfaces are needed. Although generation of in-103

dependent surfaces is relatively easy, correlation and separation between two surfaces is104

needed for creating realistic fracture apertures. It is understood that correlation between105

the surfaces is weak at short wavelengths, where the surface variabilities act reasonably106

independently of each other, but becomes stronger, and reaches a peak, as wavelength107

increases (S. Brown, 1987; S. R. Brown & Scholz, 1985; Keller et al., 1999; Ogilvie et al.,108

2006). Surfaces have been found to be well correlated above the scale of a few millime-109

tres (S. R. Brown & Scholz, 1985; Power & Tullis, 1992).110

Several attempts have been made to represent the change in correlation with scale.111

Previous work by S. R. Brown (1995b) proposed a second surface generated with a ‘mis-112

match length scale’. The wavelengths for the mismatch were obtained from the power113

spectral density ratio (PSDR). The surfaces are well-correlated at large wavelengths and114

uncorrelated when the wavelength becomes less than the assigned mismatch length scale.115

–3–



manuscript submitted to Water Resources Research

A set of random numbers can be used to define the phase of the Fourier components which116

are used to generate the upper and lower surfaces. The correlation between the random117

number set at different length scales therefore determines the correlation between sur-118

faces of the generated aperture. S. R. Brown (1995b) implemented the uncorrelated length119

scale by using a second random number generator different from the one used to pro-120

duce the first surface. This decorrelates the surfaces at scales below the mismatch length,121

and amplitudes for wavelengths greater than the mismatch length use the same num-122

ber generator as the one used to create the first surface. This creates a sharp disconti-123

nuity between correlated and uncorrelated surfaces. However, Glover et al. (1998b) ar-124

gued that the transition should be smooth, following a frequency dependent change from125

high to low correlation. The PSDR function of the surfaces combined with a weighting126

function was suggested which determines the rate at which the surfaces match with re-127

spect to frequency.128

Glover et al. (1998b) required two independent random number sets for the wave-129

lengths that are less than the mismatch wavelength, and above this the random num-130

bers are partially correlated. This involved mixing sets of two random numbers using131

linear weighting. However, Ogilvie et al. (2006) noted that algebraically mixing random132

number sets in this manner breaks down the distribution produced by the random num-133

ber generator. Therefore, they proposed an algorithm which swaps the positions of num-134

bers in two random number sets until the desired correlation is reached, producing a par-135

tially correlated random number data set. This has the advantage of maintaining the136

distribution produced by the random number generator as well as enabling the corre-137

lation to vary with scale between the two surfaces, producing a more accurate aperture.138

Ogilvie et al. (2006) uses several parameters to determine how the matching be-139

tween surfaces changes with scale based on the PSDR. These are an improvement on pre-140

vious methods as a minimum and maximum matching fraction can be set and how the141

change in correlation varies between these two points. However, the overall change from142

low to high correlation is still a linear change, and even with added parameters to in-143

crease the accuracy, it still may not represent natural fractures. That study was also per-144

formed on synthetically induced mode I fractures; thus, it is not yet known how well these145

methods perform when using measurements from and comparing against real-world nat-146

ural rock fractures.147

The aim of this study is to develop and evaluate a method for reproducing rough-148

surfaced fractures with variable aperture using information obtained from 3D scans of149

natural rock fracture surfaces. A model for stochastic fracture aperture generation is fur-150

ther developed based on previous work using self-affine fractal concepts, which includes151

a refined method for representing correlation between the upper and lower surfaces of152

the fracture. The model is used to generate an ensemble of realisations of fracture aper-153

tures, which is evaluated against the measured natural fracture aperture. Furthermore,154

a detailed sensitivity analysis is conducted on the variability of the Hurst and scaling155

parameters and the correlation obtained from the surface scans of the fracture in terms156

of their impact on model performance. Finally, the model is evaluated in terms of spa-157

tial up-scaling, where a subsection of the measurements are used to predict the full ex-158

tent of the fracture.159

2 Method160

A spectral synthesis approach is used to numerically produce fractals that repre-161

sent two surfaces which when combined form a fracture with variable aperture void space.162

A symmetric matrix containing Fourier components is defined, where the Fourier com-163

ponents can be obtained from measurements to obey the various desired properties of164

the fracture. Each component is comprised of an amplitude and a phase. Fractal dimen-165

sion and any information about relative anisotropy is contained within the amplitude166
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component that scales with a power law. Thus, the topography of the fracture surfaces167

are controlled by the phase of the Fourier components. If the phase is identical for the168

upper and lower surfaces, the resulting fracture aperture is constant, representing a per-169

fectly mated fracture. In order to create a variable aperture field, the topography of the170

two surfaces need to be uncorrelated or partially correlated at different wavelengths. When171

random numbers are used to describe the phase of the Fourier components, the degree172

of matedness between the surfaces can be controlled by the degree of correlation between173

the random numbers used.174

Natural rock surfaces can be described by a power spectral density function (S. R. Brown,175

1995a),176

G(k) = Ck−α (1)177

where k = 2π/λ is the wavenumber, λ is the wavelength which corresponds to distance178

along the profile, C is a proportionality constant which varies among surfaces and cor-179

responds to the intercept of the logarithm of the power spectrum, and α is the fractal180

dimension in the range of 2 < α < 3 which corresponds to the slope of the logarithm of181

the power spectrum. To obtain the correlation between the upper and lower surfaces of182

the fracture scans, the power spectral density (PSD) of each surface and the resulting183

aperture needs to be obtained, which can readily be calculated using Fast Fourier Trans-184

forms.185

In principle the Fourier decomposition of a surface can be done for an infinite num-186

ber of wavenumbers k, however in practice there is a clear limit. The limit is defined by187

the resolution of the surface scans, and any pre-processing interpolation that has been188

done before calculating the PSD of the fracture surface. When the period of the sine waves189

are equal to the number of mesh cells in one dimension, then each oscillation of the sine190

wave exactly covers one cell. Increasing the resolution beyond this point so more sine191

waves cover a single cell would have no further effect on the amplitude. The maximum192

frequency that is useful for the surface is therefore k = 1/N , where N is the maximum193

number of cells along one edge length of the fracture scan. When k = 1 this corresponds194

to a sine wave that fits exactly once within the surface.195

2.1 Correlation analysis196

The correlation of the upper and lower fracture surfaces can be calculated by us-197

ing the ratio of the PSD from the aperture over the sum of the PSDs of the two surfaces;198

it is convenient to plot it as a function of wavelength on log-log scale. Ogilvie et al. (2006)199

called this the PSD Ratio (PSDR, ξ(k) ), where200

ξ(k) =
G(k)aperture

G(k)upper surface +G(k)lower surface
(2)201

If the PSD ratio tends towards unity for all wavenumbers then the surfaces are completely202

independent (Glover et al., 1998b, 1998a). If the PSDR is less than unity, then some match-203

ing correlation is occurring between the upper and lower fracture surfaces at that spe-204

cific wavenumber. The correlation at each wavenumber is obtained as Corr(k) = 1 −205

ξ(k). Here we introduce a polynomial regression over the PSDR obtained from measure-206

ments of a rock fracture from the smallest to largest PSDR(k) value as a convenient ap-207

proach to remove the fluctuations and get values for the general trend as a function of208

wavenumber (or wavelength). Fluctuations in the PSDR inevitably occur when calcu-209

lating the PSD from measurements of fracture surfaces due to natural variability in the210

upper and lower surface as well as measurement precision.211

During aperture generation, different quantities of wavenumbers may be required,212

and will not necessarily match the amount coming from the measurements of a real frac-213

ture. Therefore, the correlation values are typically re-scaled along the length direction214

of a profile to the correct number of values that are needed for the generation method.215
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Due to the method of generating a self-affine fractal surface, the dimensions are limited216

to 2×2n+1 in X and Y , so the correlation values are scaled in length to 2n, which is217

half of the desired edge length of which the aperture will be generated at. This is im-218

portant as it will maintain the desired correlation and structure regardless of the reso-219

lution used to generate the aperture.220

Fractures typically have high correlation at small wavenumbers (large wavelengths),221

indicating there is large-scale correlation across the fracture. As the wavenumber increases222

(and wavelength decreases) the matching between the surfaces typically decreases. Once223

the correlation function Corr(k) is obtained, a number swapping algorithm is used to cre-224

ate several arrays of different correlation which represent the different wavenumbers. We225

adopted a method similar to Ogilvie et al. (2006), and developed a number swapping al-226

gorithm that swaps the positions of numbers within one random normally distributed227

array until a set correlation, defined by the matching analysis, is reached between the228

other random normally distributed array. The algorithm is executed several times such229

that two correlated arrays are created for every wavenumber that is needed. Correlated230

pairs of values are selected from the arrays and are placed in two grids that represent231

the upper and lower surface in the corrected position depending on the wavenumber. This232

creates a partial correlation between the upper and lower surface that changes with scale.233

To create different realisations different pairs are randomly selected from the arrays, and234

the phase of the Fourier components is defined by these random number sets.235

2.2 Scaling properties236

The other properties needed to generate a self-affine fractal surface are the Hurst237

exponent H and a scaling parameter. For a self-affine profile to appear similar at dif-238

ferent scales, it must be scaled anistropically in two different directions, i.e., length ver-239

sus topographical height of a rough surface. If the abscissa (length) is scaled by a fac-240

tor of λ, the ordinate (height) needs to be scaled by λH . We adopt the RMS-COR method241

(Malinverno, 1990; Renard et al., 2006; Candela et al., 2009; Stigsson & Mas Ivars, 2019)242

to analyse the standard deviation of height difference at different length intervals; at ver-243

tices ∆v apart the standard deviation σ of the height differences δh is obtained as:244

σ(δh(∆v)) =

√√√√√√√√√√
N−∆v∑
v=0

(h(v +∆v)− h(v))2

N + 1−∆v
−


N−∆v∑
v=0

(h(v +∆v)− h(v))

N + 1−∆v


2

(3)245

where ∆v is the number of vertices between the height values being analysed, h(v) is the246

height value at vertex v, and N is the number of vertices within the line. The Hurst ex-247

ponent H is obtained by a log-log fit of the standard deviations σ against the distance248

between the vertices ∆v; the slope of the line corresponds to H and the intercept cor-249

responds to the standard deviation of adjacent vertices δh, the value which is used to250

scale generated surfaces.251

The method is relatively easy to implement but affected by the finite length of trace252

profiles. Therefore, ∆v must be small compared to N ; for this reason if ∆v is above ap-253

proximately 10% of maximum trace length it is not considered reliable (Marsch & Fernandez-254

Steeger, 2021). The Hurst exponent can also be underestimated due to the finite trace255

length. However, the RMS-COR method is considered to under-estimate Hurst expo-256

nents when H > 0.5 (Stigsson & Mas Ivars, 2019). Therefore, we implement the fol-257

lowing correction as suggested by Marsch and Fernandez-Steeger (2021); if HRMS,cal
>258

0.5 then HRMS = ln(HRMS,cal
) + 1.18.259
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2.3 Surface scans of a natural fracture260

The rock sample was taken from a medium grained granite block from the Flivik261

quarry in Oskarshamn municipality, Sweden, and includes a natural vertical fracture run-262

ning through it. The sample cut from the rock slab was 200 x 200 x 250 mm3 contain-263

ing the partially mated fracture. A force of approximately 100 Nm was required to break264

the remaining rock bridges between the surfaces and open the fracture (Bruines, 2022).265

Figure 1a shows the fracture surface after opening.266

Figure 1. Upper surface of the fracture after opening (a), 3D scan of the surface (b) and sur-

face after interpolation from point cloud data to a regular grid (c).

Once opened, the upper and lower surface were scanned using a handheld laser scan-267

ner (Figure 1b). The surface scan data required pre-processing before it could be used268

to obtain the parameters needed for aperture generation (Stock & Frampton, 2022). The269

scanning method used results in an irregular mesh. This means on the XY coordinate270

plane, the nodes on the upper and lower surface will not align. Due to this, the surface271

data is linearly interpolated onto a regular grid with a resolution of 0.1 mm in order to272

easily obtain the aperture field (Figure 1c). Areas near the edge of the scan tend to con-273

tain errors so the edges are cropped to remove obviously erroneous data. Issues arise from274

vertical referencing of the upper and lower surface scans, resulting in an unrealistic aper-275

ture field with many negative aperture values. To correct this the lower surface is trans-276

lated relative to the upper surface to improve alignment and reduce inaccurate negative277

apertures. However, this is insufficient to fully correct the aperture field, so pressure film278

data that was also provided was used as a reference to vertically shift the upper surface279

until a visual best fit aperture field distribution is achieved. Further details on pre-processing280

the surface scan data are presented by Stock and Frampton (2022).281

After pre-processing, the surface scans produce an aperture that contains a few ab-282

normal isolated larger apertures, which are most likely due to rock fall out during open-283

ing of the fracture. Figure 2 shows the rock fall out collected after opening (a) and the284

aperture when 5% of the largest apertures have been removed (b). As can be seen, the285

largest values generally occur in isolated locations across the aperture field. Areas that286

have a constant value of zero are considered contact points, and areas that are white are287

where data has been removed (b). An interpretation of the pressure film is also shown288

(c) with locations of the rock fall out highlighted, white areas represent void spaces that289

are larger than the thickness of the pressure film (200 µm) and red represents a pressure290

of 50 MPa.291

Figure 3 shows the normalised cumulative distribution and box plots for the same292

aperture whilst systematically filtering the largest values from the data by area. Zero293

percent represents the full aperture with no data removed and 5% represents the aper-294

ture where the largest 5% of aperture values are removed. During opening the fracture,295

release of stress could lead to the surface level increasing, which results in a negative aper-296
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Figure 2. Rock fall out collected after opening the fracture (a) with the possible locations of

fall out located on the aperture field by red, black and pink circles (b) and pressure film data (c)

ture when the lower surface is subtracted from the upper surface. Therefore, all nega-297

tive apertures have been set as zero and are assumed to be contact areas. Removing the298

largest 1% of apertures significantly reduces the maximum aperture by approximately299

2 mm, this highlights how isolated the largest apertures are. As increasingly larger per-300

centages of the aperture are removed, the maximum values decrease whilst only having301

small changes on the aperture distribution. The change in distribution is mainly observed302

as the normalised cumulative distribution reaches approximately 0.9, and apertures with303

a higher percentage of filtering reach the peak sooner. The differences between succes-304

sive percentage increase of filtering become smaller, with 4% and 5% having only minor305

differences in distribution. Box plots for the distributions (Figure 3b) show a decrease306

in most values as larger percentages of the aperture are removed. However, the median307

value remains fairly constant, decreasing from 0.149 mm at 0% to 0.146 mm at 5% fil-308

tering. The consistency in the medians shows that when the whole aperture is consid-309

ered the largest apertures are outliers within the data set. No outliers are present at 5%310

filtered, so this aperture is used for comparison with the generated aperture.311

Figure 3. Normalised cumulative distributions of the measured aperture with the maximum

apertures filtered by increasing percentages of area (a) and corresponding box plots (b)

2.4 Fracture surface and aperture generation312

Several trace profiles are taken across each of the two fracture surfaces (cf. upper,313

shown in Figure 1c) in the X and Y directions along every mesh cell, so that the total314

number of profiles in one direction is the same as the total number of cells along one edge315
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length. This results in 1970 trace profiles in each direction, with a length resolution of316

each trace profile of 0.1 mm. The RMS-COR method is then executed on every profile,317

providing a Hurst and scaling parameter for each profile, where a combination of param-318

eters that most closely represents the surface must be selected (section 3.1). Relative anisotropy319

is calculated by using the median of the ratios H(X)/H(Y ). The Hurst exponent and320

anisotropy are then used to define the amplitude of the Fourier components.321

When all the Fourier components are known and arranged in a 2D complex and322

symmetric matrix in the correct position regarding wavenumber, a 2D Fast Fourier Trans-323

formation is executed over the data, the real part of which represents the fracture sur-324

face with a mean value of zero. The last steps are to scale the surface to the required325

size, and scale the asperities to that defined by the scaling parameter obtained from the326

RMS-COR method, and vertically shift the mean level of the fracture surface such that327

no negative values occur in the aperture field. It is important to account for different328

trace resolution between the real data and generated aperture, so the scaling value can329

be corrected to represent the same resolution, and hence produce an accurate re-scaling330

of the surface and aperture. Note that the topography of each pair of surfaces will de-331

pend on the random number sequence used to select the correlation arrays. Therefore,332

due to this stochastic nature of sampling, an ensemble of fracture aperture realisations333

must be generated for a given set of input parameters in order to obtain a sufficiently334

large sample size to compare against the measured fracture aperture. However, we stress335

that each generated sample is an equally probably realisation based on a given set of in-336

put values. Therefore, this can enable a convenient approach for generating multiple frac-337

tures based on a limited number of fracture measurements. Furthermore, since the scal-338

ing behaviour of the surface and relative positions of different size asperities is controlled339

by the Hurst exponent, it enables a convenient approach to up-scaling fracture surfaces,340

based on the assumption of the properties of the rough surfaces being self-affine for the341

spatial scales considered and the correlation between surfaces being scale independent.342

3 Results343

3.1 Fracture surface and aperture field344

The PSDR obtained from the fracture with a third order polynomial regression plot-345

ted over the PSDR is shown in Figure 4a. The variation in correlation with wavenum-346

ber shows the decrease in correlation (Figure 4b, red line) as wavenumber increases. The347

number of wavenumbers over which the correlation is applied has been re-scaled to cor-348

respond with the dimensions at which the aperture realisations will be generated at. As349

can be seen, the correlation 1 - PSDR (Figure 4b, blue line) initially decreases before in-350

creasing again at approximately 50, however the correlation reaches a minimum value351

of approximately 0.86. The increase thereafter is an artefact due to the resolution of the352

surface scans and the resolution at which the surfaces were interpolated on to a regu-353

lar grid. If one value in the point cloud is interpolated over more than one grid cell then354

1 - PSDR will increase. This artifact is removed from the correlation array (red line) by355

manually setting the minimum value for increasing wavenumbers. This adjusted corre-356

lation function is then used in the subsequent number swapping algorithm.357

The RMS-COR method is then executed on trace profiles across both surfaces in358

the X and Y directions every 0.1 mm using a maximum step length of 10% (∆v, Eq 3),359

resulting in 1,970 values of both Hurst exponent and scaling parameter in each direc-360

tion on the upper and lower surfaces. The 75th percentile for Hurst exponent and scal-361

ing parameter have been used to generate the partially correlated upper and lower sur-362

faces and resulting aperture field that are seen in Figure 5. The cumulative density func-363

tion of the single realisation of the aperture field is shown in Figure 6a. Thereafter, mul-364

tiple realisations using the same input parameters are generated; the ensemble of 100 re-365

alisations are shown in Figure 6b.366
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Figure 4. PSDR with a third order polynomial regression (a) and change in correlation with

rescaled wavenumbers (b)

Figure 5. Generated upper surface (a), lower surface (b) and resulting aperture field created

from the semi correlated surfaces (c)

The spread in aperture distribution is due to the stochastic nature of the method,367

therefore multiple realisations are required to be generated until the aperture ensemble368

stabilises. The number of realisations required is evaluated by using the two-sided Kolmogorov-369

Smirnov test to compare the measured aperture distribution with increasing generated370

aperture ensembles (Table 1). A smaller KS value represents a closer match, and a value371

of 0 indicates the two empirical distributions are identical. This shows that 50 realisa-372

tions and greater will show very little variation; in the main analysis 100 realisations are373

used.374
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Figure 6. Cumulative distribution of one realisation (a) and a 100 realisations with generated

aperture ensemble (b)

Table 1. KS test statistic for ensembles comprised of increasing number of aperture realisa-

tions tested against the 5% filtered measured aperture

No. of realisations KS statistic

10 0.043

20 0.056

50 0.035

100 0.034

There is a significant spread in Hurst and scaling parameters, and which differs slightly375

between the upper and lower surfaces (Figure 7a,b). The Hurst exponent ranges from376

approximately 0.6 to 1 for both the upper and lower surface but a larger difference be-377

tween the surfaces is seen in the scaling parameter, which ranges from 0.025 to 0.06 and378

0.025 to 0.07 for the upper and lower surfaces respectively. The 25th, median and 75th379

percentiles have been calculated for both Hurst exponent and scaling parameter (Table380

2). The input parameters from the 75th percentiles generate an aperture ensemble dis-381

tribution that corresponds well with the measured aperture field scans, better than us-382

ing the median, and the 25th percentile showing the most dissimilar distribution (Fig-383

ure 7c). However, note that any of the parameter combinations plotted could be used384

for aperture generation, so the combination that produces an ensemble most similar to385

the aperture data must be determined.386

3.2 Parameter sensitivity analysis387

The analysis of the fracture scans yields a wide range of values for the Hurst ex-388

ponent and scaling parameter (Figure 7 and Table 2). Here we present an analysis of these389

parameter combinations in terms of their impact on the resulting generated aperture field390

distribution. A regular grid of points across the parameter space is considered, which391

has the advantage of providing a systematic analysis for regions both covered by the pair-392

wise correlated Hurst and scaling parameters as well as regions beyond. Each pair of Hurst393

exponent and scaling parameter in the grid is used to generate 100 realisations of the394

aperture field, and the ensemble evaluated against the measured aperture distribution.395

The similarity of the generated ensembles with the measured aperture was assessed us-396

ing the Kolmogorov–Smirnov (KS) test statistic, which measures the largest difference397

between the distributions of the two samples. Figure 8 shows an overlay of the KS statis-398

tic value, where a smaller value means a better fit between the distributions, on the reg-399

–11–



manuscript submitted to Water Resources Research

Figure 7. Hurst exponent and scaling parameter from each trace profiles along X and Y di-

rections for the upper (a) and lower (b) surfaces and the corresponding cumulative distribution of

the aperture ensembles using the 25th, median and 75th percentiles as input parameters (c)

Table 2. The 25th, median and 75th percentiles for Hurst exponent and scaling parameters for

the upper and lower surfaces using different maximum step lengths in the RMS-COR function

Upper surface Step length 20% Step length 10% Step length 5%

Hurst Scaling Hurst Scaling Hurst Scaling

25th percentile 0.660 0.040 0.811 0.033 0.875 0.030

Median 0.755 0.046 0.851 0.036 0.913 0.032

75th percentile 0.822 0.057 0.899 0.040 0.947 0.034

Lower surface Step length 20% Step length 10% Step length 5%

Hurst Scaling Hurst Scaling Hurst Scaling

25th percentile 0.653 0.040 0.808 0.032 0.873 0.029

Median 0.747 0.047 0.850 0.036 0.913 0.031

75th percentile 0.817 0.057 0.892 0.041 0.951 0.035

ular grid parameter points over the scatter plots of parameters on the upper and lower400

surfaces. A linear regression was plotted using the weighted overlay to follow the trend401

of best fits (Figure 8, black line) which generally follows the upper bound of the param-402

eters. Moving away from this trend results in an increase in the KS statistic value as the403
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parameter combinations generate apertures that are less similar to the measured aper-404

ture. The 75th percentile combination for the Hurst and scaling parameter is very close405

to the linear regression line, and the ensemble generated using these values has the small-406

est KS statistic value. Therefore these values are used as input parameters for the final407

aperture generations.408

Figure 8. Hurst exponent and scaling parameter scatter plot overlain with fitting metric re-

sults for the upper (a) and lower (b) surfaces with the 75th percentile highlighted and regression

line plotted using the weighted overlay

Figure 9a shows the correlation obtained from a polynomial fit which we propose409

here (red line) compared against the correlation obtained using the approach suggested410

by Ogilvie et al. (2006) (blue line). It can be seen that our approach has a lower gra-411

dient of change from low to high correlation, meaning that at larger wavelengths the sur-412

faces are not as strongly correlated as they would be compared to the approach by Ogilvie413

et al. (2006). The main difference is that the approach we suggest uses all of the infor-414

mation obtained from the PSDR analysis of the fracture scan sample; it does not solely415

rely on end points of the correlation and length over which the transition occurs. By in-416

troducing the polynomial fit of the PSDR, the generated aperture ensemble distribution417

is improved and better corresponds with the measured fracture sample (Figure 9b).418

Box plots for the filtered aperture show the aperture ensemble generated using the419

Ogilvie et al. (2006) method and the new model developed in this paper (Figure 9c). This420

shows that the Ogilvie et al. (2006) method under predicts the distribution, with each421

of the values being lower than the filtered aperture data. However, the new model has422

a distribution that is very similar; the median value is only 0.001 mm smaller, with the423

biggest difference seen in the upper whiskers which are 0.013 mm larger.424
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Figure 9. Comparison of Ogilvie method and the new model correlation with wavelength (a),

aperture ensemble distribution generated from the new correlation and input parameters (b) and

box plots of the 5% filtered aperture, Ogilvie method and new model ensemble (c)

4 Discussion425

4.1 Field data filtering426

During opening of the fracture some rock was broken off (Figure 2a), and although427

the volume of this debris is unknown it could be the cause of isolated and abnormally428

large apertures seen in the unfiltered distribution (cf. Figure 3a). The shape of some of429

the debris has similar geometry to the larger apertures, which further suggests that rock430

fall out is the cause. This is highlighted by red, black, purple and pink circles around431

rock debris and the possible location on the aperture field. The red, purple and pink cir-432

cle encompass rock pieces that have a distinct shape, which seems to also be present in433

the aperture field and also in the pressure film data (Figure 2b,c). If the rock debris would434

have remained intact in these locations, the corresponding apertures would be signifi-435

cantly smaller. However, it is difficult to predict how adding the rock pieces would af-436

fect the apertures. For this reason, the aperture data has been filtered to remove the largest437

5% of apertures, which should correct for the rock fallout and provide a more accurate438

representation of the distribution of the aperture when it was unopened. However, ex-439

cessive filtering increases the risk of unintentional removal of large natural fracture aper-440

tures. We determined the threshold limit of 5% to be a reasonable balance without ex-441

cessively impacting the overall shape of the aperture distribution (cf. Figure 3).442

Another piece of rock fallout that visually fits well is highlighted by a black circle.443

This location represents a contact area, which is due to the subtraction of the lower sur-444

face scan from the upper resulting in a negative aperture, hence it is corrected to zero.445

It is not intuitive how additional rock mass would correct this, however from the pres-446

sure film data there is also a large void space at this location. This suggests that the rock447

piece was loosely attached during scanning, but has fallen off before the pressure film448

measurements were taken. If the piece was attached then a higher pressure would be ex-449
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pected, representing close contact, however it can be seen there is a void space at this450

location (Figure 2, black circle). This highlights further that great care should be taken451

when using the pressure film to vertically align the surfaces, as the 3D scan data and pres-452

sure film may not represent exactly the same state of the surfaces and resulting aper-453

ture field.454

4.2 Hurst exponent and scaling parameter space455

The spread of Hurst exponent and scaling parameter is in part due to the maxi-456

mum step length that is used when calculating RMS-COR function. Figure 10a,b shows457

the spread of parameters using a step length of 20%, 10% and 5% (orange, blue and green458

respectively) of the maximum trace length. Reducing the step length reduces the like-459

lihood of the regression line curving in log-log space, and hence reduces the spread (Marsch460

& Fernandez-Steeger, 2021). It should be noted that changing the step length has no ef-461

fect on the total number of Hurst and scaling values as the same number of trace pro-462

files are used. When a maximum step length of 20% is used the spread is large, rang-463

ing from approximately 0.35 to over 1 for the Hurst exponent. Small Hurst exponents464

seen in this range are not likely to be seen on fracture surfaces, as generally the Hurst465

exponent will range from 0.5 to 1 (S. Brown, 1987). As Hurst exponent decreases, it can466

be seen that some values of scaling parameter and Hurst exponent create a trend away467

from the main bulk of the scatter plot. This can most clearly be seen for a maximum468

step length of 20% at the lower Hurst exponent values. Potentially this could be due to469

trace profiles that go over sections where substantial parts of rock surface have fallen out470

during opening, which may perturb the assumption of the fractal nature of the fractures.471

Reducing the step lengths reduces the spread of these data away from the main bulk of472

the scatter plot, reducing errors that have been introduced from a larger step length. This473

reduction also decreases the extent by which the scatter plot data goes above the lin-474

ear regression that represents a line along which parameter combinations produce the475

best correspondence between aperture ensemble distributions and the measured aper-476

ture.477

For the upper surface it is only the data obtained from a maximum step length of478

20% that has a significant amount of values above the regression line, with the other two479

data sets mostly staying below this line. This shows that for the upper surface the best480

parameter combinations fall on the upper bound of the data. For the lower surface this481

is not so obvious, as regardless of the step length, some of the parameter combinations482

fall above the linear regression. The Hurst exponent at which the values go above the483

linear regression decreases as the maximum step length increases. However for smaller484

step lengths, the majority of the data points stay below the linear regression line, sug-485

gesting the influence of rock fall out is also present in the lower surface. Table 2 shows486

the affect of maximum trace length on the 25th, median and 75th percentiles for Hurst487

exponent and scaling parameter.488

When the maximum step length of 10% is used, the 75th percentile is on the up-489

per bound of the data for both the upper and lower surface, which also is very close to490

the regression line that represents the parameter combinations that produce the best aper-491

ture ensembles (Figure 10c,d). When the step length is reduced further to 5% then 75th492

percentile is slightly further away, but would still produce reasonably good aperture en-493

sembles. However, if a larger maximum step length is used then this value moves sig-494

nificantly above the regression line, which is seen for the maximum step length of 20%495

and would not produce an aperture ensemble that corresponds well with the measured496

aperture. This shows that a maximum step length of 10% is best when the full surface497

is used to obtain the 75th percentile parameter combination. This percentile lies on the498

upper bound of the data and is easy to calculate, making it easy to find this parame-499

ter combination as the input. However, any parameter combination along the linear re-500

gression line could be used as the input and produce an aperture ensemble that corre-501
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sponds with the measured aperture. The surfaces will have different topographies, but502

the resulting aperture distributions will be consistent. The regression line could repre-503

sent a natural upper limit of the surface roughness, where values along this line best rep-504

resent that specific surface. Hence, different rock and fracture types with different prop-505

erties may have a different gradient to the line of regression.506

Figure 10. Upper (a) and lower (b) surface Hurst and scaling parameters for 20%, 10% and

5% of the maximum step length and regression line calculated from best fit overlay. The 75th

percentiles for a maximum step length of 20%, 10% and 5% for the upper (c) and lower (d)

surfaces and the linear regression line following the best fits

The method used to calculate Hurst exponent and scaling parameters used in this507

study is different from Ogilvie et al. (2006) as they used the slope of power spectral den-508

sity to obtain these parameters. However, using the power spectral density to obtain in-509

put parameters can be affected more greatly by rock fall out which creates areas that510

are no longer self-affine. When used to calculate the Hurst exponent from these surfaces511

the result is a value of 0.52, compared to approximately 0.9 which is the 75th percentile512

value of the method we use. This could have worked for Ogilvie et al. (2006) as the frac-513

tures used in that study were artificially induced, therefore there was not the issue of forc-514

ing the fracture open and damaging the surfaces in the process to produce rock fall out.515

Since the fracture in this study is natural, using many traces across the surface and the516

RMS-COR evaluation method works better. This also allows the values which are most517

representative of the surface to be selected, as well as allowing the scaling parameter to518

be obtained from the same method.519

This method can also work on fracture trace profiles, if the full surface is not avail-520

able for analysis. The correlation can be obtained from this data, but only one set of pa-521

rameter combinations will be obtained, meaning the 75th percentile is unknown. In this522

case a maximum step length of 5% is best, as the spread of data is reduced (Figure 10a,b),523
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so it more likely that the Hurst and scaling parameter will be close to the best fit regres-524

sion line.525

4.3 Upper and lower surface correlation526

The model for aperture generation presented in this work has updated the method527

in which the correlation with scale changes. The PSDR is used, as it is in Ogilvie et al.528

(2006), but each wavenumber is used, which avoids the need to calculate a linear change529

between minimum and maximum correlation between the surfaces. Instead we can plot530

a polynomial regression through the PSDR (Figure 4) and base the correlation for each531

wavenumber off this, giving a more realistic transition from low to high correlation be-532

tween the surfaces as the scale changes. Depending on the order of polynomial however,533

it might not capture all the fluctuations. For example, as the correlation decreases with534

increasing wavenumber (decreasing scale) there are small fluctuations around wavenum-535

ber 9 (Figure 4). The fluctuations could be a result of large isolated apertures, as this536

wavenumber is approximately equivalent to the distance between large apertures, and537

could lead to the spike in the power spectral density that is observed. This fluctuation538

is not however captured in the correlation if a low order polynomial is used.539

A sensitivity analysis of the aperture generation model to correlation with scale was540

tested using several different order polynomial regression fits. As can be seen from Fig-541

ure 11a,b using order 3, 9 and 16 has very little effect on the overall distribution. This542

suggests that it is the general trend that is more important to capture than every small543

fluctuation. The general trend captured from a third order polynomial regression is dif-544

ferent from the linear change that has been implemented in previous methods, and the545

improvements can be seen in Figure 9 where the update to correlation produces a gen-546

erated aperture ensemble distribution that highly corresponds with the measured aper-547

ture field.548

Also, a synthetic analysis was conducted over an arbitrarily selected correlation with549

scale, but one that could be expected within reality (Figure 11c). Ten cases, each with550

a 100 fracture aperture realisations were systematically generated, with initially only wavenum-551

ber 1 correlated to the maximum value, increasing until the first 10 wavenumbers have552

a constant high correlation. After this point there is a decrease in correlation as the wavenum-553

bers increase as would be expected in a natural fracture. Distributions created with wavenum-554

bers 2 to 10 highly correlated are grouped together, and show no systematic change as555

the wavenumbers increase (Figure 11d). However when only wavenumber 1 is highly cor-556

related, it is clearly separate from the other distributions. This suggests that correlat-557

ing the first wavenumber correctly is more important than the following wavenumbers558

as the scale increases. Using a low order polynomial regression allows the first wavenum-559

ber to be accurately obtained while plotting the general trend of correlation for the fol-560

lowing wavenumbers, allowing an accurate representation of the aperture field to be pro-561

duced.562

Although the large apertures have been filtered out when comparing the realisa-563

tions to the measured aperture, they are still present when calculating the PSDR and564

the correlation with scale. This may lead to slightly inaccurate correlation within the565

generated apertures. This could be corrected for if a reliable method for correcting sur-566

face scans is produced. However, currently there is no way to accurately digitally replace567

any rock fall out. To remove these areas during the matching analysis would also pro-568

duce errors with the correlation, most likely to an even greater extent. Errors from the569

matching analysis are a direct consequence of fall out during opening the fracture and570

scanning. Therefore it is imperative that this process be done as accurately as possible571

to allow for more accurate realisations of the aperture to be generated.572
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Figure 11. PSDR with different orders polynomial regression fits (a) and the resulting aper-

ture distribution ensembles (b). Change in correlation with wavenumber for cases with the first

wavenumber, K1, and the first 10 wavenumbers, K10, highly correlated (c) and the effects of

increasing the amount of wavenumbers (K) that have the highest correlation on the aperture

ensemble (d)

4.4 Implications for up-scaling573

One reason for developing this method is to allow for representations of real frac-574

ture apertures to be up-scaled and implemented within larger scale DFNs. Figure 12a,b575

shows a scatter plot of Hurst exponent and scaling parameter for the full surface and a576

100 mm2 subsection. The linear regression represents the line along which the param-577

eter combinations show the best correspondence with the measured aperture. As can be578

seen the 75th percentiles are situated close to the linear regression for parameters obtained579

from both sized sections, where blue represents the subsection and orange represents the580

full surface. For up-scaling the Hurst and scaling parameter should be selected from the581

upper bound of the data, and not a single value. The cropped section of the full surfaces582

has been used to generate an ensemble of 100 aperture realisations which have been up-583

scaled to 197 x 197 mm2, the results of which can be seen in Figure 12c,d. The differ-584

ence between the median is 0.01 mm for the full aperture and 0.006 mm for the cropped585

aperture field. When the matching analysis is undertaken on the subsection, the corre-586

lation between the surfaces is slightly weaker, resulting in larger apertures when the up-587

scaled apertures are generated, leading to the difference in medians. However, overall588

the difference is only small and the ensemble corresponds moderately well with the mea-589

sured aperture data, showing that this method can be used to up-scale aperture fields590

to any desired dimensions. Although this method does allow for up-scaling based solely591

on a fracture trace profile, it will not be as accurate as using a surface scan of the frac-592

ture surfaces.593
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Figure 12. Hurst exponent and scaling parameter for the upper (a) and lower (b) surfaces

with different dimensions, cumulative frequency of the full aperture, cropped and up-scaled aper-

ture ensemble (c) and resulting box plots (d).

5 Conclusion594

The method developed in this study can generate apertures that are representa-595

tive of natural rock fractures based on data from high resolution 3D fracture surface scans.596

During opening of the fracture, rock debris fell out, resulting in abnormally large aper-597

tures in the measured aperture distribution, which required filtering before comparison.598

The generated aperture ensemble distribution shows very high correspondence with the599

filtered measured aperture distribution. The approach to obtaining a correlation between600

upper and lower fracture surfaces has been improved based on previous methods by us-601

ing a third order polynomial regression. This results in a general trend of change in cor-602

relation with scale which is implemented over the required wavenumbers. The changes603

in the minimum correlation at high wavenumbers can slightly affect the aperture distri-604

bution which can be seen from the up-scaled aperture realisations.605

However it was found that fluctuations in correlation between the surfaces is not606

as sensitive as the input parameters that are used. The Hurst and scaling parameter are607

shown to exhibit a clear linear correlation, visible when plotted on a scatter plot; as the608

Hurst exponent increases the scaling parameter decreases. Reducing the maximum step609

length in the analysis of profile traces along the fracture surfaces reduces the spread of610

data and the number of outliers deviating away from the main trend.611

Also, we show that using the 75th percentiles for the Hurst exponent and the scal-612

ing parameter result in aperture distributions that correspond very well with the mea-613

sured data. It was found that any parameter combination along a linear regression which614

follows the upper bound of correlation between the Hurst and scaling parameters would615

result in an aperture ensemble with high correspondence with the measured data. It is616

suggested that this upper bound could represent a natural upper limit for this rock or617
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fracture type, and the gradient of this trend may change depending on different rock types618

and stress state under which the fracture was induced. This method does not solely rely619

on full surface scans and can be readily used on surface profiles, in which case, the pa-620

rameter inputs should be obtained preferably with a relatively short maximum step length621

of 5%.622

The way in which the surfaces are generated and the correlation between them, up-623

scaling of the generated apertures can be easily achieved. When the 75th percentiles for624

Hurst exponent and scaling parameter are calculated for a subsection of the full surfaces,625

the values are close to the linear regression calculated for the full surface. These values626

and the correlation between upper and lower surfaces of the subsection were successfully627

used to generate up-scaled aperture fields representing the full surface with moderately628

high correspondence. Aperture fields generated using this method are representative of629

natural fracture apertures and could be used for modelling larger fractures or multiple630

fractures, allowing for large scale discrete fracture network simulations to include real-631

istic representation of aperture internal heterogeneity.632
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Abstract13

In sparsely fractured crystalline rock, aperture variability exhibits significant control of14

the flow field through the fracture network. However, its inclusion in models is hampered15

due to a lack of field measurements and adequate numerical representation. A model for16

aperture generation is developed based on self-affine methods which includes two key pa-17

rameters, the Hurst exponent and a scaling parameter, and which accounts for relative18

anisotropy and correlation between the adjacent surfaces forming the fracture. A method-19

ology for analysing and extracting the necessary parameters from 3D surface scans of20

natural rock fractures is also developed. Analysis of the Hurst exponent and scaling pa-21

rameter space shows that input combinations following a linear upper bound can be used22

to generate aperture fields which accurately reproduce measurements. It is also shown23

that the Hurst and scaling parameters are more sensitive than the correlation between24

the upper and lower fracture surfaces. The new model can produce an aperture ensem-25

ble that closely corresponds with the aperture obtained from the surface scans, and is26

an improvement on previous methods. The model is also successfully used to up-scale27

fracture apertures based on measurements restricted to a small sub-section of the sam-28

ple. Thereby, the aperture fields generated using the model are representative of natu-29

ral fracture apertures and can be implemented in larger scale fracture network models,30

allowing for numerical simulations to included representation of aperture internal het-31

erogeneity.32

Plain Language Summary33

Understanding fluid flow through naturally fractured rock is important for several34

applications, including subsurface infrastructure and storage of nuclear waste. Many stud-35

ies assume fractures as smooth planes; however, it is known that real fractures have rough36

surfaces and a variable aperture, and this variability can significantly control water flow.37

It is difficult to include an accurate representation of aperture variability in models be-38

cause of a lack of field measurements, as well as difficulties in creating adequate model-39

based representations of the variable aperture field. In this study, improvements are made40

to a previously developed approach for aperture generation, which is based on self-affine41

theory. The theory is founded on observations of fractal behaviour exhibited by rock sur-42

faces. It is shown that parameter combinations that follow a linear upper bound can be43

used to generate aperture fields that accurately reproduce the measured apertures. The44

model is also successfully used to generate up-scaled aperture fields based on a subsec-45

tion of the fracture sample. Aperture fields generated using this model are representa-46

tive of natural fracture apertures and can be used in larger scale models, allowing for47

a realistic representation of aperture variability to be included when simulating flow in48

models for fractured rock.49

1 Introduction50

Understanding fluid flow through natural fractured rocks systems is important for51

several applications, including subsurface infrastructure, storage facilities for spent nu-52

clear fuel and other toxic waste, and hydrocarbon industries (Tsang & Neretnieks, 1998).53

Flow and transport through sparsely fractured rock is often modelled using a discrete54

fracture network (DFN) approach because it is well-suited to numerically represent the55

typically complex geometries observed in fractured bedrock (Cacas et al., 1990; Framp-56

ton & Cvetkovic, 2011; Lang et al., 2014). Representation of fractures in DFN models57

is typically based on the parallel-plate assumption (Witherspoon et al., 1980; Zimmer-58

man & Bodvarsson, 1996), where fracture permeability is often used to represent the aper-59

ture void space within fractures. However, DFN models often simplify the effect of in-60

ternal aperture variability by assuming constant or effectively homogeneous hydraulic61

properties within the plane of individual fractures. Although most DFN models are able62
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to numerically include internal variability, its representation is hampered by a lack of63

field measurements. Also, homogenisation allows for a computationally less demanding64

description of the fluid flow between fractures, which simplifies run times for large DFNs.65

Nonetheless, it is well known that fractures are rough walled conduits with varying aper-66

ture and multiple contact points (Durham & Bonner, 1994; Novakowski & Lapcevic, 1994;67

Hakami, 1995; S. R. Brown, 1998), and studies have shown that these features can ex-68

hibit control of the flow field through both single fractures (S. Brown, 1987; Nicholl et69

al., 1999; Zou et al., 2017) as well as fracture networks (Frampton et al., 2019).70

Fracture surface roughness has been shown to exhibit self-affine fractal properties71

(S. Brown, 1987; Power & Tullis, 1991; Renard et al., 2006). Self-affine differ from self-72

similar fractals as they scale anisotropically along horizontal and vertical reference axes73

whereas self-similar scale isotropically (Mandelbrot, 1982; Power & Tullis, 1991). The74

fractal dimension, D, of the surface describes the complexity of the fractal (Malinverno,75

1990; Power & Tullis, 1991), and the Hurst exponent, H = E–D (Hurst, 1951), is a mea-76

sure of the randomness, where E is the number of spatial dimensions in which the frac-77

tal is measured. The values of D for rock fractures typically range from 1-1.5 for pro-78

files and 2-2.5 for surfaces (S. Brown, 1987). This agrees with the definition of self-affine79

fractals where D = 1.5 for profiles compared to self-similar definition where D = 2 (S. Brown,80

1987). When describing fracture surfaces using fractals, the Hurst exponent is more con-81

venient (Gallant et al., 1994).82

Therefore, in order to generate fractures with internal variability, for example for83

use in numerical DFN models for flow and transport, the methods used should preserve84

the self-affine properties of the natural rough-surfaced fractures they aim to reproduce.85

This includes the Hurst exponent and scaling parameter, but also surface height vari-86

ability, relative anisotropy, and correlation between the upper and lower surfaces form-87

ing the fracture aperture (Ogilvie et al., 2006). Another aspect to take into considera-88

tion is the stochastic nature of aperture generation and its needs for numerical DFN mod-89

elling. Typically, a large number of fractures are used in models, far more than can re-90

alistically be sampled and studied from field investigation. Therefore it is desirable to91

be able to generate multiple fractures based off of a limited set of fracture aperture mea-92

surements, thereby using the same or small set of input parameters to generate multi-93

ple fracture realisations (Isakov et al., 2001; Ogilvie et al., 2003). Furthermore, DFN mod-94

els typically require fractures to be generated at multiple spatial scales, and often at a95

much greater scale than available from measurements. Thus there is a practical need to96

upscale fractures, and here, self-affine methods are well suited as spatial rescaling is in-97

herent to their design.98

Natural fractures are complex to replicate due to their anisotropy and the corre-99

lation exhibited between the upper and lower rough surfaces forming the aperture void100

space. A root-mean squared (RMS) correlation function has successfully been used to101

characterise anisotropy on exposed structures (Candela et al., 2009). To obtain variable102

aperture, two partially correlated rough surfaces are needed. Although generation of in-103

dependent surfaces is relatively easy, correlation and separation between two surfaces is104

needed for creating realistic fracture apertures. It is understood that correlation between105

the surfaces is weak at short wavelengths, where the surface variabilities act reasonably106

independently of each other, but becomes stronger, and reaches a peak, as wavelength107

increases (S. Brown, 1987; S. R. Brown & Scholz, 1985; Keller et al., 1999; Ogilvie et al.,108

2006). Surfaces have been found to be well correlated above the scale of a few millime-109

tres (S. R. Brown & Scholz, 1985; Power & Tullis, 1992).110

Several attempts have been made to represent the change in correlation with scale.111

Previous work by S. R. Brown (1995b) proposed a second surface generated with a ‘mis-112

match length scale’. The wavelengths for the mismatch were obtained from the power113

spectral density ratio (PSDR). The surfaces are well-correlated at large wavelengths and114

uncorrelated when the wavelength becomes less than the assigned mismatch length scale.115
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A set of random numbers can be used to define the phase of the Fourier components which116

are used to generate the upper and lower surfaces. The correlation between the random117

number set at different length scales therefore determines the correlation between sur-118

faces of the generated aperture. S. R. Brown (1995b) implemented the uncorrelated length119

scale by using a second random number generator different from the one used to pro-120

duce the first surface. This decorrelates the surfaces at scales below the mismatch length,121

and amplitudes for wavelengths greater than the mismatch length use the same num-122

ber generator as the one used to create the first surface. This creates a sharp disconti-123

nuity between correlated and uncorrelated surfaces. However, Glover et al. (1998b) ar-124

gued that the transition should be smooth, following a frequency dependent change from125

high to low correlation. The PSDR function of the surfaces combined with a weighting126

function was suggested which determines the rate at which the surfaces match with re-127

spect to frequency.128

Glover et al. (1998b) required two independent random number sets for the wave-129

lengths that are less than the mismatch wavelength, and above this the random num-130

bers are partially correlated. This involved mixing sets of two random numbers using131

linear weighting. However, Ogilvie et al. (2006) noted that algebraically mixing random132

number sets in this manner breaks down the distribution produced by the random num-133

ber generator. Therefore, they proposed an algorithm which swaps the positions of num-134

bers in two random number sets until the desired correlation is reached, producing a par-135

tially correlated random number data set. This has the advantage of maintaining the136

distribution produced by the random number generator as well as enabling the corre-137

lation to vary with scale between the two surfaces, producing a more accurate aperture.138

Ogilvie et al. (2006) uses several parameters to determine how the matching be-139

tween surfaces changes with scale based on the PSDR. These are an improvement on pre-140

vious methods as a minimum and maximum matching fraction can be set and how the141

change in correlation varies between these two points. However, the overall change from142

low to high correlation is still a linear change, and even with added parameters to in-143

crease the accuracy, it still may not represent natural fractures. That study was also per-144

formed on synthetically induced mode I fractures; thus, it is not yet known how well these145

methods perform when using measurements from and comparing against real-world nat-146

ural rock fractures.147

The aim of this study is to develop and evaluate a method for reproducing rough-148

surfaced fractures with variable aperture using information obtained from 3D scans of149

natural rock fracture surfaces. A model for stochastic fracture aperture generation is fur-150

ther developed based on previous work using self-affine fractal concepts, which includes151

a refined method for representing correlation between the upper and lower surfaces of152

the fracture. The model is used to generate an ensemble of realisations of fracture aper-153

tures, which is evaluated against the measured natural fracture aperture. Furthermore,154

a detailed sensitivity analysis is conducted on the variability of the Hurst and scaling155

parameters and the correlation obtained from the surface scans of the fracture in terms156

of their impact on model performance. Finally, the model is evaluated in terms of spa-157

tial up-scaling, where a subsection of the measurements are used to predict the full ex-158

tent of the fracture.159

2 Method160

A spectral synthesis approach is used to numerically produce fractals that repre-161

sent two surfaces which when combined form a fracture with variable aperture void space.162

A symmetric matrix containing Fourier components is defined, where the Fourier com-163

ponents can be obtained from measurements to obey the various desired properties of164

the fracture. Each component is comprised of an amplitude and a phase. Fractal dimen-165

sion and any information about relative anisotropy is contained within the amplitude166
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component that scales with a power law. Thus, the topography of the fracture surfaces167

are controlled by the phase of the Fourier components. If the phase is identical for the168

upper and lower surfaces, the resulting fracture aperture is constant, representing a per-169

fectly mated fracture. In order to create a variable aperture field, the topography of the170

two surfaces need to be uncorrelated or partially correlated at different wavelengths. When171

random numbers are used to describe the phase of the Fourier components, the degree172

of matedness between the surfaces can be controlled by the degree of correlation between173

the random numbers used.174

Natural rock surfaces can be described by a power spectral density function (S. R. Brown,175

1995a),176

G(k) = Ck−α (1)177

where k = 2π/λ is the wavenumber, λ is the wavelength which corresponds to distance178

along the profile, C is a proportionality constant which varies among surfaces and cor-179

responds to the intercept of the logarithm of the power spectrum, and α is the fractal180

dimension in the range of 2 < α < 3 which corresponds to the slope of the logarithm of181

the power spectrum. To obtain the correlation between the upper and lower surfaces of182

the fracture scans, the power spectral density (PSD) of each surface and the resulting183

aperture needs to be obtained, which can readily be calculated using Fast Fourier Trans-184

forms.185

In principle the Fourier decomposition of a surface can be done for an infinite num-186

ber of wavenumbers k, however in practice there is a clear limit. The limit is defined by187

the resolution of the surface scans, and any pre-processing interpolation that has been188

done before calculating the PSD of the fracture surface. When the period of the sine waves189

are equal to the number of mesh cells in one dimension, then each oscillation of the sine190

wave exactly covers one cell. Increasing the resolution beyond this point so more sine191

waves cover a single cell would have no further effect on the amplitude. The maximum192

frequency that is useful for the surface is therefore k = 1/N , where N is the maximum193

number of cells along one edge length of the fracture scan. When k = 1 this corresponds194

to a sine wave that fits exactly once within the surface.195

2.1 Correlation analysis196

The correlation of the upper and lower fracture surfaces can be calculated by us-197

ing the ratio of the PSD from the aperture over the sum of the PSDs of the two surfaces;198

it is convenient to plot it as a function of wavelength on log-log scale. Ogilvie et al. (2006)199

called this the PSD Ratio (PSDR, ξ(k) ), where200

ξ(k) =
G(k)aperture

G(k)upper surface +G(k)lower surface
(2)201

If the PSD ratio tends towards unity for all wavenumbers then the surfaces are completely202

independent (Glover et al., 1998b, 1998a). If the PSDR is less than unity, then some match-203

ing correlation is occurring between the upper and lower fracture surfaces at that spe-204

cific wavenumber. The correlation at each wavenumber is obtained as Corr(k) = 1 −205

ξ(k). Here we introduce a polynomial regression over the PSDR obtained from measure-206

ments of a rock fracture from the smallest to largest PSDR(k) value as a convenient ap-207

proach to remove the fluctuations and get values for the general trend as a function of208

wavenumber (or wavelength). Fluctuations in the PSDR inevitably occur when calcu-209

lating the PSD from measurements of fracture surfaces due to natural variability in the210

upper and lower surface as well as measurement precision.211

During aperture generation, different quantities of wavenumbers may be required,212

and will not necessarily match the amount coming from the measurements of a real frac-213

ture. Therefore, the correlation values are typically re-scaled along the length direction214

of a profile to the correct number of values that are needed for the generation method.215
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Due to the method of generating a self-affine fractal surface, the dimensions are limited216

to 2×2n+1 in X and Y , so the correlation values are scaled in length to 2n, which is217

half of the desired edge length of which the aperture will be generated at. This is im-218

portant as it will maintain the desired correlation and structure regardless of the reso-219

lution used to generate the aperture.220

Fractures typically have high correlation at small wavenumbers (large wavelengths),221

indicating there is large-scale correlation across the fracture. As the wavenumber increases222

(and wavelength decreases) the matching between the surfaces typically decreases. Once223

the correlation function Corr(k) is obtained, a number swapping algorithm is used to cre-224

ate several arrays of different correlation which represent the different wavenumbers. We225

adopted a method similar to Ogilvie et al. (2006), and developed a number swapping al-226

gorithm that swaps the positions of numbers within one random normally distributed227

array until a set correlation, defined by the matching analysis, is reached between the228

other random normally distributed array. The algorithm is executed several times such229

that two correlated arrays are created for every wavenumber that is needed. Correlated230

pairs of values are selected from the arrays and are placed in two grids that represent231

the upper and lower surface in the corrected position depending on the wavenumber. This232

creates a partial correlation between the upper and lower surface that changes with scale.233

To create different realisations different pairs are randomly selected from the arrays, and234

the phase of the Fourier components is defined by these random number sets.235

2.2 Scaling properties236

The other properties needed to generate a self-affine fractal surface are the Hurst237

exponent H and a scaling parameter. For a self-affine profile to appear similar at dif-238

ferent scales, it must be scaled anistropically in two different directions, i.e., length ver-239

sus topographical height of a rough surface. If the abscissa (length) is scaled by a fac-240

tor of λ, the ordinate (height) needs to be scaled by λH . We adopt the RMS-COR method241

(Malinverno, 1990; Renard et al., 2006; Candela et al., 2009; Stigsson & Mas Ivars, 2019)242

to analyse the standard deviation of height difference at different length intervals; at ver-243

tices ∆v apart the standard deviation σ of the height differences δh is obtained as:244

σ(δh(∆v)) =

√√√√√√√√√√
N−∆v∑
v=0

(h(v +∆v)− h(v))2

N + 1−∆v
−


N−∆v∑
v=0

(h(v +∆v)− h(v))

N + 1−∆v


2

(3)245

where ∆v is the number of vertices between the height values being analysed, h(v) is the246

height value at vertex v, and N is the number of vertices within the line. The Hurst ex-247

ponent H is obtained by a log-log fit of the standard deviations σ against the distance248

between the vertices ∆v; the slope of the line corresponds to H and the intercept cor-249

responds to the standard deviation of adjacent vertices δh, the value which is used to250

scale generated surfaces.251

The method is relatively easy to implement but affected by the finite length of trace252

profiles. Therefore, ∆v must be small compared to N ; for this reason if ∆v is above ap-253

proximately 10% of maximum trace length it is not considered reliable (Marsch & Fernandez-254

Steeger, 2021). The Hurst exponent can also be underestimated due to the finite trace255

length. However, the RMS-COR method is considered to under-estimate Hurst expo-256

nents when H > 0.5 (Stigsson & Mas Ivars, 2019). Therefore, we implement the fol-257

lowing correction as suggested by Marsch and Fernandez-Steeger (2021); if HRMS,cal
>258

0.5 then HRMS = ln(HRMS,cal
) + 1.18.259
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2.3 Surface scans of a natural fracture260

The rock sample was taken from a medium grained granite block from the Flivik261

quarry in Oskarshamn municipality, Sweden, and includes a natural vertical fracture run-262

ning through it. The sample cut from the rock slab was 200 x 200 x 250 mm3 contain-263

ing the partially mated fracture. A force of approximately 100 Nm was required to break264

the remaining rock bridges between the surfaces and open the fracture (Bruines, 2022).265

Figure 1a shows the fracture surface after opening.266

Figure 1. Upper surface of the fracture after opening (a), 3D scan of the surface (b) and sur-

face after interpolation from point cloud data to a regular grid (c).

Once opened, the upper and lower surface were scanned using a handheld laser scan-267

ner (Figure 1b). The surface scan data required pre-processing before it could be used268

to obtain the parameters needed for aperture generation (Stock & Frampton, 2022). The269

scanning method used results in an irregular mesh. This means on the XY coordinate270

plane, the nodes on the upper and lower surface will not align. Due to this, the surface271

data is linearly interpolated onto a regular grid with a resolution of 0.1 mm in order to272

easily obtain the aperture field (Figure 1c). Areas near the edge of the scan tend to con-273

tain errors so the edges are cropped to remove obviously erroneous data. Issues arise from274

vertical referencing of the upper and lower surface scans, resulting in an unrealistic aper-275

ture field with many negative aperture values. To correct this the lower surface is trans-276

lated relative to the upper surface to improve alignment and reduce inaccurate negative277

apertures. However, this is insufficient to fully correct the aperture field, so pressure film278

data that was also provided was used as a reference to vertically shift the upper surface279

until a visual best fit aperture field distribution is achieved. Further details on pre-processing280

the surface scan data are presented by Stock and Frampton (2022).281

After pre-processing, the surface scans produce an aperture that contains a few ab-282

normal isolated larger apertures, which are most likely due to rock fall out during open-283

ing of the fracture. Figure 2 shows the rock fall out collected after opening (a) and the284

aperture when 5% of the largest apertures have been removed (b). As can be seen, the285

largest values generally occur in isolated locations across the aperture field. Areas that286

have a constant value of zero are considered contact points, and areas that are white are287

where data has been removed (b). An interpretation of the pressure film is also shown288

(c) with locations of the rock fall out highlighted, white areas represent void spaces that289

are larger than the thickness of the pressure film (200 µm) and red represents a pressure290

of 50 MPa.291

Figure 3 shows the normalised cumulative distribution and box plots for the same292

aperture whilst systematically filtering the largest values from the data by area. Zero293

percent represents the full aperture with no data removed and 5% represents the aper-294

ture where the largest 5% of aperture values are removed. During opening the fracture,295

release of stress could lead to the surface level increasing, which results in a negative aper-296
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Figure 2. Rock fall out collected after opening the fracture (a) with the possible locations of

fall out located on the aperture field by red, black and pink circles (b) and pressure film data (c)

ture when the lower surface is subtracted from the upper surface. Therefore, all nega-297

tive apertures have been set as zero and are assumed to be contact areas. Removing the298

largest 1% of apertures significantly reduces the maximum aperture by approximately299

2 mm, this highlights how isolated the largest apertures are. As increasingly larger per-300

centages of the aperture are removed, the maximum values decrease whilst only having301

small changes on the aperture distribution. The change in distribution is mainly observed302

as the normalised cumulative distribution reaches approximately 0.9, and apertures with303

a higher percentage of filtering reach the peak sooner. The differences between succes-304

sive percentage increase of filtering become smaller, with 4% and 5% having only minor305

differences in distribution. Box plots for the distributions (Figure 3b) show a decrease306

in most values as larger percentages of the aperture are removed. However, the median307

value remains fairly constant, decreasing from 0.149 mm at 0% to 0.146 mm at 5% fil-308

tering. The consistency in the medians shows that when the whole aperture is consid-309

ered the largest apertures are outliers within the data set. No outliers are present at 5%310

filtered, so this aperture is used for comparison with the generated aperture.311

Figure 3. Normalised cumulative distributions of the measured aperture with the maximum

apertures filtered by increasing percentages of area (a) and corresponding box plots (b)

2.4 Fracture surface and aperture generation312

Several trace profiles are taken across each of the two fracture surfaces (cf. upper,313

shown in Figure 1c) in the X and Y directions along every mesh cell, so that the total314

number of profiles in one direction is the same as the total number of cells along one edge315
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length. This results in 1970 trace profiles in each direction, with a length resolution of316

each trace profile of 0.1 mm. The RMS-COR method is then executed on every profile,317

providing a Hurst and scaling parameter for each profile, where a combination of param-318

eters that most closely represents the surface must be selected (section 3.1). Relative anisotropy319

is calculated by using the median of the ratios H(X)/H(Y ). The Hurst exponent and320

anisotropy are then used to define the amplitude of the Fourier components.321

When all the Fourier components are known and arranged in a 2D complex and322

symmetric matrix in the correct position regarding wavenumber, a 2D Fast Fourier Trans-323

formation is executed over the data, the real part of which represents the fracture sur-324

face with a mean value of zero. The last steps are to scale the surface to the required325

size, and scale the asperities to that defined by the scaling parameter obtained from the326

RMS-COR method, and vertically shift the mean level of the fracture surface such that327

no negative values occur in the aperture field. It is important to account for different328

trace resolution between the real data and generated aperture, so the scaling value can329

be corrected to represent the same resolution, and hence produce an accurate re-scaling330

of the surface and aperture. Note that the topography of each pair of surfaces will de-331

pend on the random number sequence used to select the correlation arrays. Therefore,332

due to this stochastic nature of sampling, an ensemble of fracture aperture realisations333

must be generated for a given set of input parameters in order to obtain a sufficiently334

large sample size to compare against the measured fracture aperture. However, we stress335

that each generated sample is an equally probably realisation based on a given set of in-336

put values. Therefore, this can enable a convenient approach for generating multiple frac-337

tures based on a limited number of fracture measurements. Furthermore, since the scal-338

ing behaviour of the surface and relative positions of different size asperities is controlled339

by the Hurst exponent, it enables a convenient approach to up-scaling fracture surfaces,340

based on the assumption of the properties of the rough surfaces being self-affine for the341

spatial scales considered and the correlation between surfaces being scale independent.342

3 Results343

3.1 Fracture surface and aperture field344

The PSDR obtained from the fracture with a third order polynomial regression plot-345

ted over the PSDR is shown in Figure 4a. The variation in correlation with wavenum-346

ber shows the decrease in correlation (Figure 4b, red line) as wavenumber increases. The347

number of wavenumbers over which the correlation is applied has been re-scaled to cor-348

respond with the dimensions at which the aperture realisations will be generated at. As349

can be seen, the correlation 1 - PSDR (Figure 4b, blue line) initially decreases before in-350

creasing again at approximately 50, however the correlation reaches a minimum value351

of approximately 0.86. The increase thereafter is an artefact due to the resolution of the352

surface scans and the resolution at which the surfaces were interpolated on to a regu-353

lar grid. If one value in the point cloud is interpolated over more than one grid cell then354

1 - PSDR will increase. This artifact is removed from the correlation array (red line) by355

manually setting the minimum value for increasing wavenumbers. This adjusted corre-356

lation function is then used in the subsequent number swapping algorithm.357

The RMS-COR method is then executed on trace profiles across both surfaces in358

the X and Y directions every 0.1 mm using a maximum step length of 10% (∆v, Eq 3),359

resulting in 1,970 values of both Hurst exponent and scaling parameter in each direc-360

tion on the upper and lower surfaces. The 75th percentile for Hurst exponent and scal-361

ing parameter have been used to generate the partially correlated upper and lower sur-362

faces and resulting aperture field that are seen in Figure 5. The cumulative density func-363

tion of the single realisation of the aperture field is shown in Figure 6a. Thereafter, mul-364

tiple realisations using the same input parameters are generated; the ensemble of 100 re-365

alisations are shown in Figure 6b.366
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Figure 4. PSDR with a third order polynomial regression (a) and change in correlation with

rescaled wavenumbers (b)

Figure 5. Generated upper surface (a), lower surface (b) and resulting aperture field created

from the semi correlated surfaces (c)

The spread in aperture distribution is due to the stochastic nature of the method,367

therefore multiple realisations are required to be generated until the aperture ensemble368

stabilises. The number of realisations required is evaluated by using the two-sided Kolmogorov-369

Smirnov test to compare the measured aperture distribution with increasing generated370

aperture ensembles (Table 1). A smaller KS value represents a closer match, and a value371

of 0 indicates the two empirical distributions are identical. This shows that 50 realisa-372

tions and greater will show very little variation; in the main analysis 100 realisations are373

used.374
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Figure 6. Cumulative distribution of one realisation (a) and a 100 realisations with generated

aperture ensemble (b)

Table 1. KS test statistic for ensembles comprised of increasing number of aperture realisa-

tions tested against the 5% filtered measured aperture

No. of realisations KS statistic

10 0.043

20 0.056

50 0.035

100 0.034

There is a significant spread in Hurst and scaling parameters, and which differs slightly375

between the upper and lower surfaces (Figure 7a,b). The Hurst exponent ranges from376

approximately 0.6 to 1 for both the upper and lower surface but a larger difference be-377

tween the surfaces is seen in the scaling parameter, which ranges from 0.025 to 0.06 and378

0.025 to 0.07 for the upper and lower surfaces respectively. The 25th, median and 75th379

percentiles have been calculated for both Hurst exponent and scaling parameter (Table380

2). The input parameters from the 75th percentiles generate an aperture ensemble dis-381

tribution that corresponds well with the measured aperture field scans, better than us-382

ing the median, and the 25th percentile showing the most dissimilar distribution (Fig-383

ure 7c). However, note that any of the parameter combinations plotted could be used384

for aperture generation, so the combination that produces an ensemble most similar to385

the aperture data must be determined.386

3.2 Parameter sensitivity analysis387

The analysis of the fracture scans yields a wide range of values for the Hurst ex-388

ponent and scaling parameter (Figure 7 and Table 2). Here we present an analysis of these389

parameter combinations in terms of their impact on the resulting generated aperture field390

distribution. A regular grid of points across the parameter space is considered, which391

has the advantage of providing a systematic analysis for regions both covered by the pair-392

wise correlated Hurst and scaling parameters as well as regions beyond. Each pair of Hurst393

exponent and scaling parameter in the grid is used to generate 100 realisations of the394

aperture field, and the ensemble evaluated against the measured aperture distribution.395

The similarity of the generated ensembles with the measured aperture was assessed us-396

ing the Kolmogorov–Smirnov (KS) test statistic, which measures the largest difference397

between the distributions of the two samples. Figure 8 shows an overlay of the KS statis-398

tic value, where a smaller value means a better fit between the distributions, on the reg-399
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Figure 7. Hurst exponent and scaling parameter from each trace profiles along X and Y di-

rections for the upper (a) and lower (b) surfaces and the corresponding cumulative distribution of

the aperture ensembles using the 25th, median and 75th percentiles as input parameters (c)

Table 2. The 25th, median and 75th percentiles for Hurst exponent and scaling parameters for

the upper and lower surfaces using different maximum step lengths in the RMS-COR function

Upper surface Step length 20% Step length 10% Step length 5%

Hurst Scaling Hurst Scaling Hurst Scaling

25th percentile 0.660 0.040 0.811 0.033 0.875 0.030

Median 0.755 0.046 0.851 0.036 0.913 0.032

75th percentile 0.822 0.057 0.899 0.040 0.947 0.034

Lower surface Step length 20% Step length 10% Step length 5%

Hurst Scaling Hurst Scaling Hurst Scaling

25th percentile 0.653 0.040 0.808 0.032 0.873 0.029

Median 0.747 0.047 0.850 0.036 0.913 0.031

75th percentile 0.817 0.057 0.892 0.041 0.951 0.035

ular grid parameter points over the scatter plots of parameters on the upper and lower400

surfaces. A linear regression was plotted using the weighted overlay to follow the trend401

of best fits (Figure 8, black line) which generally follows the upper bound of the param-402

eters. Moving away from this trend results in an increase in the KS statistic value as the403
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parameter combinations generate apertures that are less similar to the measured aper-404

ture. The 75th percentile combination for the Hurst and scaling parameter is very close405

to the linear regression line, and the ensemble generated using these values has the small-406

est KS statistic value. Therefore these values are used as input parameters for the final407

aperture generations.408

Figure 8. Hurst exponent and scaling parameter scatter plot overlain with fitting metric re-

sults for the upper (a) and lower (b) surfaces with the 75th percentile highlighted and regression

line plotted using the weighted overlay

Figure 9a shows the correlation obtained from a polynomial fit which we propose409

here (red line) compared against the correlation obtained using the approach suggested410

by Ogilvie et al. (2006) (blue line). It can be seen that our approach has a lower gra-411

dient of change from low to high correlation, meaning that at larger wavelengths the sur-412

faces are not as strongly correlated as they would be compared to the approach by Ogilvie413

et al. (2006). The main difference is that the approach we suggest uses all of the infor-414

mation obtained from the PSDR analysis of the fracture scan sample; it does not solely415

rely on end points of the correlation and length over which the transition occurs. By in-416

troducing the polynomial fit of the PSDR, the generated aperture ensemble distribution417

is improved and better corresponds with the measured fracture sample (Figure 9b).418

Box plots for the filtered aperture show the aperture ensemble generated using the419

Ogilvie et al. (2006) method and the new model developed in this paper (Figure 9c). This420

shows that the Ogilvie et al. (2006) method under predicts the distribution, with each421

of the values being lower than the filtered aperture data. However, the new model has422

a distribution that is very similar; the median value is only 0.001 mm smaller, with the423

biggest difference seen in the upper whiskers which are 0.013 mm larger.424
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Figure 9. Comparison of Ogilvie method and the new model correlation with wavelength (a),

aperture ensemble distribution generated from the new correlation and input parameters (b) and

box plots of the 5% filtered aperture, Ogilvie method and new model ensemble (c)

4 Discussion425

4.1 Field data filtering426

During opening of the fracture some rock was broken off (Figure 2a), and although427

the volume of this debris is unknown it could be the cause of isolated and abnormally428

large apertures seen in the unfiltered distribution (cf. Figure 3a). The shape of some of429

the debris has similar geometry to the larger apertures, which further suggests that rock430

fall out is the cause. This is highlighted by red, black, purple and pink circles around431

rock debris and the possible location on the aperture field. The red, purple and pink cir-432

cle encompass rock pieces that have a distinct shape, which seems to also be present in433

the aperture field and also in the pressure film data (Figure 2b,c). If the rock debris would434

have remained intact in these locations, the corresponding apertures would be signifi-435

cantly smaller. However, it is difficult to predict how adding the rock pieces would af-436

fect the apertures. For this reason, the aperture data has been filtered to remove the largest437

5% of apertures, which should correct for the rock fallout and provide a more accurate438

representation of the distribution of the aperture when it was unopened. However, ex-439

cessive filtering increases the risk of unintentional removal of large natural fracture aper-440

tures. We determined the threshold limit of 5% to be a reasonable balance without ex-441

cessively impacting the overall shape of the aperture distribution (cf. Figure 3).442

Another piece of rock fallout that visually fits well is highlighted by a black circle.443

This location represents a contact area, which is due to the subtraction of the lower sur-444

face scan from the upper resulting in a negative aperture, hence it is corrected to zero.445

It is not intuitive how additional rock mass would correct this, however from the pres-446

sure film data there is also a large void space at this location. This suggests that the rock447

piece was loosely attached during scanning, but has fallen off before the pressure film448

measurements were taken. If the piece was attached then a higher pressure would be ex-449
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pected, representing close contact, however it can be seen there is a void space at this450

location (Figure 2, black circle). This highlights further that great care should be taken451

when using the pressure film to vertically align the surfaces, as the 3D scan data and pres-452

sure film may not represent exactly the same state of the surfaces and resulting aper-453

ture field.454

4.2 Hurst exponent and scaling parameter space455

The spread of Hurst exponent and scaling parameter is in part due to the maxi-456

mum step length that is used when calculating RMS-COR function. Figure 10a,b shows457

the spread of parameters using a step length of 20%, 10% and 5% (orange, blue and green458

respectively) of the maximum trace length. Reducing the step length reduces the like-459

lihood of the regression line curving in log-log space, and hence reduces the spread (Marsch460

& Fernandez-Steeger, 2021). It should be noted that changing the step length has no ef-461

fect on the total number of Hurst and scaling values as the same number of trace pro-462

files are used. When a maximum step length of 20% is used the spread is large, rang-463

ing from approximately 0.35 to over 1 for the Hurst exponent. Small Hurst exponents464

seen in this range are not likely to be seen on fracture surfaces, as generally the Hurst465

exponent will range from 0.5 to 1 (S. Brown, 1987). As Hurst exponent decreases, it can466

be seen that some values of scaling parameter and Hurst exponent create a trend away467

from the main bulk of the scatter plot. This can most clearly be seen for a maximum468

step length of 20% at the lower Hurst exponent values. Potentially this could be due to469

trace profiles that go over sections where substantial parts of rock surface have fallen out470

during opening, which may perturb the assumption of the fractal nature of the fractures.471

Reducing the step lengths reduces the spread of these data away from the main bulk of472

the scatter plot, reducing errors that have been introduced from a larger step length. This473

reduction also decreases the extent by which the scatter plot data goes above the lin-474

ear regression that represents a line along which parameter combinations produce the475

best correspondence between aperture ensemble distributions and the measured aper-476

ture.477

For the upper surface it is only the data obtained from a maximum step length of478

20% that has a significant amount of values above the regression line, with the other two479

data sets mostly staying below this line. This shows that for the upper surface the best480

parameter combinations fall on the upper bound of the data. For the lower surface this481

is not so obvious, as regardless of the step length, some of the parameter combinations482

fall above the linear regression. The Hurst exponent at which the values go above the483

linear regression decreases as the maximum step length increases. However for smaller484

step lengths, the majority of the data points stay below the linear regression line, sug-485

gesting the influence of rock fall out is also present in the lower surface. Table 2 shows486

the affect of maximum trace length on the 25th, median and 75th percentiles for Hurst487

exponent and scaling parameter.488

When the maximum step length of 10% is used, the 75th percentile is on the up-489

per bound of the data for both the upper and lower surface, which also is very close to490

the regression line that represents the parameter combinations that produce the best aper-491

ture ensembles (Figure 10c,d). When the step length is reduced further to 5% then 75th492

percentile is slightly further away, but would still produce reasonably good aperture en-493

sembles. However, if a larger maximum step length is used then this value moves sig-494

nificantly above the regression line, which is seen for the maximum step length of 20%495

and would not produce an aperture ensemble that corresponds well with the measured496

aperture. This shows that a maximum step length of 10% is best when the full surface497

is used to obtain the 75th percentile parameter combination. This percentile lies on the498

upper bound of the data and is easy to calculate, making it easy to find this parame-499

ter combination as the input. However, any parameter combination along the linear re-500

gression line could be used as the input and produce an aperture ensemble that corre-501
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sponds with the measured aperture. The surfaces will have different topographies, but502

the resulting aperture distributions will be consistent. The regression line could repre-503

sent a natural upper limit of the surface roughness, where values along this line best rep-504

resent that specific surface. Hence, different rock and fracture types with different prop-505

erties may have a different gradient to the line of regression.506

Figure 10. Upper (a) and lower (b) surface Hurst and scaling parameters for 20%, 10% and

5% of the maximum step length and regression line calculated from best fit overlay. The 75th

percentiles for a maximum step length of 20%, 10% and 5% for the upper (c) and lower (d)

surfaces and the linear regression line following the best fits

The method used to calculate Hurst exponent and scaling parameters used in this507

study is different from Ogilvie et al. (2006) as they used the slope of power spectral den-508

sity to obtain these parameters. However, using the power spectral density to obtain in-509

put parameters can be affected more greatly by rock fall out which creates areas that510

are no longer self-affine. When used to calculate the Hurst exponent from these surfaces511

the result is a value of 0.52, compared to approximately 0.9 which is the 75th percentile512

value of the method we use. This could have worked for Ogilvie et al. (2006) as the frac-513

tures used in that study were artificially induced, therefore there was not the issue of forc-514

ing the fracture open and damaging the surfaces in the process to produce rock fall out.515

Since the fracture in this study is natural, using many traces across the surface and the516

RMS-COR evaluation method works better. This also allows the values which are most517

representative of the surface to be selected, as well as allowing the scaling parameter to518

be obtained from the same method.519

This method can also work on fracture trace profiles, if the full surface is not avail-520

able for analysis. The correlation can be obtained from this data, but only one set of pa-521

rameter combinations will be obtained, meaning the 75th percentile is unknown. In this522

case a maximum step length of 5% is best, as the spread of data is reduced (Figure 10a,b),523
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so it more likely that the Hurst and scaling parameter will be close to the best fit regres-524

sion line.525

4.3 Upper and lower surface correlation526

The model for aperture generation presented in this work has updated the method527

in which the correlation with scale changes. The PSDR is used, as it is in Ogilvie et al.528

(2006), but each wavenumber is used, which avoids the need to calculate a linear change529

between minimum and maximum correlation between the surfaces. Instead we can plot530

a polynomial regression through the PSDR (Figure 4) and base the correlation for each531

wavenumber off this, giving a more realistic transition from low to high correlation be-532

tween the surfaces as the scale changes. Depending on the order of polynomial however,533

it might not capture all the fluctuations. For example, as the correlation decreases with534

increasing wavenumber (decreasing scale) there are small fluctuations around wavenum-535

ber 9 (Figure 4). The fluctuations could be a result of large isolated apertures, as this536

wavenumber is approximately equivalent to the distance between large apertures, and537

could lead to the spike in the power spectral density that is observed. This fluctuation538

is not however captured in the correlation if a low order polynomial is used.539

A sensitivity analysis of the aperture generation model to correlation with scale was540

tested using several different order polynomial regression fits. As can be seen from Fig-541

ure 11a,b using order 3, 9 and 16 has very little effect on the overall distribution. This542

suggests that it is the general trend that is more important to capture than every small543

fluctuation. The general trend captured from a third order polynomial regression is dif-544

ferent from the linear change that has been implemented in previous methods, and the545

improvements can be seen in Figure 9 where the update to correlation produces a gen-546

erated aperture ensemble distribution that highly corresponds with the measured aper-547

ture field.548

Also, a synthetic analysis was conducted over an arbitrarily selected correlation with549

scale, but one that could be expected within reality (Figure 11c). Ten cases, each with550

a 100 fracture aperture realisations were systematically generated, with initially only wavenum-551

ber 1 correlated to the maximum value, increasing until the first 10 wavenumbers have552

a constant high correlation. After this point there is a decrease in correlation as the wavenum-553

bers increase as would be expected in a natural fracture. Distributions created with wavenum-554

bers 2 to 10 highly correlated are grouped together, and show no systematic change as555

the wavenumbers increase (Figure 11d). However when only wavenumber 1 is highly cor-556

related, it is clearly separate from the other distributions. This suggests that correlat-557

ing the first wavenumber correctly is more important than the following wavenumbers558

as the scale increases. Using a low order polynomial regression allows the first wavenum-559

ber to be accurately obtained while plotting the general trend of correlation for the fol-560

lowing wavenumbers, allowing an accurate representation of the aperture field to be pro-561

duced.562

Although the large apertures have been filtered out when comparing the realisa-563

tions to the measured aperture, they are still present when calculating the PSDR and564

the correlation with scale. This may lead to slightly inaccurate correlation within the565

generated apertures. This could be corrected for if a reliable method for correcting sur-566

face scans is produced. However, currently there is no way to accurately digitally replace567

any rock fall out. To remove these areas during the matching analysis would also pro-568

duce errors with the correlation, most likely to an even greater extent. Errors from the569

matching analysis are a direct consequence of fall out during opening the fracture and570

scanning. Therefore it is imperative that this process be done as accurately as possible571

to allow for more accurate realisations of the aperture to be generated.572
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Figure 11. PSDR with different orders polynomial regression fits (a) and the resulting aper-

ture distribution ensembles (b). Change in correlation with wavenumber for cases with the first

wavenumber, K1, and the first 10 wavenumbers, K10, highly correlated (c) and the effects of

increasing the amount of wavenumbers (K) that have the highest correlation on the aperture

ensemble (d)

4.4 Implications for up-scaling573

One reason for developing this method is to allow for representations of real frac-574

ture apertures to be up-scaled and implemented within larger scale DFNs. Figure 12a,b575

shows a scatter plot of Hurst exponent and scaling parameter for the full surface and a576

100 mm2 subsection. The linear regression represents the line along which the param-577

eter combinations show the best correspondence with the measured aperture. As can be578

seen the 75th percentiles are situated close to the linear regression for parameters obtained579

from both sized sections, where blue represents the subsection and orange represents the580

full surface. For up-scaling the Hurst and scaling parameter should be selected from the581

upper bound of the data, and not a single value. The cropped section of the full surfaces582

has been used to generate an ensemble of 100 aperture realisations which have been up-583

scaled to 197 x 197 mm2, the results of which can be seen in Figure 12c,d. The differ-584

ence between the median is 0.01 mm for the full aperture and 0.006 mm for the cropped585

aperture field. When the matching analysis is undertaken on the subsection, the corre-586

lation between the surfaces is slightly weaker, resulting in larger apertures when the up-587

scaled apertures are generated, leading to the difference in medians. However, overall588

the difference is only small and the ensemble corresponds moderately well with the mea-589

sured aperture data, showing that this method can be used to up-scale aperture fields590

to any desired dimensions. Although this method does allow for up-scaling based solely591

on a fracture trace profile, it will not be as accurate as using a surface scan of the frac-592

ture surfaces.593

–18–



manuscript submitted to Water Resources Research

Figure 12. Hurst exponent and scaling parameter for the upper (a) and lower (b) surfaces

with different dimensions, cumulative frequency of the full aperture, cropped and up-scaled aper-

ture ensemble (c) and resulting box plots (d).

5 Conclusion594

The method developed in this study can generate apertures that are representa-595

tive of natural rock fractures based on data from high resolution 3D fracture surface scans.596

During opening of the fracture, rock debris fell out, resulting in abnormally large aper-597

tures in the measured aperture distribution, which required filtering before comparison.598

The generated aperture ensemble distribution shows very high correspondence with the599

filtered measured aperture distribution. The approach to obtaining a correlation between600

upper and lower fracture surfaces has been improved based on previous methods by us-601

ing a third order polynomial regression. This results in a general trend of change in cor-602

relation with scale which is implemented over the required wavenumbers. The changes603

in the minimum correlation at high wavenumbers can slightly affect the aperture distri-604

bution which can be seen from the up-scaled aperture realisations.605

However it was found that fluctuations in correlation between the surfaces is not606

as sensitive as the input parameters that are used. The Hurst and scaling parameter are607

shown to exhibit a clear linear correlation, visible when plotted on a scatter plot; as the608

Hurst exponent increases the scaling parameter decreases. Reducing the maximum step609

length in the analysis of profile traces along the fracture surfaces reduces the spread of610

data and the number of outliers deviating away from the main trend.611

Also, we show that using the 75th percentiles for the Hurst exponent and the scal-612

ing parameter result in aperture distributions that correspond very well with the mea-613

sured data. It was found that any parameter combination along a linear regression which614

follows the upper bound of correlation between the Hurst and scaling parameters would615

result in an aperture ensemble with high correspondence with the measured data. It is616

suggested that this upper bound could represent a natural upper limit for this rock or617
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fracture type, and the gradient of this trend may change depending on different rock types618

and stress state under which the fracture was induced. This method does not solely rely619

on full surface scans and can be readily used on surface profiles, in which case, the pa-620

rameter inputs should be obtained preferably with a relatively short maximum step length621

of 5%.622

The way in which the surfaces are generated and the correlation between them, up-623

scaling of the generated apertures can be easily achieved. When the 75th percentiles for624

Hurst exponent and scaling parameter are calculated for a subsection of the full surfaces,625

the values are close to the linear regression calculated for the full surface. These values626

and the correlation between upper and lower surfaces of the subsection were successfully627

used to generate up-scaled aperture fields representing the full surface with moderately628

high correspondence. Aperture fields generated using this method are representative of629

natural fracture apertures and could be used for modelling larger fractures or multiple630

fractures, allowing for large scale discrete fracture network simulations to include real-631

istic representation of aperture internal heterogeneity.632
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