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Abstract

North Atlantic sea surface temperatures (NASST), particularly in the subpolar region, are among the most predictable locations

in the world’s oceans. However, the relative importance of atmospheric and oceanic controls on their variability at multidecadal

timescales remain uncertain. Neural networks (NNs) are trained to examine the relative importance of oceanic and atmospheric

predictors in predicting the NASST state in the Community Earth System Model 1 (CESM1). In the presence of external

forcings, oceanic predictors outperform atmospheric predictors, persistence, and random chance baselines out to 25-year lead-

times. Layer-wise relevance propagation is used to unveil the sources of predictability, and reveal that NNs consistently rely

upon the Gulf Stream-North Atlantic Current region for accurate predictions. Additionally, CESM1-trained NNs do not need

additional transfer learning to successfully predict the phasing of multidecadal variability in an observational dataset, suggesting

consistency in physical processes driving NASST variability between CESM1 and observations.
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Abstract16

North Atlantic sea surface temperatures (NASST), particularly in the subpolar region,17

are among the most predictable locations in the world’s oceans. However, the relative im-18

portance of atmospheric and oceanic controls on their variability at multidecadal timescales19

remain uncertain. Neural networks (NNs) are trained to examine the relative importance20

of oceanic and atmospheric predictors in predicting the NASST state in the Community21

Earth System Model 1 (CESM1). In the presence of external forcings, oceanic predictors22

outperform atmospheric predictors, persistence, and random chance baselines out to 25-year23

leadtimes. Layer-wise relevance propagation is used to unveil the sources of predictability,24

and reveal that NNs consistently rely upon the Gulf Stream-North Atlantic Current region25

for accurate predictions. Additionally, CESM1-trained NNs do not need additional transfer26

learning to successfully predict the phasing of multidecadal variability in an observational27

dataset, suggesting consistency in physical processes driving NASST variability between28

CESM1 and observations.29

Plain Language Summary30

North Atlantic sea surface temperatures, particularly in the subpolar region, are among31

the most predictable locations in the world’s oceans. However, it remains uncertain if pro-32

cesses in the atmosphere or ocean are more important for driving temperature fluctuations33

in this region occurring over multiple decades. We use a machine learning approach and34

train a neural network to predict the sea surface temperature state from climate model35

outputs, given snapshots of atmospheric or oceanic variables. Ocean variables lead to more36

accurate predictions relative to atmospheric variables and standard prediction baselines out37

to 25 years ahead if processes that drive the trends in climate, such as human-induced38

warming, are present in the data. These successful predictions arise consistently from the39

same region near the Gulf Stream-North Atlantic Current region. Despite being trained40

on climate models, the neural networks can predict the timing of observed positive and41

negative states of real-world sea surface temperatures, suggesting that there is potential for42

using model output to train neural networks at predicting the actual North Atlantic sea43

surface variability.44

1 Introduction45

Sea surface temperature (SST) anomalies averaged over the North Atlantic region ex-46

hibit alternating warm and cold periods on decadal timescales, known as the Atlantic Mul-47

tidecadal Variability (AMV, or Atlantic Multidecadal Oscillation). The societal relevance of48

predicting AMV is underscored by linkages to multidecadal variations across multiple Earth49

system processes both within and beyond the North Atlantic (Zhang et al., 2019; Ruprich-50

Robert et al., 2021, and references therein). However, the dominant driver of AMV remains51

highly contested; leading contenders include ocean dynamics (Kim et al., 2018; Zhang et al.,52

2019; Arzel et al., 2022), atmospheric dynamics (Clement et al., 2015; Cane et al., 2017),53

and variations in external forcing (L. N. Murphy et al., 2021; Klavans et al., 2022). Each of54

these drivers imply different timescales of predictability, and the short observational record55

further complicates the disentanglement of their contributions.56

Yet the subpolar North Atlantic (SPNA), the center of action for AMV, is considered57

among the most predictable locations for SST and ocean heat content across all ocean58

basins, with skill extending to decadal timescales (Buckley et al., 2019; Yeager, 2020). Mean59

wintertime mixed-layer depths reach over 1000 meters within the SPNA, resulting in large60

heat capacity that translates to long persistence and memory of SST anomalies (Deser et61

al., 2003; Holte et al., 2017). The SPNA encompasses key deep-water formation sites of the62

Atlantic Meridional Overturning Circulation (AMOC), and has been linked to multi-year to63
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multi-decadal predictability, both locally and in other regions such as the tropical Atlantic64

(Dunstone et al., 2011; Menary et al., 2015).65

Current state-of-the-art approaches for decadal prediction of the climate system are66

often computationally intensive and highly sensitive to initial conditions, or constrained67

by assumptions of linearity in simplified models such as the Linear Inverse Model (Zanna,68

2012; Huddart et al., 2017; Smith et al., 2019; Meehl et al., 2022). An alternative pathway69

emerges from neural networks (NN) and their ability to capture nonlinear processes and70

transformations (Hornik et al., 1989; Toms et al., 2020). NNs have successfully outperformed71

dynamical forecasts of El Niño-Southern Oscillation (ENSO) at interannual timescales (Ham72

et al., 2019) and detecting transitions between positive and negative states of the Pacific73

Decadal Oscillation (Gordon et al., 2021). Furthermore, recent developments of techniques74

such as Layer-wise Relevance Propagation (LRP) provide a way to peer into the “black75

box” of the NNs and identify the critical features for skillful predictions (Toms et al., 2020;76

Gordon et al., 2021; Wang et al., 2022). In this work, we investigate the potential of applying77

NNs to predicting NASST and use LRP to examine the relative importance of atmospheric78

and oceanic sources of predictability across multiple timescales.79

2 Methods and Data80

2.1 Datasets81

We use the Community Earth System Model 1 (CESM1) Large Ensemble Simulations82

(LENS) based on a fully-coupled global climate model with nominal 1-degree resolution83

(Kay et al., 2015). We focus on a single model to investigate if NNs can learn the physics84

of NASST variability, without confounding factors and biases that arise from cross-model85

comparisons. CESM1 LENS features 42 members under the same external forcing but86

with slightly different atmospheric initial conditions, representing a comprehensive range87

of intrinsic climate variability. We use the historical period common across all ensemble88

members (1920 to 2005), totaling of 3,612 years of data for training, validation, and testing89

of the NNs.90

To investigate if the predictability learned from CESM1 translates to a realistic dataset,91

we test the NNs on an observational dataset, the Hadley Center Sea Ice and Sea Surface92

Temperature (HadISST) that includes monthly data between 1870 and 2022 at 1-degree93

resolution (Rayner et al., 2003). Since the NNs require inputs of the same size, we re-grid94

HadISST to match the CESM1 resolution using bilinear interpolation.95

2.2 Prediction Objective96

The input features are 2-D annual mean snapshots of atmospheric and/or oceanic pre-97

dictors (discussed in Section 2.3) over the North Atlantic (80 to 0◦W, 0 to 65◦N), and98

the output prediction is the state of NASST (either positive, negative, or neutral) a given99

number of years later (Fig. 1). The NASST index is the area-weighted, annual mean SST100

anomaly over the North Atlantic, essentially the unfiltered AMV Index (Ting et al., 2009).101

Considering recent work that suggests the importance of external forcing in driving AMV102

(L. N. Murphy et al., 2021; Klavans et al., 2022), we also examine differences in predictabil-103

ity of NASST with and without external forcings such as the anthropogenic warming trend,104

defined by the 42-member ensemble mean (referred to as forced and unforced, respectively).105

We focus on predicting extreme NASST states due to its strong scientific and societal106

impacts. A 1-standard deviation (σ) threshold is used to separate the NASST into posi-107

tive, negative, and neutral states (similar results are obtained using tercile thresholds). The108

threshold was selected to be high enough to distinguish extreme NASST anomalies, but109

low enough to permit sufficient samples for training. To prevent biases towards predict-110

ing a specific class simply due to its frequency of occurrence, following standard practice111
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Figure 1. Schematic diagram of the NN prediction of NASST state using an example NASST-

event in 1965 from ensemble member 37 of CESM1 LENS (Panel A). The snapshot of a selected

predictor from 25 years prior (1940) is given to a FNN (Panel B), which outputs a prediction of

the NASST state.

(Drummond et al., 2003; Buda et al., 2018; Gordon et al., 2021), we subsample the CESM1112

output during training and validation so that there are equally 300 events per NASST state.113

2.3 Atmospheric and Oceanic Predictors114

To evaluate the importance of atmospheric versus oceanic drivers for NASST variability,115

we train networks to predict the NASST state given 2-D annual mean anomalies of the 4116

following predictors:117

1. SST, also used to calculate the NASST indices.118

2. Sea level pressure (SLP), an atmospheric predictor reflecting the state of the119

dominant atmospheric modes of variability in the region, e.g., the North Atlantic120

Oscillation (NAO)(Hurrell & Deser, 2010; Ruprich-Robert & Cassou, 2015).121

3. Sea surface salinity (SSS), an oceanic predictor that is not directly damped by122

heat fluxes to the atmosphere, allowing for the investigation of redistribution and123

damping by ocean circulation and its connections with NASST variability (Zhang,124

2017).125

4. Sea surface height (SSH), an oceanic predictor used to infer geostrophic circulation126

with connections to variations in the strength of subpolar gyre (Koul et al., 2020).127

SSH is also related to subsurface ocean heat content with potential for long-term128

predictability (Buckley et al., 2019; Yeager, 2020).129

These predictors are observable from the ocean surface, and are thus more likely to130

have longer records into the future with satellite observations, providing potential for appli-131

cation to operational predictions of climate. We tested additional predictors from CESM1,132

including net air-sea heat flux, barotropic streamfunction, mixed-layer depth, heat and salt133
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content, and wind stress and its curl. None of these predictors yielded significantly better134

performance, so we focus on the above four variables.135

Each predictor is cropped to the domain used to compute the NASST index. Ocean136

variables are re-gridded to match atmospheric grid using bilinear interpolation. We exclude137

regions over land and where the ice fraction exceeds 5% so that the NNs are given the same138

areas for each predictor. We normalize each predictor by dividing by 1σ across the time,139

space, and ensemble dimensions, ensuring comparable variability between predictors and140

equal numerical contribution during the training process (Singh & Singh, 2020). Multiple141

NNs are trained with each of the above mentioned predictors separately. NNs that include142

all predictors as input did not yield improved skill, but rather indicate equivalent accuracy143

to the best predictor at each leadtime (not shown).144

2.4 Network Architecture and Training Procedure145

To separately investigate the dependency in timescale and predictor, each NN is trained146

to predict the NASST state at a specific leadtime (t=0 to 25 years) given one predictor at147

a time. We withhold 10 members of CESM1 LENS for testing, and split the remaining148

32 members into training (90%) and validation (10%) subsets. We initialize 100 different149

networks to account for randomness in the training process, totaling 10,400 networks (26150

leadtimes × 4 predictors × 100 initialized networks). The training and validation sets are151

shuffled and resampled for each training iteration, ensuring that the results are not sensitive152

to a particular subset. Each network is trained for 50 epochs, but the training process is153

stopped if the validation loss increases for 5 consecutive epochs to prevent over-fitting. All154

discussed results are from the withheld testing set.155

We explored combinations of architectures and hyperparameters for convolutional neu-156

ral networks (CNNs) and fully-connected neural networks (FNNs). Both architectures157

yielded comparable performance (Fig. S1C). Our preliminary results with more complex158

networks did not produce significantly better results, but full exploration of other architec-159

tures is left for future work. Since our objective is not to tune network hyperparameters to160

maximize accuracy, but rather to gain physical insight on drivers of NASST variability by161

examining inter-predictor differences, we focus on the simpler FNN in this study containing162

4 layers with 128 neurons each.163

2.5 Prediction Baselines164

We compare the accuracy of the trained NNs to two baselines. Since each class is evenly165

sampled during the training, there is a 33% chance that a given class will occur, which we166

set as the random chance baseline. We additionally examine the other extreme using the167

standard persistence baseline that assumes uninterrupted continuation of the current state168

(A. H. Murphy, 1992), which gives a stronger baseline than a damped persistence. For169

example, if the system is at NASST+ at the starting time (t=0 years), we assume it will170

also be NASST+ for the target leadtime.171

3 Higher skill from oceanic predictors at multidecadal leadtimes in the172

presence of external forcing173

We focus on the prediction skill for NASST+ and NASST- events (Fig. 2). For the174

predictions of Neutral events, the NNs had low accuracy equivalent to random chance. This175

is expected due to the challenge of predicting cases at the class boundaries or events with a176

weaker signal (Batista et al., 2004).177

In the forced case (Fig. 2A-B), NNs outperform both persistence and random chance178

baselines regardless of the predictor. The atmospheric variable, SLP, has similar-to-worse179

accuracy at all leadtimes compared to SST. While this is unsurprising, considering the180
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Figure 2. The mean accuracy by leadtime for predicting NASST+ and NASST- states for NNs

trained with each predictor. X-axis is the prediction leadtime from 0 to 25 years. Shading indicates

the 95% standard error of 100 NNs for each predictor. NNs trained with oceanic predictors SSH

(blue) and SSS (pink) outperform those trained with SST (red) and SLP (yellow) at long leadtimes

in the forced case (A-B). For the unforced case (C-D), performance is similar to the random chance

baselines after 5-10 years (C-D).

short persistence timescales of the atmosphere in the extratropics, on the order of weeks181

(Frankignoul & Hasselmann, 1977), the NN still outperforms the persistence forecast and182

the random chance baseline for predicting NASST+ at all the leadtimes.183

While SST appears to be a better predictor at earlier leadtimes, NNs trained by both184

oceanic predictors (SSS and SSH) achieve consistently higher accuracy than SST at decadal185

and longer leadtimes (Fig. 2A-B). Prolonged predictability from SSS could arise from ab-186

sence of strong, direct damping by turbulent heat fluxes that exists in SSTs, allowing for187

more persistent SSS anomalies (Mignot & Frankignoul, 2003; Zhang, 2017). Similarly, sub-188

surface heat content information present in SSH is shielded from damping by surface heat189

fluxes, leading to more persistence and potential predictability relative to SST (Deser et al.,190

2003; Buckley et al., 2019).191

The increased predictability from oceanic variables is dependent upon the presence of192

external forcings. After removing the ensemble mean from the predictors and NASST index193

and repeating the training procedure, all NNs exhibit performance comparable to random194

chance after 5-10 years with minimal inter-predictor difference. This suggests both the195

importance of considering external forcing for climate prediction on multidecadal timescales196

and its differing impact on predictability derived from oceanic variables.197

4 Consistent source of long-term predictability in the Transition Zone198

We investigate the source of predictability for each predictor using LRP to examine199

the network’s decision-making process (Böhle et al., 2019). LRP back-propagates the “rel-200

evance” for given sample’s prediction from the final output node to the input layer of the201

NN. The total relevance is conserved during this process through a series of propagation202

rules, resulting in a ”heatmap” of relevance indicating each pixel’s contribution to the net-203

work’s final decision (Montavon et al., 2019; Samek et al., 2021). Previous works compared204
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Figure 3. Composite relevance values (color) for ”correct” NASST+ predictions of the top 50

performing networks for 0- to 25-year leadtimes, for the predictors from SST (A-E), SLP (F-J),

SSS (K-O) and SSH (R-T), respectively. Relevance values are normalized for each composite. SSS

relevance values were doubled to aid interpretability. Contours are the respective composites of

standardized predictors for the given leadtime.
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such relevance maps with known patterns of physical processes for predicting Pacific climate205

variability for possible correspondences (Toms et al., 2020; Gordon et al., 2021).206

Since LRP produces the relevance map for a single sample, we examine the overall207

learned source of predictability by compositing relevances across correct predictions for the208

top 50 performing NNs of NASST+ and NASST-. The composites are normalized prior209

to visualization to have values between 0 and 1, though the raw output relevance is of210

order 10−4. We show relevance composites for key leadtimes between 0-25 years overlaid on211

composites of input predictors at corresponding leadtimes (Fig. 3) for the forced NASST+212

cases. Results are broadly consistent in unforced and for NASST- cases (Fig. S2-S3).213

For instantaneous predictions (leadtime 0), the relevance maps resemble known patterns214

associated with AMV and its drivers. For example the SST relevance map (Fig. 3E)215

captures the canonical horseshoe pattern of AMV (Zhang et al., 2019). Furthermore, the216

maximum relevance south of Newfoundland in SST, SSH, and SSS is collocated with the217

SPNA-Gulf Stream dipole associated with AMV-related SSTs and major ocean circulation218

features (Zhang, 2008; Nigam et al., 2018; Oelsmann et al., 2020; Gu & Gervais, 2022).219

Interestingly, a second relevance maxima for SSS is present near the Amazon River outflow220

region, though further investigation is needed to determine if this is a model-dependent221

feature and its physical mechanisms. Overall, these aspects lend confidence that the NN222

has learned to rely upon regions that vary strongly with AMV and its associated ocean223

drivers.224

Patterns associated with atmospheric drivers of NASST variability also emerge in rel-225

evance maps at leadtimes longer than 5 years (Fig. 3F-I). Successful predictions by SLP-226

trained NNs rely upon negative SLP anomalies near the Icelandic Low in the northeastern227

Atlantic, a center of action for NAO (Hurrell & Deser, 2010; Deser et al., 2010). This learned228

reliance on the NAO-NASST linkage without additional input is encouraging, suggesting229

that additional predictability beyond the persistence baseline achieved by SLP-trained NNs230

may arise from large-scale air-sea interaction in this region and resulting ocean circulation231

anomalies.232

The Transition Zone between the subpolar and subtropical gyres emerges as a consis-233

tently important region for predicting NASST regardless of leadtime for oceanic predictors234

(Fig. 3K-T) (Buckley & Marshall, 2016). This region is influenced by AMOC and its as-235

sociated fingerprint in surface and subsurface temperatures (Zhang, 2008). Relevance over236

this region remains high irrespective of the class (NASST+ or NASST-) or the presence of237

external forcing (Fig. S3). Since the NNs can derive multidecadal predictability of NASST238

by focusing on a region strongly influenced by AMOC, this result highlights the poten-239

tial importance of ocean dynamics for determining the state of both forced and unforced240

NASST.241

5 CESM1-trained neural networks predict the multidecadal oscillation242

of observed NASST states243

Does the NNs’ skill for NASST prediction apply beyond the CESM1 model world?244

Because of the limited observational record of SSH, SSS, and SLP, we test if NNs trained245

on CESM1 SSTs can successfully predict the NASST state in HadISST. Accounting for246

reductions due to the 25 year leadtime, there remains 128 years of data between 1895 to 2022.247

The 1σ threshold (0.55◦C) yielded 29 (17) NASST+ (NASST-) events. The distribution is248

skewed due to the warming trend. Due to the limited samples, we do not perform transfer249

learning for the HadISST dataset and the accuracy values were noisy, particularly at long250

leadtimes. Therefore, we focus broadly on the frequency of predictions by class (Fig. 4).251

The frequency of predictions by class across all NNs aligns with the multidecadal oscil-252

lation of the NASST in HadISST, including larger frequency of NASST- pre-1925, between253

1960-1990, and the intervening warm periods. This is true particularly for interannual and254
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Figure 4. Frequency of predicted class of each target year aggregated for interannual (1-9 years)

(A), decadal (10-19 years) (B), and multidecadal (20-25 years) (C) lead times for the HadISST

(in colored bars). Blue/red/gray bars are the frequency of the negative/positive/neutral NASST

predictions. The NASST Index from HadISST (solid-black line) and 1σ thresholds (dashed-black

lines) are shown for reference.
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multidecadal leadtimes (Fig. 4A,C), with shifted phasing at decadal leadtimes (Fig. 4B).255

The same results are recovered for the unforced case, though the multidecadal phasing of256

predictions is nearly absent for the decadal leadtimes (Fig. S4). These are surprising results257

for two main reasons: The first is that the NN is not simply predicting the anthropogenic258

warming trend (e.g. monotonically increasing NASST+ predictions in time), but instead259

has successfully learned the non-linear, oscillatory behavior of the observed NASST index.260

The second is that the weights not have been re-adjusted to HadISST, revealing that NNs261

trained on potentially biased CESM1 output maintain their ability to predict the phasing262

of observed multidecadal climate variability. Overall, this suggests promise for applying263

NNs trained on model output to predicting the general details and trajectory of non-linear264

multidecadal climate variability in corresponding observational datasets such as HadISST.265

6 Discussion and Summary266

We investigated the potential of applying NNs to multidecadal prediction of NASST267

variability and using LRP to understand the relative contributions of oceanic and atmo-268

spheric drivers. Three main conclusions of this work are:269

1. NNs trained with oceanic variables can predict NASST+ and NASST- states on270

multidecadal timescales, outperforming persistence and random chance baselines in271

the presence of external forcing.272

2. The Transition Zone emerges as consistent region from where NNs derive predictive273

skill, regardless of prediction leadtime, NASST state, and the presence of the external274

forcing, suggesting a connection to ocean dynamics such as AMOC.275

3. NNs trained on CESM1 were able to predict the multidecadal phasing of observed276

NASST states without weight readjustment, suggesting promise for training NNs277

using model output for multidecadal prediction of observed climate.278

While increased predictive skill from oceanic variables highlights the importance of279

ocean dynamics for multidecadal NASST variability, we find that this depends upon the280

presence of external forcing. There is little difference in skill between the predictors in281

unforced case, suggesting that external forcing differently impacts predictability derived282

from oceanic and atmospheric variables. A possible explanation is the larger heat capacity283

of the ocean allows for the integration of the externally forced signal, leading to increased284

predictability on multidecadal and longer timescales (Frankignoul & Hasselmann, 1977).285

The high-relevance over the Transition Zone region is remarkably consistent across286

timescales in both unforced and forced cases. This region corresponds to the maximum287

loading in the AMOC fingerprint, suggesting that the dynamics driving both internal and288

external NASST variability are collocated and linked to ocean dynamics (Zhang, 2008).289

Predictability arising from a stationary feature in a single region, rather than smaller-290

scale features that propagate across the domain, might also explain why the simpler FNN291

performed comparably to CNNs; For predicting NASST, the absolute position of the feature292

is more important than its translation invariance, erasing the advantage conferred by the293

CNN architecture (Barnes et al., 2022).294

A cautionary note is that higher accuracy from networks trained with oceanic predictors295

could be a model dependent feature. Our results are focused on NNs trained with CESM1,296

a coarse-resolution model with biases in the separation of the Gulf Stream and position of297

the North Atlantic Current (Kirtman et al., 2012). Since our relevance maps reveal that298

NNs depend upon this region for skillful predictions of NASST state, verifying the model299

dependence of this aspect by training NNs with other model large ensembles, reanalyses, or300

observational datasets is an important future endeavor. Considering connections between301

biases in mean state and decadal variability over the SPNA, exploring correspondences302
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between the resultant relevance maps and biases in ocean circulation may unveil further303

hints on the importance of ocean dynamics for NASST predictability (Menary et al., 2015).304

Open Research Section305

Datasets for this research are availabile in these in-text data citation references: (Kay306

et al., 2015), (Rayner et al., 2003). The monthly output from the CESM1 Large Ensemble307

is publicly available from the National Center for Atmospheric Research’s Climate Data308

Gateway on the Earth System Grid (https://www.cesm.ucar.edu/community-projects/309

lens/data-sets/). Monthly variables TS, LANDFRAC, ICEFRAC, SSS, PSL, and SSH310

were used for this study, and further specific instructions on accessing the output for CESM1311

is detailed at this link: (https://www.cesm.ucar.edu/community-projects/lens/data312

-sets). The HadISST dataset can be downloaded directly from their website (https://313

www.metoffice.gov.uk/hadobs/hadisst/).314

Software for this work is available on Zenodo (DOI: https://doi.org/10.5281/zenodo315

.8342739), and the corresponding linked github repository (https://github.com/glennliu265/316

predict nasst). The data will be The Pytorch-LRP Software is available in from the in-317

text data citation reference: (Böhle et al., 2019) and can be found in the following repository318

(https://github.com/moboehle/Pytorch-LRP).319
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Abstract16

North Atlantic sea surface temperatures (NASST), particularly in the subpolar region,17

are among the most predictable locations in the world’s oceans. However, the relative im-18

portance of atmospheric and oceanic controls on their variability at multidecadal timescales19

remain uncertain. Neural networks (NNs) are trained to examine the relative importance20

of oceanic and atmospheric predictors in predicting the NASST state in the Community21

Earth System Model 1 (CESM1). In the presence of external forcings, oceanic predictors22

outperform atmospheric predictors, persistence, and random chance baselines out to 25-year23

leadtimes. Layer-wise relevance propagation is used to unveil the sources of predictability,24

and reveal that NNs consistently rely upon the Gulf Stream-North Atlantic Current region25

for accurate predictions. Additionally, CESM1-trained NNs do not need additional transfer26

learning to successfully predict the phasing of multidecadal variability in an observational27

dataset, suggesting consistency in physical processes driving NASST variability between28

CESM1 and observations.29

Plain Language Summary30

North Atlantic sea surface temperatures, particularly in the subpolar region, are among31

the most predictable locations in the world’s oceans. However, it remains uncertain if pro-32

cesses in the atmosphere or ocean are more important for driving temperature fluctuations33

in this region occurring over multiple decades. We use a machine learning approach and34

train a neural network to predict the sea surface temperature state from climate model35

outputs, given snapshots of atmospheric or oceanic variables. Ocean variables lead to more36

accurate predictions relative to atmospheric variables and standard prediction baselines out37

to 25 years ahead if processes that drive the trends in climate, such as human-induced38

warming, are present in the data. These successful predictions arise consistently from the39

same region near the Gulf Stream-North Atlantic Current region. Despite being trained40

on climate models, the neural networks can predict the timing of observed positive and41

negative states of real-world sea surface temperatures, suggesting that there is potential for42

using model output to train neural networks at predicting the actual North Atlantic sea43

surface variability.44

1 Introduction45

Sea surface temperature (SST) anomalies averaged over the North Atlantic region ex-46

hibit alternating warm and cold periods on decadal timescales, known as the Atlantic Mul-47

tidecadal Variability (AMV, or Atlantic Multidecadal Oscillation). The societal relevance of48

predicting AMV is underscored by linkages to multidecadal variations across multiple Earth49

system processes both within and beyond the North Atlantic (Zhang et al., 2019; Ruprich-50

Robert et al., 2021, and references therein). However, the dominant driver of AMV remains51

highly contested; leading contenders include ocean dynamics (Kim et al., 2018; Zhang et al.,52

2019; Arzel et al., 2022), atmospheric dynamics (Clement et al., 2015; Cane et al., 2017),53

and variations in external forcing (L. N. Murphy et al., 2021; Klavans et al., 2022). Each of54

these drivers imply different timescales of predictability, and the short observational record55

further complicates the disentanglement of their contributions.56

Yet the subpolar North Atlantic (SPNA), the center of action for AMV, is considered57

among the most predictable locations for SST and ocean heat content across all ocean58

basins, with skill extending to decadal timescales (Buckley et al., 2019; Yeager, 2020). Mean59

wintertime mixed-layer depths reach over 1000 meters within the SPNA, resulting in large60

heat capacity that translates to long persistence and memory of SST anomalies (Deser et61

al., 2003; Holte et al., 2017). The SPNA encompasses key deep-water formation sites of the62

Atlantic Meridional Overturning Circulation (AMOC), and has been linked to multi-year to63
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multi-decadal predictability, both locally and in other regions such as the tropical Atlantic64

(Dunstone et al., 2011; Menary et al., 2015).65

Current state-of-the-art approaches for decadal prediction of the climate system are66

often computationally intensive and highly sensitive to initial conditions, or constrained67

by assumptions of linearity in simplified models such as the Linear Inverse Model (Zanna,68

2012; Huddart et al., 2017; Smith et al., 2019; Meehl et al., 2022). An alternative pathway69

emerges from neural networks (NN) and their ability to capture nonlinear processes and70

transformations (Hornik et al., 1989; Toms et al., 2020). NNs have successfully outperformed71

dynamical forecasts of El Niño-Southern Oscillation (ENSO) at interannual timescales (Ham72

et al., 2019) and detecting transitions between positive and negative states of the Pacific73

Decadal Oscillation (Gordon et al., 2021). Furthermore, recent developments of techniques74

such as Layer-wise Relevance Propagation (LRP) provide a way to peer into the “black75

box” of the NNs and identify the critical features for skillful predictions (Toms et al., 2020;76

Gordon et al., 2021; Wang et al., 2022). In this work, we investigate the potential of applying77

NNs to predicting NASST and use LRP to examine the relative importance of atmospheric78

and oceanic sources of predictability across multiple timescales.79

2 Methods and Data80

2.1 Datasets81

We use the Community Earth System Model 1 (CESM1) Large Ensemble Simulations82

(LENS) based on a fully-coupled global climate model with nominal 1-degree resolution83

(Kay et al., 2015). We focus on a single model to investigate if NNs can learn the physics84

of NASST variability, without confounding factors and biases that arise from cross-model85

comparisons. CESM1 LENS features 42 members under the same external forcing but86

with slightly different atmospheric initial conditions, representing a comprehensive range87

of intrinsic climate variability. We use the historical period common across all ensemble88

members (1920 to 2005), totaling of 3,612 years of data for training, validation, and testing89

of the NNs.90

To investigate if the predictability learned from CESM1 translates to a realistic dataset,91

we test the NNs on an observational dataset, the Hadley Center Sea Ice and Sea Surface92

Temperature (HadISST) that includes monthly data between 1870 and 2022 at 1-degree93

resolution (Rayner et al., 2003). Since the NNs require inputs of the same size, we re-grid94

HadISST to match the CESM1 resolution using bilinear interpolation.95

2.2 Prediction Objective96

The input features are 2-D annual mean snapshots of atmospheric and/or oceanic pre-97

dictors (discussed in Section 2.3) over the North Atlantic (80 to 0◦W, 0 to 65◦N), and98

the output prediction is the state of NASST (either positive, negative, or neutral) a given99

number of years later (Fig. 1). The NASST index is the area-weighted, annual mean SST100

anomaly over the North Atlantic, essentially the unfiltered AMV Index (Ting et al., 2009).101

Considering recent work that suggests the importance of external forcing in driving AMV102

(L. N. Murphy et al., 2021; Klavans et al., 2022), we also examine differences in predictabil-103

ity of NASST with and without external forcings such as the anthropogenic warming trend,104

defined by the 42-member ensemble mean (referred to as forced and unforced, respectively).105

We focus on predicting extreme NASST states due to its strong scientific and societal106

impacts. A 1-standard deviation (σ) threshold is used to separate the NASST into posi-107

tive, negative, and neutral states (similar results are obtained using tercile thresholds). The108

threshold was selected to be high enough to distinguish extreme NASST anomalies, but109

low enough to permit sufficient samples for training. To prevent biases towards predict-110

ing a specific class simply due to its frequency of occurrence, following standard practice111
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Figure 1. Schematic diagram of the NN prediction of NASST state using an example NASST-

event in 1965 from ensemble member 37 of CESM1 LENS (Panel A). The snapshot of a selected

predictor from 25 years prior (1940) is given to a FNN (Panel B), which outputs a prediction of

the NASST state.

(Drummond et al., 2003; Buda et al., 2018; Gordon et al., 2021), we subsample the CESM1112

output during training and validation so that there are equally 300 events per NASST state.113

2.3 Atmospheric and Oceanic Predictors114

To evaluate the importance of atmospheric versus oceanic drivers for NASST variability,115

we train networks to predict the NASST state given 2-D annual mean anomalies of the 4116

following predictors:117

1. SST, also used to calculate the NASST indices.118

2. Sea level pressure (SLP), an atmospheric predictor reflecting the state of the119

dominant atmospheric modes of variability in the region, e.g., the North Atlantic120

Oscillation (NAO)(Hurrell & Deser, 2010; Ruprich-Robert & Cassou, 2015).121

3. Sea surface salinity (SSS), an oceanic predictor that is not directly damped by122

heat fluxes to the atmosphere, allowing for the investigation of redistribution and123

damping by ocean circulation and its connections with NASST variability (Zhang,124

2017).125

4. Sea surface height (SSH), an oceanic predictor used to infer geostrophic circulation126

with connections to variations in the strength of subpolar gyre (Koul et al., 2020).127

SSH is also related to subsurface ocean heat content with potential for long-term128

predictability (Buckley et al., 2019; Yeager, 2020).129

These predictors are observable from the ocean surface, and are thus more likely to130

have longer records into the future with satellite observations, providing potential for appli-131

cation to operational predictions of climate. We tested additional predictors from CESM1,132

including net air-sea heat flux, barotropic streamfunction, mixed-layer depth, heat and salt133
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content, and wind stress and its curl. None of these predictors yielded significantly better134

performance, so we focus on the above four variables.135

Each predictor is cropped to the domain used to compute the NASST index. Ocean136

variables are re-gridded to match atmospheric grid using bilinear interpolation. We exclude137

regions over land and where the ice fraction exceeds 5% so that the NNs are given the same138

areas for each predictor. We normalize each predictor by dividing by 1σ across the time,139

space, and ensemble dimensions, ensuring comparable variability between predictors and140

equal numerical contribution during the training process (Singh & Singh, 2020). Multiple141

NNs are trained with each of the above mentioned predictors separately. NNs that include142

all predictors as input did not yield improved skill, but rather indicate equivalent accuracy143

to the best predictor at each leadtime (not shown).144

2.4 Network Architecture and Training Procedure145

To separately investigate the dependency in timescale and predictor, each NN is trained146

to predict the NASST state at a specific leadtime (t=0 to 25 years) given one predictor at147

a time. We withhold 10 members of CESM1 LENS for testing, and split the remaining148

32 members into training (90%) and validation (10%) subsets. We initialize 100 different149

networks to account for randomness in the training process, totaling 10,400 networks (26150

leadtimes × 4 predictors × 100 initialized networks). The training and validation sets are151

shuffled and resampled for each training iteration, ensuring that the results are not sensitive152

to a particular subset. Each network is trained for 50 epochs, but the training process is153

stopped if the validation loss increases for 5 consecutive epochs to prevent over-fitting. All154

discussed results are from the withheld testing set.155

We explored combinations of architectures and hyperparameters for convolutional neu-156

ral networks (CNNs) and fully-connected neural networks (FNNs). Both architectures157

yielded comparable performance (Fig. S1C). Our preliminary results with more complex158

networks did not produce significantly better results, but full exploration of other architec-159

tures is left for future work. Since our objective is not to tune network hyperparameters to160

maximize accuracy, but rather to gain physical insight on drivers of NASST variability by161

examining inter-predictor differences, we focus on the simpler FNN in this study containing162

4 layers with 128 neurons each.163

2.5 Prediction Baselines164

We compare the accuracy of the trained NNs to two baselines. Since each class is evenly165

sampled during the training, there is a 33% chance that a given class will occur, which we166

set as the random chance baseline. We additionally examine the other extreme using the167

standard persistence baseline that assumes uninterrupted continuation of the current state168

(A. H. Murphy, 1992), which gives a stronger baseline than a damped persistence. For169

example, if the system is at NASST+ at the starting time (t=0 years), we assume it will170

also be NASST+ for the target leadtime.171

3 Higher skill from oceanic predictors at multidecadal leadtimes in the172

presence of external forcing173

We focus on the prediction skill for NASST+ and NASST- events (Fig. 2). For the174

predictions of Neutral events, the NNs had low accuracy equivalent to random chance. This175

is expected due to the challenge of predicting cases at the class boundaries or events with a176

weaker signal (Batista et al., 2004).177

In the forced case (Fig. 2A-B), NNs outperform both persistence and random chance178

baselines regardless of the predictor. The atmospheric variable, SLP, has similar-to-worse179

accuracy at all leadtimes compared to SST. While this is unsurprising, considering the180
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Figure 2. The mean accuracy by leadtime for predicting NASST+ and NASST- states for NNs

trained with each predictor. X-axis is the prediction leadtime from 0 to 25 years. Shading indicates

the 95% standard error of 100 NNs for each predictor. NNs trained with oceanic predictors SSH

(blue) and SSS (pink) outperform those trained with SST (red) and SLP (yellow) at long leadtimes

in the forced case (A-B). For the unforced case (C-D), performance is similar to the random chance

baselines after 5-10 years (C-D).

short persistence timescales of the atmosphere in the extratropics, on the order of weeks181

(Frankignoul & Hasselmann, 1977), the NN still outperforms the persistence forecast and182

the random chance baseline for predicting NASST+ at all the leadtimes.183

While SST appears to be a better predictor at earlier leadtimes, NNs trained by both184

oceanic predictors (SSS and SSH) achieve consistently higher accuracy than SST at decadal185

and longer leadtimes (Fig. 2A-B). Prolonged predictability from SSS could arise from ab-186

sence of strong, direct damping by turbulent heat fluxes that exists in SSTs, allowing for187

more persistent SSS anomalies (Mignot & Frankignoul, 2003; Zhang, 2017). Similarly, sub-188

surface heat content information present in SSH is shielded from damping by surface heat189

fluxes, leading to more persistence and potential predictability relative to SST (Deser et al.,190

2003; Buckley et al., 2019).191

The increased predictability from oceanic variables is dependent upon the presence of192

external forcings. After removing the ensemble mean from the predictors and NASST index193

and repeating the training procedure, all NNs exhibit performance comparable to random194

chance after 5-10 years with minimal inter-predictor difference. This suggests both the195

importance of considering external forcing for climate prediction on multidecadal timescales196

and its differing impact on predictability derived from oceanic variables.197

4 Consistent source of long-term predictability in the Transition Zone198

We investigate the source of predictability for each predictor using LRP to examine199

the network’s decision-making process (Böhle et al., 2019). LRP back-propagates the “rel-200

evance” for given sample’s prediction from the final output node to the input layer of the201

NN. The total relevance is conserved during this process through a series of propagation202

rules, resulting in a ”heatmap” of relevance indicating each pixel’s contribution to the net-203

work’s final decision (Montavon et al., 2019; Samek et al., 2021). Previous works compared204
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Figure 3. Composite relevance values (color) for ”correct” NASST+ predictions of the top 50

performing networks for 0- to 25-year leadtimes, for the predictors from SST (A-E), SLP (F-J),

SSS (K-O) and SSH (R-T), respectively. Relevance values are normalized for each composite. SSS

relevance values were doubled to aid interpretability. Contours are the respective composites of

standardized predictors for the given leadtime.
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such relevance maps with known patterns of physical processes for predicting Pacific climate205

variability for possible correspondences (Toms et al., 2020; Gordon et al., 2021).206

Since LRP produces the relevance map for a single sample, we examine the overall207

learned source of predictability by compositing relevances across correct predictions for the208

top 50 performing NNs of NASST+ and NASST-. The composites are normalized prior209

to visualization to have values between 0 and 1, though the raw output relevance is of210

order 10−4. We show relevance composites for key leadtimes between 0-25 years overlaid on211

composites of input predictors at corresponding leadtimes (Fig. 3) for the forced NASST+212

cases. Results are broadly consistent in unforced and for NASST- cases (Fig. S2-S3).213

For instantaneous predictions (leadtime 0), the relevance maps resemble known patterns214

associated with AMV and its drivers. For example the SST relevance map (Fig. 3E)215

captures the canonical horseshoe pattern of AMV (Zhang et al., 2019). Furthermore, the216

maximum relevance south of Newfoundland in SST, SSH, and SSS is collocated with the217

SPNA-Gulf Stream dipole associated with AMV-related SSTs and major ocean circulation218

features (Zhang, 2008; Nigam et al., 2018; Oelsmann et al., 2020; Gu & Gervais, 2022).219

Interestingly, a second relevance maxima for SSS is present near the Amazon River outflow220

region, though further investigation is needed to determine if this is a model-dependent221

feature and its physical mechanisms. Overall, these aspects lend confidence that the NN222

has learned to rely upon regions that vary strongly with AMV and its associated ocean223

drivers.224

Patterns associated with atmospheric drivers of NASST variability also emerge in rel-225

evance maps at leadtimes longer than 5 years (Fig. 3F-I). Successful predictions by SLP-226

trained NNs rely upon negative SLP anomalies near the Icelandic Low in the northeastern227

Atlantic, a center of action for NAO (Hurrell & Deser, 2010; Deser et al., 2010). This learned228

reliance on the NAO-NASST linkage without additional input is encouraging, suggesting229

that additional predictability beyond the persistence baseline achieved by SLP-trained NNs230

may arise from large-scale air-sea interaction in this region and resulting ocean circulation231

anomalies.232

The Transition Zone between the subpolar and subtropical gyres emerges as a consis-233

tently important region for predicting NASST regardless of leadtime for oceanic predictors234

(Fig. 3K-T) (Buckley & Marshall, 2016). This region is influenced by AMOC and its as-235

sociated fingerprint in surface and subsurface temperatures (Zhang, 2008). Relevance over236

this region remains high irrespective of the class (NASST+ or NASST-) or the presence of237

external forcing (Fig. S3). Since the NNs can derive multidecadal predictability of NASST238

by focusing on a region strongly influenced by AMOC, this result highlights the poten-239

tial importance of ocean dynamics for determining the state of both forced and unforced240

NASST.241

5 CESM1-trained neural networks predict the multidecadal oscillation242

of observed NASST states243

Does the NNs’ skill for NASST prediction apply beyond the CESM1 model world?244

Because of the limited observational record of SSH, SSS, and SLP, we test if NNs trained245

on CESM1 SSTs can successfully predict the NASST state in HadISST. Accounting for246

reductions due to the 25 year leadtime, there remains 128 years of data between 1895 to 2022.247

The 1σ threshold (0.55◦C) yielded 29 (17) NASST+ (NASST-) events. The distribution is248

skewed due to the warming trend. Due to the limited samples, we do not perform transfer249

learning for the HadISST dataset and the accuracy values were noisy, particularly at long250

leadtimes. Therefore, we focus broadly on the frequency of predictions by class (Fig. 4).251

The frequency of predictions by class across all NNs aligns with the multidecadal oscil-252

lation of the NASST in HadISST, including larger frequency of NASST- pre-1925, between253

1960-1990, and the intervening warm periods. This is true particularly for interannual and254
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Figure 4. Frequency of predicted class of each target year aggregated for interannual (1-9 years)

(A), decadal (10-19 years) (B), and multidecadal (20-25 years) (C) lead times for the HadISST

(in colored bars). Blue/red/gray bars are the frequency of the negative/positive/neutral NASST

predictions. The NASST Index from HadISST (solid-black line) and 1σ thresholds (dashed-black

lines) are shown for reference.
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multidecadal leadtimes (Fig. 4A,C), with shifted phasing at decadal leadtimes (Fig. 4B).255

The same results are recovered for the unforced case, though the multidecadal phasing of256

predictions is nearly absent for the decadal leadtimes (Fig. S4). These are surprising results257

for two main reasons: The first is that the NN is not simply predicting the anthropogenic258

warming trend (e.g. monotonically increasing NASST+ predictions in time), but instead259

has successfully learned the non-linear, oscillatory behavior of the observed NASST index.260

The second is that the weights not have been re-adjusted to HadISST, revealing that NNs261

trained on potentially biased CESM1 output maintain their ability to predict the phasing262

of observed multidecadal climate variability. Overall, this suggests promise for applying263

NNs trained on model output to predicting the general details and trajectory of non-linear264

multidecadal climate variability in corresponding observational datasets such as HadISST.265

6 Discussion and Summary266

We investigated the potential of applying NNs to multidecadal prediction of NASST267

variability and using LRP to understand the relative contributions of oceanic and atmo-268

spheric drivers. Three main conclusions of this work are:269

1. NNs trained with oceanic variables can predict NASST+ and NASST- states on270

multidecadal timescales, outperforming persistence and random chance baselines in271

the presence of external forcing.272

2. The Transition Zone emerges as consistent region from where NNs derive predictive273

skill, regardless of prediction leadtime, NASST state, and the presence of the external274

forcing, suggesting a connection to ocean dynamics such as AMOC.275

3. NNs trained on CESM1 were able to predict the multidecadal phasing of observed276

NASST states without weight readjustment, suggesting promise for training NNs277

using model output for multidecadal prediction of observed climate.278

While increased predictive skill from oceanic variables highlights the importance of279

ocean dynamics for multidecadal NASST variability, we find that this depends upon the280

presence of external forcing. There is little difference in skill between the predictors in281

unforced case, suggesting that external forcing differently impacts predictability derived282

from oceanic and atmospheric variables. A possible explanation is the larger heat capacity283

of the ocean allows for the integration of the externally forced signal, leading to increased284

predictability on multidecadal and longer timescales (Frankignoul & Hasselmann, 1977).285

The high-relevance over the Transition Zone region is remarkably consistent across286

timescales in both unforced and forced cases. This region corresponds to the maximum287

loading in the AMOC fingerprint, suggesting that the dynamics driving both internal and288

external NASST variability are collocated and linked to ocean dynamics (Zhang, 2008).289

Predictability arising from a stationary feature in a single region, rather than smaller-290

scale features that propagate across the domain, might also explain why the simpler FNN291

performed comparably to CNNs; For predicting NASST, the absolute position of the feature292

is more important than its translation invariance, erasing the advantage conferred by the293

CNN architecture (Barnes et al., 2022).294

A cautionary note is that higher accuracy from networks trained with oceanic predictors295

could be a model dependent feature. Our results are focused on NNs trained with CESM1,296

a coarse-resolution model with biases in the separation of the Gulf Stream and position of297

the North Atlantic Current (Kirtman et al., 2012). Since our relevance maps reveal that298

NNs depend upon this region for skillful predictions of NASST state, verifying the model299

dependence of this aspect by training NNs with other model large ensembles, reanalyses, or300

observational datasets is an important future endeavor. Considering connections between301

biases in mean state and decadal variability over the SPNA, exploring correspondences302
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between the resultant relevance maps and biases in ocean circulation may unveil further303

hints on the importance of ocean dynamics for NASST predictability (Menary et al., 2015).304

Open Research Section305

Datasets for this research are availabile in these in-text data citation references: (Kay306

et al., 2015), (Rayner et al., 2003). The monthly output from the CESM1 Large Ensemble307

is publicly available from the National Center for Atmospheric Research’s Climate Data308

Gateway on the Earth System Grid (https://www.cesm.ucar.edu/community-projects/309

lens/data-sets/). Monthly variables TS, LANDFRAC, ICEFRAC, SSS, PSL, and SSH310

were used for this study, and further specific instructions on accessing the output for CESM1311

is detailed at this link: (https://www.cesm.ucar.edu/community-projects/lens/data312

-sets). The HadISST dataset can be downloaded directly from their website (https://313

www.metoffice.gov.uk/hadobs/hadisst/).314

Software for this work is available on Zenodo (DOI: https://doi.org/10.5281/zenodo315

.8342739), and the corresponding linked github repository (https://github.com/glennliu265/316

predict nasst). The data will be The Pytorch-LRP Software is available in from the in-317

text data citation reference: (Böhle et al., 2019) and can be found in the following repository318

(https://github.com/moboehle/Pytorch-LRP).319

Acknowledgments320

GL is supported by the Department of Defense through the National Defense Science and En-321

gineering Graduate Fellowship Program. GL and Y-OK gratefully acknowledge the support322

by the U.S. Department of Energy Office of Science Biological and Environmental Research323

as part of the Regional and Global Model Analysis program area (DE-SC0019492). Y-OK is324

also supported by National Science Foundation Division of Atmospheric and Geospace Sci-325

ences Climate and Large-scale Dynamics program (AGS-2055236). PW acknowledges grant326

2128617 from the Atmospheric Chemistry Division of the National Science Foundation and327

support of VoLo foundation.328

References329

Arzel, O., Huck, T., Hochet, A., & Mussa, A. (2022). Internal ocean dynamics contribution330

to north atlantic interdecadal variability strengthened by ocean–atmosphere thermal331

coupling. Journal of Climate, 35 (24), 4605–4624.332

Barnes, E. A., Barnes, R. J., Martin, Z. K., & Rader, J. K. (2022). This looks like that333

there: Interpretable neural networks for image tasks when location matters. Artificial334

Intelligence for the Earth Systems, 1 (3), e220001.335

Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several336

methods for balancing machine learning training data. ACM SIGKDD explorations337

newsletter , 6 (1), 20–29.338
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Introduction

For the supporting information, we provide details on the hyperparameters of the fully-

connected neural network (FNN) used in this project (Table S1). We compare the perfor-

mance between FNNs and convolutional neural networks (CNNs) (Fig. S1). Additional

figures are also provided for different cases discussed in the main text. They demonstrate

that the the main conclusions are not sensitive to these different cases.
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Table S1. Neural Network Architecture and Training Hyperparameters used in the Fully-

Connected Neural Network (FNN)

Number of layers 4
Neurons per layer 128

Activation Function Rectified Linear Unit (ReLU)
Dropout Percentage* 50%

Max Epochs 50
Early Stoppping 5 Epochs of Increasing Loss
Mini Batch Size 32

Optimizer Adam
Learning Rate 1 x 10−3

*Dropout layer included prior the the last layer.
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Figure S1. Schematic diagram of an example AMV Prediction problem (A) for the 2-layer CNN

(B). The comparison in positive and negative North Atlantic Sea Surface Temperature (NASST+,

NASST-) test accuracy between the FNN (yellow) and CNN (blue) for an SST predictor (C),

with the random chance (dotted) and persistence baselines (black). Both networks perform

similarly regardless of predictor, and their means are largely within the 95% standard error

across initialized networks (shading).
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Figure S2. Same as Figure 3, but for “correct” NASST- predictions for the top 50 performing

networks. The regions of high relevance, i.e., sources of predictability, resemble that of NASST+,

though there are small differences. The AMV maximum in the central subpolar gyre is more

distinctly outline for SST at leadtime 0 (Panel E). Additionally, the NN focuses on anomalies

closer to the Azores High at 5-year leadtimes, rather than directly to the Iceland low as in the

NASST+ case (Panel I).
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Figure S3. Same as Fig. 3, but for the unforced case where the external forcing was

removed. The regions of maximum relevance resemble that of the forced NASST+ predictions.

This similarity between both forced and unforced cases suggests that the NASST predictability is

sourced from similar regions and dynamics, though further work is needed to explicitly investigate

the responsible processes.
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Figure S4. Same as Figure 4, but for NNs trained with unforced CESM1 data predicting the

NASST Index from HadISST, detrended by removing a cubic fit. The result is not sensitive to

the detrending method.
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