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Abstract

Diagnosing and predicting evaporation through satellite-based surface energy balance (SEB) and land surface models (LSMs)

is challenging due to the non-linear responses of aerodynamic (ga) and stomatal conductance (gcs) to the coalition of soil and

atmospheric drought. Despite a soaring popularity in refining gcs formulation in the LSMs by introducing a link between

soil-plant hydraulics and gcs, the utility of gcs has been surprisingly overlooked in SEB models due to the overriding emphasis

on eliminating ga uncertainties and the lack of coordination between these two different modeling communities. Therefore, a

persistent challenge is to understand the reasons for divergent evaporation estimates from different models during strong soil-

atmospheric drought. Here we present a virtual reality experiment over two contrasting European forest sites to understand the

apparent sensitivity of the two critical conductances and evaporative fluxes to a water-stress factor (b-factor) in conjunction

with land surface temperature (soil drought proxy) and vapor pressure deficit (atmospheric drought proxy) by using a non-

parametric diagnostic model (Surface Temperature Initiated Closure, STIC1.2) and a prognostic model (Community Land

Model, CLM5.0). Results revealed the b-factor and different functional forms of the two conductances to be a significant

predictor of divergent response of the conductances to soil and atmospheric drought, which subsequently propagated in the

evaporative flux estimates between STIC1.2 and CLM5.0. This analysis reaffirms the need for consensus on theory and models

that capture the sensitivity of the biophysical conductances to the complex coalition of soil and atmospheric drought for better

evaporation prediction.
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Abstract 18 

Diagnosing and predicting evaporation through satellite-based surface energy balance (SEB) and 19 

land surface models (LSMs) is challenging due to the non-linear responses of aerodynamic (ga) 20 

and stomatal conductance (gcs) to the coalition of soil and atmospheric drought. Despite a soaring 21 

popularity in refining gcs formulation in the LSMs by introducing a link between soil-plant 22 

hydraulics and gcs, the utility of gcs has been surprisingly overlooked in SEB models due to the 23 

overriding emphasis on eliminating ga uncertainties and the lack of coordination between these 24 

two different modeling communities. Therefore, a persistent challenge is to understand the 25 

reasons for divergent evaporation estimates from different models during strong soil-atmospheric 26 

drought. Here we present a virtual reality experiment over two contrasting European forest sites 27 

to understand the apparent sensitivity of the two critical conductances and evaporative fluxes to a 28 

water-stress factor (-factor) in conjunction with land surface temperature (soil drought proxy) 29 

and vapor pressure deficit (atmospheric drought proxy) by using a non-parametric diagnostic 30 

model (Surface Temperature Initiated Closure, STIC1.2) and a prognostic model (Community 31 

Land Model, CLM5.0). Results revealed the −factor and different functional forms of the two 32 

conductances to be a significant predictor of divergent response of the conductances to soil and 33 

atmospheric drought, which subsequently propagated in the evaporative flux estimates between 34 

STIC1.2 and CLM5.0. This analysis reaffirms the need for consensus on theory and models that 35 

capture the sensitivity of the biophysical conductances to the complex coalition of soil and 36 

atmospheric drought for better evaporation prediction. 37 

Plain Language Summary 38 

Water lost by plants through evaporation is strongly regulated by two important physical and 39 

biological attributes, namely aerodynamic and stomatal conductance. The magnitude and 40 

variability of these conductances and their degree of regulation on evaporation is heavily 41 

dependent on how the conductances respond to the conjugate dryness from the soil and the 42 

atmosphere. Because these conductances cannot be typically measured at a large scale, the 43 

majority of the global evaporation models use different mechanistic functions to estimate them, 44 

which involves many empirical parameters. Such methods do not fully capture the evaporation 45 

variability of ecosystems during water stress, leading to large errors in water cycle monitoring. 46 

Our model-based synthetic experiment shows how two structurally different models with 47 

different functional forms of the conductances respond very differently to emerging soil-48 

atmospheric water stress and produce divergent estimates of evaporation in a variety of dry and 49 

wet conditions. While this study offers a greater insight into the role of conjugate effects of soil 50 

and atmospheric drought in explaining the conductances and evaporation variability, it also 51 

shows a novel perspective to reconcile predictive and remote sensing evaporation models for 52 

water management applications, testing theory of plant water use and land-atmosphere 53 

interactions.  54 
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1 Introduction 55 

Soil and atmospheric droughts are triggered by enhanced land surface drying and climate 56 

warming. As a result, they feedback to some of the fundamental drivers of terrestrial evaporation 57 

namely, land surface temperature (LST) and atmospheric vapor pressure deficit (Da), which 58 

subsequently affects climate and physiology of terrestrial ecosystems (Morrow and Friedl, 1998; 59 

Liao et al., 2020). While their coalition controls the magnitude and variability of the surface 60 

energy balance (SEB) components (Thakur et al., 2021, Mallick et al., 2022), they are 61 

simultaneously modulated by the SEB partitioning (Kustas and Anderson, 2009; Anderson et al., 62 

2012; Mallick et al., 2018, 2022). LST is very sensitive to soil water content variations and 63 

captures additional information on the biophysical controls on surface temperature, such as 64 

evaporative cooling and stomatal conductance variations (Kustas and Anderson, 2009; Anderson 65 

et al., 2012; Mallick et al., 2016, 2022). While LST serves as a key diagnostic variable to 66 

monitoring land surface biophysical states (Green et al., 2022), it is also a prognostic indicator of 67 

their evolution under global warming and land use change (Chen and Dirmeyer, 2020). On the 68 

other hand, Da is expected to rise over ecosystems due to the combination of increased LST, 69 

reduced soil water content, and decreased relative humidity due to low evaporation (Byrne & 70 

O'Gorman, 2013). An elevated Da increases the atmospheric demand for evaporation (Monteith, 71 

1965; Penman, 1948), and it simultaneously reduces (enhances) stomatal (aerodynamic) 72 

conductance (Damour et al., 2010; Medlyn et al., 2011; Mott, 2007). Therefore, understanding 73 

the conductance response to these two opposing effects of changes in Da due to surface 74 

temperature warming is crucial for assessing the impacts of soil and atmospheric drought on 75 

evaporation for better water cycle assessment through different models (Massman et al., 2019). 76 

LST-based diagnostic monitoring and mapping of evaporation varies from multiple 77 

spatio-temporal scales and involves a host of models (Bhattarai et al., 2018; 2019). The most 78 

common approach (Anderson et al., 2007) centres on assuming a physical model of evaporation 79 

in the framework of SEB and many of the variables required to compute evaporation using the 80 

SEB models are available directly as satellite products (e.g., vegetation index, albedo, leaf area 81 

index, vegetation cover). What is common to all the approaches is that they rely to a greater 82 

extent on parameterization of physical surface characteristics and plant biological attributes for 83 

deriving an estimate of evaporation. Two such important characteristics are the aerodynamic 84 

conductance and canopy-surface conductance and thus the diagnostic estimates of evaporation 85 

from the conventional approaches are conditional on their parameterizations (Kustas et al., 2016; 86 

Trebs et al., 2021). The current bottlenecks are that LST-based diagnostic approaches involve 87 

significant structural complexity with respect to parameterization of soil and aerodynamic 88 

conductance, the lack of a physically-based aerodynamic conductance model (Holwerda et al., 89 

2012), and bypassing the role of LST versus stomatal conductance interactions in evaporation 90 

(Mallick et al., 2022). 91 

LSMs are useful tools for predicting long-term records of LST across a wide range of 92 

spatial scales. These prognostic time series are iteratively computed by parameterizing the land 93 

surface energy fluxes using Monin-Obukhov similarity theory (e.g., Sellers et al., 1986). These 94 

time series have been exploited for investigating the role of LST in modulating the land surface 95 

energy partitioning (Gao et al., 2004; Zeng et al., 2012) and exploring the relationship between 96 

LST diurnal cycle and the degree of land-atmosphere coupling strength through multi-model 97 

experiments (Koster et al., 2004, 2006). The LSM-simulated LST records have been also 98 



manuscript submitted to Journal of Geophysical Research - Biogeosciences 

 

blended with thermal infrared (TIR) remote sensing data using various postprocessing techniques 99 

to obtain a complete spatiotemporal dataset that overcome the limitations of both prognostic and 100 

diagnostic LST information (Siemann et al., 2016; Long et al., 2020; Zhang et al., 2021). On the 101 

other hand, many previous validation and comparison studies based on the use of in-situ and 102 

remote sensing data have shown persistent limitations of LSMs in realistically simulating this 103 

essential climate variable of the Earth system (e.g., Mitchell et al., 2004; Zheng et al., 2012; 104 

Wang et al., 2014; Trigo et al., 2015, Koch et al., 2016). These systematic evaluations have led 105 

to continuous improvements in LSMs formulations related to the parameterized roughness length 106 

for heat (Chen et al., 2010), soil thermal conductivity (Zeng et al., 2012), and soil evaporation 107 

resistance (Ma et al., 2021). For instance, Yuan et al. (2021) used MODIS LST data product to 108 

validate a revised surface roughness scheme of the Common Land Model (CoLM). Similarly, 109 

Meier et al. (2022) verified a series of modifications of the surface roughness in the Community 110 

Land Model (version 5.1) by assessing the improvements in the simulated LST diurnal cycle for 111 

different land cover types. Despite the improved model performances and underpinning the 112 

prominent role of LST in the predictive skills of LSMs, it remains difficult to fully disentangle 113 

the processes and feedback mechanisms through which changes and biases in LST propagate 114 

into the simulated vegetation biophysical interactions. 115 

Several studies have exploited the synergies between remote sensing-based evaporation 116 

models and Land Surface Models (LSMs) for acquiring a better understanding of land surface 117 

energy partitioning, land-atmosphere interactions, and couplings of the water-carbon cycles 118 

(Levine et al., 2016; Gevaert et al., 2017, among many others). These studies have employed 119 

LSMs of varying complexity and remote sensing-based products relying on diverse sources of 120 

information extracted from different spectral wavebands of satellite sensors. In this framework, 121 

Long et al. (2014) assessed the evaporation estimates from four different LSMs and two remote 122 

sensing products. They found that the uncertainty is lower in LSMs and that such uncertainty is 123 

resolution-dependent, with lower uncertainty at coarser spatial resolutions. Similar findings were 124 

reported by Wang et al. (2015) that compared the evaporation output from three different LSMs 125 

with an evaporation product based on MODIS data over Canada. Zhang et al. (2020) proposed a 126 

systematic evaluation and comparison of multiple evaporation data models over the contiguous 127 

United States. This effort was carried out within the North American Land Data Assimilation 128 

System (NLDAS) where multiple LSMs are integrated and compared against different remote 129 

sensing-based evapotranspiration products (e.g., GLEAM and MODIS-based dataset). Results of 130 

this study indicated a general agreement in the spatial patterns and seasonal evaporation of the 131 

different data output, despite a broad range of estimates within both prognostic and diagnostic 132 

class of models. Overall, these studies were critical to identifying strengths and weaknesses of 133 

the various evaporation products, providing guidelines for models’ improvements and effective 134 

strategies to reduce uncertainties. However, none of these studies have compared the underlying 135 

biophysical interactions and feedback mechanisms explaining the link between evaporation, 136 

LST, and the associated conductances (i.e., aerodynamic, and stomatal) in diagnostic (i.e., 137 

remote sensing-based) and prognostic (i.e., LSMs) models. This is because most of the remote 138 

sensing-based evaporation models use surface parameterizations (i.e., surface roughness, 139 

atmospheric stability and conductances) that are very similar to those that are implemented in 140 

LSMs and that show limited predictive capabilities and high uncertainties (El Ghawi et al., 141 

2023). This is an obvious limiting factor impeding an independent and stringent benchmarking of 142 

the inherent assumptions of prognostic and diagnostic evaporation models. 143 
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To summarize, while LST is used as a critical boundary condition to understand drought-144 

induced variability in evaporation in the diagnostic models, Da is used as an important boundary 145 

condition to understand both LST and evaporation variability in the prognostic models. The 146 

explanatory potential of evaporation variability in both the approaches depends on how well the 147 

biophysical conductances in the models respond to the coalition of soil and atmospheric drought. 148 

The present study introduces a virtual reality numerical framework where the non-parametric 149 

remote sensing evaporation model STIC1.2 (Mallick et al., 2018, 2022) is driven using two 150 

configurations: (i) LST signal simulated by the state-of-the-art LSM CLM5.0 (Lawrence et al. 151 

2019); and (ii) LST retrieved from thermal infrared remote sensing data products. The latter are 152 

also used to assess the predictive skills of CLM5.0 in reproducing the LST under different plant 153 

water stress conditions. This numerical framework aims at comparing the role of LST magnitude 154 

and variability on the biophysical conductances in STIC1.2 and CLM5.0 and assessing the 155 

relative sensitivity of the biophysical conductances to LST and ancillary environmental variables 156 

in diagnostic (STIC1.2) and prognostic (CLM5.0) evaporation modeling approaches. The virtual 157 

reality framework is established at two forested sites in Europe, with contrasting environmental 158 

conditions, different plant functional types, and spanning a temporal length characterized by 159 

strong interannual climate variability. 160 

2 Methods and Data 161 

2.1 Study sites 162 

This study considered two contrasting forested sites in Europe, namely Puéchabon 163 

(43.74°N, 3.60 °E, France, FR-Pue) and Loobos (52.17°N, 5.74°E, Netherlands, NL-Loo). FR-164 

Pue site has a Mediterranean climate with a mean annual temperature of 13.8 °C and a mean 165 

annual precipitation of 914 mm yr-1. The site is characterized by dry and hot summers reaching a 166 

maximum vapor pressure deficit of 6.0 kPa; Csa class according to the Köppen-Geiger 167 

classification (Beck et al., 2018). The site has a shallow soil layer (< 1m depth) with a clay loam 168 

texture (Reichstein et al., 2002) sitting on top of a hard limestone formation (Cabon et al., 2018). 169 

The vegetation cover is classified as evergreen broadleaf due to the dominance of Quercus ilex 170 

L. trees. NL-Loo site has a mean annual temperature of 10.0 °C and a mean annual precipitation 171 

of 754 mm yr-1. This temperate climate is characterized by warm summers without a dry season 172 

and maximum vapor pressure deficit around 4.3 kPa; the site has an Oceanic climate (Cfb) 173 

following the Köppen-Geiger classification. The site is sitting on top of ice-pushed deposits 174 

giving origin to a sandy loam soil with more than 30 m of depth (Tiktak and Bouten, 1994). The 175 

land cover is evergreen needleleaf with Pinus sylvestris L. as the dominant tree species. The 176 

meteorological observations of these two sites were obtained from the FLUXNET2015 dataset 177 

(Pastorello et al., 2020), spanning over the 2001-2014 and 2002-2013 periods for FR-Pue and 178 

NL-Loo, respectively. These long-time records embed strong interannual variability including 179 

severe droughts as the 2003 continental and the 2006/2010 regional heat wave and drought 180 

events in Europe. 181 
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 182 

Figure 1. (a) Conceptual diagram of the virtual reality experiment. While the SEB fluxes and 183 

conductance outputs of forward simulation from CLM5.0 is used as virtual reality observation, 184 

LST output is further used to drive STIC1.2 simulation with the same environmental drivers. The 185 

fluxes and conductance outputs from STIC1.2 are subsequently analyzed with respect to the 186 

virtual reality. (b) Diagram illustrating the relationship between LST and simulated water stress 187 

factor in the diagnostic STIC1.2 and prognostic CLM5.0 approach. 188 

2.2 Diagnostic and Prognostic Evaporation Models 189 

2.2.1 Surface Temperature Initiated Closure – STIC1.2 190 

STIC1.2 is a non-parametric evaporation model which perceives the vegetation-191 

atmosphere system as a box and considers evaporation as both the driver and driven by different 192 

biophysical states in the vegetation-atmosphere system (Mallick et al., 2022). Assuming the 193 

surface-atmosphere exchange operates within the available environmental and water limits, 194 

STIC1.2 estimates evaporation by finding analytical solution of the biophysical conductances 195 

from the known boundary conditions of the box that is, solar radiation (Rg), air temperature (Ta), 196 

relative humidity (rH), and LST (Mallick et al., 2018, 2022; Trebs et al., 2021). The main 197 

biophysical states are the aerodynamic temperature, aerodynamic conductance, and canopy-198 

surface conductance, respectively. Considering vegetation-soil-substrate as a single slab, 199 

STIC1.2 implicitly assumes the aerodynamic conductances from individual air-canopy and 200 

canopy-substrate components to be the ‘effective’ aerodynamic conductance for energy and 201 
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water vapor (i.e., ga), and surface conductance from individual canopy (stomatal) and 202 

soil/substrate complexes to be the ‘effective’ canopy-surface conductance (i.e., gcs) which 203 

simultaneously regulates the exchanges of sensible and latent heat fluxes between the surface 204 

and the atmosphere.  205 

The explicit assumptions of STIC1.2 include the (a) first order dependence of evaporative 206 

fraction on water stress, ga and gcs; (b) direct feedback between water stress with ga, and gcs 207 

driven by LST sensitivity to water stress variations; and (c) STIC1.2 uses LST-air temperature 208 

difference in the model as a proxy of soil-vegetation water stress and assume that the difference 209 

between LST-air temperature can explain the soil moisture induced variability in conductances 210 

and fluxes. 211 

By integrating LST with surface energy balance (SEB) theory and vegetation biophysical 212 

principles, STIC1.2 formulates multiple state equations to eliminate the need for any empirical 213 

parameterizations of the conductances. The state equations are related to LST through an 214 

aggregated water stress factor (Ism) and the effects of LST are subsequently propagated into the 215 

analytical solutions of the conductances through the water stress (Supporting Information, in 216 

Mallick et al., 2022). The inputs needed for the computation of conductances and SEB fluxes in 217 

STIC1.2 are Ta, LST, rH or air vapor pressure (ea), and downwelling and reflected global 218 

radiation (Rg and Rr). 219 

2.2.2 Community Land Model version 5.0 – CLM5.0 220 

CLM5.0 is a state-of-the-art LSM that simulates the land surface biogeophysical, 221 

biogeochemical, and hydrological processes that control the exchange of water, energy, and 222 

matter fluxes at the land-atmosphere interface. Here we provide a brief discussion of the key 223 

elements of CLM5.0 that are investigated in the virtual reality numerical framework, whilst a 224 

comprehensive description of the model structure can be found in Lawrence et al. (2019) and of 225 

the model formulations in the user manual documentation (Lawrence et al., 2018). The land 226 

surface energy fluxes, namely sensible and latent heat fluxes, are calculated using separated 227 

vegetation and ground surfaces and discriminating between shaded and sunlit vegetation 228 

components. The energy fluxes are calculated based on the Monin-Obukhov similarity theory 229 

through an iterative procedure solving for vegetation and ground temperature.  In this procedure, 230 

the aerodynamic conductance, which expresses the efficiency of the turbulent transfer of heat, 231 

momentum, and water vapor is calculated as a function of plant-specific parameters (i.e., 232 

displacement height, roughness length) and adjusted according to atmospheric stability 233 

conditions. CLM5.0 uses the coupled stomatal conductance and photosynthesis model following 234 

Medlyn et al. (2011), where the leaf water potential calculated by the plant hydraulic system 235 

(Kennedy et al., 2019) serves as indicator for water stress conditions through an attenuation of 236 

the maximum carboxylation (biochemical limitation). The calculated leaf water potential is also 237 

used for the continuous update (in analogy to the soil characteristics curves) of plant hydraulic 238 

properties through the definition of a plant vulnerability curve for each segment (i.e., roots, 239 

xylem, and sunlit and shaded leaf segments) of the vegetated surface. For further details on the 240 

calculation of the water stress factor (β-factor) in the plant hydraulic system of CLM5.0 the 241 

reader is referred to Kennedy et al., (2019). 242 
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2.3 Virtual Reality Framework 243 

The virtual reality framework is created by running the STIC1.2 model under two 244 

different configurations. In the first configuration (scenario-1), the LST simulated by CLM5.0 is 245 

used as virtual reality to drive the STIC1.2 model. The LST in CLM5.0 is computed based on the 246 

leaf temperature (Tleaf) and the temperature of the ground (Tgrnd): 247 

𝐿𝑆𝑇  = 𝜀𝑣𝑇𝑙𝑒𝑎𝑓 + (1 − 𝜀𝑣)𝑇𝑔𝑟𝑛𝑑  248 

where the vegetation emissivity v is calculated as function of the LAI, SAI, and the average 249 

inverse optical depth for longwave radiation (set to 1 in CLM5.0). All the variables are computed 250 

at hourly time steps.  251 

In the second configuration (scenario-2), STIC1.2 is run in its default mode, with LST 252 

data from NASA MODIS onboard Aqua product (MYD21). The LST acquisition time of 253 

MODIS Aqua is 13.30 hrs local time and daily LST of MYD21 product (MYD21A1D) was used 254 

in the present analysis. In both configurations, STIC1.2 and CLM5.0 used the same atmospheric 255 

forcing preprocessed using the FLUXNETLSM v.1.0 R package (Ukkola et al., 2017). The 256 

results of the virtual reality are exploited to get a deeper understanding of the link between LST, 257 

Da, and the land surface energy partitioning in the diagnostic (STIC1.2) and prognostic 258 

(CLM5.0) models. This link is explained through the analysis of the ratio between the stomata 259 

and aerodynamic conductance from both STIC1.2 and CLM5.0 and their controlling 260 

environmental drivers. The analysis of the results is consistently performed using the water stress 261 

factor of CLM5.0 (β) as a third variable to understand the agreement/disagreements between the 262 

conductances and fluxes from the two models for a wide range of atmospheric and plant water 263 

stress conditions. Furthermore, Partial Least Squares Regression (PLSR) is employed to identify 264 

fundamental relationships between the individual conductances and a host of model input 265 

variables. Regressions are made using the SIMPLS algorithm, which calculates PLS factors 266 

directly as linear combinations of the original variables (de Jong, 1993; Trebs et al., 2021) after 267 

normalization of all variables. To understand the degree of relationship between the input 268 

variables and the conductances, we derived the Variable Importance in Projection (VIP) scores 269 

based on the normalized PLS weights, scores, and loadings according to Trebs et al. (2021). A 270 

conceptual diagram of the virtual reality framework and the nature of the analysis is presented in 271 

Figure 1. 272 

Three statistical metrics were used to assess the performances of LST, and latent and 273 

sensible heat flux: 274 

𝑟 =   
∑ (𝐸𝑖 − 𝐸) (𝑂𝑖 − �̅�)𝑛

𝑖=1
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where r is the Pearson’s correlation coefficient, RMSD is root-mean-square difference, bias is the 275 

mean bias, between the model and measurements, n is the total number of data pairs. Ei and Oi are 276 

the model estimated and measured fluxes and  is the average of measured values and  is the average 277 

of estimated values. Additionally, the Kling-Gupta efficiency (KGE) is adopted to provide a 278 

quantitative and objective assessment of the agreement between the measured (virtual reality) and 279 

estimated surface energy balance fluxes (Gupta et al. 2009). It is calculated as follows: 280 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝐸

𝜎0
− 1)2 + (

𝐸

�̅�
− 1)2 

  

where r is the Pearson correlation coefficient, σ0 and σE are the standard deviations of virtual reality 281 

and STIC1.2 estimates, respectively. The closer KGE is to 1, the more consistent are the STIC1.2 282 

estimates with respect to the virtual reality. 283 

3 Results and Discussion 284 

3.1 Comparing CLM5.0 and MYD21A1D LST and SEB fluxes for a range of water stress 285 

LST is one of the important boundary conditions that drives the biophysical conductances 286 

and fluxes in STIC1.2. Since CLM5.0 LST is used to drive STIC1.2 in scenario-1, a comparison 287 

of CLM5.0 LST with respect to a reference dataset is necessary. Therefore, we use the most 288 

recent version of MODIS (MODerate Resolution Imaging Spectroradiometer) on-board Aqua 289 

daily LST product (product name MYD21) as a reference data for such a comparison. LST 290 

estimates from CLM5.0 were significantly correlated (r = 0.95 – 0.96, p<0.05) with MYD21 291 

retrievals (Figure 2a - b) for the simulated ranges of β, with a bias and systematic root mean 292 

square difference (sRMSD) of -0.35 – 2.35°C and 29 – 44%, respectively. While cold bias in 293 

CLM5.0 for LST>25°C corresponded to high soil and atmospheric water stress in the model (β: 294 

0 – 0.25) in FR-Pue, a consistent warm bias in CLM5.0 LST was also evident for the entire range 295 

of β in NL-Loo. 296 
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(e) 

 

(f) 

 

Figure 2. (a) – (b) Evaluation of CLM5.0 simulated LST with respect to MYD21 LST product 

in FR-Pue and NL-Loo for a range of CLM5.0 simulated beta factor (β); (c) – (d) Comparison 
between STIC1.2 simulated LE with respect to the virtual reality (scenario-1) for a range of 

CLM5.0 simulated beta factor (β); (e) – (f) Comparison of correlation and KGE statistics of LE 

and H between scenario-1 and scenario-2.   

Like LST, comparison of surface energy balance fluxes between CLM5.0 and STIC1.2 297 

was also made for the entire range of β. Comparison of LE between CLM5.0 and virtual reality 298 

STIC1.2 (STIC1.2-CLM5.0) (scenario-1) showed significant correlation between them (r = 0.71 299 

– 0.86, p<0.05) in both the sites, with sRMSD and KGE of 6 – 13% and 0.55 – 0.71 (Figure 2c – 300 

d; Figure 2e – f). However, the correlation and KGE statistics of LE was degraded (r = 0.53 – 301 

0.81; KGE: 0.05 – 0.53) when STIC1.2 was forced with MYD21 LST (STIC1.2-MYD21) 302 

(scenario-2). Interestingly, the two models showed stronger agreement for H as compared to LE 303 

in scenario-1 and scenario-2 in both the sites. In scenario-1, a significant correlation of 0.95 – 304 

0.98 (p<0.05) (Figure S1 in Supporting Information), sRMSD of 36 – 44%, and KGE 0.77 – 305 

0.82 (Figure 2e – f) was found. Like LE, the correlation and KGE statistics of H also degraded (r 306 

= 0.89 – 0.96; KGE: 0.74 – 0.80) when STIC1.2 was forced with MYD21 LST (STIC1.2-307 

MYD21) (scenario-2). There are two aspects in these results that are worth highlighting. It is 308 

evident that in scenario-1, the same LST conditions produced different LE and H in CLM5.0 and 309 

STIC1.2-CLM5.0. This is because CLM5.0 and STIC1.2-CLM5.0 formulate the water stress in 310 
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different ways. In STIC1.2, the water stress factor (Ism) is calculated as an inverse of aggregated 311 

wetness of canopy-soil complex (Mallick et al., 2022, 2018), which controls the transition from 312 

potential to actual evaporation. This implies that Ism→1 on the unstressed surface and Ism→0 on 313 

the stressed surface. Therefore, Ism is critical for providing a constraint against which the 314 

conductances are estimated. In STIC1.2-CLM5.0, the simulated LST from CLM5.0 is directly 315 

used for estimating Ism in conjunction with air and dewpoint temperatures by exploiting the 316 

psychrometric theory of vapor pressure-temperature slope relationship (details in Mallick et al., 317 

2022). In CLM5.0, the β-factor is estimated based on the simulated leaf water potential of the 318 

plant hydraulic system following a sigmoidal function accounting for the water potential at 50% 319 

loss of stomata conductance and a shape-fitting parameter (Kennedy et al., 2019). These two 320 

structurally different ways of formulating plant water stress tend to produce different water stress 321 

conditions in the two sites under the same LST. For a detailed investigation, a comparison 322 

between Ism versus β is shown in the scatterplots in Supporting Information (Figure S2a, b). In 323 

FR-Pue, relatively less stressed conditions in STIC1.2 (i.e., Ism > β) was evident with increasing 324 

LST (from 20 – 30 °C), part of which also coincided with high Da (Da >30 hPa) (datapoints 325 

above zero-line in Figure S2 in the Supporting Information document). These conditions tend to 326 

produce an overestimation of LE in STIC1.2 in the scenario-1 despite it is virtually stressed 327 

(β<0.3). On the other side, relatively more stressed conditions in STIC1.2 (i.e., Ism < β) for a 328 

wide range of Da values was also visible at both sites (datapoints below zero-line in Figure S2 in 329 

the Supporting Information). This is more evident in NL-Loo where β simulated by CLM5.0 is 330 

systematically larger (i.e., close to unstressed) than its counterpart in STIC1.2 (i.e., Ism) for the 331 

entire range of LST values. In addition, the comparison of the simulated energy fluxes and the β 332 

factor across the two scenarios (i.e., CLM5.0 LST vs. MYD21 LST) and the two selected sites 333 

(i.e., FR-Pue vs. NL-Loo) allow to better assess the relative role of LST on SEB in the diagnostic 334 

and prognostic models. For example, in Figure 2f, LE at NL-Loo revealed distinct differences 335 

between STIC1.2-CLM5.0 and STIC1.2-MYD21. This is the site where consistent positive bias 336 

was found between CLM5.0 and MYD21 LST, however the relative difference in the water 337 

stress factor simulated by the two models does not drastically change between scenario-1 and 338 

scenario-2 (see Figure S2c, d).  339 

Finally, it is also important to highlight that larger LE fluxes simulated by STIC1.2-340 

CLM5.0 under soil and atmospheric drought conditions are associated with more stress 341 

conditions at the ecosystem scale. In addition to the water stress, the differences in stomatal and 342 

aerodynamic conductance formulation in the two models might also have produced different 343 

conductances values and the results are consequently reflected on the surface energy balance 344 

fluxes. While a cold (warm) LST bias during high water stress increases the likelihood 345 

possibility of unstressed (stressed) stomatal conductance simulation through STIC1.2, it 346 

simultaneously increases the possibility of a low (high) aerodynamic conductance simulation as 347 

well, ultimately leading to substantial differences in LE and H response to soil and atmospheric 348 

drought conditions. Thus, all these different aspects suggest a further analysis of the simulated 349 

biophysical conductances in both STIC1.2 and CLM5.0 to gain further insight on the explanation 350 

of the response of the two models to soil and atmospheric drought.  351 

3.2 Biophysical conductances 352 

The biophysical conductance (gcs/ga ratio) from STIC1.2-CLM5.0 appeared to be 353 

significantly correlated with CLM5.0 in FR-Pue (r = 0.75) across the entire range of β (scenario-354 

1) (Figure 3a). However, profound differences in gcs/ga between STIC1.2-CLM5.0 and CLM5.0 355 
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was evident with rising soil and atmospheric drought (β: 0 – 0.25), which also corresponded with 356 

high magnitude of LST (>35°C) and Da (>30 hPa) (Figure 3a). Similarly, the retrieved 357 

conductances from STIC1.2-MYD21 (scenario-2) also showed significant correlation (r = 0.68) 358 

yet marked difference with CLM5.0 (gcs/ga STIC1.2-MYD21 > gcs/ga CLM5.0) was evident 359 

(Figure 3b). In NL-Loo, analysis of the conductance ratio also revealed very similar pattern and 360 

substantial differences in the magnitude of gcs/ga between STIC1.2 and CLM5.0 for both the 361 

scenarios, with a relatively better correlation in scenario-1 (r = 0.63) as compared to scenario-2 (r 362 

= 0.54).  363 

 364 

(a) FR-Pue (scenario-1) 

 

(b) FR-Pue (scenario-2) 

 

(c) NL-Loo (scenario-1)

 

 

(d) NL-Loo (scenario-2) 

 

Figure 3. Scatterplots showing how the relationship and magnitude of the biophysical conductance ratios 

between STIC1.2 and CLM5.0 varies with different LST for a range of CLM5.0 water stress (β) in two different 

scenarios in FR-Pue (a and b) and NL-Loo (c and d). 

Interestingly in both the sites, the difference in LST between CLM5.0 and MYD21 LST 365 

appeared to have small effects on differences in conductance ratios between CLM5.0 and 366 

STIC1.2. Some counter intuitive patterns also emerged out with respect to the behavior of gcs/ga 367 

with the coalition of soil and atmospheric drought (i.e., β) and LST. For example, in FR-Pue, 368 

CLM5.0 simulated colder LST as compared to MYD21 for LST>25°C, which is associated with 369 

high soil and atmospheric water stress in CLM5.0 (low β) (Figure 2a, 3b). Therefore, β from 370 

CLM5.0 is expected to be high (low water stress) and gcs/ga ratio from CLM5.0 is expected to 371 

show higher magnitude as compared to STIC1.2 in the scenario-2. This implies that although the 372 

conductances in CLM5.0 are sensitive to β simulation, both are somewhat less linked to the LST 373 
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simulation in the model. In a similar manner, despite predominantly low soil and atmospheric 374 

water stress in NL-Loo (β >0.60, LST: 10 – 15°C, Da: 5 – 15 hPa), CLM5.0 showed very low 375 

gcs/ga ratio as compared to STIC1.2 (Figure 3c). This insensitivity in CLM5.0 is presumably 376 

generated by the loose coupling of surface energy balance to the plant hydraulics 377 

parameterization used in the model to calculate the stress factor.  378 

 379 

To probe into the reasons on substantial differences in the conductance ratios between 380 

STIC1.2 and CLM5.0, and to understand the reasons for their different sensitivity to changes in 381 

LST, we further analyzed the response of the individual conductance components (gcs and ga) to 382 

soil and atmospheric drought proxies under scenario-1. Given stomatal conductance has a strong 383 

dependence on humidity deficit (Monteith, 1995), we used vapor pressure deficit to represent 384 

atmospheric drought proxy. Due to the strong connection of LST-air temperature difference (dTs-385 

a) with vegetation water stress and sensible heating (Anderson et al., 2007), we used dT s-a to 386 

represent soil drought proxy (Figure 4).  387 

(a) FR-Pue 

 
 

(b) NL-Loo 

 

(c) FR-Pue 

 

(d) NL-Loo 

 
Figure 4. Response of retrieved gcs to LST air temperature difference (dTs-a) and atmospheric vapor 
pressure deficit (Da) representing soil and atmospheric drought proxy, respectively, for (a) FR-Pue and 

(b) NL-Loo.  Comparison between STIC1.2-derived gcs and CLM5.0 gcs for a broad spectrum of water 
stress simulated by CLM5.0.  

 388 

0 0
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In both FR-Pue and NL-Loo, CLM5.0 showed a non-linear reduction in gcs with 389 

increasing Da and reached an asymptotic decline afterwards (Figure 4a – b), which is a sign of a 390 

typical negative feedback. This control of atmospheric humidity deficit on stomatal action is 391 

subsequently modified by surface temperature feedback. A reduced transpiration due to partial 392 

stomatal closure can increase the surface temperature, which affects LST and the saturation 393 

vapor pressure at the vegetation surface. A negative temperature control loop is evident in FR-394 

Pue where gcs also declined with dTs-a. However, no temperature control was found in NL-Loo, 395 

presumably due to mostly unstressed condition (high β) generated in CLM5.0. This unstressed 396 

condition is driven by a large soil water reservoir in NL-Loo reaching more than 30 m depth, in 397 

contrast with the soil depth of less than 1 m in FR-Pue. Finally, the narrow range of gcs values 398 

simulated by CLM5.0 in NL-Loo, despite the favorable environmental conditions at the site 399 

compared to FR-Pue, is due to the stomatal conductance parameter value (i.e., g1), which is by 400 

default equal to 2.35 for needleleaf evergreen temperate species (4.45 for broadleaf evergreen 401 

trees in FR-Pue). However, very surprisingly the magnitude of LE differed much less than as 402 

compared to gcs between these two sites. For instance, in NL-Loo, CLM5 produced almost 403 

similar magnitude of LE as FR-Pue while having substantially lower gcs as compared to FR-Pue. 404 

On the contrary, the scatterplot of gcs versus Da in STIC1.2 showed relatively complex pattern 405 

between atmospheric drought and gcs, pointing towards feedback response (Figure 4a – b). Such 406 

type of feedback occurs when a change in evaporation causes a change in the conductance which 407 

subsequently affects the evaporation rate (Monteith, 1995). We found low gcs in STIC1.2 at 408 

highest Da because large humidity deficits strictly restrict water loss under high water stress. gcs 409 

was also low at lowest Da because of saturation and low humidity deficit. Conductance was 410 

optimum at intermediate Da and evaporation. Due to the very different responses of gcs to Da in 411 

CLM5.0 and STIC1.2, the relationship between the two gcs was poor in both the sites and their 412 

absolute values also differed across the entire range of β (Figure 4c – d). This further 413 

emphasizes the fact that there is no universal function of stomatal conductance to atmospheric 414 

vapor pressure deficits and different ecosystems have different sensitivity of stomatal 415 

conductance to environmental variables. The similar principle also applies for the stomatal 416 

response function to soil drought.  417 

Analysis of aerodynamic conductance (ga) revealed very similar behavior of ga with 418 

respect to the response of ga to Da and dTs-a both in CLM5.0 and STIC1.2 (Figure 5a, 5b). In 419 

both the sites, a logarithmic response of ga to Da was evident in both the models, where ga 420 

increased with increasing Da and became asymptotic after Da exceeded 25 hPa. The pattern of 421 

dTs-a versus ga was linear to exponential in both the models. However, marked differences in the 422 

magnitude of ga between CLM5.0 and STIC1.2 was found in FR-Pue, although significantly high 423 

correlation between the two ga estimates was found in both the sites (r = 0.75 – 0.80). The 424 

differences in absolute magnitude of ga between the two models is presumably due to the 425 

differences in the model structure. While ga estimation in CLM5.0 is based on the Monin-426 

Obukhov Similarity Theory involving corrections due to atmospheric stability, parameterization 427 

of surface roughness lengths, estimation of ga in STIC1.2 is based on LST and environmental 428 

variables without involving any atmospheric sub-models. However, the significant correlation 429 

between the two ga estimates and their responses to soil/atmospheric drought metrics signifies 430 

the need of unified and common approach of aerodynamic conductances in both prognostic and 431 

diagnostic models to understand the differences in surface energy balance flux prediction. A 432 

possible solution to address this challenge could be the implementation of data-driven techniques 433 
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for the calculation of both ga and gcs (e.g., ElGhawi et al., 2023) in both prognostic and 434 

diagnostic approaches for modelling evapotranspiration. 435 

 436 

(a) FR-Pue 

 
 

(b) NL-Loo 

 

(c) FR-Pue 

 

(d) NL-Loo 

 
Figure 5. Response of retrieved ga to LST air temperature difference (dTs-a) and atmospheric vapor 
pressure deficit (Da) representing soil and atmospheric drought proxy, respectively, for (a) FR-Pue and (b) 

NL-Loo. Comparison between STIC1.2-derived ga and CLM5.0 ga for a broad spectrum of water stress 

simulated by CLM5.0 for (c) FR-Pue and (d) NL-Loo. 
 437 

3.3 Factor controlling conductances and fluxes in the models 438 

To substantiate our findings from the previous sections, we further investigated the 439 

relationship of the individual conductances and surface energy balance fluxes as final model 440 

output with a host of environmental and surface variables by performing a partial least square 441 

regression (PLSR) analysis for the scenario-1 (Figure 6). If the Variable Importance in 442 

Projection (VIP) score exceeds a value of 0.8, the variable is considered to play an important role 443 

in determining the magnitude and variability on ga, gcs, LE and H, respectively (Trebs et al., 444 

2021).  445 

 446 

0 0
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(a) FR-Pue (CLM5.0) 

 
 

(b) FR-Pue (STIC1.2) 

 

(c) NL-Loo (CLM5.0) 

 

 
 

(d) NL-Loo (STIC1.2) 

 

 
 

Figure 6. Radar charts of the Variable Importance in Projection (VIP) scores for aerodynamic and 
canopy-stomatal conductance (ga and gcs) estimated from CLM5.0 and STIC1.2 with respect to 

environmental, hydrological and land surface variables for both FR-Pue and NL-Loo. Here Rg is the 

shortwave radiation, Ta is the air temperature, Da is the atmospheric vapor pressure deficit, U is the 
wind speed, SWC is the soil water content, LST is the land surface temperature, LAI is the leaf area 

index, and u* is the friction velocity, respectively. 
 

The results from the PLSR analysis indicated that for CLM5.0, while the shortwave 447 

radiation (Rg) and wind speed (U) has a major impact on the aerodynamic conductance, the gcs is 448 

mainly regulated by Rg, Da and simulated soil water content (SWC) in both the sites. Whereas 449 

for STIC1.2, while the effects of Rg and LST was maximum on ga, the variations in gcs were 450 

maximally impacted by LST, Da and air temperature (Ta), respectively. The influence of Rg on 451 

the modeled gcs in STIC1.2 apparently had minor importance. This could be due the fact that the 452 

effects of Rg is already accounted in the air temperature signal and no additional effects of Rg 453 

was noted. On the other hand, the large influence of Rg to gcs in CLM5.0 could presumably be 454 

explained by the coupled photosynthesis-stomata conductance model where photosynthetically 455 

active radiation is directly used to solve the system of equations for sunlit and shaded leaves.  456 
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a. FR-Pue  
  

  

b. FR-Pue  
  

  

c. NL-Loo  
  

  

  

d. NL-Loo  
  

  

  

Figure 7. Radar charts of the Variable Importance in Projection (VIP) scores for latent and 
sensible heat fluxes (LE and H) estimated from CLM5.0 and STIC1.2 with respect to 

environmental, hydrological and land surface variables for both FR-Pue and NL-Loo. Here Rg is 

the shortwave radiation, Ta is the air temperature, Da is the atmospheric vapor pressure deficit, U 
is the wind speed, SWC is the soil water content, LST is the land surface temperature, LAI is the 

leaf area index, and u* is the friction velocity, respectively. 

 457 

Another interesting feature emerging from the VIP analysis is the relatively stable 458 

importance of Da in STIC1.2 to explain gcs response across the two sites. In CLM5.0, the 459 

importance of Da clearly increases in NL-Loo due to the marginal role played by SWC due to 460 

continuous supply of plant available water in this ecosystem. Finally, both STIC1.2 and CLM5.0 461 

show an increasing importance of LAI to explain gcs when moving from broadleaf evergreen 462 

trees (i.e., FR-Pue) to needleleaf evergreen trees (i.e., NL-Loo). 463 

 464 

Similar analysis with the surface energy balance fluxes indicated that for CLM5.0, while 465 

Rg has the major impact on the sensible heat flux; Rg, Ta, SWC, and simulated LST was found to 466 
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have substantial control on the variability in LE in both the sites. For STIC1.2, despite the same 467 

pattern was found for sensible heat flux, however, the variability of LE was significantly 468 

controlled by Rg, Da, and LST. It is also worth mentioning that the effects of the environmental 469 

variables were substantially stronger on the conductances as compared to the surface energy 470 

balance fluxes. This PLSR analysis further emphasizes the fact that for using model and satellite-471 

based evaporation as a water cycle predictor, we not only need to capture the magnitude and 472 

variability of the biophysical conductances, but we need consensus models that will explain the 473 

effects of complex coalition of soil and atmospheric drought on the conductances. However, this 474 

is a non-trivial problem and too often such complexities are tackled with over simplified or over-475 

parameterized models involving too many calibrations that do not consider the interactions and 476 

feedbacks (whether negative or feedforward) that are observed in nature. 477 

5 Conclusions and Future Implications 478 

The study critically evaluates the evaporation response and the inherent biophysical 479 

conductances, namely stomatal and aerodynamic, simulated by a diagnostic non-parametric 480 

thermal remote sensing model (i.e., STIC1.2) and by a prognostic state-of-the-art land surface 481 

model (i.e., CLM5.0). We implemented a virtual reality experimental framework to understand 482 

the conjugate effects of soil and atmospheric drought on the response of these two conductances 483 

that have significant impact in modulating evaporation. In this framework, the two models share 484 

the same upper (i.e., atmospheric) and lower (i.e., land surface temperature) boundary 485 

conditions. An extended analysis on the comparison of the conductances and fluxes based on 486 

soil-atmospheric water stress factor led us to the following conclusion and the emergent future 487 

implications: 488 

a) Despite the relatively good agreement in the simulated surface energy balance fluxes, the 489 

two models show substantial divergence in reproducing the magnitude and variability of 490 

the aerodynamic and stomatal conductances. This divergence is explained by the 491 

structural differences in the formulation of plant water stress in two different models, 492 

which tend to produce very different water stress conditions in two contrasting forest 493 

sites despite the two models had the same land surface temperature and vapor pressure 494 

deficit conditions. 495 

b) Analysis of the individual biophysical conductances revealed that the profound 496 

differences in the magnitude and response of stomatal and aerodynamic conductance was 497 

not only associated with the water stress factor, but also due to different functional 498 

representation of the individual conductances in two different models. The differences in 499 

the functional representation led to very different response of the aerodynamic and 500 

stomatal conductances to soil and atmospheric drought in the models. 501 

c) The magnitude and variability of the aerodynamic conductance of CLM5.0 is largely 502 

explained by wind speed and solar radiation across the two selected sites, while in 503 

STIC1.2 it is mainly influenced by solar radiation and a larger host of variables including 504 

Da, LST, and Ta. On the other hand, the magnitude and variability of stomatal 505 

conductance is explained by solar radiation, Da, and soil water content in CLM5.0, and 506 

by Da, Ta, and LST in STIC1.2.  507 

d) The substantial differences in water stress estimation and in the biophysical conductances 508 

led to differences in evaporative flux estimates of CLM5.0 and STIC1.2. These 509 

differences are larger for LE and for the more humid site of NL-Loo.  510 



manuscript submitted to Journal of Geophysical Research - Biogeosciences 

 

Our study results have important implications for both the remote sensing and the land surface 511 

community, highlighting the need for an in-depth comparison of different modelling approaches 512 

to understand their biases and uncertainty. More specifically, the findings of our work suggest 513 

the need of a unified approach in the treatment of the biophysical conductances with respect to 514 

their responses to water stress in the two very diverse modelling community for achieving a 515 

more robust multi-model assessment of the evaporation fluxes. 516 
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Abstract 18 

Diagnosing and predicting evaporation through satellite-based surface energy balance (SEB) and 19 

land surface models (LSMs) is challenging due to the non-linear responses of aerodynamic (ga) 20 

and stomatal conductance (gcs) to the coalition of soil and atmospheric drought. Despite a soaring 21 

popularity in refining gcs formulation in the LSMs by introducing a link between soil-plant 22 

hydraulics and gcs, the utility of gcs has been surprisingly overlooked in SEB models due to the 23 

overriding emphasis on eliminating ga uncertainties and the lack of coordination between these 24 

two different modeling communities. Therefore, a persistent challenge is to understand the 25 

reasons for divergent evaporation estimates from different models during strong soil-atmospheric 26 

drought. Here we present a virtual reality experiment over two contrasting European forest sites 27 

to understand the apparent sensitivity of the two critical conductances and evaporative fluxes to a 28 

water-stress factor (-factor) in conjunction with land surface temperature (soil drought proxy) 29 

and vapor pressure deficit (atmospheric drought proxy) by using a non-parametric diagnostic 30 

model (Surface Temperature Initiated Closure, STIC1.2) and a prognostic model (Community 31 

Land Model, CLM5.0). Results revealed the −factor and different functional forms of the two 32 

conductances to be a significant predictor of divergent response of the conductances to soil and 33 

atmospheric drought, which subsequently propagated in the evaporative flux estimates between 34 

STIC1.2 and CLM5.0. This analysis reaffirms the need for consensus on theory and models that 35 

capture the sensitivity of the biophysical conductances to the complex coalition of soil and 36 

atmospheric drought for better evaporation prediction. 37 

Plain Language Summary 38 

Water lost by plants through evaporation is strongly regulated by two important physical and 39 

biological attributes, namely aerodynamic and stomatal conductance. The magnitude and 40 

variability of these conductances and their degree of regulation on evaporation is heavily 41 

dependent on how the conductances respond to the conjugate dryness from the soil and the 42 

atmosphere. Because these conductances cannot be typically measured at a large scale, the 43 

majority of the global evaporation models use different mechanistic functions to estimate them, 44 

which involves many empirical parameters. Such methods do not fully capture the evaporation 45 

variability of ecosystems during water stress, leading to large errors in water cycle monitoring. 46 

Our model-based synthetic experiment shows how two structurally different models with 47 

different functional forms of the conductances respond very differently to emerging soil-48 

atmospheric water stress and produce divergent estimates of evaporation in a variety of dry and 49 

wet conditions. While this study offers a greater insight into the role of conjugate effects of soil 50 

and atmospheric drought in explaining the conductances and evaporation variability, it also 51 

shows a novel perspective to reconcile predictive and remote sensing evaporation models for 52 

water management applications, testing theory of plant water use and land-atmosphere 53 

interactions.  54 



manuscript submitted to Journal of Geophysical Research - Biogeosciences 

 

1 Introduction 55 

Soil and atmospheric droughts are triggered by enhanced land surface drying and climate 56 

warming. As a result, they feedback to some of the fundamental drivers of terrestrial evaporation 57 

namely, land surface temperature (LST) and atmospheric vapor pressure deficit (Da), which 58 

subsequently affects climate and physiology of terrestrial ecosystems (Morrow and Friedl, 1998; 59 

Liao et al., 2020). While their coalition controls the magnitude and variability of the surface 60 

energy balance (SEB) components (Thakur et al., 2021, Mallick et al., 2022), they are 61 

simultaneously modulated by the SEB partitioning (Kustas and Anderson, 2009; Anderson et al., 62 

2012; Mallick et al., 2018, 2022). LST is very sensitive to soil water content variations and 63 

captures additional information on the biophysical controls on surface temperature, such as 64 

evaporative cooling and stomatal conductance variations (Kustas and Anderson, 2009; Anderson 65 

et al., 2012; Mallick et al., 2016, 2022). While LST serves as a key diagnostic variable to 66 

monitoring land surface biophysical states (Green et al., 2022), it is also a prognostic indicator of 67 

their evolution under global warming and land use change (Chen and Dirmeyer, 2020). On the 68 

other hand, Da is expected to rise over ecosystems due to the combination of increased LST, 69 

reduced soil water content, and decreased relative humidity due to low evaporation (Byrne & 70 

O'Gorman, 2013). An elevated Da increases the atmospheric demand for evaporation (Monteith, 71 

1965; Penman, 1948), and it simultaneously reduces (enhances) stomatal (aerodynamic) 72 

conductance (Damour et al., 2010; Medlyn et al., 2011; Mott, 2007). Therefore, understanding 73 

the conductance response to these two opposing effects of changes in Da due to surface 74 

temperature warming is crucial for assessing the impacts of soil and atmospheric drought on 75 

evaporation for better water cycle assessment through different models (Massman et al., 2019). 76 

LST-based diagnostic monitoring and mapping of evaporation varies from multiple 77 

spatio-temporal scales and involves a host of models (Bhattarai et al., 2018; 2019). The most 78 

common approach (Anderson et al., 2007) centres on assuming a physical model of evaporation 79 

in the framework of SEB and many of the variables required to compute evaporation using the 80 

SEB models are available directly as satellite products (e.g., vegetation index, albedo, leaf area 81 

index, vegetation cover). What is common to all the approaches is that they rely to a greater 82 

extent on parameterization of physical surface characteristics and plant biological attributes for 83 

deriving an estimate of evaporation. Two such important characteristics are the aerodynamic 84 

conductance and canopy-surface conductance and thus the diagnostic estimates of evaporation 85 

from the conventional approaches are conditional on their parameterizations (Kustas et al., 2016; 86 

Trebs et al., 2021). The current bottlenecks are that LST-based diagnostic approaches involve 87 

significant structural complexity with respect to parameterization of soil and aerodynamic 88 

conductance, the lack of a physically-based aerodynamic conductance model (Holwerda et al., 89 

2012), and bypassing the role of LST versus stomatal conductance interactions in evaporation 90 

(Mallick et al., 2022). 91 

LSMs are useful tools for predicting long-term records of LST across a wide range of 92 

spatial scales. These prognostic time series are iteratively computed by parameterizing the land 93 

surface energy fluxes using Monin-Obukhov similarity theory (e.g., Sellers et al., 1986). These 94 

time series have been exploited for investigating the role of LST in modulating the land surface 95 

energy partitioning (Gao et al., 2004; Zeng et al., 2012) and exploring the relationship between 96 

LST diurnal cycle and the degree of land-atmosphere coupling strength through multi-model 97 

experiments (Koster et al., 2004, 2006). The LSM-simulated LST records have been also 98 
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blended with thermal infrared (TIR) remote sensing data using various postprocessing techniques 99 

to obtain a complete spatiotemporal dataset that overcome the limitations of both prognostic and 100 

diagnostic LST information (Siemann et al., 2016; Long et al., 2020; Zhang et al., 2021). On the 101 

other hand, many previous validation and comparison studies based on the use of in-situ and 102 

remote sensing data have shown persistent limitations of LSMs in realistically simulating this 103 

essential climate variable of the Earth system (e.g., Mitchell et al., 2004; Zheng et al., 2012; 104 

Wang et al., 2014; Trigo et al., 2015, Koch et al., 2016). These systematic evaluations have led 105 

to continuous improvements in LSMs formulations related to the parameterized roughness length 106 

for heat (Chen et al., 2010), soil thermal conductivity (Zeng et al., 2012), and soil evaporation 107 

resistance (Ma et al., 2021). For instance, Yuan et al. (2021) used MODIS LST data product to 108 

validate a revised surface roughness scheme of the Common Land Model (CoLM). Similarly, 109 

Meier et al. (2022) verified a series of modifications of the surface roughness in the Community 110 

Land Model (version 5.1) by assessing the improvements in the simulated LST diurnal cycle for 111 

different land cover types. Despite the improved model performances and underpinning the 112 

prominent role of LST in the predictive skills of LSMs, it remains difficult to fully disentangle 113 

the processes and feedback mechanisms through which changes and biases in LST propagate 114 

into the simulated vegetation biophysical interactions. 115 

Several studies have exploited the synergies between remote sensing-based evaporation 116 

models and Land Surface Models (LSMs) for acquiring a better understanding of land surface 117 

energy partitioning, land-atmosphere interactions, and couplings of the water-carbon cycles 118 

(Levine et al., 2016; Gevaert et al., 2017, among many others). These studies have employed 119 

LSMs of varying complexity and remote sensing-based products relying on diverse sources of 120 

information extracted from different spectral wavebands of satellite sensors. In this framework, 121 

Long et al. (2014) assessed the evaporation estimates from four different LSMs and two remote 122 

sensing products. They found that the uncertainty is lower in LSMs and that such uncertainty is 123 

resolution-dependent, with lower uncertainty at coarser spatial resolutions. Similar findings were 124 

reported by Wang et al. (2015) that compared the evaporation output from three different LSMs 125 

with an evaporation product based on MODIS data over Canada. Zhang et al. (2020) proposed a 126 

systematic evaluation and comparison of multiple evaporation data models over the contiguous 127 

United States. This effort was carried out within the North American Land Data Assimilation 128 

System (NLDAS) where multiple LSMs are integrated and compared against different remote 129 

sensing-based evapotranspiration products (e.g., GLEAM and MODIS-based dataset). Results of 130 

this study indicated a general agreement in the spatial patterns and seasonal evaporation of the 131 

different data output, despite a broad range of estimates within both prognostic and diagnostic 132 

class of models. Overall, these studies were critical to identifying strengths and weaknesses of 133 

the various evaporation products, providing guidelines for models’ improvements and effective 134 

strategies to reduce uncertainties. However, none of these studies have compared the underlying 135 

biophysical interactions and feedback mechanisms explaining the link between evaporation, 136 

LST, and the associated conductances (i.e., aerodynamic, and stomatal) in diagnostic (i.e., 137 

remote sensing-based) and prognostic (i.e., LSMs) models. This is because most of the remote 138 

sensing-based evaporation models use surface parameterizations (i.e., surface roughness, 139 

atmospheric stability and conductances) that are very similar to those that are implemented in 140 

LSMs and that show limited predictive capabilities and high uncertainties (El Ghawi et al., 141 

2023). This is an obvious limiting factor impeding an independent and stringent benchmarking of 142 

the inherent assumptions of prognostic and diagnostic evaporation models. 143 
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To summarize, while LST is used as a critical boundary condition to understand drought-144 

induced variability in evaporation in the diagnostic models, Da is used as an important boundary 145 

condition to understand both LST and evaporation variability in the prognostic models. The 146 

explanatory potential of evaporation variability in both the approaches depends on how well the 147 

biophysical conductances in the models respond to the coalition of soil and atmospheric drought. 148 

The present study introduces a virtual reality numerical framework where the non-parametric 149 

remote sensing evaporation model STIC1.2 (Mallick et al., 2018, 2022) is driven using two 150 

configurations: (i) LST signal simulated by the state-of-the-art LSM CLM5.0 (Lawrence et al. 151 

2019); and (ii) LST retrieved from thermal infrared remote sensing data products. The latter are 152 

also used to assess the predictive skills of CLM5.0 in reproducing the LST under different plant 153 

water stress conditions. This numerical framework aims at comparing the role of LST magnitude 154 

and variability on the biophysical conductances in STIC1.2 and CLM5.0 and assessing the 155 

relative sensitivity of the biophysical conductances to LST and ancillary environmental variables 156 

in diagnostic (STIC1.2) and prognostic (CLM5.0) evaporation modeling approaches. The virtual 157 

reality framework is established at two forested sites in Europe, with contrasting environmental 158 

conditions, different plant functional types, and spanning a temporal length characterized by 159 

strong interannual climate variability. 160 

2 Methods and Data 161 

2.1 Study sites 162 

This study considered two contrasting forested sites in Europe, namely Puéchabon 163 

(43.74°N, 3.60 °E, France, FR-Pue) and Loobos (52.17°N, 5.74°E, Netherlands, NL-Loo). FR-164 

Pue site has a Mediterranean climate with a mean annual temperature of 13.8 °C and a mean 165 

annual precipitation of 914 mm yr-1. The site is characterized by dry and hot summers reaching a 166 

maximum vapor pressure deficit of 6.0 kPa; Csa class according to the Köppen-Geiger 167 

classification (Beck et al., 2018). The site has a shallow soil layer (< 1m depth) with a clay loam 168 

texture (Reichstein et al., 2002) sitting on top of a hard limestone formation (Cabon et al., 2018). 169 

The vegetation cover is classified as evergreen broadleaf due to the dominance of Quercus ilex 170 

L. trees. NL-Loo site has a mean annual temperature of 10.0 °C and a mean annual precipitation 171 

of 754 mm yr-1. This temperate climate is characterized by warm summers without a dry season 172 

and maximum vapor pressure deficit around 4.3 kPa; the site has an Oceanic climate (Cfb) 173 

following the Köppen-Geiger classification. The site is sitting on top of ice-pushed deposits 174 

giving origin to a sandy loam soil with more than 30 m of depth (Tiktak and Bouten, 1994). The 175 

land cover is evergreen needleleaf with Pinus sylvestris L. as the dominant tree species. The 176 

meteorological observations of these two sites were obtained from the FLUXNET2015 dataset 177 

(Pastorello et al., 2020), spanning over the 2001-2014 and 2002-2013 periods for FR-Pue and 178 

NL-Loo, respectively. These long-time records embed strong interannual variability including 179 

severe droughts as the 2003 continental and the 2006/2010 regional heat wave and drought 180 

events in Europe. 181 
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 182 

Figure 1. (a) Conceptual diagram of the virtual reality experiment. While the SEB fluxes and 183 

conductance outputs of forward simulation from CLM5.0 is used as virtual reality observation, 184 

LST output is further used to drive STIC1.2 simulation with the same environmental drivers. The 185 

fluxes and conductance outputs from STIC1.2 are subsequently analyzed with respect to the 186 

virtual reality. (b) Diagram illustrating the relationship between LST and simulated water stress 187 

factor in the diagnostic STIC1.2 and prognostic CLM5.0 approach. 188 

2.2 Diagnostic and Prognostic Evaporation Models 189 

2.2.1 Surface Temperature Initiated Closure – STIC1.2 190 

STIC1.2 is a non-parametric evaporation model which perceives the vegetation-191 

atmosphere system as a box and considers evaporation as both the driver and driven by different 192 

biophysical states in the vegetation-atmosphere system (Mallick et al., 2022). Assuming the 193 

surface-atmosphere exchange operates within the available environmental and water limits, 194 

STIC1.2 estimates evaporation by finding analytical solution of the biophysical conductances 195 

from the known boundary conditions of the box that is, solar radiation (Rg), air temperature (Ta), 196 

relative humidity (rH), and LST (Mallick et al., 2018, 2022; Trebs et al., 2021). The main 197 

biophysical states are the aerodynamic temperature, aerodynamic conductance, and canopy-198 

surface conductance, respectively. Considering vegetation-soil-substrate as a single slab, 199 

STIC1.2 implicitly assumes the aerodynamic conductances from individual air-canopy and 200 

canopy-substrate components to be the ‘effective’ aerodynamic conductance for energy and 201 
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water vapor (i.e., ga), and surface conductance from individual canopy (stomatal) and 202 

soil/substrate complexes to be the ‘effective’ canopy-surface conductance (i.e., gcs) which 203 

simultaneously regulates the exchanges of sensible and latent heat fluxes between the surface 204 

and the atmosphere.  205 

The explicit assumptions of STIC1.2 include the (a) first order dependence of evaporative 206 

fraction on water stress, ga and gcs; (b) direct feedback between water stress with ga, and gcs 207 

driven by LST sensitivity to water stress variations; and (c) STIC1.2 uses LST-air temperature 208 

difference in the model as a proxy of soil-vegetation water stress and assume that the difference 209 

between LST-air temperature can explain the soil moisture induced variability in conductances 210 

and fluxes. 211 

By integrating LST with surface energy balance (SEB) theory and vegetation biophysical 212 

principles, STIC1.2 formulates multiple state equations to eliminate the need for any empirical 213 

parameterizations of the conductances. The state equations are related to LST through an 214 

aggregated water stress factor (Ism) and the effects of LST are subsequently propagated into the 215 

analytical solutions of the conductances through the water stress (Supporting Information, in 216 

Mallick et al., 2022). The inputs needed for the computation of conductances and SEB fluxes in 217 

STIC1.2 are Ta, LST, rH or air vapor pressure (ea), and downwelling and reflected global 218 

radiation (Rg and Rr). 219 

2.2.2 Community Land Model version 5.0 – CLM5.0 220 

CLM5.0 is a state-of-the-art LSM that simulates the land surface biogeophysical, 221 

biogeochemical, and hydrological processes that control the exchange of water, energy, and 222 

matter fluxes at the land-atmosphere interface. Here we provide a brief discussion of the key 223 

elements of CLM5.0 that are investigated in the virtual reality numerical framework, whilst a 224 

comprehensive description of the model structure can be found in Lawrence et al. (2019) and of 225 

the model formulations in the user manual documentation (Lawrence et al., 2018). The land 226 

surface energy fluxes, namely sensible and latent heat fluxes, are calculated using separated 227 

vegetation and ground surfaces and discriminating between shaded and sunlit vegetation 228 

components. The energy fluxes are calculated based on the Monin-Obukhov similarity theory 229 

through an iterative procedure solving for vegetation and ground temperature.  In this procedure, 230 

the aerodynamic conductance, which expresses the efficiency of the turbulent transfer of heat, 231 

momentum, and water vapor is calculated as a function of plant-specific parameters (i.e., 232 

displacement height, roughness length) and adjusted according to atmospheric stability 233 

conditions. CLM5.0 uses the coupled stomatal conductance and photosynthesis model following 234 

Medlyn et al. (2011), where the leaf water potential calculated by the plant hydraulic system 235 

(Kennedy et al., 2019) serves as indicator for water stress conditions through an attenuation of 236 

the maximum carboxylation (biochemical limitation). The calculated leaf water potential is also 237 

used for the continuous update (in analogy to the soil characteristics curves) of plant hydraulic 238 

properties through the definition of a plant vulnerability curve for each segment (i.e., roots, 239 

xylem, and sunlit and shaded leaf segments) of the vegetated surface. For further details on the 240 

calculation of the water stress factor (β-factor) in the plant hydraulic system of CLM5.0 the 241 

reader is referred to Kennedy et al., (2019). 242 
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2.3 Virtual Reality Framework 243 

The virtual reality framework is created by running the STIC1.2 model under two 244 

different configurations. In the first configuration (scenario-1), the LST simulated by CLM5.0 is 245 

used as virtual reality to drive the STIC1.2 model. The LST in CLM5.0 is computed based on the 246 

leaf temperature (Tleaf) and the temperature of the ground (Tgrnd): 247 

𝐿𝑆𝑇  = 𝜀𝑣𝑇𝑙𝑒𝑎𝑓 + (1 − 𝜀𝑣)𝑇𝑔𝑟𝑛𝑑  248 

where the vegetation emissivity v is calculated as function of the LAI, SAI, and the average 249 

inverse optical depth for longwave radiation (set to 1 in CLM5.0). All the variables are computed 250 

at hourly time steps.  251 

In the second configuration (scenario-2), STIC1.2 is run in its default mode, with LST 252 

data from NASA MODIS onboard Aqua product (MYD21). The LST acquisition time of 253 

MODIS Aqua is 13.30 hrs local time and daily LST of MYD21 product (MYD21A1D) was used 254 

in the present analysis. In both configurations, STIC1.2 and CLM5.0 used the same atmospheric 255 

forcing preprocessed using the FLUXNETLSM v.1.0 R package (Ukkola et al., 2017). The 256 

results of the virtual reality are exploited to get a deeper understanding of the link between LST, 257 

Da, and the land surface energy partitioning in the diagnostic (STIC1.2) and prognostic 258 

(CLM5.0) models. This link is explained through the analysis of the ratio between the stomata 259 

and aerodynamic conductance from both STIC1.2 and CLM5.0 and their controlling 260 

environmental drivers. The analysis of the results is consistently performed using the water stress 261 

factor of CLM5.0 (β) as a third variable to understand the agreement/disagreements between the 262 

conductances and fluxes from the two models for a wide range of atmospheric and plant water 263 

stress conditions. Furthermore, Partial Least Squares Regression (PLSR) is employed to identify 264 

fundamental relationships between the individual conductances and a host of model input 265 

variables. Regressions are made using the SIMPLS algorithm, which calculates PLS factors 266 

directly as linear combinations of the original variables (de Jong, 1993; Trebs et al., 2021) after 267 

normalization of all variables. To understand the degree of relationship between the input 268 

variables and the conductances, we derived the Variable Importance in Projection (VIP) scores 269 

based on the normalized PLS weights, scores, and loadings according to Trebs et al. (2021). A 270 

conceptual diagram of the virtual reality framework and the nature of the analysis is presented in 271 

Figure 1. 272 

Three statistical metrics were used to assess the performances of LST, and latent and 273 

sensible heat flux: 274 

𝑟 =   
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where r is the Pearson’s correlation coefficient, RMSD is root-mean-square difference, bias is the 275 

mean bias, between the model and measurements, n is the total number of data pairs. Ei and Oi are 276 

the model estimated and measured fluxes and  is the average of measured values and  is the average 277 

of estimated values. Additionally, the Kling-Gupta efficiency (KGE) is adopted to provide a 278 

quantitative and objective assessment of the agreement between the measured (virtual reality) and 279 

estimated surface energy balance fluxes (Gupta et al. 2009). It is calculated as follows: 280 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝐸

𝜎0
− 1)2 + (

𝐸

�̅�
− 1)2 

  

where r is the Pearson correlation coefficient, σ0 and σE are the standard deviations of virtual reality 281 

and STIC1.2 estimates, respectively. The closer KGE is to 1, the more consistent are the STIC1.2 282 

estimates with respect to the virtual reality. 283 

3 Results and Discussion 284 

3.1 Comparing CLM5.0 and MYD21A1D LST and SEB fluxes for a range of water stress 285 

LST is one of the important boundary conditions that drives the biophysical conductances 286 

and fluxes in STIC1.2. Since CLM5.0 LST is used to drive STIC1.2 in scenario-1, a comparison 287 

of CLM5.0 LST with respect to a reference dataset is necessary. Therefore, we use the most 288 

recent version of MODIS (MODerate Resolution Imaging Spectroradiometer) on-board Aqua 289 

daily LST product (product name MYD21) as a reference data for such a comparison. LST 290 

estimates from CLM5.0 were significantly correlated (r = 0.95 – 0.96, p<0.05) with MYD21 291 

retrievals (Figure 2a - b) for the simulated ranges of β, with a bias and systematic root mean 292 

square difference (sRMSD) of -0.35 – 2.35°C and 29 – 44%, respectively. While cold bias in 293 

CLM5.0 for LST>25°C corresponded to high soil and atmospheric water stress in the model (β: 294 

0 – 0.25) in FR-Pue, a consistent warm bias in CLM5.0 LST was also evident for the entire range 295 

of β in NL-Loo. 296 
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(e) 

 

(f) 

 

Figure 2. (a) – (b) Evaluation of CLM5.0 simulated LST with respect to MYD21 LST product 

in FR-Pue and NL-Loo for a range of CLM5.0 simulated beta factor (β); (c) – (d) Comparison 
between STIC1.2 simulated LE with respect to the virtual reality (scenario-1) for a range of 

CLM5.0 simulated beta factor (β); (e) – (f) Comparison of correlation and KGE statistics of LE 

and H between scenario-1 and scenario-2.   

Like LST, comparison of surface energy balance fluxes between CLM5.0 and STIC1.2 297 

was also made for the entire range of β. Comparison of LE between CLM5.0 and virtual reality 298 

STIC1.2 (STIC1.2-CLM5.0) (scenario-1) showed significant correlation between them (r = 0.71 299 

– 0.86, p<0.05) in both the sites, with sRMSD and KGE of 6 – 13% and 0.55 – 0.71 (Figure 2c – 300 

d; Figure 2e – f). However, the correlation and KGE statistics of LE was degraded (r = 0.53 – 301 

0.81; KGE: 0.05 – 0.53) when STIC1.2 was forced with MYD21 LST (STIC1.2-MYD21) 302 

(scenario-2). Interestingly, the two models showed stronger agreement for H as compared to LE 303 

in scenario-1 and scenario-2 in both the sites. In scenario-1, a significant correlation of 0.95 – 304 

0.98 (p<0.05) (Figure S1 in Supporting Information), sRMSD of 36 – 44%, and KGE 0.77 – 305 

0.82 (Figure 2e – f) was found. Like LE, the correlation and KGE statistics of H also degraded (r 306 

= 0.89 – 0.96; KGE: 0.74 – 0.80) when STIC1.2 was forced with MYD21 LST (STIC1.2-307 

MYD21) (scenario-2). There are two aspects in these results that are worth highlighting. It is 308 

evident that in scenario-1, the same LST conditions produced different LE and H in CLM5.0 and 309 

STIC1.2-CLM5.0. This is because CLM5.0 and STIC1.2-CLM5.0 formulate the water stress in 310 
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different ways. In STIC1.2, the water stress factor (Ism) is calculated as an inverse of aggregated 311 

wetness of canopy-soil complex (Mallick et al., 2022, 2018), which controls the transition from 312 

potential to actual evaporation. This implies that Ism→1 on the unstressed surface and Ism→0 on 313 

the stressed surface. Therefore, Ism is critical for providing a constraint against which the 314 

conductances are estimated. In STIC1.2-CLM5.0, the simulated LST from CLM5.0 is directly 315 

used for estimating Ism in conjunction with air and dewpoint temperatures by exploiting the 316 

psychrometric theory of vapor pressure-temperature slope relationship (details in Mallick et al., 317 

2022). In CLM5.0, the β-factor is estimated based on the simulated leaf water potential of the 318 

plant hydraulic system following a sigmoidal function accounting for the water potential at 50% 319 

loss of stomata conductance and a shape-fitting parameter (Kennedy et al., 2019). These two 320 

structurally different ways of formulating plant water stress tend to produce different water stress 321 

conditions in the two sites under the same LST. For a detailed investigation, a comparison 322 

between Ism versus β is shown in the scatterplots in Supporting Information (Figure S2a, b). In 323 

FR-Pue, relatively less stressed conditions in STIC1.2 (i.e., Ism > β) was evident with increasing 324 

LST (from 20 – 30 °C), part of which also coincided with high Da (Da >30 hPa) (datapoints 325 

above zero-line in Figure S2 in the Supporting Information document). These conditions tend to 326 

produce an overestimation of LE in STIC1.2 in the scenario-1 despite it is virtually stressed 327 

(β<0.3). On the other side, relatively more stressed conditions in STIC1.2 (i.e., Ism < β) for a 328 

wide range of Da values was also visible at both sites (datapoints below zero-line in Figure S2 in 329 

the Supporting Information). This is more evident in NL-Loo where β simulated by CLM5.0 is 330 

systematically larger (i.e., close to unstressed) than its counterpart in STIC1.2 (i.e., Ism) for the 331 

entire range of LST values. In addition, the comparison of the simulated energy fluxes and the β 332 

factor across the two scenarios (i.e., CLM5.0 LST vs. MYD21 LST) and the two selected sites 333 

(i.e., FR-Pue vs. NL-Loo) allow to better assess the relative role of LST on SEB in the diagnostic 334 

and prognostic models. For example, in Figure 2f, LE at NL-Loo revealed distinct differences 335 

between STIC1.2-CLM5.0 and STIC1.2-MYD21. This is the site where consistent positive bias 336 

was found between CLM5.0 and MYD21 LST, however the relative difference in the water 337 

stress factor simulated by the two models does not drastically change between scenario-1 and 338 

scenario-2 (see Figure S2c, d).  339 

Finally, it is also important to highlight that larger LE fluxes simulated by STIC1.2-340 

CLM5.0 under soil and atmospheric drought conditions are associated with more stress 341 

conditions at the ecosystem scale. In addition to the water stress, the differences in stomatal and 342 

aerodynamic conductance formulation in the two models might also have produced different 343 

conductances values and the results are consequently reflected on the surface energy balance 344 

fluxes. While a cold (warm) LST bias during high water stress increases the likelihood 345 

possibility of unstressed (stressed) stomatal conductance simulation through STIC1.2, it 346 

simultaneously increases the possibility of a low (high) aerodynamic conductance simulation as 347 

well, ultimately leading to substantial differences in LE and H response to soil and atmospheric 348 

drought conditions. Thus, all these different aspects suggest a further analysis of the simulated 349 

biophysical conductances in both STIC1.2 and CLM5.0 to gain further insight on the explanation 350 

of the response of the two models to soil and atmospheric drought.  351 

3.2 Biophysical conductances 352 

The biophysical conductance (gcs/ga ratio) from STIC1.2-CLM5.0 appeared to be 353 

significantly correlated with CLM5.0 in FR-Pue (r = 0.75) across the entire range of β (scenario-354 

1) (Figure 3a). However, profound differences in gcs/ga between STIC1.2-CLM5.0 and CLM5.0 355 
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was evident with rising soil and atmospheric drought (β: 0 – 0.25), which also corresponded with 356 

high magnitude of LST (>35°C) and Da (>30 hPa) (Figure 3a). Similarly, the retrieved 357 

conductances from STIC1.2-MYD21 (scenario-2) also showed significant correlation (r = 0.68) 358 

yet marked difference with CLM5.0 (gcs/ga STIC1.2-MYD21 > gcs/ga CLM5.0) was evident 359 

(Figure 3b). In NL-Loo, analysis of the conductance ratio also revealed very similar pattern and 360 

substantial differences in the magnitude of gcs/ga between STIC1.2 and CLM5.0 for both the 361 

scenarios, with a relatively better correlation in scenario-1 (r = 0.63) as compared to scenario-2 (r 362 

= 0.54).  363 

 364 

(a) FR-Pue (scenario-1) 

 

(b) FR-Pue (scenario-2) 

 

(c) NL-Loo (scenario-1)

 

 

(d) NL-Loo (scenario-2) 

 

Figure 3. Scatterplots showing how the relationship and magnitude of the biophysical conductance ratios 

between STIC1.2 and CLM5.0 varies with different LST for a range of CLM5.0 water stress (β) in two different 

scenarios in FR-Pue (a and b) and NL-Loo (c and d). 

Interestingly in both the sites, the difference in LST between CLM5.0 and MYD21 LST 365 

appeared to have small effects on differences in conductance ratios between CLM5.0 and 366 

STIC1.2. Some counter intuitive patterns also emerged out with respect to the behavior of gcs/ga 367 

with the coalition of soil and atmospheric drought (i.e., β) and LST. For example, in FR-Pue, 368 

CLM5.0 simulated colder LST as compared to MYD21 for LST>25°C, which is associated with 369 

high soil and atmospheric water stress in CLM5.0 (low β) (Figure 2a, 3b). Therefore, β from 370 

CLM5.0 is expected to be high (low water stress) and gcs/ga ratio from CLM5.0 is expected to 371 

show higher magnitude as compared to STIC1.2 in the scenario-2. This implies that although the 372 

conductances in CLM5.0 are sensitive to β simulation, both are somewhat less linked to the LST 373 
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simulation in the model. In a similar manner, despite predominantly low soil and atmospheric 374 

water stress in NL-Loo (β >0.60, LST: 10 – 15°C, Da: 5 – 15 hPa), CLM5.0 showed very low 375 

gcs/ga ratio as compared to STIC1.2 (Figure 3c). This insensitivity in CLM5.0 is presumably 376 

generated by the loose coupling of surface energy balance to the plant hydraulics 377 

parameterization used in the model to calculate the stress factor.  378 

 379 

To probe into the reasons on substantial differences in the conductance ratios between 380 

STIC1.2 and CLM5.0, and to understand the reasons for their different sensitivity to changes in 381 

LST, we further analyzed the response of the individual conductance components (gcs and ga) to 382 

soil and atmospheric drought proxies under scenario-1. Given stomatal conductance has a strong 383 

dependence on humidity deficit (Monteith, 1995), we used vapor pressure deficit to represent 384 

atmospheric drought proxy. Due to the strong connection of LST-air temperature difference (dTs-385 

a) with vegetation water stress and sensible heating (Anderson et al., 2007), we used dT s-a to 386 

represent soil drought proxy (Figure 4).  387 

(a) FR-Pue 

 
 

(b) NL-Loo 

 

(c) FR-Pue 

 

(d) NL-Loo 

 
Figure 4. Response of retrieved gcs to LST air temperature difference (dTs-a) and atmospheric vapor 
pressure deficit (Da) representing soil and atmospheric drought proxy, respectively, for (a) FR-Pue and 

(b) NL-Loo.  Comparison between STIC1.2-derived gcs and CLM5.0 gcs for a broad spectrum of water 
stress simulated by CLM5.0.  

 388 

0 0
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In both FR-Pue and NL-Loo, CLM5.0 showed a non-linear reduction in gcs with 389 

increasing Da and reached an asymptotic decline afterwards (Figure 4a – b), which is a sign of a 390 

typical negative feedback. This control of atmospheric humidity deficit on stomatal action is 391 

subsequently modified by surface temperature feedback. A reduced transpiration due to partial 392 

stomatal closure can increase the surface temperature, which affects LST and the saturation 393 

vapor pressure at the vegetation surface. A negative temperature control loop is evident in FR-394 

Pue where gcs also declined with dTs-a. However, no temperature control was found in NL-Loo, 395 

presumably due to mostly unstressed condition (high β) generated in CLM5.0. This unstressed 396 

condition is driven by a large soil water reservoir in NL-Loo reaching more than 30 m depth, in 397 

contrast with the soil depth of less than 1 m in FR-Pue. Finally, the narrow range of gcs values 398 

simulated by CLM5.0 in NL-Loo, despite the favorable environmental conditions at the site 399 

compared to FR-Pue, is due to the stomatal conductance parameter value (i.e., g1), which is by 400 

default equal to 2.35 for needleleaf evergreen temperate species (4.45 for broadleaf evergreen 401 

trees in FR-Pue). However, very surprisingly the magnitude of LE differed much less than as 402 

compared to gcs between these two sites. For instance, in NL-Loo, CLM5 produced almost 403 

similar magnitude of LE as FR-Pue while having substantially lower gcs as compared to FR-Pue. 404 

On the contrary, the scatterplot of gcs versus Da in STIC1.2 showed relatively complex pattern 405 

between atmospheric drought and gcs, pointing towards feedback response (Figure 4a – b). Such 406 

type of feedback occurs when a change in evaporation causes a change in the conductance which 407 

subsequently affects the evaporation rate (Monteith, 1995). We found low gcs in STIC1.2 at 408 

highest Da because large humidity deficits strictly restrict water loss under high water stress. gcs 409 

was also low at lowest Da because of saturation and low humidity deficit. Conductance was 410 

optimum at intermediate Da and evaporation. Due to the very different responses of gcs to Da in 411 

CLM5.0 and STIC1.2, the relationship between the two gcs was poor in both the sites and their 412 

absolute values also differed across the entire range of β (Figure 4c – d). This further 413 

emphasizes the fact that there is no universal function of stomatal conductance to atmospheric 414 

vapor pressure deficits and different ecosystems have different sensitivity of stomatal 415 

conductance to environmental variables. The similar principle also applies for the stomatal 416 

response function to soil drought.  417 

Analysis of aerodynamic conductance (ga) revealed very similar behavior of ga with 418 

respect to the response of ga to Da and dTs-a both in CLM5.0 and STIC1.2 (Figure 5a, 5b). In 419 

both the sites, a logarithmic response of ga to Da was evident in both the models, where ga 420 

increased with increasing Da and became asymptotic after Da exceeded 25 hPa. The pattern of 421 

dTs-a versus ga was linear to exponential in both the models. However, marked differences in the 422 

magnitude of ga between CLM5.0 and STIC1.2 was found in FR-Pue, although significantly high 423 

correlation between the two ga estimates was found in both the sites (r = 0.75 – 0.80). The 424 

differences in absolute magnitude of ga between the two models is presumably due to the 425 

differences in the model structure. While ga estimation in CLM5.0 is based on the Monin-426 

Obukhov Similarity Theory involving corrections due to atmospheric stability, parameterization 427 

of surface roughness lengths, estimation of ga in STIC1.2 is based on LST and environmental 428 

variables without involving any atmospheric sub-models. However, the significant correlation 429 

between the two ga estimates and their responses to soil/atmospheric drought metrics signifies 430 

the need of unified and common approach of aerodynamic conductances in both prognostic and 431 

diagnostic models to understand the differences in surface energy balance flux prediction. A 432 

possible solution to address this challenge could be the implementation of data-driven techniques 433 
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for the calculation of both ga and gcs (e.g., ElGhawi et al., 2023) in both prognostic and 434 

diagnostic approaches for modelling evapotranspiration. 435 

 436 

(a) FR-Pue 

 
 

(b) NL-Loo 

 

(c) FR-Pue 

 

(d) NL-Loo 

 
Figure 5. Response of retrieved ga to LST air temperature difference (dTs-a) and atmospheric vapor 
pressure deficit (Da) representing soil and atmospheric drought proxy, respectively, for (a) FR-Pue and (b) 

NL-Loo. Comparison between STIC1.2-derived ga and CLM5.0 ga for a broad spectrum of water stress 

simulated by CLM5.0 for (c) FR-Pue and (d) NL-Loo. 
 437 

3.3 Factor controlling conductances and fluxes in the models 438 

To substantiate our findings from the previous sections, we further investigated the 439 

relationship of the individual conductances and surface energy balance fluxes as final model 440 

output with a host of environmental and surface variables by performing a partial least square 441 

regression (PLSR) analysis for the scenario-1 (Figure 6). If the Variable Importance in 442 

Projection (VIP) score exceeds a value of 0.8, the variable is considered to play an important role 443 

in determining the magnitude and variability on ga, gcs, LE and H, respectively (Trebs et al., 444 

2021).  445 

 446 

0 0
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(a) FR-Pue (CLM5.0) 

 
 

(b) FR-Pue (STIC1.2) 

 

(c) NL-Loo (CLM5.0) 

 

 
 

(d) NL-Loo (STIC1.2) 

 

 
 

Figure 6. Radar charts of the Variable Importance in Projection (VIP) scores for aerodynamic and 
canopy-stomatal conductance (ga and gcs) estimated from CLM5.0 and STIC1.2 with respect to 

environmental, hydrological and land surface variables for both FR-Pue and NL-Loo. Here Rg is the 

shortwave radiation, Ta is the air temperature, Da is the atmospheric vapor pressure deficit, U is the 
wind speed, SWC is the soil water content, LST is the land surface temperature, LAI is the leaf area 

index, and u* is the friction velocity, respectively. 
 

The results from the PLSR analysis indicated that for CLM5.0, while the shortwave 447 

radiation (Rg) and wind speed (U) has a major impact on the aerodynamic conductance, the gcs is 448 

mainly regulated by Rg, Da and simulated soil water content (SWC) in both the sites. Whereas 449 

for STIC1.2, while the effects of Rg and LST was maximum on ga, the variations in gcs were 450 

maximally impacted by LST, Da and air temperature (Ta), respectively. The influence of Rg on 451 

the modeled gcs in STIC1.2 apparently had minor importance. This could be due the fact that the 452 

effects of Rg is already accounted in the air temperature signal and no additional effects of Rg 453 

was noted. On the other hand, the large influence of Rg to gcs in CLM5.0 could presumably be 454 

explained by the coupled photosynthesis-stomata conductance model where photosynthetically 455 

active radiation is directly used to solve the system of equations for sunlit and shaded leaves.  456 
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a. FR-Pue  
  

  

b. FR-Pue  
  

  

c. NL-Loo  
  

  

  

d. NL-Loo  
  

  

  

Figure 7. Radar charts of the Variable Importance in Projection (VIP) scores for latent and 
sensible heat fluxes (LE and H) estimated from CLM5.0 and STIC1.2 with respect to 

environmental, hydrological and land surface variables for both FR-Pue and NL-Loo. Here Rg is 

the shortwave radiation, Ta is the air temperature, Da is the atmospheric vapor pressure deficit, U 
is the wind speed, SWC is the soil water content, LST is the land surface temperature, LAI is the 

leaf area index, and u* is the friction velocity, respectively. 

 457 

Another interesting feature emerging from the VIP analysis is the relatively stable 458 

importance of Da in STIC1.2 to explain gcs response across the two sites. In CLM5.0, the 459 

importance of Da clearly increases in NL-Loo due to the marginal role played by SWC due to 460 

continuous supply of plant available water in this ecosystem. Finally, both STIC1.2 and CLM5.0 461 

show an increasing importance of LAI to explain gcs when moving from broadleaf evergreen 462 

trees (i.e., FR-Pue) to needleleaf evergreen trees (i.e., NL-Loo). 463 

 464 

Similar analysis with the surface energy balance fluxes indicated that for CLM5.0, while 465 

Rg has the major impact on the sensible heat flux; Rg, Ta, SWC, and simulated LST was found to 466 
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have substantial control on the variability in LE in both the sites. For STIC1.2, despite the same 467 

pattern was found for sensible heat flux, however, the variability of LE was significantly 468 

controlled by Rg, Da, and LST. It is also worth mentioning that the effects of the environmental 469 

variables were substantially stronger on the conductances as compared to the surface energy 470 

balance fluxes. This PLSR analysis further emphasizes the fact that for using model and satellite-471 

based evaporation as a water cycle predictor, we not only need to capture the magnitude and 472 

variability of the biophysical conductances, but we need consensus models that will explain the 473 

effects of complex coalition of soil and atmospheric drought on the conductances. However, this 474 

is a non-trivial problem and too often such complexities are tackled with over simplified or over-475 

parameterized models involving too many calibrations that do not consider the interactions and 476 

feedbacks (whether negative or feedforward) that are observed in nature. 477 

5 Conclusions and Future Implications 478 

The study critically evaluates the evaporation response and the inherent biophysical 479 

conductances, namely stomatal and aerodynamic, simulated by a diagnostic non-parametric 480 

thermal remote sensing model (i.e., STIC1.2) and by a prognostic state-of-the-art land surface 481 

model (i.e., CLM5.0). We implemented a virtual reality experimental framework to understand 482 

the conjugate effects of soil and atmospheric drought on the response of these two conductances 483 

that have significant impact in modulating evaporation. In this framework, the two models share 484 

the same upper (i.e., atmospheric) and lower (i.e., land surface temperature) boundary 485 

conditions. An extended analysis on the comparison of the conductances and fluxes based on 486 

soil-atmospheric water stress factor led us to the following conclusion and the emergent future 487 

implications: 488 

a) Despite the relatively good agreement in the simulated surface energy balance fluxes, the 489 

two models show substantial divergence in reproducing the magnitude and variability of 490 

the aerodynamic and stomatal conductances. This divergence is explained by the 491 

structural differences in the formulation of plant water stress in two different models, 492 

which tend to produce very different water stress conditions in two contrasting forest 493 

sites despite the two models had the same land surface temperature and vapor pressure 494 

deficit conditions. 495 

b) Analysis of the individual biophysical conductances revealed that the profound 496 

differences in the magnitude and response of stomatal and aerodynamic conductance was 497 

not only associated with the water stress factor, but also due to different functional 498 

representation of the individual conductances in two different models. The differences in 499 

the functional representation led to very different response of the aerodynamic and 500 

stomatal conductances to soil and atmospheric drought in the models. 501 

c) The magnitude and variability of the aerodynamic conductance of CLM5.0 is largely 502 

explained by wind speed and solar radiation across the two selected sites, while in 503 

STIC1.2 it is mainly influenced by solar radiation and a larger host of variables including 504 

Da, LST, and Ta. On the other hand, the magnitude and variability of stomatal 505 

conductance is explained by solar radiation, Da, and soil water content in CLM5.0, and 506 

by Da, Ta, and LST in STIC1.2.  507 

d) The substantial differences in water stress estimation and in the biophysical conductances 508 

led to differences in evaporative flux estimates of CLM5.0 and STIC1.2. These 509 

differences are larger for LE and for the more humid site of NL-Loo.  510 
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Our study results have important implications for both the remote sensing and the land surface 511 

community, highlighting the need for an in-depth comparison of different modelling approaches 512 

to understand their biases and uncertainty. More specifically, the findings of our work suggest 513 

the need of a unified approach in the treatment of the biophysical conductances with respect to 514 

their responses to water stress in the two very diverse modelling community for achieving a 515 

more robust multi-model assessment of the evaporation fluxes. 516 
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Introduction  

The Supporting Information document contains additional results of the numerical 

experiments of scenario-1 and scenario-2 described in the main text. Figure S1 shows the 

comparison of H between CLM5.0 and virtual reality STIC1.2 (STIC1.2-CLM5.0) (scenario-

1) and between CLM5.0 STIC1.2 driven with MYD21 LST. Results are compared over the 

range of β values simulated by CLM5.0 ranging from 0 (fully stressed conditions to 1 

(unstressed conditions). Figure S2 presents the comparison of the difference between Ism 

(water stress factor of STIC1.2) and β with CLM5.0 and MYD21 LST. Results are over the 

range of Da, which is a proxy of atmospheric drought conditions. 
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(a) 
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Figure S1. Comparison between STIC1.2 simulated sensible heat flux (H) with respect to 

the virtual reality (scenario-1) for a range of CLM5.0 simulated beta factor (β) over two 

different forest sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3 

 

 

 

 

 

(a) FR-Pue (scenario-1) 

  

(b) NL-Loo (scenario-1) 

  
(c) FR-Pue (scenario-2) 

  

(d) NL-Loo (scenario-2) 

  

Figure S2. Scatterplots of the difference between of water stress factor between STIC1.2 

and CLM5.0 (Ism - β) versus CLM5.0 LST for a range of atmospheric vapor pressure deficit 

(Da) over two different forest sites for both scenario-1 and scenario-2. In scenario-2, ISM 

was generated from MYD21 LST. 

 

 

 

 


