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Abstract

Despite increasing exposure to flooding and associated financial damages, estimates suggest more than two-thirds of flood-

exposed properties are currently uninsured. This low adoption rate could undermine the climate resilience of communities and

weaken the financial solvency of the United States National Flood Insurance Program (NFIP). We study whether repeated

exposure to flood events, especially disaster-scale floods expected to become more frequent in a warming climate, could spur

insurance adoption. Using improved estimates of residential insurance take-up in locations where such insurance is voluntary,

and exploiting variation in the frequency and severity of flood events over time, we quantify how flood events impact local

insurance demand. We find that a flood disaster declaration in a given year increases the take-up rate of insurance by 7% in

the following year, but the effect diminishes in subsequent years and is gone after five years. This effect is more short-lived in

counties in inland states that do not border the Gulf and Atlantic coasts. The effect of a flood on takeup is substantially larger

if there was also a flood in the previous year. We also find that recent disasters are more salient for homeowners whose primary

residences are exposed to a disaster declaration compared to non-primary residences. Our results provide a more comprehensive

understanding of the salience effect of flooding on insurance demand compared to previous studies. Overall, these findings

suggest that relying on households to self-adapt to increasing flood risks in a changing climate is insufficient for closing the

insurance protection gap.
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Key Points: 7 
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Abstract 13 

Despite increasing exposure to flooding and associated financial damages, estimates suggest more 14 
than two-thirds of flood-exposed properties are currently uninsured. This low adoption rate could 15 
undermine the climate resilience of communities and weaken the financial solvency of the United 16 
States National Flood Insurance Program (NFIP). We study whether repeated exposure to flood 17 
events, especially disaster-scale floods expected to become more frequent in a warming climate, 18 
could spur insurance adoption. Using improved estimates of residential insurance take-up in 19 
locations where such insurance is voluntary, and exploiting variation in the frequency and severity 20 
of flood events over time, we quantify how flood events impact local insurance demand. We find 21 
that a flood disaster declaration in a given year increases the take-up rate of insurance by 7% in 22 
the following year, but the effect diminishes in subsequent years and is gone after five years. This 23 
effect is more short-lived in counties in inland states that do not border the Gulf and Atlantic coasts. 24 
The effect of a flood on takeup is substantially larger if there was also a flood in the previous year. 25 
We also find that recent disasters are more salient for homeowners whose primary residences are 26 
exposed to a disaster declaration compared to non-primary residences. Our results provide a more 27 
comprehensive understanding of the salience effect of flooding on insurance demand compared to 28 
previous studies. Overall, these findings suggest that relying on households to self-adapt to 29 
increasing flood risks in a changing climate is insufficient for closing the insurance protection gap.  30 

1 Introduction 31 

Roughly 90% of all natural disasters in the United States involve flooding (Wright, 2017). Just one 32 
inch of flooding can cause $25,000 in damages to a home, causing long-term financial setbacks 33 
for both uninsured and underinsured households (FEMA, n.d.-e). Despite the increasing cost of 34 
flood-related damages (Davenport et al., 2021) and the increasing exposure outside Federal 35 
Emergency Management Agency (FEMA) designated 100-yr floodplains, only a third of 14.6 36 
million flood-exposed properties currently at risk are insured (FEMA, n.d.-d; First Street 37 
Foundation, 2020). In addition, an estimated 41 million people are exposed to flooding, three times 38 
greater than the 13 million estimated by FEMA flood maps (Wing et al., 2018).  39 

FEMA has traditionally relied on flood zone designations to mandate insurance adoption in areas 40 
facing substantial flood risk, which are defined as areas exposed to flood events that have a 1% or 41 
greater chance of occurrence each year. These areas are designated as “Special Flood Hazard 42 
Areas” (SFHA), where flood insurance has been mandatory for properties secured by government-43 
insured mortgages since 1973. Areas outside the SFHA are called “non-Special Flood Hazard 44 
Areas” (nSFHA), where flood insurance is not mandated.  45 

However, properties in nSFHA zones are increasingly at risk of flooding due to climate change, 46 
with predictions that overall flood risk will increase by 26% by 2050 in a moderate emissions 47 
scenario (Wing et al., 2018, 2022). An increasing share of flood damage claims have been made 48 
in nSFHA zones in recent years, with more than a third of total flood insurance claims filed by 49 
nSFHA residents in 2020 (FEMA, n.d.-d) (see Fig. S1b). Meanwhile, insured flood damages from 50 
both SFHA and nSFHA zones have covered only a small fraction of total damages historically 51 
(Fig. S1a). These trends point towards a clear and increasing insurance protection gap, especially 52 
when accounting for increasing flood risks in locations where insurance is not mandated. The low 53 
insurance coverage relative to overall flood risks, compounded by underpriced risk premia and 54 
damage claims following catastrophic hurricane events, has weakened the financial solvency of 55 
FEMA’s National Flood Insurance Program (NFIP) (US GAO, 2023).  56 
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Given the increasing frequency and severity of extreme flood events (Davenport et al., 2021; A. 57 
B. Smith, 2020; Swain et al., 2020) (see Fig. S2) that are impacting more households in nSFHA 58 
zones, we ask whether households might autonomously adapt by purchasing insurance. 59 
Autonomous adaptation refers to adaptation that occurs “naturally” by the initiative of private 60 
actors in response to actual or anticipated climate change (Klein et al., 1999; Leary, 1999; Smit et 61 
al., 2000; J. B. Smith & Lenhart, 1996). This is distinguished from planned adaptation, which 62 
results from a deliberate policy decision (IPCC, 2007). Understanding autonomous adaptation is 63 
important to ensure that governance structures and other planned adaptation interventions are 64 
complementary (Mersha & van Laerhoven, 2018; Rahman & Hickey, 2019). 65 

Previous literature found that insurance take-up spikes after disaster declarations (Browne & Hoyt, 66 
2000; Gallagher, 2014; Kousky, 2017). However, because these studies do not distinguish between 67 
take-up rates in SFHA versus nSFHA zones, a significant portion of the identified take-up response 68 
may be due to the requirement that households in SFHA zones must purchase insurance if they 69 
request post-disaster financial assistance (Kousky, 2017).  70 

New data released by NFIP in 2019 provides information about flood zones at the policy level, 71 
allowing researchers to isolate the take-up response in nSFHA zones (Dombrowski et al., 2020). 72 
One recent study estimating the voluntary response concludes that a major flood declaration 73 
increases insurance demand in nSFHA zones by less than 0.5 percentage points, and that the 74 
greatest increase in take-up rate occurs two years after a major disaster declaration (Bradt et al., 75 
2021). The finding that demand for insurance spikes in the aftermath of disasters is in line with 76 
broader literature in behavioral science, where experiments have shown that people tend to neglect 77 
low-probability, high-impact events (Botzen & van den Bergh, 2012), but that emotional salience 78 
may inflate the risk perception of events (Keller et al., 2006; Slovic et al., 2004). While differences 79 
in risk perception owing to past flood experience can predict voluntary insurance take-up (Royal 80 
& Walls, 2019), this effect attenuates as catastrophic events fade from memory (Dumm et al., 81 
2020). Salience effects have also been confirmed in studies investigating the impact of hurricane 82 
events on residential property sales (Bakkensen et al., 2019), cash holding behavior of firms 83 
(Dessaint & Matray, 2017), and the influence of social interactions with geographically-distant 84 
peers who have experienced floods (Hu, 2022). 85 

Understanding how exposure to flood events drives insurance adoption in voluntary settings is 86 
essential for informing policies for improving community resilience to flood risk. In this study, we 87 
use an improved measure of voluntary take-up rates to investigate how households respond to 88 
large, disaster-scale flood events compared to non-disaster-scale events. We also investigate 89 
whether experiencing consecutive disaster events spurs additional insurance demand, and how 90 
these responses might be mediated by different baseline levels of risk perception and other 91 
household characteristics. The voluntary setting allows us to explicitly measure the autonomous 92 
adaptation behavior of households, which in turn can inform future estimates of uncovered flood 93 
risks in a changing climate and the design of complementary policies to reduce these risks.  94 

2 Materials and Methods 95 

In this study, we use insurance data from the U.S. NFIP, flood events data from the National 96 
Oceanic and Atmospheric Administration (NOAA), disaster declarations and flood maps from 97 
FEMA to quantify how exposure to flooding motivates insurance demand among households. We 98 
distinguish between the impact of experiencing non-disaster scale floods versus experiencing a 99 
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flood that leads to a major disaster declaration, as well as the impact of experiencing disaster 100 
declarations in two consecutive years. In addition, we consider how a disaster declaration 101 
differentially impacts insurance take-up at the census tract level. To isolate the impact of flooding 102 
from other determinants of insurance take-up, we estimate panel regression models that exploit 103 
variation in the frequency and severity of flood events over time in specific locations.  104 

2.1 Constructing the Panel Data 105 

Combining data on insurance policies (FEMA, n.d.-d), population (U.S. Census Bureau, n.d.), 106 
floodplain maps (FEMA, n.d.-c), and household point coordinates (Corelogic), we estimate the 107 
annual residential insurance take-up rate in non-SFHA zones. First, we estimate the annual 108 
“policies-in-force”, or the number of total policies that were newly purchased or renewed in a 109 
given year. We follow Kousky (2017) and Bradt et al (2021) in utilizing this metric as representing 110 
the coverage rate, or annual take-up rate, since NFIP policies are 1-year term policies that do not 111 
automatically renew, and new policies take 30 days to go into effect. The NFIP dataset provides 112 
data at the policy level, including the policy cost, coverage, and flood zone for each policy. As the 113 
publicly available NFIP dataset starts in 2009, we extend this to 2005 using additional NFIP data 114 
obtained through the Freedom Of Information Act (request 2022-FEFO-00527).  115 
 116 
To estimate insurance take-up behavior when it is voluntary, we consider only policies in nSFHA 117 
zones. In SFHA zones, insurance is mandated for households with a government-backed mortgage. 118 
After a presidential disaster declaration, households in an SFHA zone that request financial 119 
assistance are automatically enrolled in a Group Flood Insurance Policy (GFIP) for three years. 120 
There is no such mandatory enrollment in place for households in non-SFHA areas.  121 
 122 
For a more accurate measure of the voluntary insurance take-up rate, we calculate the number of 123 
policies-in-force (PIF) among households located in nSFHA zones at the tract level. The estimate 124 
of households located in nSFHA zones is derived in two steps. First, the point coordinates of 125 
unique residential property records from Corelogic are spatially joined to FEMA floodplain maps 126 
to calculate the percentage of properties that fall within nSFHA zones at the tract level. Given that 127 
75% of FEMA flood maps were created before 2013 and do not update frequently (Eby, 2019; 128 
Frank, 2020), we take the floodplain boundaries in the latest available flood maps (downloaded 129 
from the FEMA Map Service Center, as of July 2022) to estimate the percentage of properties 130 
located in nSFHA zones. Here the assumption is that updates to flood maps do not significantly 131 
change the number of properties affected. Second, these percentages are applied to annual data on 132 
total household count provided by the five-year American Community Surveys (ACS5). This is 133 
because the residential property records provided by Corelogic do not account for whether 134 
properties are occupied, while the ACS5 data allows us to account for the increasing population 135 
over time. Here the assumption is that population increase is on average equally distributed across 136 
SFHA and nSFHA zones. Finally, we divide annual policies-in-force by the estimate of residential 137 
properties in nSFHA zones to construct the annual take-up rate. Based on these calculations, 138 
annual take-up rates are highest along the Gulf and Atlantic coast (Fig. 1a).  139 
 140 
 141 
 142 
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 143 
Figure 1. NFIP policies-in-force in non-SFHA zones and exposure to flood events at the county-level. a) average 144 
ratio of NFIP policies in force (2005 - 2020), in nSFHA zones. b) annual average of total flood events recorded (2005 145 
- 2020). c) total number of years with at least one major flood disaster declaration in the county (2005 - 2020). 146 
 147 
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Not all US counties are covered by FEMA flood maps, as mapping efforts have focused primarily 148 
on counties with moderate population density (Association of State Floodplain Managers, n.d.). 149 
FEMA flood maps cover 57% of the territory of the 50 US states, but 93.6% of the population 150 
(Qiang, 2019). In our analysis, we additionally filter for counties in the contiguous US where more 151 
than 50% of residential properties are accounted for within flood mapped areas, leading to a final 152 
sample of 2,392 counties out of 3,108 total counties, accounting for 94% of the CONUS population 153 
(Fig. S3).  154 
 155 
We use NOAA’s Storm Events Database to estimate the total number of flood-related events for 156 
each county-year, and FEMA’s Disaster Declaration dataset to count the number of floods that 157 
resulted in a major disaster declaration for each county-year (Fig. 1b, 1c). NOAA’s Storm Events 158 
Database records the occurrence of storms and other significant weather phenomena across a 159 
variety of sources, including newspapers and broadcast media, law enforcement, park and forest 160 
service, trained spotters, Automated Surface Observing Systems (ASOS), and citizen science. 161 
From this dataset, we include: "Flash Flood", "Flood", "Heavy Rain", "Coastal Flood", "Storm 162 
Surge/Tide", "Tropical Storm", "Lakeshore Flood", "Hurricane (Typhoon)".  163 
 164 
We distinguish between disaster-scale flood events that trigger a Presidential Disaster Declaration 165 
and all other non-disaster-scale flood events recorded in the NOAA dataset, to capture how 166 
different types of flood events may differentially affect insurance demand. There are two levels of 167 
presidential declarations: emergency declarations and major disaster declarations. While both 168 
authorize federal assistance, the total amount of assistance provided for any emergency event is 169 
capped at $5 million, whereas a major declaration provides significantly more funding once it is 170 
determined that the situation is beyond the State and local government’s combined capacity to 171 
respond. Events may trigger both emergency declarations and major disaster declarations, but not 172 
all emergency declarations lead to a major disaster declaration. We capture only the major disaster 173 
declarations from the FEMA Presidential Declarations dataset, and the type of flood events 174 
include: "Flood”, “Hurricane”, “Typhoon”, “Coastal storm”.  175 
 176 

2.2 Panel Regression Model 177 

We employ a panel regression with two-way fixed effects to estimate the causal effect of flood 178 
experience on insurance demand. The county-level panel data that we construct allows us to 179 
estimate the salience effect of disaster-scale floods (i.e., those with a major disaster declaration) 180 
and frequent minor flooding on insurance take-up rates:  181 
 182 

𝑙𝑜𝑔(𝑡𝑎𝑘𝑒𝑢𝑝	𝑟𝑎𝑡𝑒)!" = /0	𝛽	$,"&'	𝑓𝑙𝑜𝑜𝑑𝑐𝑜𝑢𝑛𝑡!,"&' + 	𝛽(,"&'𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!,"&'9 + 𝛼! 	+ 𝛿" + 𝜖!"

'

"	)	*

			(Eq. 1) 183 

 184 
where 𝑡𝑎𝑘𝑒𝑢𝑝	𝑟𝑎𝑡𝑒 is the share of households that take-up flood insurance in county 𝑖 and year 𝑡, 185 
𝑓𝑙𝑜𝑜𝑑𝑐𝑜𝑢𝑛𝑡 is the number of floods that occurred in year t, and 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 is a dummy for whether 186 
there was a major flood event that triggered a presidential disaster declaration in that year. We 187 
introduce lags of up to 7 years to quantify how floods experienced 𝑡 − 𝑛 years prior affect the 188 
outcome at year 𝑡. 𝛼 and 𝛿 are county and year fixed effects, allowing us to plausibly isolate the 189 
impact of variation in flood exposure from other time-invariant and time-trending factors that may 190 
be correlated with both the flood exposure and the outcome that we are measuring. These panel 191 
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estimators are commonly used in literature that measures human response to environmental 192 
change, and can deliver plausibly causal estimates of environmental impacts when within-location 193 
change in environmental risk over time (e.g. year to year variation in location-specific flooding) is 194 
uncorrelated with other drivers of the outcome in question. Standard errors are clustered at the 195 
county-level, to adjust for correlations in residuals within counties. After accounting for time 196 
trends and average differences across counties, remaining variation in flood frequency and severity 197 
is plausibly random, and thus we can infer that flood insurance adoption may be attributed to the 198 
flood experience.  199 
 200 
The model above does not account for whether consecutive disaster years may be increasing the 201 
likelihood of insurance take-up. To isolate this potential consecutive effect, we employ the 202 
following interaction model to test whether the insurance take-up response to a disaster at time t 203 
is greater if there was also a disaster the previous year (t-1). If there is a positive consecutive effect, 204 
this would be captured in the interaction estimate 	𝛽	". 205 
 206 
𝑙𝑜𝑔(𝑡𝑎𝑘𝑒𝑢𝑝	𝑟𝑎𝑡𝑒)!" = 	𝛽	$,"𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!," + 	𝛽(,"&$𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!,"&$ + 	𝛽	+𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!," ∗ 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!,"&$ + 𝛼! 	+ 𝛿" + 𝜖!" 207 

(Eq. 2a) 208 
 209 
In addition, we test whether the occurrence of consecutive disaster events in the past further 210 
increases the insurance take-up response. To do this, we add a new variable to the dataset, where 211 
𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟_𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 is a dummy for every year where there was also a disaster flood in the 212 
previous year.  213 

log(𝑡𝑎𝑘𝑒𝑢𝑝	𝑟𝑎𝑡𝑒)!" = /0	𝛽		"&'𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟_𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒!,"&'9 + 𝛼! 	+ 𝛿" + 𝜖!"

'

"	)	*

				(Eq. 2b) 214 

 215 
Finally, we consider insurance take-up rates at the census tract level to understand how the level 216 
of insurance take-up in response to disaster-scale flooding is different based on the type of 217 
exposure to homeowners and renters including whether the risk saliency of disaster floods is 218 
different among homeowners whose primary residence is within the same county where a disaster 219 
is declared. Since disaster floods are observed at the county-level, our model assigns flood 220 
exposure treatment to all census tracts within a county where a presidential disaster is declared. 221 
Here our panel data starts in 2010 to preserve a uniform set of census tracts, as census tract 222 
boundaries are updated every ten years. As in Equation 1, we introduce lags of up to 7 years to 223 
quantify how floods experienced 𝑡 − 𝑛 years prior affect the outcome at year 𝑡 (Eq. 3a). 224 
Additionally, we test whether the cost burden of insurance premiums mediates the take-up 225 
response. We calculate the cost burden of insurance within each census tract as the average 226 
insurance premium divided by household median income over the study period (based on NFIP 227 
data), and assign a dummy for tracts where the cost burden is greater than our calculated  national 228 
median cost burden of 1% for homeowner policies and 0.3% for renter policies (Eq. 3b).  229 
 230 

log(𝑡𝑎𝑘𝑒𝑢𝑝	𝑟𝑎𝑡𝑒)!" = /0	𝛽		"&'𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!,"&'9
'

"	)	*

+ 𝛼! 	+ 𝛿" + 𝜖!"						(𝐸𝑞. 3𝑎) 231 

 232 
𝑙𝑜𝑔(𝑡𝑎𝑘𝑒𝑢𝑝	𝑟𝑎𝑡𝑒)!" 	= 	𝛽#,"𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!,"%# 	+ 	𝛽	',"	𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!,"%# ∗ 𝑐𝑜𝑠𝑡𝑏𝑢𝑟𝑑𝑒𝑛_𝑑𝑢𝑚𝑚𝑦! 	+ 𝛼! 	+ 𝛿" + 𝜖!"			(𝐸𝑞. 3𝑏) 233 
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3 Results 234 

The estimated relationship between flooding and insurance demand is shown in Figure 2. We 235 
estimate that a disaster declaration in the year prior (t-1) has the greatest impact on take-up, with 236 
an average 7% increase in the take-up rate (95% CI: 5.4% - 8.5%). Declarations occurring further 237 
back in time have a diminishing impact on take-up, and after five years (t-5) this impact is no 238 
longer significant. Meanwhile, experiencing any other flood event has a very small but consistently 239 
positive and significant impact on insurance demand. By way of comparison, the increase in take-240 
up rate in a county in response to a major disaster declaration the previous year is equivalent to the 241 
response in a county that experiences forty non-disaster-scale flood events in the previous year 242 
(Fig. 2).  243 

 244 
Figure 2. Estimated salience effect of flooding on insurance demand. The estimated relationship between a major 245 
flood disaster declaration versus any additional flood from previous years on insurance take-up in the current year (t) 246 
(Eq 1). Shaded regions represent the confidence intervals for each coefficient estimate.  247 
 248 
Baseline take-up rates differ considerably depending on whether the county is located along the 249 
Gulf and Atlantic coasts (Table S1). To account for differing levels of baseline risk perception, we 250 
divide the sample into three main subsets: counties in non-hurricane exposed states (baseline take-251 
up rate: 0.6%), coastal counties in hurricane-exposed states (7.8%), and inland counties in 252 
hurricane-exposed states (0.7%). We find that in non-hurricane states, the take-up rate increases 253 
by 9-12% in response to a disaster declaration in the concurrent year (95% CI: 9.1%-14.7%) or 254 
one year prior (95% CI: 6.1% - 11.4%) (Fig. 3a). In contrast, hurricane states have a smaller 255 
increase in the take-up rate (2.5% - 5.4%), but this response is driven by disaster declarations from 256 
up to five years prior (Fig. S4). However, given the low average baseline take-up rates in non-257 
hurricane exposed states, these model estimates translate to overall fewer additional policies in 258 
non-hurricane exposed counties compared to coastal counties (Fig. S4). For instance, a disaster 259 
flood in one year prior would drive >10 additional policies in 8 counties in non-hurricane states, 260 
versus 59 counties in hurricane coastal counties.  261 
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 262 
Figure 3. Salience effect of experiencing consecutive disaster years. A) Estimated impact of two recent consecutive 263 
disaster flood years on insurance take-up (Eq 2a). B) Grey indicates policies attributed to a disaster declaration at time 264 
t, red indicates the predicted additional take-up in counties that also experienced a disaster declaration at time t-1. 265 
Coefficient estimates are detailed in S4. C) Comparison of the estimated impact of disaster declaration on insurance 266 
take-up for counties that never experienced consecutive disaster years during 1998-2020 (i.e., only were exposed to 267 
non-consecutive disasters), and the impact of a consecutive year of disaster among counties that experienced 268 
consecutive disaster years (Eq 2b).  269 
 270 
 271 
 272 
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We also test whether disaster declarations in two consecutive years may further increase the 273 
likelihood of insurance take-up, relative to our baseline model that assumes that the effect of a 274 
flood on take-up in one year is not influenced by whether there was a flood in the previous year 275 
(Eq. 2, Fig. 3a). We find that consecutive disaster declarations roughly double the take-up rate on 276 
average (i.e., the effect of a flood on take-up in a given year is twice as large if there was also a 277 
flood in the year prior). The take-up rate increases by 6% in response to a disaster declaration one 278 
year prior (95% CI: 4.6% - 7.5%), and further increases by 6% when there is another disaster 279 
declaration in the concurrent year (95% CI: 1.8% - 9.6%). While the consecutive effect is positive 280 
across all county subsets, the response is strongest in counties in non-hurricane states, where the 281 
take-up rate increases an additional 24% due to a consecutive disaster declaration, nearly tripling 282 
the take-up response. However, when we account for differing baseline take-up rates across the 283 
county subsets, the number of additional policies due to a consecutive disaster year is predicted to 284 
be greatest in hurricane coastal counties (Fig. 3b). For example, 13% of hurricane coastal counties 285 
are predicted to gain >100 policies due to two consecutive disaster years. Compared to counties 286 
that never experienced consecutive disaster years in the past, the estimated insurance take-up 287 
response can be up to two times greater in counties experiencing consecutive disaster years (Fig. 288 
2c).  289 
 290 
Finally, we test for heterogeneity in the take-up response across policy types at the census tract 291 
level. We find that among homeowners, the salience effect of a disaster flood in year t-1 in terms 292 
of insurance policy take-up is around 5.5 percentage points greater for primary residences 293 
compared to non-primary residences (Fig. 4A). A higher relative cost burden of insurance 294 
(calculated as tracts where the average insurance premium is greater than 1% of household median 295 
income) decreases the take-up response for primary residence policies by 3.8 percentage points, 296 
whereas the cost burden of insurance does not significantly impact the take-up response for non-297 
primary residence policies (Fig. 4B). The salience effect of flooding on renter policies are 298 
visualized separately in Figure 4C as renters have significantly lower baseline adoption rates than 299 
among homeowners. Among renter policies, higher relative cost burden does not significantly 300 
decrease the take-up response (Fig. 4D). (The classification method for these policy types are 301 
detailed in Table S2, and a histogram of policy counts across each policy type is shown in Fig. 302 
S5.) 303 
 304 
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 305 
Figure 4. Estimated take-up response across policy types. A) The estimated impact of major flood disaster 306 
declarations (t-n) on insurance take-up at year t, comparing the response for policies that are purchased for primary 307 
residences and non-primary residences. B) Comparison of the estimated insurance take-up in response to a disaster 308 
declaration at year t-1 (shaded gray in panel A), for census tracts where the cost burden of insurance (calculated as the 309 
average policy cost divided by household median income) is above or below the national average (1%). C) As in panel 310 
A, for renter policies. D) As in panel B, for renter policies. Cost burden of insurance is adjusted to reflect the average 311 
cost of renter policies (0.3% of median income). 312 
 313 

4 Discussion 314 

We find that although households do respond to disaster-scale flood events by adopting insurance, 315 
this response is small, short-lived, and differential across baseline exposure to disaster-scale 316 
events. On average, county-level insurance take-up rates increase by 7% in response to a disaster-317 
scale flood event in the previous year, but this increase is not sustained over time. Declarations 318 
occurring further back in time have a diminishing impact on take-up, consistent with previous 319 
studies (Bradt et al., 2021; Gallagher, 2014; Kousky, 2017).  320 
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 321 
One reason for the diminishing take-up response may be that NFIP policies are one-year term 322 
policies that do not renew automatically (FEMA, n.d.-a). As a result, households responding to a 323 
disaster-scale flood event by purchasing insurance in one year may decide not to renew the policy 324 
the following year once the flood event is less salient. This hypothesis is supported by evidence 325 
that individuals tend to overweight the probability of a catastrophic event immediately after it has 326 
occurred (Dumm et al., 2020), and that risk perception of future damages is a robust determinant 327 
of flood insurance take-up (Landry & Turner, 2020).  328 
 329 
However, our results also show that the take-up rate response curve differs across counties with 330 
different baseline take-up rates. In counties in non-hurricane-exposed states where baseline take-331 
up rates are low (0.58% compared to 10% in hurricane coastal counties), a disaster-scale flood 332 
may trigger a proportionally greater––but much more short-lived––demand response in 333 
comparison to coastal counties in hurricane-exposed states. A similar pattern is observed for 334 
consecutive disaster-scale floods, where the increase in insurance demand is proportionally 335 
greatest in counties in non-hurricane states. We also show that the type of exposure (e.g. whether 336 
the disaster declaration impacted a primary residence or a non-primary residence) plays a role in 337 
mediating the post-disaster demand response. Further work is needed to understand how baseline 338 
risk perception and household capacity to respond differentially impacts post-disaster risk 339 
perception and insurance demand. 340 
 341 
Meanwhile, flood events that trigger a Presidential Disaster Declaration appear to have a much 342 
larger effect on insurance take-up response than floods that do not reach that threshold. For 343 
instance, the increase in take-up rate in a county in response to a disaster-scale flood is equivalent 344 
to the response in a county that experiences forty non-disaster-scale flood events in the previous 345 
year. The insurance take-up response can be five to nine times greater in counties that experienced 346 
consecutive disaster flood years compared to a county experiencing one independent disaster flood 347 
year (Fig. 3c). Given that climate change is driving the increasing frequency and severity of flood 348 
events associated with greater precipitation levels (Davenport et al., 2021; Kundzewicz et al., 349 
2014; Markonis et al., 2019; Swain et al., 2020), it may be expected that insurance take-up 350 
responses will vary based on flood severity, and how frequently they experience disaster-scale 351 
floods.  352 
 353 
Some other limitations should also be noted. First, our analysis assumes that a presidential disaster 354 
declaration equates “flood experience” for all households within a county, even though not all 355 
residents of a county will experience flooding directly. The result is that our estimates capture the 356 
insurance take-up response of households that may be experiencing the flood through indirect 357 
channels (such as from affected friends, family or other acquaintances, government 358 
communication to residents about the presidential disaster declaration, observing flooding while 359 
in transit or through media exposure, etc). It is plausible that the insurance response among 360 
households directly impacted by flood events may be greater than what we find in this study. 361 
Similarly, the NOAA dataset does not provide information on flood extents. Information on total 362 
flood event count is aggregated at the county level, and we use these data only in our first 363 
regression model (Eq. 1) to compare the insurance take-up response between the disaster-scale 364 
events and all other non-disaster-scale flood events.  365 
 366 
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Finally, this study is limited to measuring insurance demand in nSFHA zones where households 367 
may believe that they are not required to purchase insurance because they are not exposed to flood 368 
risk. This is largely the outcome of NFIP’s reliance on FEMA-designated flood maps to 369 
communicate whether households should purchase insurance. While this policy setting provides a 370 
unique empirical opportunity in that it allows us to isolate insurance take-up when it is voluntary, 371 
it is possible that prior NFIP communication could be contributing to a downward bias in the risk 372 
perception of nSFHA households. One consequence is that the short-lived salience effect identified 373 
in this study may in part be due to the conflicting information with which households are presented 374 
about flood insurance requirements, even when their own experience may suggest otherwise.  375 
 376 
Alternatively, it is possible that well-resourced communities are more likely to undertake 377 
investments that allow them to remain in nSFHA zones and further reduce insurance premiums. If 378 
this were happening at scale, this could mean that our estimates of the low take-up response is 379 
because households believe their communities are well protected from floods, and therefore less 380 
likely to respond to disaster floods by purchasing insurance. On the other hand, our results show 381 
that homeowners are more likely to respond to disaster floods by purchasing insurance if the cost 382 
burden of insurance is lower. Understanding the dynamics that drive the salience effect observed 383 
in this study requires deeper investigation of how different communities perceive flood risk, and 384 
how this perception in turn mediates the decision to purchase insurance in the face of changing 385 
flood risks.  386 
 387 
The growing private flood insurance market raises the possibility that the entry of private players 388 
may help increase overall coverage or lower costs in the future. However, this market is currently 389 
small relative to the NFIP, representing only 3.5-4.5% of all primary residential flood policies in 390 
2018, and it is unclear how many private flood insurance holders are newly insured or are 391 
switching from NFIP policies (Kousky et al., 2018). Private insurers will continue to be selective 392 
in the areas where they will underwrite risk, and will never be able to underwrite in some high-393 
risk areas (Kousky et al., 2018), underscoring the importance of NFIP in closing the flood 394 
insurance protection gap. In the meantime, this gap is currently further exacerbated by a real estate 395 
market that continues to overvalue properties at flood risk (Gourevitch et al., 2023; Hino & Burke, 396 
2021), encouraging development in risky areas.  397 
 398 
The rollout of NFIP’s new premium rating methodology, Risk Rating 2.0, is expected to tailor risk 399 
communication for each household, reducing the reliance on flood zone designation for pricing 400 
risks. Improved understanding of future flood risks may help reduce overoptimism and encourage 401 
households to sustain periodic insurance payments (Meyer & Kunreuther, 2017). Future studies 402 
may take this into account, to test how Risk Rating 2.0 might play a role in driving sustained 403 
insurance demand among households.  404 

5 Conclusions 405 

Our findings are relevant for understanding how changing flood risks will impact flood insurance 406 
demand, and for quantifying the magnitude of autonomous adaptation to climate change. By 407 
exploiting a setting where insurance take-up is voluntary, we investigate how differential 408 
exposures mediate the response of insurance demand to flood events. Our results indicate that the 409 
salience effect of flooding on insurance demand is insufficient to mitigate the increasing flood 410 
insurance protection gap. These findings have implications for designing policies that encourage 411 
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households to maintain coverage at levels commensurate to their true flood risk, especially in 412 
nSFHA flood zones where flood risk is increasing but insurance is not currently mandated. More 413 
generally, our results suggest that in a warming climate where the frequency of multiple 414 
consecutive disaster years is likely to increase, households cannot be expected to autonomously 415 
adapt to increasing hazards by voluntarily purchasing and maintaining insurance coverage.  416 
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Abstract 13 

Despite increasing exposure to flooding and associated financial damages, estimates suggest more 14 
than two-thirds of flood-exposed properties are currently uninsured. This low adoption rate could 15 
undermine the climate resilience of communities and weaken the financial solvency of the United 16 
States National Flood Insurance Program (NFIP). We study whether repeated exposure to flood 17 
events, especially disaster-scale floods expected to become more frequent in a warming climate, 18 
could spur insurance adoption. Using improved estimates of residential insurance take-up in 19 
locations where such insurance is voluntary, and exploiting variation in the frequency and severity 20 
of flood events over time, we quantify how flood events impact local insurance demand. We find 21 
that a flood disaster declaration in a given year increases the take-up rate of insurance by 7% in 22 
the following year, but the effect diminishes in subsequent years and is gone after five years. This 23 
effect is more short-lived in counties in inland states that do not border the Gulf and Atlantic coasts. 24 
The effect of a flood on takeup is substantially larger if there was also a flood in the previous year. 25 
We also find that recent disasters are more salient for homeowners whose primary residences are 26 
exposed to a disaster declaration compared to non-primary residences. Our results provide a more 27 
comprehensive understanding of the salience effect of flooding on insurance demand compared to 28 
previous studies. Overall, these findings suggest that relying on households to self-adapt to 29 
increasing flood risks in a changing climate is insufficient for closing the insurance protection gap.  30 

1 Introduction 31 

Roughly 90% of all natural disasters in the United States involve flooding (Wright, 2017). Just one 32 
inch of flooding can cause $25,000 in damages to a home, causing long-term financial setbacks 33 
for both uninsured and underinsured households (FEMA, n.d.-e). Despite the increasing cost of 34 
flood-related damages (Davenport et al., 2021) and the increasing exposure outside Federal 35 
Emergency Management Agency (FEMA) designated 100-yr floodplains, only a third of 14.6 36 
million flood-exposed properties currently at risk are insured (FEMA, n.d.-d; First Street 37 
Foundation, 2020). In addition, an estimated 41 million people are exposed to flooding, three times 38 
greater than the 13 million estimated by FEMA flood maps (Wing et al., 2018).  39 

FEMA has traditionally relied on flood zone designations to mandate insurance adoption in areas 40 
facing substantial flood risk, which are defined as areas exposed to flood events that have a 1% or 41 
greater chance of occurrence each year. These areas are designated as “Special Flood Hazard 42 
Areas” (SFHA), where flood insurance has been mandatory for properties secured by government-43 
insured mortgages since 1973. Areas outside the SFHA are called “non-Special Flood Hazard 44 
Areas” (nSFHA), where flood insurance is not mandated.  45 

However, properties in nSFHA zones are increasingly at risk of flooding due to climate change, 46 
with predictions that overall flood risk will increase by 26% by 2050 in a moderate emissions 47 
scenario (Wing et al., 2018, 2022). An increasing share of flood damage claims have been made 48 
in nSFHA zones in recent years, with more than a third of total flood insurance claims filed by 49 
nSFHA residents in 2020 (FEMA, n.d.-d) (see Fig. S1b). Meanwhile, insured flood damages from 50 
both SFHA and nSFHA zones have covered only a small fraction of total damages historically 51 
(Fig. S1a). These trends point towards a clear and increasing insurance protection gap, especially 52 
when accounting for increasing flood risks in locations where insurance is not mandated. The low 53 
insurance coverage relative to overall flood risks, compounded by underpriced risk premia and 54 
damage claims following catastrophic hurricane events, has weakened the financial solvency of 55 
FEMA’s National Flood Insurance Program (NFIP) (US GAO, 2023).  56 
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Given the increasing frequency and severity of extreme flood events (Davenport et al., 2021; A. 57 
B. Smith, 2020; Swain et al., 2020) (see Fig. S2) that are impacting more households in nSFHA 58 
zones, we ask whether households might autonomously adapt by purchasing insurance. 59 
Autonomous adaptation refers to adaptation that occurs “naturally” by the initiative of private 60 
actors in response to actual or anticipated climate change (Klein et al., 1999; Leary, 1999; Smit et 61 
al., 2000; J. B. Smith & Lenhart, 1996). This is distinguished from planned adaptation, which 62 
results from a deliberate policy decision (IPCC, 2007). Understanding autonomous adaptation is 63 
important to ensure that governance structures and other planned adaptation interventions are 64 
complementary (Mersha & van Laerhoven, 2018; Rahman & Hickey, 2019). 65 

Previous literature found that insurance take-up spikes after disaster declarations (Browne & Hoyt, 66 
2000; Gallagher, 2014; Kousky, 2017). However, because these studies do not distinguish between 67 
take-up rates in SFHA versus nSFHA zones, a significant portion of the identified take-up response 68 
may be due to the requirement that households in SFHA zones must purchase insurance if they 69 
request post-disaster financial assistance (Kousky, 2017).  70 

New data released by NFIP in 2019 provides information about flood zones at the policy level, 71 
allowing researchers to isolate the take-up response in nSFHA zones (Dombrowski et al., 2020). 72 
One recent study estimating the voluntary response concludes that a major flood declaration 73 
increases insurance demand in nSFHA zones by less than 0.5 percentage points, and that the 74 
greatest increase in take-up rate occurs two years after a major disaster declaration (Bradt et al., 75 
2021). The finding that demand for insurance spikes in the aftermath of disasters is in line with 76 
broader literature in behavioral science, where experiments have shown that people tend to neglect 77 
low-probability, high-impact events (Botzen & van den Bergh, 2012), but that emotional salience 78 
may inflate the risk perception of events (Keller et al., 2006; Slovic et al., 2004). While differences 79 
in risk perception owing to past flood experience can predict voluntary insurance take-up (Royal 80 
& Walls, 2019), this effect attenuates as catastrophic events fade from memory (Dumm et al., 81 
2020). Salience effects have also been confirmed in studies investigating the impact of hurricane 82 
events on residential property sales (Bakkensen et al., 2019), cash holding behavior of firms 83 
(Dessaint & Matray, 2017), and the influence of social interactions with geographically-distant 84 
peers who have experienced floods (Hu, 2022). 85 

Understanding how exposure to flood events drives insurance adoption in voluntary settings is 86 
essential for informing policies for improving community resilience to flood risk. In this study, we 87 
use an improved measure of voluntary take-up rates to investigate how households respond to 88 
large, disaster-scale flood events compared to non-disaster-scale events. We also investigate 89 
whether experiencing consecutive disaster events spurs additional insurance demand, and how 90 
these responses might be mediated by different baseline levels of risk perception and other 91 
household characteristics. The voluntary setting allows us to explicitly measure the autonomous 92 
adaptation behavior of households, which in turn can inform future estimates of uncovered flood 93 
risks in a changing climate and the design of complementary policies to reduce these risks.  94 

2 Materials and Methods 95 

In this study, we use insurance data from the U.S. NFIP, flood events data from the National 96 
Oceanic and Atmospheric Administration (NOAA), disaster declarations and flood maps from 97 
FEMA to quantify how exposure to flooding motivates insurance demand among households. We 98 
distinguish between the impact of experiencing non-disaster scale floods versus experiencing a 99 
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flood that leads to a major disaster declaration, as well as the impact of experiencing disaster 100 
declarations in two consecutive years. In addition, we consider how a disaster declaration 101 
differentially impacts insurance take-up at the census tract level. To isolate the impact of flooding 102 
from other determinants of insurance take-up, we estimate panel regression models that exploit 103 
variation in the frequency and severity of flood events over time in specific locations.  104 

2.1 Constructing the Panel Data 105 

Combining data on insurance policies (FEMA, n.d.-d), population (U.S. Census Bureau, n.d.), 106 
floodplain maps (FEMA, n.d.-c), and household point coordinates (Corelogic), we estimate the 107 
annual residential insurance take-up rate in non-SFHA zones. First, we estimate the annual 108 
“policies-in-force”, or the number of total policies that were newly purchased or renewed in a 109 
given year. We follow Kousky (2017) and Bradt et al (2021) in utilizing this metric as representing 110 
the coverage rate, or annual take-up rate, since NFIP policies are 1-year term policies that do not 111 
automatically renew, and new policies take 30 days to go into effect. The NFIP dataset provides 112 
data at the policy level, including the policy cost, coverage, and flood zone for each policy. As the 113 
publicly available NFIP dataset starts in 2009, we extend this to 2005 using additional NFIP data 114 
obtained through the Freedom Of Information Act (request 2022-FEFO-00527).  115 
 116 
To estimate insurance take-up behavior when it is voluntary, we consider only policies in nSFHA 117 
zones. In SFHA zones, insurance is mandated for households with a government-backed mortgage. 118 
After a presidential disaster declaration, households in an SFHA zone that request financial 119 
assistance are automatically enrolled in a Group Flood Insurance Policy (GFIP) for three years. 120 
There is no such mandatory enrollment in place for households in non-SFHA areas.  121 
 122 
For a more accurate measure of the voluntary insurance take-up rate, we calculate the number of 123 
policies-in-force (PIF) among households located in nSFHA zones at the tract level. The estimate 124 
of households located in nSFHA zones is derived in two steps. First, the point coordinates of 125 
unique residential property records from Corelogic are spatially joined to FEMA floodplain maps 126 
to calculate the percentage of properties that fall within nSFHA zones at the tract level. Given that 127 
75% of FEMA flood maps were created before 2013 and do not update frequently (Eby, 2019; 128 
Frank, 2020), we take the floodplain boundaries in the latest available flood maps (downloaded 129 
from the FEMA Map Service Center, as of July 2022) to estimate the percentage of properties 130 
located in nSFHA zones. Here the assumption is that updates to flood maps do not significantly 131 
change the number of properties affected. Second, these percentages are applied to annual data on 132 
total household count provided by the five-year American Community Surveys (ACS5). This is 133 
because the residential property records provided by Corelogic do not account for whether 134 
properties are occupied, while the ACS5 data allows us to account for the increasing population 135 
over time. Here the assumption is that population increase is on average equally distributed across 136 
SFHA and nSFHA zones. Finally, we divide annual policies-in-force by the estimate of residential 137 
properties in nSFHA zones to construct the annual take-up rate. Based on these calculations, 138 
annual take-up rates are highest along the Gulf and Atlantic coast (Fig. 1a).  139 
 140 
 141 
 142 
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 143 
Figure 1. NFIP policies-in-force in non-SFHA zones and exposure to flood events at the county-level. a) average 144 
ratio of NFIP policies in force (2005 - 2020), in nSFHA zones. b) annual average of total flood events recorded (2005 145 
- 2020). c) total number of years with at least one major flood disaster declaration in the county (2005 - 2020). 146 
 147 
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Not all US counties are covered by FEMA flood maps, as mapping efforts have focused primarily 148 
on counties with moderate population density (Association of State Floodplain Managers, n.d.). 149 
FEMA flood maps cover 57% of the territory of the 50 US states, but 93.6% of the population 150 
(Qiang, 2019). In our analysis, we additionally filter for counties in the contiguous US where more 151 
than 50% of residential properties are accounted for within flood mapped areas, leading to a final 152 
sample of 2,392 counties out of 3,108 total counties, accounting for 94% of the CONUS population 153 
(Fig. S3).  154 
 155 
We use NOAA’s Storm Events Database to estimate the total number of flood-related events for 156 
each county-year, and FEMA’s Disaster Declaration dataset to count the number of floods that 157 
resulted in a major disaster declaration for each county-year (Fig. 1b, 1c). NOAA’s Storm Events 158 
Database records the occurrence of storms and other significant weather phenomena across a 159 
variety of sources, including newspapers and broadcast media, law enforcement, park and forest 160 
service, trained spotters, Automated Surface Observing Systems (ASOS), and citizen science. 161 
From this dataset, we include: "Flash Flood", "Flood", "Heavy Rain", "Coastal Flood", "Storm 162 
Surge/Tide", "Tropical Storm", "Lakeshore Flood", "Hurricane (Typhoon)".  163 
 164 
We distinguish between disaster-scale flood events that trigger a Presidential Disaster Declaration 165 
and all other non-disaster-scale flood events recorded in the NOAA dataset, to capture how 166 
different types of flood events may differentially affect insurance demand. There are two levels of 167 
presidential declarations: emergency declarations and major disaster declarations. While both 168 
authorize federal assistance, the total amount of assistance provided for any emergency event is 169 
capped at $5 million, whereas a major declaration provides significantly more funding once it is 170 
determined that the situation is beyond the State and local government’s combined capacity to 171 
respond. Events may trigger both emergency declarations and major disaster declarations, but not 172 
all emergency declarations lead to a major disaster declaration. We capture only the major disaster 173 
declarations from the FEMA Presidential Declarations dataset, and the type of flood events 174 
include: "Flood”, “Hurricane”, “Typhoon”, “Coastal storm”.  175 
 176 

2.2 Panel Regression Model 177 

We employ a panel regression with two-way fixed effects to estimate the causal effect of flood 178 
experience on insurance demand. The county-level panel data that we construct allows us to 179 
estimate the salience effect of disaster-scale floods (i.e., those with a major disaster declaration) 180 
and frequent minor flooding on insurance take-up rates:  181 
 182 
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			(Eq. 1) 183 

 184 
where 𝑡𝑎𝑘𝑒𝑢𝑝	𝑟𝑎𝑡𝑒 is the share of households that take-up flood insurance in county 𝑖 and year 𝑡, 185 
𝑓𝑙𝑜𝑜𝑑𝑐𝑜𝑢𝑛𝑡 is the number of floods that occurred in year t, and 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 is a dummy for whether 186 
there was a major flood event that triggered a presidential disaster declaration in that year. We 187 
introduce lags of up to 7 years to quantify how floods experienced 𝑡 − 𝑛 years prior affect the 188 
outcome at year 𝑡. 𝛼 and 𝛿 are county and year fixed effects, allowing us to plausibly isolate the 189 
impact of variation in flood exposure from other time-invariant and time-trending factors that may 190 
be correlated with both the flood exposure and the outcome that we are measuring. These panel 191 
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estimators are commonly used in literature that measures human response to environmental 192 
change, and can deliver plausibly causal estimates of environmental impacts when within-location 193 
change in environmental risk over time (e.g. year to year variation in location-specific flooding) is 194 
uncorrelated with other drivers of the outcome in question. Standard errors are clustered at the 195 
county-level, to adjust for correlations in residuals within counties. After accounting for time 196 
trends and average differences across counties, remaining variation in flood frequency and severity 197 
is plausibly random, and thus we can infer that flood insurance adoption may be attributed to the 198 
flood experience.  199 
 200 
The model above does not account for whether consecutive disaster years may be increasing the 201 
likelihood of insurance take-up. To isolate this potential consecutive effect, we employ the 202 
following interaction model to test whether the insurance take-up response to a disaster at time t 203 
is greater if there was also a disaster the previous year (t-1). If there is a positive consecutive effect, 204 
this would be captured in the interaction estimate 	𝛽	". 205 
 206 
𝑙𝑜𝑔(𝑡𝑎𝑘𝑒𝑢𝑝	𝑟𝑎𝑡𝑒)!" = 	𝛽	$,"𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!," + 	𝛽(,"&$𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!,"&$ + 	𝛽	+𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!," ∗ 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!,"&$ + 𝛼! 	+ 𝛿" + 𝜖!" 207 

(Eq. 2a) 208 
 209 
In addition, we test whether the occurrence of consecutive disaster events in the past further 210 
increases the insurance take-up response. To do this, we add a new variable to the dataset, where 211 
𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟_𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 is a dummy for every year where there was also a disaster flood in the 212 
previous year.  213 
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				(Eq. 2b) 214 

 215 
Finally, we consider insurance take-up rates at the census tract level to understand how the level 216 
of insurance take-up in response to disaster-scale flooding is different based on the type of 217 
exposure to homeowners and renters including whether the risk saliency of disaster floods is 218 
different among homeowners whose primary residence is within the same county where a disaster 219 
is declared. Since disaster floods are observed at the county-level, our model assigns flood 220 
exposure treatment to all census tracts within a county where a presidential disaster is declared. 221 
Here our panel data starts in 2010 to preserve a uniform set of census tracts, as census tract 222 
boundaries are updated every ten years. As in Equation 1, we introduce lags of up to 7 years to 223 
quantify how floods experienced 𝑡 − 𝑛 years prior affect the outcome at year 𝑡 (Eq. 3a). 224 
Additionally, we test whether the cost burden of insurance premiums mediates the take-up 225 
response. We calculate the cost burden of insurance within each census tract as the average 226 
insurance premium divided by household median income over the study period (based on NFIP 227 
data), and assign a dummy for tracts where the cost burden is greater than our calculated  national 228 
median cost burden of 1% for homeowner policies and 0.3% for renter policies (Eq. 3b).  229 
 230 

log(𝑡𝑎𝑘𝑒𝑢𝑝	𝑟𝑎𝑡𝑒)!" = /0	𝛽		"&'𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟!,"&'9
'
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 232 
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3 Results 234 

The estimated relationship between flooding and insurance demand is shown in Figure 2. We 235 
estimate that a disaster declaration in the year prior (t-1) has the greatest impact on take-up, with 236 
an average 7% increase in the take-up rate (95% CI: 5.4% - 8.5%). Declarations occurring further 237 
back in time have a diminishing impact on take-up, and after five years (t-5) this impact is no 238 
longer significant. Meanwhile, experiencing any other flood event has a very small but consistently 239 
positive and significant impact on insurance demand. By way of comparison, the increase in take-240 
up rate in a county in response to a major disaster declaration the previous year is equivalent to the 241 
response in a county that experiences forty non-disaster-scale flood events in the previous year 242 
(Fig. 2).  243 

 244 
Figure 2. Estimated salience effect of flooding on insurance demand. The estimated relationship between a major 245 
flood disaster declaration versus any additional flood from previous years on insurance take-up in the current year (t) 246 
(Eq 1). Shaded regions represent the confidence intervals for each coefficient estimate.  247 
 248 
Baseline take-up rates differ considerably depending on whether the county is located along the 249 
Gulf and Atlantic coasts (Table S1). To account for differing levels of baseline risk perception, we 250 
divide the sample into three main subsets: counties in non-hurricane exposed states (baseline take-251 
up rate: 0.6%), coastal counties in hurricane-exposed states (7.8%), and inland counties in 252 
hurricane-exposed states (0.7%). We find that in non-hurricane states, the take-up rate increases 253 
by 9-12% in response to a disaster declaration in the concurrent year (95% CI: 9.1%-14.7%) or 254 
one year prior (95% CI: 6.1% - 11.4%) (Fig. 3a). In contrast, hurricane states have a smaller 255 
increase in the take-up rate (2.5% - 5.4%), but this response is driven by disaster declarations from 256 
up to five years prior (Fig. S4). However, given the low average baseline take-up rates in non-257 
hurricane exposed states, these model estimates translate to overall fewer additional policies in 258 
non-hurricane exposed counties compared to coastal counties (Fig. S4). For instance, a disaster 259 
flood in one year prior would drive >10 additional policies in 8 counties in non-hurricane states, 260 
versus 59 counties in hurricane coastal counties.  261 
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 262 
Figure 3. Salience effect of experiencing consecutive disaster years. A) Estimated impact of two recent consecutive 263 
disaster flood years on insurance take-up (Eq 2a). B) Grey indicates policies attributed to a disaster declaration at time 264 
t, red indicates the predicted additional take-up in counties that also experienced a disaster declaration at time t-1. 265 
Coefficient estimates are detailed in S4. C) Comparison of the estimated impact of disaster declaration on insurance 266 
take-up for counties that never experienced consecutive disaster years during 1998-2020 (i.e., only were exposed to 267 
non-consecutive disasters), and the impact of a consecutive year of disaster among counties that experienced 268 
consecutive disaster years (Eq 2b).  269 
 270 
 271 
 272 
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We also test whether disaster declarations in two consecutive years may further increase the 273 
likelihood of insurance take-up, relative to our baseline model that assumes that the effect of a 274 
flood on take-up in one year is not influenced by whether there was a flood in the previous year 275 
(Eq. 2, Fig. 3a). We find that consecutive disaster declarations roughly double the take-up rate on 276 
average (i.e., the effect of a flood on take-up in a given year is twice as large if there was also a 277 
flood in the year prior). The take-up rate increases by 6% in response to a disaster declaration one 278 
year prior (95% CI: 4.6% - 7.5%), and further increases by 6% when there is another disaster 279 
declaration in the concurrent year (95% CI: 1.8% - 9.6%). While the consecutive effect is positive 280 
across all county subsets, the response is strongest in counties in non-hurricane states, where the 281 
take-up rate increases an additional 24% due to a consecutive disaster declaration, nearly tripling 282 
the take-up response. However, when we account for differing baseline take-up rates across the 283 
county subsets, the number of additional policies due to a consecutive disaster year is predicted to 284 
be greatest in hurricane coastal counties (Fig. 3b). For example, 13% of hurricane coastal counties 285 
are predicted to gain >100 policies due to two consecutive disaster years. Compared to counties 286 
that never experienced consecutive disaster years in the past, the estimated insurance take-up 287 
response can be up to two times greater in counties experiencing consecutive disaster years (Fig. 288 
2c).  289 
 290 
Finally, we test for heterogeneity in the take-up response across policy types at the census tract 291 
level. We find that among homeowners, the salience effect of a disaster flood in year t-1 in terms 292 
of insurance policy take-up is around 5.5 percentage points greater for primary residences 293 
compared to non-primary residences (Fig. 4A). A higher relative cost burden of insurance 294 
(calculated as tracts where the average insurance premium is greater than 1% of household median 295 
income) decreases the take-up response for primary residence policies by 3.8 percentage points, 296 
whereas the cost burden of insurance does not significantly impact the take-up response for non-297 
primary residence policies (Fig. 4B). The salience effect of flooding on renter policies are 298 
visualized separately in Figure 4C as renters have significantly lower baseline adoption rates than 299 
among homeowners. Among renter policies, higher relative cost burden does not significantly 300 
decrease the take-up response (Fig. 4D). (The classification method for these policy types are 301 
detailed in Table S2, and a histogram of policy counts across each policy type is shown in Fig. 302 
S5.) 303 
 304 
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 305 
Figure 4. Estimated take-up response across policy types. A) The estimated impact of major flood disaster 306 
declarations (t-n) on insurance take-up at year t, comparing the response for policies that are purchased for primary 307 
residences and non-primary residences. B) Comparison of the estimated insurance take-up in response to a disaster 308 
declaration at year t-1 (shaded gray in panel A), for census tracts where the cost burden of insurance (calculated as the 309 
average policy cost divided by household median income) is above or below the national average (1%). C) As in panel 310 
A, for renter policies. D) As in panel B, for renter policies. Cost burden of insurance is adjusted to reflect the average 311 
cost of renter policies (0.3% of median income). 312 
 313 

4 Discussion 314 

We find that although households do respond to disaster-scale flood events by adopting insurance, 315 
this response is small, short-lived, and differential across baseline exposure to disaster-scale 316 
events. On average, county-level insurance take-up rates increase by 7% in response to a disaster-317 
scale flood event in the previous year, but this increase is not sustained over time. Declarations 318 
occurring further back in time have a diminishing impact on take-up, consistent with previous 319 
studies (Bradt et al., 2021; Gallagher, 2014; Kousky, 2017).  320 
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 321 
One reason for the diminishing take-up response may be that NFIP policies are one-year term 322 
policies that do not renew automatically (FEMA, n.d.-a). As a result, households responding to a 323 
disaster-scale flood event by purchasing insurance in one year may decide not to renew the policy 324 
the following year once the flood event is less salient. This hypothesis is supported by evidence 325 
that individuals tend to overweight the probability of a catastrophic event immediately after it has 326 
occurred (Dumm et al., 2020), and that risk perception of future damages is a robust determinant 327 
of flood insurance take-up (Landry & Turner, 2020).  328 
 329 
However, our results also show that the take-up rate response curve differs across counties with 330 
different baseline take-up rates. In counties in non-hurricane-exposed states where baseline take-331 
up rates are low (0.58% compared to 10% in hurricane coastal counties), a disaster-scale flood 332 
may trigger a proportionally greater––but much more short-lived––demand response in 333 
comparison to coastal counties in hurricane-exposed states. A similar pattern is observed for 334 
consecutive disaster-scale floods, where the increase in insurance demand is proportionally 335 
greatest in counties in non-hurricane states. We also show that the type of exposure (e.g. whether 336 
the disaster declaration impacted a primary residence or a non-primary residence) plays a role in 337 
mediating the post-disaster demand response. Further work is needed to understand how baseline 338 
risk perception and household capacity to respond differentially impacts post-disaster risk 339 
perception and insurance demand. 340 
 341 
Meanwhile, flood events that trigger a Presidential Disaster Declaration appear to have a much 342 
larger effect on insurance take-up response than floods that do not reach that threshold. For 343 
instance, the increase in take-up rate in a county in response to a disaster-scale flood is equivalent 344 
to the response in a county that experiences forty non-disaster-scale flood events in the previous 345 
year. The insurance take-up response can be five to nine times greater in counties that experienced 346 
consecutive disaster flood years compared to a county experiencing one independent disaster flood 347 
year (Fig. 3c). Given that climate change is driving the increasing frequency and severity of flood 348 
events associated with greater precipitation levels (Davenport et al., 2021; Kundzewicz et al., 349 
2014; Markonis et al., 2019; Swain et al., 2020), it may be expected that insurance take-up 350 
responses will vary based on flood severity, and how frequently they experience disaster-scale 351 
floods.  352 
 353 
Some other limitations should also be noted. First, our analysis assumes that a presidential disaster 354 
declaration equates “flood experience” for all households within a county, even though not all 355 
residents of a county will experience flooding directly. The result is that our estimates capture the 356 
insurance take-up response of households that may be experiencing the flood through indirect 357 
channels (such as from affected friends, family or other acquaintances, government 358 
communication to residents about the presidential disaster declaration, observing flooding while 359 
in transit or through media exposure, etc). It is plausible that the insurance response among 360 
households directly impacted by flood events may be greater than what we find in this study. 361 
Similarly, the NOAA dataset does not provide information on flood extents. Information on total 362 
flood event count is aggregated at the county level, and we use these data only in our first 363 
regression model (Eq. 1) to compare the insurance take-up response between the disaster-scale 364 
events and all other non-disaster-scale flood events.  365 
 366 



Earth’s Future 

 

Finally, this study is limited to measuring insurance demand in nSFHA zones where households 367 
may believe that they are not required to purchase insurance because they are not exposed to flood 368 
risk. This is largely the outcome of NFIP’s reliance on FEMA-designated flood maps to 369 
communicate whether households should purchase insurance. While this policy setting provides a 370 
unique empirical opportunity in that it allows us to isolate insurance take-up when it is voluntary, 371 
it is possible that prior NFIP communication could be contributing to a downward bias in the risk 372 
perception of nSFHA households. One consequence is that the short-lived salience effect identified 373 
in this study may in part be due to the conflicting information with which households are presented 374 
about flood insurance requirements, even when their own experience may suggest otherwise.  375 
 376 
Alternatively, it is possible that well-resourced communities are more likely to undertake 377 
investments that allow them to remain in nSFHA zones and further reduce insurance premiums. If 378 
this were happening at scale, this could mean that our estimates of the low take-up response is 379 
because households believe their communities are well protected from floods, and therefore less 380 
likely to respond to disaster floods by purchasing insurance. On the other hand, our results show 381 
that homeowners are more likely to respond to disaster floods by purchasing insurance if the cost 382 
burden of insurance is lower. Understanding the dynamics that drive the salience effect observed 383 
in this study requires deeper investigation of how different communities perceive flood risk, and 384 
how this perception in turn mediates the decision to purchase insurance in the face of changing 385 
flood risks.  386 
 387 
The growing private flood insurance market raises the possibility that the entry of private players 388 
may help increase overall coverage or lower costs in the future. However, this market is currently 389 
small relative to the NFIP, representing only 3.5-4.5% of all primary residential flood policies in 390 
2018, and it is unclear how many private flood insurance holders are newly insured or are 391 
switching from NFIP policies (Kousky et al., 2018). Private insurers will continue to be selective 392 
in the areas where they will underwrite risk, and will never be able to underwrite in some high-393 
risk areas (Kousky et al., 2018), underscoring the importance of NFIP in closing the flood 394 
insurance protection gap. In the meantime, this gap is currently further exacerbated by a real estate 395 
market that continues to overvalue properties at flood risk (Gourevitch et al., 2023; Hino & Burke, 396 
2021), encouraging development in risky areas.  397 
 398 
The rollout of NFIP’s new premium rating methodology, Risk Rating 2.0, is expected to tailor risk 399 
communication for each household, reducing the reliance on flood zone designation for pricing 400 
risks. Improved understanding of future flood risks may help reduce overoptimism and encourage 401 
households to sustain periodic insurance payments (Meyer & Kunreuther, 2017). Future studies 402 
may take this into account, to test how Risk Rating 2.0 might play a role in driving sustained 403 
insurance demand among households.  404 

5 Conclusions 405 

Our findings are relevant for understanding how changing flood risks will impact flood insurance 406 
demand, and for quantifying the magnitude of autonomous adaptation to climate change. By 407 
exploiting a setting where insurance take-up is voluntary, we investigate how differential 408 
exposures mediate the response of insurance demand to flood events. Our results indicate that the 409 
salience effect of flooding on insurance demand is insufficient to mitigate the increasing flood 410 
insurance protection gap. These findings have implications for designing policies that encourage 411 
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households to maintain coverage at levels commensurate to their true flood risk, especially in 412 
nSFHA flood zones where flood risk is increasing but insurance is not currently mandated. More 413 
generally, our results suggest that in a warming climate where the frequency of multiple 414 
consecutive disaster years is likely to increase, households cannot be expected to autonomously 415 
adapt to increasing hazards by voluntarily purchasing and maintaining insurance coverage.  416 
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Figure S1. Flood-related damages and share of damage claims from non-SFHA zones. a) 5-year 
rolling average of flooding vs total disaster damages show that flooding has been a key driver of 
total damages over the time period 1980-2020. Flood damage claims from residential insurance 
policyholders continue to represent a small portion of total flood damages. b) The share of 
residential flood damage claims from non-SFHA zones have been increasing over the same time 
period. 
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Figure S2. Frequency of billion-dollar flood events. The number of tropical cyclones and other 
flood events causing >billion in damages are increasing. (Source: NCEI) 
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Figure S3. Counties with >50% properties covered by flood maps. Of the 2,408 counties where 
some level of flood map coverage exists, 2,392 counties are selected for this analysis, accounting 
for 94% of the population. These counties are selected based on the flood mapped areas 
accounting for at least 50% of residential properties in the county.  
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Figure S4. Estimated salience effect of flooding on insurance demand. The plot shows the 
estimated impact of disaster declarations on insurance take-up across counties with differing 
baseline take-up rates. Table shows the average predicted increase in insurance policies per 
county attributed to a major disaster declaration at time t (calculated as: increase in take-up rate x 
baseline take-up rate in 2020 x average policy count for each county). Predicted increase in 
policies are on average 35 times greater in hurricane coastal counties compared to counties in 
non-hurricane states.  
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Figure S5. Histogram of nSFHA policies in 2020, comparison across policy types.  
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 2009 2020 

Subset Number of 
Counties 

Average policies-
in-force (PIF) 

Average PIF 
ratio  

Average policies-
in-force (PIF) 

Average PIF 
ratio 

All counties 2,392 777 
(5774) 

1.51% 
(5.6%) 

903 
(6985) 

1.70% 
(5.7%) 

Hurricane states - 
coastal 

229 5316 
(17036) 

9.77% 
(14.9%) 

6439 
(20783) 

10.5% 
(14.8%) 

Hurricane states - 
inland 

796 337 
(1591) 

0.80% 
(1.6%) 

464 
(2996) 

0.96% 
(2.2%) 

Non-hurricane states 1,367 236 
(1555) 

0.56% 
(1.3%) 

208 
(839) 

0.58% 
(1.7%) 

 
Table S1. Comparison of baseline flood insurance take-up rates across county subsets, in 2009 
and 2020.  
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 Homeowners 
(Primary residence) 

Homeowners 
(Non-primary residence) 

Renters 

Building coverage Yes Yes No 

Content coverage Yes No Yes No Yes 

Primary residence indicator Yes No Yes/No 

Number of census tracts 
with at least one policy in 
2020 

n=49,534 n=29,304 n=8,878 

 
Table S2. Classification method for flood insurance policy types. Renter policies are 
distinguishable as they are only eligible to purchase content coverage. Policies purchased by 
homeowners versus landlords are distinguished by whether the policy is for a primary residence 
or not.  
 


