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Abstract

We present a proof of concept for the probabilistic emulation of the Ring current-Atmosphere interactions Model with Self-

Consistent magnetic field (RAM-SCB) particle flux. We extend the workflow developed by Licata and Mehta (2023) by applying

it to the ring current and further developing its uncertainty quantification methodology. We introduce a novel approach for

sampling over 20 years of solar and geomagnetic activity to identify 30 simulation periods, each one week long, to generate the

training, validation, and test datasets. Large-scale physics-based simulation models for the ring current can be computationally

expensive. This work aims at creating an emulator that is more efficient, capable of forecasting, and provides an estimate on

the uncertainty of its predictions, all without requiring large computational resources. We demonstrate the emulation process

on a subset of particle flux: a single energy channel of omnidirectional flux. A principal component analysis (PCA) is used for

the dimensionality reduction into the reduced-space, and the dynamic modeling is performed with a recurrent neural network.

A hierarchical ensemble of Long-Short Term Memory (LSTM) neural networks provides the statistics needed to produce a

probabilistic output, resulting in a reduced-order probabilistic emulator (ROPE) that performs time-series forecasting of the

ring current’s particle flux with an estimate on its uncertainty distribution. The resulting ROPE from this smaller subset of

RAM-SCB particle flux provides dynamic predictions with errors less than 11% and calibration scores under 10%, demonstrating

that this workflow can provide a probabilistic emulator with a robust and reliable uncertainty estimate when applied to the

ring current.
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Abstract25

We present a proof of concept for the probabilistic emulation of the Ring current-26

Atmosphere interactions Model with Self-Consistent magnetic field (RAM-SCB) parti-27

cle flux. We extend the workflow developed by Licata and Mehta (2023) by applying it28

to the ring current and further developing its uncertainty quantification methodology.29

We introduce a novel approach for sampling over 20 years of solar and geomagnetic ac-30

tivity to identify 30 simulation periods, each one week long, to generate the training, val-31

idation, and test datasets. Large-scale physics-based simulation models for the ring cur-32

rent can be computationally expensive. This work aims at creating an emulator that is33

more efficient, capable of forecasting, and provides an estimate on the uncertainty of its34

predictions, all without requiring large computational resources. We demonstrate the em-35

ulation process on a subset of the RAM-SCB particle flux data product, where we de-36

fine this subset as a single energy channel of omnidirectional flux. A principal compo-37

nent analysis (PCA) is used for the dimensionality reduction into the reduced-space, and38

the dynamic modeling is performed with a recurrent neural network. A hierarchical en-39

semble of Long-Short Term Memory (LSTM) neural networks provides the statistics needed40

to produce a probabilistic output, resulting in a reduced-order probabilistic emulator (ROPE)41

that performs time-series forecasting of the ring current’s particle flux with an estimate42

on its uncertainty distribution. The resulting ROPE from this smaller subset of RAM-43

SCB particle flux provides dynamic predictions with errors less than 11% and calibra-44

tion scores under 10%, demonstrating that this workflow can provide a probabilistic em-45

ulator with a robust and reliable uncertainty estimate when applied to the ring current.46

Plain Language Summary47

The ring current is a region of the inner magnetosphere where space weather events48

affect the charging environment experienced by spacecraft. Running large-scale physics-49

based simulation models in domains such as the ring current can be computationally ex-50

pensive. This work aims at creating an emulator that runs much faster, is capable of fore-51

casting, and can provide an estimate on the uncertainty of its predictions, all without52

requiring large computational resources. It is important to note that emulators are not53

developed to replace physics-based models but rather enable a higher adoption rate and54

usage for more system-wide investigations. To begin, a subset of the particle flux data55

product is converted into a reduced, simpler form. A neural network is then implemented56

to model the ring current environment in this reduced form and trained on a set of week-57

long simulations derived from a newly developed sampling methodology. An ensemble58

of these neural networks is then combined into a single predictor. The resulting reduced-59

order probabilistic emulator (ROPE) provides time-series predictions with error estimates,60

which together define a probabilistic output. The presented ROPE can make predictions61

with errors less than 11% with calibration scores under 10%, ultimately demonstrating62

that this workflow can provide a probabilistic emulator of the ring current with a robust63

and reliable uncertainty estimate.64

1 Introduction65

The motivation for this work stems from the plasma populations that can detri-66

mentally affect spacecraft, specifically those contributing to the charging environment.67

Green et al. (2017) describes the various anomalies that have impacted the satellite in-68

dustry, where surface and internal charging were dominant issues (Koons et al., 1999).69

Anomalies such as these can damage electrical components & thermal coatings, destroy70

sensors and/or scientific instruments, interfere/spoof communication signals, and poten-71

tially leave a spacecraft completely inoperable. Modeling of the inner magnetosphere has72

been used to investigate the potential cause of a detected anomaly (Koons & Fennell,73

2006; Ganushkina et al., 2017) but can also aid spacecraft designers and operators in mit-74
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igating potential damage or disruptions to their spacecraft. Yu et al. (2019) illustrates75

a recent competition designed to assess the capabilities of current inner magnetosphere76

models in determining the surface charging environment during the 17 March 2013 ge-77

omagnetic storm. Large-scale physics-based simulation models provide invaluable insight78

into the physical evolution of dynamical systems such as the ring current. Their use in79

an operational setting, however, can sometimes be limited by computational restrictions,80

inviting faster, more efficient models to take their place. Development of more efficient81

models has gained popularity in the thermosphere (Mehta et al., 2018; Gondelach & Linares,82

2021; Licata & Mehta, 2023), so our work aims to extend this application and provide83

an emulator to the Space Weather community capable of an efficient and probabilistic84

prediction of ring current particle flux using the Ring current-Atmosphere interactions85

Model with Self-Consistent magnetic field (RAM-SCB) (Engel et al., 2019; Jordanova86

et al., 2006; Jordanova, Morley, et al., 2022).87

The solar wind (SW) is the primary source of energy deposition that drives the Earth’s88

magnetospheric dynamics (Pulkkinen et al., 2007). Since the near-Earth environment89

is mostly comprised of charged particles in the form of plasma, there are inevitable and90

unpredictable hazards that come with operating in this type of environment (Green et91

al., 2017). The inner magnetosphere is a domain in which the Earth’s magnetic field lines92

are closed and charged particles are trapped within these magnetic fields. In this region,93

Earth’s magnetic field closely resembles that of a dipole magnetic field and spans from94

the dayside magnetopause to the outer transition region (Spence et al., 1989), roughly95

10-12 Earth radii (RE) (Russell et al., 2016; Daglis et al., 1999; Spence et al., 1989; Ganushk-96

ina et al., 2017). The trapped particles form different plasma populations that both re-97

side and overlap with each other, which not only complicates the physical processes gov-98

erning them but also creates a dynamically coupled system (Russell et al., 2016; Yu et99

al., 2012).100

The primary plasma populations found in the inner magnetosphere are the plas-101

masphere, ring current, and radiation belts. They all coexist together but are typically102

differentiated by the range of particle energies within each population. The plasmasphere103

contains cold, dense plasma with energies of a few electronvolts (eV), and its constituents104

generally originate from the ionosphere (Daglis et al., 1999; Russell et al., 2016; Fok et105

al., 2021). The plasmasphere is not known to directly affect the Earth’s magnetic con-106

figuration, but its high density has been known to propagate electromagnetic waves, which107

can influence both the ring current and radiation belt populations (Daglis et al., 1999;108

Jordanova, Thorne, et al., 2010; Jordanova et al., 2012; Yu et al., 2012; Ganushkina et109

al., 2017). The radiation belts are two lobed regions separated by a small gap called the110

slot region and typically are the most energetic population in the inner magnetosphere111

(Russell et al., 2016; Li & Hudson, 2019). This region consists of energetic ions and rel-112

ativistic electrons that range anywhere from ∼500 keV to a few MeV (Russell et al., 2016;113

Li & Hudson, 2019; Fok et al., 2021). The radiation belts are also known to be highly114

variable during geomagnetic storms (Friedel et al., 2002; Thorne, 2010). The ring cur-115

rent has energies roughly in-between these two populations, ∼10–400 keV, and is gen-116

erated by the movement of charged particles experiencing a gradient-curvature drift (Daglis117

et al., 1999; Jordanova et al., 2014; Russell et al., 2016; Fok et al., 2021).118

During geomagnetic activity, the ring current gains population from plasma that119

is accelerated by reconnection in the magnetotail, making it the population that carries120

the majority of pressure and current directly into the inner magnetosphere (Daglis et al.,121

1999; Jordanova et al., 2014; Ganushkina et al., 2017). These accelerated particles ex-122

perience a nonuniform magnetic field as they travel inward from the magnetotail that123

causes them to drift in opposite directions (gradient-curvature drift), inducing a current,124

with the ions moving towards the dusk-side and electrons towards the dawn-side of Earth.125

This induced westward current, called the ring current, is the main contributor to the126
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magnetic depression observed by ground-based magnetometers during geomagnetic storms127

(Daglis et al., 1999; Ganushkina et al., 2017; Fok et al., 2021).128

2 Methodology129

This work leverages reduced-order modeling (ROM) with machine learning (ML)130

techniques to significantly decrease the computational cost of physics-based simulation131

models while maintaining their high fidelity. Note: Emulators are not developed to re-132

place physics-based models but rather enable a higher adoption rate and usage for more133

system-wide investigations. A ROM parses out which modes of variability are most in-134

fluential (Mehta et al., 2018; Mehta & Linares, 2017) and then operates in this reduced135

space, or lower-dimensional representation. Figure 1 shows a high-level overview of the136

emulation process, where the following steps are covered in more detail:137

1) Event Selection in Section 2.1138

2) Simulate Events in Section 2.2139

3) Dataset Creation in Section 2.3140

4) Dimensionality Reduction in Section 2.5141

5) Dynamic Modeling in Section 2.6142

6) Model Ensemble in Section 2.7143

7) Uncertainty Quantification in Section 2.8144

Steps that are developed in either the physical or reduced space are color coded145

as blue and orange, respectively. To begin, a novel discrete sampling methodology is in-146

troduced to determine a set of geomagnetic storms that encompasses a wide range of so-147

lar and geomagnetic activity. This list of storms is then run through RAM-SCB to pro-148

duce simulation outputs that generate the ML datasets used to develop the emulator.149

A dimensionality reduction is applied that identifies the dominant spatial modes of vari-150

ability and transforms the ML datasets into the reduced space. This is done to enable151

future data assimilation applications by significantly simplifying the calculations needed152

for high-dimensional systems (Mehta & Linares, 2018; Maulik et al., 2022). A dynamic153

model, in this case a recurrent neural network, is then developed to predict the system’s154

temporal variations in the reduced space, where the inclusion of a neural network en-155

ables nonlinear modeling. The resulting dynamic model is deterministic, meaning that156

it only provides a point estimate. Thus, we leverage an ensemble of deterministic mod-157

els to compute an uncertainty quantification (UQ). The final step is to then reconstruct158

the model ensemble’s predictions and uncertainty statistics back into the physical space159

by reversing the dimensionality reduction transformation. It is important to note that160

any development in the reduced space can be evaluated in the physical space by utiliz-161

ing this reconstruction step.162

2.1 Event Selection163

The first and arguably most important step of any ML-based model development164

is to build proper training, validation, and test datasets. Here, we use the definitions com-165

mon in ML literature where the validation dataset refers to out-of-sample data not seen166

by the model during training that can be used to measure performance, optimize meth-167

ods, and make decisions. The test dataset is also out-of-sample but is only used to mea-168

sure model performance. Using NASA’s SPDF (Space Physics Data Facility) OMNIWeb169

database, we analyze solar wind and geomagnetic data from 2000-2020, all at a 1-minute170

cadence. The following solar wind parameters were queried: velocity components (Vx,171

Vy, Vz) in GSE coordinates, interplanetary magnetic field (IMF) components (Bx, By,172

Bz) in GSM coordinates, proton density, proton temperature, and flow pressure. The173

AL and SYM-H geomagnetic indices were also included in the query. Simulating this en-174
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Figure 1. Overview of emulator workflow from creation of the ML datasets, through the

reduced-order dynamic modeling, culmination of the model ensemble, and ending with the final

probabilistic output. Steps developed in either the physical or reduced space are color coded in

blue and orange, respectively.

tire span in physics-based models such as RAM-SCB would be extremely challenging and175

computationally expensive. Therefore, we developed a custom discrete sampling method-176

ology to determine a set of random events that adequately covers this entire span of so-177

lar wind drivers and ring current responses.178

The 21 years of OMNIWeb data from 2000-2020 are split into smaller, more man-179

ageable weekly segments, each representing a candidate simulation interval. These 7-day180

intervals are long enough to encompass a space weather event & recovery period but short181

enough to minimize the likelihood that separate events would be grouped together. When182

initializing large-scale physics-based simulations, the initial condition should be set to183

low activity levels so that the internal components can stabilize before the system is per-184

turbed. RAM-SCB is known to not perform well when simulations are initialized with185

heightened activity levels (Jordanova, Engel, et al., 2022; Jordanova et al., 2014). There-186

fore, we filter out weekly intervals that begin with radial SW velocities (Vx) exceeding187

500 km/s. A 7-day sliding window is implemented to avoid disqualifying events solely188

based on this initialization criteria, which is marched daily and identified 7,664 candi-189

dates. We limit the amount of missing data in each candidate interval to a cumulative190

total of 36 hours (1.5 days) for any given parameter, which amounts to roughly 21% of191

the data within that week. Any smaller gaps that pass through this filter are linearly192

interpolated using the entire weekly timeseries. Applying these two filters reduced the193

number of possible candidates down from 7,664 to 2,839 weekly intervals.194

This work introduces a novel custom discrete sampling methodology that efficiently195

and effectively samples our full parameter space. Each of the 2,839 week-long candidate196

intervals are located in a 4-dimensional parameter space using a set of summary statis-197

tics: 1) minimum SYM-H, 2) mean AL, 3) mean Vx, and 4) minimum Bz. The strength198

of the ring current disturbance and overall geomagnetic activity is captured by taking199

the minimum SYM-H. The mean AL is used to describe the impulsive energy dissipa-200

tion and injection of plasma into the inner magnetosphere. The strength of the SW drivers201

are characterized by the mean Vx and minimum Bz. We then leverage concepts behind202

Latin hypercube sampling (LHS) that normally aim to efficiently reproduce the under-203

lying probability distributions (Deutsch & Deutsch, 2012) but instead utilize them to204

provide sufficient coverage of our parameter space. In lieu of splitting each parameter’s205

distribution into evenly-spaced probability intervals, we take the full range of each pa-206

rameter and separate it into 10 linearly-space bins. Each bin is then assigned an equal207

probability, and a bin index is randomly drawn with replacement. In the event that a208
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bin for any given parameter is empty, another index is randomly selected until a bin with209

at least one candidate event is chosen. Once an occupied bin is identified, a candidate210

interval is then randomly selected, with uniform probability, from the bin. This is re-211

peated for each parameter, providing a pool of 4 candidate intervals. To finalize a se-212

lection, an interval from this pool is then randomly selected, removed from each of the213

parameter spaces, and then the selection process is repeated for the number of desired214

samples. This differs from LHS, which is typically used to efficiently sample continuous215

probability distributions that contain the majority of samples in the high-probability re-216

gions of the parameter space. Instead, we are aiming for a more uniform converge of the217

parameter space to avoid a heavily imbalanced training dataset dominated by quiescent218

times.219

Table 1. Training Events Identified by the Novel Sampling Methodology.

Event Start Date min(SYM-H) mean(AL) mean(Vx) min(Bz)

TRNG 1 2001-03-31 -437.0 -216.3 -580.4 -44.4
TRNG 2 2001-04-07 -280.0 -272.2 -605.7 -20.3
TRNG 3 2001-10-16 -219.0 -173.8 -379.6 -17.8
TRNG 4 2001-11-24 -234.0 -77.9 -506.1 -26.6
TRNG 5 2002-09-05 -168.0 -224.2 -440.7 -22.8
TRNG 6 2003-03-14 -67.0 -283.4 -670.2 -7.4
TRNG 7 2003-11-09 -134.0 -412.9 -638.5 -8.5
TRNG 8 2003-11-20 -490.0 -251.5 -542.9 -51.3
TRNG 9 2004-07-19 -168.0 -287.0 -505.4 -18.6
TRNG 10 2005-07-08 -114.0 -253.4 -435.7 -18.9
TRNG 11 2005-09-10 -137.0 -381.8 -706.5 -6.5
TRNG 12 2005-11-30 -25.0 -102.5 -607.2 -3.6
TRNG 13 2007-11-13 -24.0 -53.0 -516.9 -5.6
TRNG 14 2008-07-12 -41.0 -116.9 -566.1 -7.7
TRNG 15 2009-03-08 -45.0 -79.3 -409.8 -10.2
TRNG 16 2009-09-09 -20.0 -50.5 -332.4 -6.1
TRNG 17 2011-01-07 -49.0 -82.1 -531.2 -4.6
TRNG 18 2012-05-02 -32.0 -53.1 -305.2 -8.3
TRNG 19 2013-01-17 -58.0 -62.9 -376.7 -12.3
TRNG 20 2013-10-30 -57.0 -84.0 -348.6 -8.1

A total of 30 events were selected using this sampling methodology, with 20 used220

for the training (TRNG) dataset (see Table 1) and 5 used for each of the validation (VAL)221

and test (TST) datasets (see Table 2). Figure 2 displays the training, validation, test,222

and remaining samples (SAMP) in red, green, orange, and dark blue, respectively. His-223

tograms of each sample parameter’s distribution are shown on the diagonal plots. The224

panels below the diagonal show 2-D scatter plots between the various parameter pairs,225

and the bivariate kernel density estimates (KDE) (Wȩglarczyk, 2018; Waskom, 2021) are226

plotted above the diagonal. This split leads to a training/validation/test ratio of 66/17/17%.227

The events in each dataset were selected such that they contained a wide range of ac-228

tivity levels, with the training dataset having the largest possible range in each of the229

parameter spaces. The VAL 2 and TST 2 simulations begin only days apart, so the ex-230

trema in SYM-H and Bz are the same for both events because of this overlap. However,231

due to their offset, the initial state and evolution of each week-long interval will differ.232

These two events constitute a period of prolonged geomagnetic activity where two sig-233

nificant storms occurred within a few days of each other. Each storm is captured very234

differently in the two intervals, although the most severe activity overlaps into both events235

and is emphasized by the minimum statistic.236
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Table 2. Validation and Test Events Identified by the Novel Sampling Methodology.

Event Start Date min(SYM-H) mean(AL) mean(Vx) min(Bz)

VAL 1 2003-05-05 -93.0 -297.5 -670.1 -7.5
VAL 2 2004-11-05 -394.0 -409.3 -542.7 -44.7
VAL 3 2005-01-12 -107.0 -251.9 -618.7 -12.3
VAL 4 2012-11-09 -118.0 -101.0 -357.5 -17.4
VAL 5 2017-12-01 -47.0 -129.5 -443.0 -11.1

TST 1 2002-04-19 -185.0 -206.3 -482.8 -13.7
TST 2 2004-11-03 -394.0 -277.3 -475.3 -44.7
TST 3 2005-08-24 -179.0 -164.9 -479.3 -32.4
TST 4 2013-04-24 -52.0 -132.2 -435.1 -12.8
TST 5 2017-03-26 -86.0 -259.1 -586.1 -9.2

Figure 2. Pairplot displaying the TRNG, VAL, and TST events identified by the novel cus-

tom discrete sampling methodology. It visualizes the sampling taken within each parameter’s

distribution, where histograms of each parameter are shown on the diagonal plots. The panels

below and above the diagonal show 2-D scatter plots between parameter pairs and the bivariate

KDEs, respectively. The remaining samples (SAMP) are shown in dark blue.
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2.2 Simulate Events237

RAM-SCB is a unique inner magnetosphere model developed at Los Alamos Na-238

tional Laboratory (LANL) that combines a kinetic ring current plasma model (RAM)239

(Jordanova, Zaharia, & Welling, 2010; Jordanova, Engel, et al., 2022) with a 3-D self-240

consistent magnetic field model (SCB) (Zaharia et al., 2006; Jordanova et al., 2006). RAM241

and SCB are two separate components that are two-way coupled for self-consistent evo-242

lution (Jordanova, Engel, et al., 2022). RAM-SCB began as a research-based code with243

limited options but is now a powerful and highly configurable open-source software that244

is highly parallelizable (Engel et al., 2019; Jordanova, Engel, et al., 2022). By default,245

RAM-SCB models 4 species of charged particles (H+, He+, and O+, and e−) in ener-246

gies ranging from 100 eV to 500 keV. Its spatial domain spans from 2 to 6.5 RE with247

a 0.25 RE resolution along the magnetic equatorial plane. One of its many data prod-248

ucts is the equatorial particle flux, which is provided in terms of magnetic local time (MLT),249

radial distance (RE), energy (keV), and pitch angle (PA) (Jordanova, Engel, et al., 2022).250

All 30 events (20 training, 5 validation, and 5 test) were run using WVU’s Thorny251

Flat cluster, each with an identical configuration. All system environment information252

and input files are provided for reproducibility purposes (Cruz et al., 2023). Each sim-253

ulation utilizes 13 CPU cores, is run in its own standalone run directory, and outputs254

92 GB of data. The total 210 days of simulation time were completed in just under 48255

days of computational time, resulting in an average speed of 4.4x real-time. An overall256

wall time of 16 days was ultimately needed because multiple simulations were run simul-257

taneously over several compute nodes on the Thorny Flat cluster. The total amassed out-258

puts for the set of 30 simulations was 3 TB.259

2.3 Dataset Creation260

RAM-SCB outputs equatorial, directional differential flux as a 4-D hypercube for261

each various plasma species identified in its setting file (PARAM.in), which we set to in-262

clude all default species (H+, He+, and O+, and e−) for each simulation. There are 72263

pitch angles over 35 energy channels with spatial dimensions of 25 MLTs and 20 radial264

distances, equating to a data shape of (72, 35, 25, 20) per timestep. Each 7-day simu-265

lation has outputs at a 10-minute cadence, resulting in 1,008 timesteps per simulation.266

RAM-SCB’s particle flux is saved in NetCDF files at the output cadence, meaning there267

are 1,008 individual flux files per simulation, each roughly 40 MB. The resulting data268

shape for an entire simulation of particle species comes out to be (1008, 72, 35, 25, 20).269

We decided to develop this proof of concept using protons (H+) since they are known270

to be the most dominant species for convection in Earth’s ring current (Daglis et al., 1999;271

Jordanova et al., 2012, 2014). Concatenating the 20 training simulations all together cre-272

ates a data structure with shape (20160, 72, 35, 25, 20) that occupies roughly 101 GB273

of physical memory. Any operation (add, subtract, mean, etc.) roughly doubles the mem-274

ory usage to around ∼200 GB, requiring significant computational resources to work di-275

rectly on a data structure this size.276

In creating new datasets, there are many unforeseen steps needed in order to get277

the data in a suitable state for analysis. To start, our RAM-SCB simulations are all run278

using double precision, thus small numbers (i.e. 10−300) are found in the loss cone and279

at the inner boundary. To mitigate the propagation of these small numbers as well as280

reduce memory usage, we converted our data to single precision, which resets the min-281

imum threshold to around 10−45. In addition, RAM-SCB uses ghost cells for the inner282

radial boundary condition at 1.75 RE, across all pitch angles and energy channels that283

should not be included in physical analyses. To remove ghost cells and reduce the em-284

ulated area, we truncated all radial distances below 3 RE , resulting a data shape of (20160,285

72, 35, 25, 15) that occupies 71 GB of physical memory.286
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Because of this dataset’s size, our emulator is developed using only a subset of the287

RAM-SCB particle flux data product. Developing an emulator on a smaller subset of the288

data has the benefit of speeding calculations up because there is less data, thus making289

each step in the workflow both simpler and faster. Once the emulation process is demon-290

strated on this smaller subset, it can then be expanded to incorporate RAM-SCB’s full291

4-D data product. Since maintaining the spatial information is key for modeling the sys-292

tem’s dynamics, we decided to only use a single energy channel and integrate the pitch293

angle distribution to obtain omnidirectional flux. The 208 keV energy channel was se-294

lected since the differential flux is already separated by energy. We then integrated di-295

rectional flux into omnidirectional flux (normalized per steradian) following Bourdarie296

et al. (2012) to further reduce the dimensionality:297

jomni =

∫ π

0
j(E,α) sin(α) dα∫ π

0
sin(α) dα

(1)

This results in omnidirectional differential flux (jomni) with units of cm−2 s−1 sr−1
298

keV −1, where α is the pitch angle and j(E,α) is the directional differential flux at a spe-299

cific energy (E) and pitch angle (α). By removing the pitch angle information and se-300

lecting a single energy channel, the training data is now reduced to just the spatial di-301

mensions with a shape of (20160, 25, 15) that occupies 30 MB of physical memory. This302

same process is also applied to the validation and test datasets.303

2.4 Metrics304

The metric used to describe error in the physical space is the median symmetric305

accuracy (MdSA; S. K. Morley et al., 2018). Ring current particle flux spans many or-306

ders of magnitude, is strictly positive, and has a physically meaningful zero value (Zheng307

et al., 2019). Normally, datasets with large ranges utilize relative error metrics, such as308

the percent error, that are able to scale values over these large ranges. The mean abso-309

lute percent error (MAPE) is widely used in space science data analysis (S. K. Morley310

et al., 2018; Zheng et al., 2019) but has drawbacks. The MdSA metric was developed311

to help mitigate many of these concerns (S. K. Morley et al., 2018), aimed at inner mag-312

netospheric flux data. First, it is a relative error metric that penalizes over- and under-313

estimations equally. The median is also used instead of the mean because it is a robust314

central tendency statistic that is resistant to outliers and bad data. For the development315

of the uncertainty quantification in Section 2.8, the median statistic will be used when-316

ever an average is taken over the temporal range (t), since outliers are expected to arise317

during the highest solar and geomagnetic activity levels. Lastly, MdSA is easily inter-318

preted as a straight-forward accuracy, or percent error. Equation 2 shows how to com-319

pute the MdSA, where Q = pred
truth is defined as the accuracy ratio.320

MdSA = 100 ( exp(Median( |loge(Q)| ) ) − 1) (2)

The metric used to determine the bias in either the physical or reduced spaces is321

the symmetric signed percentage bias (SSPB; S. K. Morley et al., 2018). Similarly to the322

MdSA, the SSPB is a relative error metric that penalized over & under estimations equally.323

The median is also used in its calculations as a robust central tendency statistic that is324

resistant to outliers and bad data. The SSPB metric is interpreted like a mean percent-325

age error where an unbiased prediction is at 0% SSPB and an over- or under-prediction326

produces positive and negative SSPB, respectively.327
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SSPB = 100 sgn(Median(loge(Q)) ) ( exp( |Median(loge(Q)) | ) − 1) (3)

The standard metric of mean squared error (MSE) is used to describe the errors328

of the temporal coefficients in the reduced space (ref. Equation 5). It is also key to note329

that the MSE optimized in the dynamic models (Section 2.6) will have gone through mul-330

tiple transformations (logarithmic, dimensional reduction, and standardization), mak-331

ing it extremely difficult to interpret. Thus, any model performance metrics must be de-332

termined post-process by reconstructing the predictions back into the physical space. This333

is one of the unique challenges of working with ROMs: the ML algorithms analyze the334

reduced-space representations of the data, which are not necessarily interpretable.335

The reliability metric used for the UQ is the calibration error score (CES). It is used336

for consistency with developments in the thermosphere (Licata, Mehta, Tobiska, and Huzur-337

bazar (2022); Licata, Mehta, Weimer, et al. (2022); Licata and Mehta (2022, 2023)) and338

is a relative metric that is easily interpreted as a percent error. The CES measures the339

deviation of the observed cumulative probability p(α̂r,m) from the expected cumulative340

probability p(αr,m). The above probabilities are calculated using the process described341

in Section 2.5.1 of Licata, Mehta, Tobiska, and Huzurbazar (2022), where the prediction342

intervals span from 5-99% in increments of 5%. The reliability of the uncertainty esti-343

mates is visualized by plotting p(α̂r,m) against p(αr,m), also known as a calibration curve.344

The calibration curves presented in this work are under the assumption of a Gaussian345

distribution, and the reliability under non-Gaussian distributions will require further in-346

vestigation. An uncertainty estimate that matches a normal distribution is indicated by347

a 45◦ line (i.e., y = x) on the calibration curve. Any deviation from this line indicates348

an over or underestimation of the uncertainty for a curve that is above or below the line,349

respectively. Here, the calibration curves and CES are all calculated in the reduced space.350

The CES calculation is shown in Equation 4,351

CES =
100%

r ·m
∑
r

∑
m

∣∣∣p(αr,m)− p(α̂r,m)
∣∣∣ (4)

where r is the number of reduced-space coefficients and m is the number of pre-352

diction intervals used to determine the cumulative probabilities.353

2.5 Dimensionality Reduction354

The next step in the emulation process is to reduce the dimensionality of the datasets.355

A system’s spatial variations are normally represented by a set of basis vectors that are356

both independent in time and mutually orthogonal, or what is commonly known as em-357

pirical orthogonal functions (EOF) (Bjornsson & Venegas, 1997; D. Wilks, 2011). The358

temporal variations αi(t) are then added in as weights to the spatial EOFs (Mehta &359

Linares, 2017; Mehta et al., 2018; Licata, Mehta, Tobiska, & Huzurbazar, 2022), which360

we will be referring to as the reduced-order temporal coefficients. This is shown in Equa-361

tion 5, where X ∈ Rn, s represents the spatial domain, t represents the temporal do-362

main, and U contains the spatial modes.363

X (s, t) = X (s) + X̃ (s, t) where X̃ (s, t) ≈
r∑

i=1

αi (t)Ui (s) (5)

One of the most challenging aspects of ROM on space weather systems is to prop-364

erly adjust the timing of the temporal variation predictions with the corresponding in-365
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puts driver(s) (Mehta & Linares, 2017). The resulting reduced-space transformation has366

a controlled loss of accuracy with respect to the physical model, through optimized trun-367

cation, along with the benefit of being in a much more manageable & practical form for368

analysis (Mehta et al., 2018). Before the dimensionality can be reduced, though, a log-369

arithmic transformation (log10) is normally applied (Zheng et al., 2019). Transforma-370

tions using logarithms not only reshape skewed distributions into more normalized dis-371

tributions but also significantly reduce their value range (D. S. Wilks, 2011). This also372

implies that the antilogarithm must be taken directly after the dimensional reduction373

is reversed during any reconstructions back into the physical space.374

The ROM process begins by reducing the spatial dimensionality of the system by375

applying a principal component analysis (PCA). PCA is an unsupervised method used376

to map high-dimensional data into an uncorrelated lower-dimensional space by means377

of a linear rotation and scaling. In some literature, PCA and EOF can be used inter-378

changeably (Bjornsson & Venegas, 1997). PCA is a popular starting point for reducing379

the dimensionality of space weather domains because it is a simple yet powerful method380

(McGranaghan et al., 2015; Mehta & Linares, 2017; Licata & Mehta, 2022; Licata, Mehta,381

Tobiska, & Huzurbazar, 2022; Licata & Mehta, 2023). Once the logarithmic transfor-382

mation (log10) has been applied, the next step is to remove the spatial mean X(s) from383

the training data (see Equation 5), which is referred to as centering the data. We use384

the spatial mean because the mean is taken over the temporal dimension, and it is this385

mean of the training dataset that is used when transforming any and all data between386

the physical and reduced spaces. The last preparation step before performing the actual387

PCA is to convert the data into a 2-D array (Bjornsson & Venegas, 1997; D. Wilks, 2011).388

Since we are analyzing only a single energy of omnidirectional flux, the spatial dimen-389

sions (25, 15) will be collapsed into a single array of size n = 375, resulting in a data390

shape of (20160, 375). Our PCA is implemented using a singular value decomposition391

(SVD) solver (Pedregosa et al., 2011),392

X̃ = UΣV T where X̃ =

 x̃1 x̃2 ... x̃n

 , (6)

where U contains the left singular vectors of X̃X̃
T
, V contains the right singular393

vectors of X̃T X̃, Σ is a diagonal matrix containing the squares of the corresponding eigen-394

values, and all are arranged in descending order. We use this PCA decomposition to trans-395

form the ML datasets into the reduced-space representation.396

The spatial modes of variability identified by the PCA decomposition often reveal397

or resemble known physical processes and phenomenon (McGranaghan et al., 2015). Di-398

rect interpretations, however, are not necessarily guaranteed since each mode may con-399

tain multiple processes or various combinations of physical processes. Figure 3 shows the400

mean and first 7 right singular vectors from the PCA, or spatial modes of variability, on401

RAM-SCB’s grid (for the 208 keV proton flux). Upon visual inspection, there are roughly402

3 trends: 1) radial falloff, 2) symmetric rings, and 3) asymmetric structures. The mean403

and Mode 1 are both examples of the radial falloff and reminiscent of the ring current’s404

expected location. During quiescent times, the ring current is normally confined to ra-405

dial distances under 4.5 RE (R < 4.5 RE) for high-energy protons (E > 200 keV) (Jordanova406

et al., 2014), which is validated by the mean plot. During the main phase of a geomag-407

netic storm, most all particle fluxes are reduced at radial distances R > 4.5 RE , and the408

ring current is compressed closer towards the Earth (Jordanova et al., 2012). Mode 1 agrees409

with this reduction and compression, which by definition is also the most dominant mode410

of variability. The symmetric rings in Modes 2, 4, and 7 seem to simply resemble basis411

functions for the symmetric ring current, which becomes more defined at higher parti-412
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cle energies. During the main and recovery phases of a geomagnetic storm, each parti-413

cle’s drift is known to vary radially (Jordanova et al., 2012), creating similar symmet-414

ric rings. The asymmetric structures in Modes 3, 5, and 6 are more difficult to interpret415

and will require further analysis because the ring current is comprised of both a sym-416

metric and asymmetric portion, or partial ring current (Daglis et al., 1999; Russell et417

al., 2016), as well as drifting injected particles. Most of the asymmetric modes show vari-418

ations between dawn and dusk, which is the expected drift path for ions (H+) in the ring419

current.420

Figure 3. Mean and first 7 spatial modes of variability identified by the PCA from the right

singular vectors plotted on RAM-SCB’s grid. The modes are ordered in terms of importance,

meaning the mean is the most dominant followed by mode 1, and so on.

PCA’s ability to reduce the dimensionality of a dataset comes into play when the421

modes that contribute the least to the system’s variability are identified and removed.422

Determining the point of truncation for an emulator is a balance between minimizing423

the amount of reconstruction error and reducing the dimensionality of the system for enough424

observability (Mehta & Linares, 2018) in later data assimilation applications. Typically,425

the truncation point is set to where the reconstruction error is on the order of a few per-426

cent and the dimensionality is reduced to around 10. We decided to truncate our PCA427

at 20 modes (r=20), which reduces the spatial dimensionality from X̃ ∈ Rn to X̃ ∈428

Rr. The cumulative variance contribution is plotted on the left axis of Figure 4, where429

the first 20 modes are shown to capture 82.9% of the variability. Figure 4 also reveals430
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that the truncation error (right axis) from the reconstruction back to the physical space431

using 20 PCA modes is 2.9% MdSA.432

Figure 4. The cumulative variance contribution (orange) for each mode of the PCA, and

truncation error (blue) of the reconstruction back into the physical space using the specified num-

ber of modes on the training dataset.

To illustrate the robustness of the PCA decomposition, 3 different timesteps from433

the VAL 4 simulation (see Table 2) are reconstructed back to the physical space and shown434

in Figure 5. Timesteps were chosen before, during, and after the geomagnetic storm, and435

the resulting truncation errors between the actual (left plots) and reconstructed (mid-436

dle plots) fluxes are plotted on the right. The errors in the plots for before and after the437

storm are on the same order as the truncation error, with an MdSA of 3.4% and 1.6%,438

respectively. However, errors are expected to increase during the geomagnetic storm, since439

the linear PCA would not be able to capture any nonlinearities in the system’s dynam-440

ics. Even though local errors rose up to 33% during the storm, the MdSA only increased441

a few percent to 5.9%.442

2.6 Dynamic Modeling443

For dynamic models such as RAM-SCB, ML algorithms capable of capturing the444

temporal evolution of these systems are required. A class of neural network that is well445

suited for modeling time-series data is a recurrent neural network. We implement a Long-446

Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997; Gers et al., 2002) re-447

current neural network to model and predict RAM-SCB’s temporal variations (Wang et448

al., 2022; Licata & Mehta, 2023). Since magnetospheric responses tend to lag behind their449

SW drivers (Bargatze et al., 1985; Mehta et al., 2018), an LSTM copes with this tem-450

poral hysteresis by incorporating knowledge of previous timesteps, often referred to as451

the lookback period, in its short-term memory while still maintaining information on any452

long-term trends in its cell state (Licata & Mehta, 2023). An LSTM can also capture453

nonlinear relationships between the input drivers and reduced-space temporal coefficients.454

The preconditioning of the inner magnetosphere (Kozyra et al., 1998, 2002; S. Morley455

& Lockwood, 2006) adds another layer of complexity on how the LSTM learns the dy-456

namics of this system. The ability to capture nonlinear correlations while also manag-457

ing the aforementioned temporal hysteresis and preconditioning is why we chose an LSTM458

for the dynamic modeling of our emulator. LSTMs require a unique input structure, con-459
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Figure 5. Snapshots taken before, during, and after the geomagnetic storm of the VAL 4

simulation with the truncation errors (right) between the actual (left) and reconstructed (middle)

fluxes. The truncation errors for the before, during and after snapshots are 3.4%, 5.9%, and 1.6%

MdSA, respectively.

taining the reduced-space temporal coefficients as well as a set of user-defined input drivers.460

We chose the same parameters used during the discrete sampling in Section 2.1 (SYM-461

H index, AL index, IMF Bz, and SW Vx) as input drivers with the addition of the SW462

density. The LSTM input structures are built following the process outlined in Section463

2.2 of Licata and Mehta (2023).464

2.6.1 Hyperparameter Tuner465

We implement a hyperparameter tuner to identify suitable LSTM architectures us-466

ing TensorFlow’s (Abadi et al., 2015) API and Keras Tuner (O’Malley et al., 2019). Nor-467

mally, each layer of a neural network is configured with a set of specific settings (acti-468

vation function, number of neurons, input shape, etc.). A systematic grid search of these469

settings is then performed that builds many different combinations to train and test. In-470

stead, a hyperparameter tuner not only automates this grid search but also applies an471

optimization scheme to determine an optimal set of hyperparameters (Goodfellow et al.,472

2016; O’Malley et al., 2019). When developing a tuner, each setting of interest is instead473

replaced with a range of values that the tuner can search. We utilize a Bayesian Opti-474

mization (O’Malley et al., 2019) scheme, which begins by estimating distributions for475

each hyperparameter from the processed trials and computes expected distributions for476

the next trial (Snoek et al., 2012). A set of hyperparameters with the highest probabil-477

ity of improving the objective performance is then selected from each expected distri-478

bution (Snoek et al., 2012) to begin training the next trial. The method used in Keras479

Tuner begins with a random search of the hyperparameter space for a select number of480

initial trials to develop the hyperparameter distributions and then applies the Bayesian481

optimization scheme on the remaining trials. Our hyperparameter tuner is setup to per-482

form 50 total trials, with the first 25 being a random grid search and the final 25 trials483

using the Bayesian Optimization scheme.484
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A summary of our hyperparameter tuner’s configuration is shown in Table 3. Nor-485

mally, datasets with a large number of samples, or timesteps in our case, are split into486

smaller batches (Wilson & Martinez, 2003; Montavon et al., 2012). We split our datasets487

by cutting each simulation in half. Splitting the data into batches also allows for the or-488

der in which the batches are trained to be shuffled during each epoch of training. This489

batch shuffling has the added benefit of better generalizing a model (Montavon et al.,490

2012; Goodfellow et al., 2016; Licata & Mehta, 2023). Splitting the data into batches,491

however, has the drawback of truncating additional data because each batch requires a492

lookback period of a few timesteps to predict the initial epoch. Our hyperparameter tuner493

is also set to perform 2 separate executions per trial to help mitigate any potential per-494

formance degradation from the weight initialization (O’Malley et al., 2019; Licata & Mehta,495

2023). This increases the tuner’s overall runtime but is a much more robust configura-496

tion. Lastly, a callback to terminate the training of any individual model if a loss of NaN497

is returned is used as a precautionary measure to mitigate the effects of exploding gra-498

dients (Goodfellow et al., 2016).499

Table 3. Hyperparameter Tuner Configuration.

Setting Choice

Scheme Bayesian Optimization
Total Trials 50
Initial Search 25
Repeats per Trial 2
Epochs per Trial 50
Shuffle Batches Yes
Termination NaN
Loss Metric MSE
Minimization Parameter Validation MSE

A summary of the hyperparameter space is shown in Table 4. To start, we include500

hyperparameters that determine how deep the neural network can go by choosing the501

number of LSTM and fully-connected, or dense, layers to include in the architecture for502

each trial. Each of these layers then has its own set of hyperparameters from which to503

choose from. Immediately following each dense layer is a dropout layer, which randomly504

shuts off neurons to help generalize a model by encouraging connections to take differ-505

ent paths (G. E. Hinton et al., 2012). The choice of an optimizer is also treated as a hy-506

perparameter, where the tuner is given choices of: AdaGrad (Duchi et al., 2011), RM-507

Sprop (G. Hinton et al., 2012), AdaDelta (Zeiler, 2012), and Adam (Kingma & Ba, 2014).508

To end, we include a custom hyperparameter to determine the LSTM’s lookback period509

because the inner magnetosphere’s responses have varying lag times with each of the so-510

lar wind drivers (Bargatze et al., 1985; Maggiolo et al., 2017; Stumpo et al., 2020). This511

presented an additional challenge in that the LSTM’s input shape needs to be changed512

for each trial of the hyperparameter tuner.513

2.6.2 LSTM Training514

During training, an LSTM typically make predictions using the true values of both515

the input drivers and state outputs, or reduced-space coefficients in our case. The true516

state outputs are available because the training, validation, and test datasets are all pre-517

determined from the simulations. This evaluation method of using the true input drivers518

and state outputs to predict each timestep is known as a one-step prediction method.519

In operations, however, the true state output is not always available. When forecasting,520

the predicted state outputs are instead used to predict future timesteps, as outlined in521
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Table 4. Hyperparameter Space.

Hyperparameter Range

Architecture:
No. of LSTM Layers [1, 2]
No. of Dense Layers [1, 3]
Lookback Period [3, 24]

Optimizer AdaGrad, AdaDelta,
RMSProp, Adam

LSTM Layer:
Neurons [32, 300]

Activation Func. Tanh, Sigmoid,
SoftSign

Dense Layer:
Neurons [64, 600]

Activation Func. ReLu, Elu, Sigmoid,
SoftSign, SoftPlus

Dropout Layer:
Dropout Rate [0.01, 0.50]

Figure 3 of Licata and Mehta (2023). After the current timestep t is predicted, the look-522

backs are marched forward for the next timestep t+1. The corresponding lookback for523

t is then updated with the predicted output. The next timestep t+1 can then be pre-524

dicted, and the lookbacks are again marched forward for the following timestep t+2.525

Now, any lookbacks corresponding to the previous two timesteps are updated with their526

respective predictions. This process is repeated for the length of the forecast window.527

This evaluation method is known as a dynamic prediction and is one of the advantages528

gained by developing an emulator.529

Our hyperparameter tuner is implemented with a fixed number of epochs so that530

it can search the entire hyperparameter space in a reasonable amount of time. This, how-531

ever, does not guarantee that these models have converged, so we included optimizers532

in the tuner that utilize momentum (Goodfellow et al., 2016; Montavon et al., 2012), which533

helps mitigate the effects of local minima in the loss function. The top architectures iden-534

tified by the tuner are then put through a more rigorous training. Each of these archi-535

tectures is allowed to reach a maximum of 1,000,000 epochs, but this value does not have536

to be reached because an early stopping (Goodfellow et al., 2016) callback with a pa-537

tience period (Montavon et al., 2012) was implemented to prevent any overfitting. This538

is a much more robust training but requires additional computational resources and time,539

which is why it was not implemented in the hyperparameter tuner.540

2.7 Model Ensemble541

Our emulator implements a model ensemble to not only provide an uncertainty es-542

timate but also increase overall model performance. An ensemble of models typically out-543

performs a single model (Weigel et al., 2008; Kioutsioukis & Galmarini, 2014; Xiao et544

al., 2018; S. Morley et al., 2018; Elvidge et al., 2016, 2023) due to the fact that a diverse545

set of models will normally contain individual models that predict certain portions of546

the training data better than others. Combining models in a way that emphasizes the547

best performing model will ultimately increase performance. Since the predictions of the548

LSTM models from the hyperparameter tuner are deterministic, a model ensemble pro-549

vides the ability to compute statistics from multiple models to determine an error dis-550

tribution.551
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To encourage diversity in our model ensemble, 5 separate instances of the top 5 ar-552

chitectures are trained from scratch, providing an ensemble of 25 models. This increase553

in the number of architectures is an enhancement to the method developed by Licata554

and Mehta (2023). Models trained with the same architectures will differ because the555

weight initialization is random, dropout is included, and the batches are shuffled dur-556

ing training (Goodfellow et al., 2016; Montavon et al., 2012). This provides confidence557

that models within an architecture contain enough diversity and statistics to determine558

an error distribution. Also, the top models from a hyperparameter tuner are normally559

identified by their performance on the validation dataset, which in our case is the MSE560

of the reduced-space temporal coefficients. Instead, we determine the tuner’s top archi-561

tectures by analyzing the validation dataset’s performance using the physical-space met-562

ric (MdSA), which may not yield the same results.563

2.8 Uncertainty Quantification564

The emulator’s last step is to combine the ensemble of deterministic models into565

a single probabilistic model, where we leverage the 3-tier hierarchical approach of Licata566

and Mehta (2023) to produce a robust and reliable uncertainty estimate. Multi-model567

ensembles have a history of applying a 2-tier weighted average method to combine mod-568

els (Sewell, 2008; Huang et al., 2009; D. S. Wilks, 2011; Elvidge et al., 2016, 2023), but569

Licata and Mehta (2023) adds another tier to the method while also computing a vari-570

ance. To begin, each of the 25 models must be evaluated over the training dataset us-571

ing a dynamic prediction. For better interpretability, the indexes in the next sections have572

the following definitions: i refers to the architecture, j refers to the individual model within573

an architecture, k refers to the reduced-space coefficient’s index, and t refers to the timestep574

from the above training dataset evaluation. As stated in Section 2.4, the central tendency575

metric (mean vs median) used in the UQ calculations varies depending on the dataset.576

The RAM-SCB dynamic predictions have a small number of timesteps with large errors577

(see Figure 8), considered to be outliers, which justifies the use of the median statistic578

whenever an average is taken over the temporal dimension (t). Implementing the me-579

dian statistic instead of the mean is another modification made to the method developed580

by Licata and Mehta (2023).581

Combining models with a weighted average is more robust than taking a simple582

average because the weights can be computed to place more emphasis on predictions with583

a higher accuracy. In Equation 7 (right), the median absolute error (MdAE) is taken over584

t for each individual model’s evaluation and inverted to place more weight on models that585

have the least error. These weights w̃i,j,k are then normalized within each architecture586

using Equation 7 (left) so that the combination can be calculated as a simple weighted587

sum.588

wi,j,k =
w̃i,j,k∑
j

w̃i,j,k
where w̃i,j,k =

1

MdAEi,j,k
(7)

The resulting weights wi,j,k are then used to calculate the mean prediction and vari-589

ance for each architecture, creating the 2nd tier of this hierarchical ensemble method.590

This is done by performing a weighted sum over the individual models within an archi-591

tecture as shown in Equation 8. In these equations, α̂i,j,k,t are the dynamic predictions592

from each individual model, α̂i,k,t is the mean prediction for each architecture, and σ̂2
i,k,t593

is each architecture’s estimated variance.594

α̂i,k,t =
∑
j

wi,j,k α̂i,j,k,t and σ̂2
i,k,t =

∑
j

wi,j,k (α̂i,k,t − α̂i,j,k,t)
2

(8)
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This variance calculation assumes a Gaussian distribution for each architecture,595

but combining these distributions to develop the final emulator’s uncertainty estimate596

may not end up Gaussian. This is because each architecture’s mean and variance may597

differ, meaning their distributions will not necessarily be independent or uncorrelated598

with each other, resulting in a non-Gaussian distribution. A visual depiction of this can599

be found in Figure 7 of Soltanzadeh et al. (2011), which shows the resulting non-Gaussian600

probability density function (PDF) from a Bayesian model averaging (BMA) ensemble.601

To provide a more robust and reliable UQ, Licata and Mehta (2023) apply a scaling fac-602

tor to the uncertainty, called σ-scaling (Laves et al., 2021). The concept behind σ-scaling603

is to inflate the variance whenever predictions within an architecture are very precise but604

not accurate. Equation 9 shows how to calculate the σ-scaling factor, Si,k, for each ar-605

chitecture and reduced-space coefficient, where αk,t is the training dataset’s ground truth606

(i.e., from the original simulations). This is another deviation from Licata and Mehta607

(2023) in that we use the median statistic instead of the mean to calculate our scaling608

factors. Laves et al. (2021) also developed Si,k to be applied to the standard deviation609

(i.e. σ), but we instead apply S2
i,k to each architecture’s variance σ̂2

i,k,t.610

Si,k =

√√√√Median

[
(αk,t − α̂i,k,t)

2

σ̂2
i,k,t

]
(9)

The mean and variance estimates from each architecture are then combined to de-611

termine the ensemble’s overall mean α̂k,t and variance σ̂2
k,t, which define the emulator’s612

probabilistic output. This is also the 3rd and final tier of the hierarchical ensemble method.613

The calculations are shown in Equation 10, where ni is the number of architectures, α̂i,k,t614

is each architecture’s mean prediction, and σ̂2
i,k,t is the variance estimate for each archi-615

tecture with the σ-scaling factor already applied. A simple average is used here because616

this combination is conducted on the 2nd tier of the hierarchical ensemble. Licata and617

Mehta (2023) demonstrate that if the same number of models are trained within each618

architecture then the pooled variance calculation simplifies to a simple average. The re-619

sult is referred to as a probabilistic output because of the included error distribution from620

the uncertainty estimate.621

α̂k,t =
1

ni

∑
i

α̂i,k,t and σ̂2
k,t =

1

ni

∑
i

σ̂2
i,k,t (10)

3 Results622

3.1 Hyperparameter Tuner623

Keras Tuner typically lists the best models in descending order by the defined met-624

ric on the validation dataset. Since our MSE is in the reduced space, the hyperparam-625

eter tuner’s best models are instead listed in terms of the physical-space metric, MdSA,626

and shown in Table 5. As seen in the test and validation metrics, most all errors hover627

around 5% MdSA with biases under ±1% SSPB after only 50 epochs of training, but there628

is still a bit of diversity seen in these values. This diversity is important when identify-629

ing which architectures to include in the model ensemble because equal performance in630

very similar architectures would not benefit the ensemble. With this said, the top 5 ar-631

chitectures in this table were selected to develop our model ensemble. The tuner settled632

on a shallow architecture, where all of the top 10 architectures had only 1 LSTM and633

1 dense layer. Only the Best Model #2 differed by having 2 dense layers. Each also used634

the AdaGrad optimizer with a lookback period of 3 timesteps, or 30 minutes of simu-635
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lation time. These hyperparameters may seem like these architectures are extremely sim-636

ilar, but this is merely a summary of the entire hyperparameter space (see Section 2.6.1).637

Overall, the performances shown in Table 5 provides strong support that the training638

data sufficiently sampled the event space to capture the dynamics found in RAM-SCB’s639

particle flux data product. It is also important to note that these metrics are derived from640

a one-step prediction and not the dynamic prediction, or forecast evaluation method, used641

for the performance metrics in the next sections.642

Table 5. Top 10 LSTM Architectures from the Hyperparameter Tuner.

Best TRNG TRNG TRNG VAL VAL VAL TEST TEST TEST
Model MSE MdSA SSPB MSE MdSA SSPB MSE MdSA SSPB

1 0.159 4.22% 0.57% 0.380 5.29% 0.44% 0.269 5.05% 0.35%
2 0.156 4.24% 0.37% 0.398 5.33% 0.69% 0.278 5.23% 0.88%
3 0.150 4.14% -0.02% 0.395 5.49% -0.63% 0.274 4.91% -0.22%
4 0.156 4.26% -0.36% 0.367 5.58% -0.61% 0.260 4.85% 0.54%
5 0.187 4.10% 0.73% 0.273 5.59% 0.06% 0.207 5.30% 0.46%
6 0.166 4.29% -0.03% 0.408 5.72% -1.54% 0.275 4.96% -0.32%
7 0.168 4.40% 0.04% 0.394 5.74% -0.39% 0.276 5.51% -0.14%
8 0.190 4.32% -0.11% 0.288 5.80% -0.58% 0.213 5.42% 0.79%
9 0.206 4.66% 0.70% 0.348 5.91% 0.31% 0.240 5.88% 1.88%
10 0.205 5.15% 0.13% 0.328 6.35% -0.22% 0.241 6.67% 1.17%

3.2 Dynamic Prediction643

Based on a detailed analysis, we found relatively high errors during the initial few644

hours of each simulation. Figure 6 shows the relative frequency of errors across all 20645

training simulations. The simulation time is binned every hour (6 timesteps) while the646

errors are binned every 10% MdSA. Figure 6 is interpreted as a histogram, where the647

errors for every hour of each simulation are binned and presented as a percentage. Ver-648

ified by the mean MdSA in Figure 8, the relative frequencies of low errors (i.e. <10%)649

are the dominant trend seen in dark blue (Figure 6). The inlay, however, highlights a650

shorter trend of errors in the initial few hours. A more in-depth look at the input drivers651

(SYM-H, AL, and Bz) during the onset of each simulation showed that not all param-652

eters began at quiescent levels. This meant that each simulation’s initialization, or spin-653

up, period was set with heightened activity, which is known to affect the simulation re-654

sults. Since the input drivers of each simulation varied in activity level, the spin-up pe-655

riods ultimately differed across all simulations, so a simple cutoff time could not be de-656

termined. The individual energy channels within each simulation are also expected to657

have varying spin-up times, so we decided to use this finding as a lesson learned for run-658

ning large-scale physics-based simulation models such as RAM-SCB. Future work from659

this project will incorporate a more robust initialization period that allows each simu-660

lation to reach a steady state before the event of interest begins. Of course, these ini-661

tialization periods will not be included when creating the training, validation, and test662

dataset, but it should mitigate the errors seen in the initial few hours of Figure 6.663

As stated in Section 2.7, the top 5 architectures identified by the hyperparameter664

tuner are processed through a more rigorous training and evaluated using a dynamic pre-665

diction. An hourly forecast window was chosen for the dynamic prediction because it seemed666

natural to forecast double the lookback period. Figure 7 shows the errors of the dynamic667

prediction evaluation for the TRNG 5 simulation (see Table 1) using the tuner’s best model.668

The SYM-H and IMF Bz drivers are included below the error plot to visually check for669

correlations between increased errors and heightened activity levels. The errors in Fig-670
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Figure 6. Relative error histogram of dynamic prediction errors from all 20 training simula-

tions. The simulation time is binned hourly, while the errors are binned every 10% MdSA. The

inlay highlights the relative high errors seen at the onset of each simulation.

ure 7, visually, almost directly coincide with heightened activity in each of the drivers,671

which is expected. This LSTM model was able to dynamically predict this week-long sim-672

ulation in just 22 seconds with a mean MdSA less than 8%, even though the peak er-673

ror just before the 400th timestep reaches a factor of 2. This mean MdSA error is an av-674

erage over the simulation period where the reconstructed MdSA is determined at each675

timestep. The threshold for errors reaching a factor of 2 is important because Boyd et676

al. (2019) shows that even instruments on the same spacecraft can have flux values of677

the inner magnetosphere that disagree by a factor of 2. The quartiles (25%, 50%, 75%)678

for this simulation came out to 3.37%, 5.10%, and 8.82% MdSA, respectively.679

Figure 7. Hourly dynamic prediction results of the TRNG 5 simulation from the LSTM

tuner’s best model. Reconstructed errors (blue) in the physical space (MdSA) are plotted along

with the SYM-H index (orange) and IMF Bz component (green).
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Similarly, Figure 8 shows the results of the dynamic prediction evaluation for all680

20 training simulations using the hyperparameter tuner’s best model. This LSTM model681

was able to dynamically predict all 20 week-long simulations in approx. 7 minutes with682

a mean MdSA of 8.5%. This error value is an average over the entire training dataset,683

where the MdSA is determined from the reconstructed fluxes for each timestep of ev-684

ery simulation. The quartiles (25%, 50%, 75%) came out to 3.57%, 5.66%, and 9.50%685

MdSA, respectively. This means that more than 75% of the errors in this entire dataset686

have less than 10% MdSA. As in the single simulation results, Figure 8 has timesteps687

in which the MdSA peaks during heightened activity levels throughout the various sim-688

ulations. For instance, errors around 100%, or a factor of 2, can be seen in Simulations689

4, 8, 12, 13, and 17. Errors upward of 200% (factors of 3, 4, and 5) can be seen in Sim-690

ulations 3, 7, 15, 16, and 17. These error spikes must be put into context, though, as Boyd691

et al. (2019) has shown that even instruments on the same spacecraft can have flux val-692

ues that disagree by a factor of 2. The SYM-H index and IMF Bz are also plotted di-693

rectly below the errors to determine if these error spikes visually coincide with height-694

ened activity levels. The largest errors do coincide with the deepest SYM-H depressions,695

which indicate significant levels of geomagnetic activity. The IMF’s Bz component fluc-696

tuations line up with the lower error regions (i.e. < 100% MdSA), although its ampli-697

tude ranges on a much smaller scale than that of SYM-H.698

Figure 8. Hourly dynamic prediction results for all 20 training simulations, each one block on

the bottom axis, from the LSTM tuner’s best model. Reconstructed errors (blue) in the physical

space (MdSA) are plotted along with the SYM-H index (orange) and IMF Bz component (green).

3.3 Reduced-Order Probabilistic Emulator699

As stated in Section 2.7, a model ensemble is leveraged to create a probabilistic out-700

put from a system of deterministic models with the added benefit that an ensemble typ-701

ically outperforms a single model (Weigel et al., 2008; Kioutsioukis & Galmarini, 2014;702

Xiao et al., 2018; S. Morley et al., 2018; Elvidge et al., 2016, 2023). The 3-tier hierar-703

chical approach of first combining models within an architecture via a weighted average704

and then combining the various architectures though a simple mean provides this work’s705

final product, a reduced-order probabilistic emulator (ROPE) of RAM-SCB particle flux.706

A summary of our ROPE’s final performance metrics are shown in Table 6, where707

it has an average MdSA of roughly 10% with biases just under 2% SSPB using an hourly708
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dynamic prediction on both the validation and test datasets. As expected, the model en-709

semble outperformed the best individual model by a whole percentage point, which is710

a significant performance bump given the level of accuracy in the ensemble members (see711

Table 5). The biases stayed about the same between 1-2% SSPB. The ROPE’s training,712

validation, and test quartiles (25%, 50%, 75%) came out to (3.19%, 5.12%, and 9.01%),713

(3.88%, 6.84%, and 12.25%), and (3.28%, 5.55%, and 10.51%) MdSA, respectively.714

Table 6. Hourly dynamic prediction results for both the best individual model (deterministic)

and final probabilistic emulator (ROPE) over each of the ML datasets.

TRNG VAL TEST

Indiv. Model:
Dyn. Pred. (MdSA) 8.50% 11.44% 11.32%
Model Bias (SSPB) -1.80% 1.36% -1.26%

ROPE:
Dyn. Pred. (MdSA) 7.60% 10.34% 10.36%
Model Bias (SSPB) -1.53% -1.97% -1.80%
Calibration (CES) 8.97% 7.61% 7.15%

Each of the 25 LSTMs in the model ensemble are evaluated using a dynamic pre-715

diction. Running them in parallel took just 110 seconds to predict the 5 simulations found716

in each of the validation and test datasets. Similarly, running these 5 simulations in RAM-717

SCB using the same configuration and computational resources as in Section 2.2, also718

in parallel, takes roughly 38.2 hours. This results in a speed increase of 1,250x between719

the emulator and RAM-SCB, which highlights the efficiency gained by developing an em-720

ulator. The ROPE’s predictions (i.e ensemble’s combined hourly dynamic predictions)721

on the TST 3 simulation (see Table 2) are shown in Figure 9 with 2-σ bounds. Upon vi-722

sual inspection, the first 2 reduced-order coefficients express good agreement with the723

truth values. Since the PCA coefficients are numbered in descending order, having the724

best performance in the first few coefficients is ideal, so these are very promising results.725

Since our variance calculation assumes a Gaussian distribution (see Equation 8),726

we expect that approx. 95% of the ROPE’s predictions will fall within the 2-σ bounds.727

The actual observed percentages for the first 2 coefficients (shown in Figure 9) are 93.5%728

and 92.8%, respectively. This is a slight underestimation of the variance and only a few729

percentage points off, implying these uncertainty estimates are indeed well-calibrated.730

Figure 10 demonstrates that the uncertainty is mostly underestimated for the remain-731

ing coefficients. The CES for each dataset is provided in Table 6, with scores less than732

10%. These scores are interpreted as the emulator’s reduced-space predictions have er-733

ror distributions that deviate less than 10%, on average, from a normal distribution.734

Lastly, Figure 11 depicts the evolution of the particle flux predicted by our ROPE735

through the TST 1 simulation, similar to Figure 5. The before and after storm predic-736

tions show a high degree of resemblance between the true and predicted fluxes, with er-737

rors of 3.8% and 6.0% MdSA, respectively. These errors are on the order of the trun-738

cation error introduced by the PCA decomposition, demonstrating good performance.739

During the storm, however, local errors climb past 500%, which is expected but still rel-740

atively large even given the fact that this is evaluated using a dynamic prediction. The741

quartiles (25%, 50%, 75%) during the storm came out with errors of 12.68%, 27.73%,742

and 52.37%, respectively. This translates to 3 out of every 4 flux values, on average, will743

have an error less than 53% during a storm period where errors are expected to be high,744

which is well within the threshold of a factor of 2 (Boyd et al., 2019).745
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Figure 9. Hourly dynamic predictions of the first 2 reduced-space coefficients (α1 & α2) by

the ROPE on the TST 3 simulation. The prediction (blue) is plotted at each timestep along with

the truth (black) and 2-σ bounds (light blue).

4 Limitations and Future Work746

The goal of this work is to apply the emulator workflow (Licata & Mehta, 2023)747

to the ring current by demonstrating it on a smaller subset of RAM-SCB particle flux,748

which in this case is a single energy channel of omnidirectional flux. This is our great-749

est limitation but was chosen to build a solid foundation. Thus, subsequent work will750

expand this workflow to encompass the full energy spectrum and pitch angle distribu-751

tion found in the particle flux data product.752

The use of a linear PCA to reduce the system’s dimensionality is another limita-753

tion in this work. Expanding to incorporate RAM-SCB’s full energy spectrum will re-754

quire the dimensionality reduction to explore nonlinear techniques and ML methods such755

as a kernel PCA (k-PCA) or convolutional autoencoder (CAE). Since it is known that756

this region of the inner magnetosphere contains nonlinear dynamics (Daglis et al., 1999),757

a nonlinear dimensional reduction will also aid in capturing these dynamics. This can758

help mitigate the large error spikes seen during periods of heightened solar and geomag-759

netic activity in this work, which partially stems from the use of a linear PCA method760

for the dimensionality reduction.761

The hierarchical ensemble methodology is still a relatively novel approach for cre-762

ating probabilistic predictions. There is much to be explored and room for more improve-763

ments. Even though the first 2 reduced-space coefficients contained roughly 93% of the764

ground truth values in their 2-σ bounds, the uncertainties of the other coefficients were765

all underestimated. Our calibration curves are also under a Gaussian assumption, so mea-766

suring the reliability under non-Gaussian distributions will require further investigation.767

Exploring a debiasing or more sophisticated ensemble method (e.g Elvidge et al. (2023))768

may potentially improve the UQ’s performance. The emulation process also leveraged769

reduced-order modeling to facilitate future data assimilation applications. This can en-770

hance the workflow by assimilating an observable, such as the Dst index, back into the771

emulator to further calibrate it.772
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Figure 10. ROPE’s calibration curves for the ML datasets (training, validation, and test).

Each reduced-space coefficient has its own curve, where the first 10 are plotted in solid lines and

the remaining 10 have dotted lines. The black dashed line represents the perfectly calibrated

y = x line of the Gaussian assumption.
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Figure 11. Snapshots taken before, during, and after the geomagnetic storm in the TST 1

simulation with the prediction errors (right) between the actual (left) and reconstructed ROPE

hourly dynamic predictions (middle), plotted on RAM-SCB’s grid.

5 Summary773

This work builds upon the emulation process developed by Licata and Mehta (2023),774

but now applied to ring current dynamics, and creates a reduced-order probabilistic em-775

ulator of the RAM-SCB particle flux data product from the ground up. The resulting776

ROPE is the culmination of 25 independent LSTM models that are trained on 20 one-777

week-long simulations from RAM-SCB, where a hierarchical ensemble blends these de-778

terministic LSTMs together into a probabilistic prediction with a robust and reliable un-779

certainty estimate. The simulations that make up the training, validation, and test datasets780

are all derived from a novel approach of sampling over 20 years of solar and geomagnetic781

activity that were transformed into reduced-space representations by a PCA decompo-782

sition.783

Metrics showcasing low errors throughout each step of the emulation process demon-784

strate the effectiveness of this workflow. The hyperparameter tuner’s performance met-785

rics of roughly 5% MdSA over all ML datasets, evaluated using a one-step prediction,786

provides significant confidence that the event space was sufficiently sampled. However,787

more consideration is needed when initializing the simulations to obtain better results.788

The low truncation error from the PCA of 2.9% MdSA demonstrates its robustness in789

reducing the dimensionality of this system, although fluxes of H+ at higher energies (i.e.790

208 keV) are undoubtedly easier to capture with PCA than lower energies (e.g. 1-10 keV).791

The lookback period, number of LSTM layers, and number of dense layers from the hy-792

perparameter tuner results were all lower than expected, but this may have been an ar-793

tifact from modeling a smaller subset of the RAM-SCB particle flux data product. Once794

expanded to the full energy spectrum and pitch angle distribution, we expect the hyper-795

parameter tuner to provide a much more diverse set of architectures. The model ensem-796

ble is a relatively modern approach for determining the uncertainty of LSTM models and797

still a novel concept for the ring current, so there is much to be learned and tested from798
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the ensemble method. Our emulator provides a speed increase of 1,250x over RAM-SCB799

with an overall accuracy of roughly 10% MdSA using an hourly dynamic prediction.800

6 Open Research801

The OMNIWeb data used in this paper can be downloaded at https://omniweb802

.gsfc.nasa.gov/form/omni min.html. The RAM-SCB source code (Jordanova, En-803

gel, et al., 2022) can be found at https://github.com/lanl/RAM-SCB/, and the ver-804

sion used in this work was tagged v.2.1.1. Both TensorFlow (Abadi et al., 2015) and Keras805

Tuner (O’Malley et al., 2019) were downloaded using Anaconda (Anaconda Software Dis-806

tribution, 2020). The input files for the RAM-SCB simulations, ML datasets, and code807

to run ROPE are available at https://zenodo.org/record/8313973 (Cruz et al., 2023).808
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Abstract25

We present a proof of concept for the probabilistic emulation of the Ring current-26

Atmosphere interactions Model with Self-Consistent magnetic field (RAM-SCB) parti-27

cle flux. We extend the workflow developed by Licata and Mehta (2023) by applying it28

to the ring current and further developing its uncertainty quantification methodology.29

We introduce a novel approach for sampling over 20 years of solar and geomagnetic ac-30

tivity to identify 30 simulation periods, each one week long, to generate the training, val-31

idation, and test datasets. Large-scale physics-based simulation models for the ring cur-32

rent can be computationally expensive. This work aims at creating an emulator that is33

more efficient, capable of forecasting, and provides an estimate on the uncertainty of its34

predictions, all without requiring large computational resources. We demonstrate the em-35

ulation process on a subset of the RAM-SCB particle flux data product, where we de-36

fine this subset as a single energy channel of omnidirectional flux. A principal compo-37

nent analysis (PCA) is used for the dimensionality reduction into the reduced-space, and38

the dynamic modeling is performed with a recurrent neural network. A hierarchical en-39

semble of Long-Short Term Memory (LSTM) neural networks provides the statistics needed40

to produce a probabilistic output, resulting in a reduced-order probabilistic emulator (ROPE)41

that performs time-series forecasting of the ring current’s particle flux with an estimate42

on its uncertainty distribution. The resulting ROPE from this smaller subset of RAM-43

SCB particle flux provides dynamic predictions with errors less than 11% and calibra-44

tion scores under 10%, demonstrating that this workflow can provide a probabilistic em-45

ulator with a robust and reliable uncertainty estimate when applied to the ring current.46

Plain Language Summary47

The ring current is a region of the inner magnetosphere where space weather events48

affect the charging environment experienced by spacecraft. Running large-scale physics-49

based simulation models in domains such as the ring current can be computationally ex-50

pensive. This work aims at creating an emulator that runs much faster, is capable of fore-51

casting, and can provide an estimate on the uncertainty of its predictions, all without52

requiring large computational resources. It is important to note that emulators are not53

developed to replace physics-based models but rather enable a higher adoption rate and54

usage for more system-wide investigations. To begin, a subset of the particle flux data55

product is converted into a reduced, simpler form. A neural network is then implemented56

to model the ring current environment in this reduced form and trained on a set of week-57

long simulations derived from a newly developed sampling methodology. An ensemble58

of these neural networks is then combined into a single predictor. The resulting reduced-59

order probabilistic emulator (ROPE) provides time-series predictions with error estimates,60

which together define a probabilistic output. The presented ROPE can make predictions61

with errors less than 11% with calibration scores under 10%, ultimately demonstrating62

that this workflow can provide a probabilistic emulator of the ring current with a robust63

and reliable uncertainty estimate.64

1 Introduction65

The motivation for this work stems from the plasma populations that can detri-66

mentally affect spacecraft, specifically those contributing to the charging environment.67

Green et al. (2017) describes the various anomalies that have impacted the satellite in-68

dustry, where surface and internal charging were dominant issues (Koons et al., 1999).69

Anomalies such as these can damage electrical components & thermal coatings, destroy70

sensors and/or scientific instruments, interfere/spoof communication signals, and poten-71

tially leave a spacecraft completely inoperable. Modeling of the inner magnetosphere has72

been used to investigate the potential cause of a detected anomaly (Koons & Fennell,73

2006; Ganushkina et al., 2017) but can also aid spacecraft designers and operators in mit-74
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igating potential damage or disruptions to their spacecraft. Yu et al. (2019) illustrates75

a recent competition designed to assess the capabilities of current inner magnetosphere76

models in determining the surface charging environment during the 17 March 2013 ge-77

omagnetic storm. Large-scale physics-based simulation models provide invaluable insight78

into the physical evolution of dynamical systems such as the ring current. Their use in79

an operational setting, however, can sometimes be limited by computational restrictions,80

inviting faster, more efficient models to take their place. Development of more efficient81

models has gained popularity in the thermosphere (Mehta et al., 2018; Gondelach & Linares,82

2021; Licata & Mehta, 2023), so our work aims to extend this application and provide83

an emulator to the Space Weather community capable of an efficient and probabilistic84

prediction of ring current particle flux using the Ring current-Atmosphere interactions85

Model with Self-Consistent magnetic field (RAM-SCB) (Engel et al., 2019; Jordanova86

et al., 2006; Jordanova, Morley, et al., 2022).87

The solar wind (SW) is the primary source of energy deposition that drives the Earth’s88

magnetospheric dynamics (Pulkkinen et al., 2007). Since the near-Earth environment89

is mostly comprised of charged particles in the form of plasma, there are inevitable and90

unpredictable hazards that come with operating in this type of environment (Green et91

al., 2017). The inner magnetosphere is a domain in which the Earth’s magnetic field lines92

are closed and charged particles are trapped within these magnetic fields. In this region,93

Earth’s magnetic field closely resembles that of a dipole magnetic field and spans from94

the dayside magnetopause to the outer transition region (Spence et al., 1989), roughly95

10-12 Earth radii (RE) (Russell et al., 2016; Daglis et al., 1999; Spence et al., 1989; Ganushk-96

ina et al., 2017). The trapped particles form different plasma populations that both re-97

side and overlap with each other, which not only complicates the physical processes gov-98

erning them but also creates a dynamically coupled system (Russell et al., 2016; Yu et99

al., 2012).100

The primary plasma populations found in the inner magnetosphere are the plas-101

masphere, ring current, and radiation belts. They all coexist together but are typically102

differentiated by the range of particle energies within each population. The plasmasphere103

contains cold, dense plasma with energies of a few electronvolts (eV), and its constituents104

generally originate from the ionosphere (Daglis et al., 1999; Russell et al., 2016; Fok et105

al., 2021). The plasmasphere is not known to directly affect the Earth’s magnetic con-106

figuration, but its high density has been known to propagate electromagnetic waves, which107

can influence both the ring current and radiation belt populations (Daglis et al., 1999;108

Jordanova, Thorne, et al., 2010; Jordanova et al., 2012; Yu et al., 2012; Ganushkina et109

al., 2017). The radiation belts are two lobed regions separated by a small gap called the110

slot region and typically are the most energetic population in the inner magnetosphere111

(Russell et al., 2016; Li & Hudson, 2019). This region consists of energetic ions and rel-112

ativistic electrons that range anywhere from ∼500 keV to a few MeV (Russell et al., 2016;113

Li & Hudson, 2019; Fok et al., 2021). The radiation belts are also known to be highly114

variable during geomagnetic storms (Friedel et al., 2002; Thorne, 2010). The ring cur-115

rent has energies roughly in-between these two populations, ∼10–400 keV, and is gen-116

erated by the movement of charged particles experiencing a gradient-curvature drift (Daglis117

et al., 1999; Jordanova et al., 2014; Russell et al., 2016; Fok et al., 2021).118

During geomagnetic activity, the ring current gains population from plasma that119

is accelerated by reconnection in the magnetotail, making it the population that carries120

the majority of pressure and current directly into the inner magnetosphere (Daglis et al.,121

1999; Jordanova et al., 2014; Ganushkina et al., 2017). These accelerated particles ex-122

perience a nonuniform magnetic field as they travel inward from the magnetotail that123

causes them to drift in opposite directions (gradient-curvature drift), inducing a current,124

with the ions moving towards the dusk-side and electrons towards the dawn-side of Earth.125

This induced westward current, called the ring current, is the main contributor to the126
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magnetic depression observed by ground-based magnetometers during geomagnetic storms127

(Daglis et al., 1999; Ganushkina et al., 2017; Fok et al., 2021).128

2 Methodology129

This work leverages reduced-order modeling (ROM) with machine learning (ML)130

techniques to significantly decrease the computational cost of physics-based simulation131

models while maintaining their high fidelity. Note: Emulators are not developed to re-132

place physics-based models but rather enable a higher adoption rate and usage for more133

system-wide investigations. A ROM parses out which modes of variability are most in-134

fluential (Mehta et al., 2018; Mehta & Linares, 2017) and then operates in this reduced135

space, or lower-dimensional representation. Figure 1 shows a high-level overview of the136

emulation process, where the following steps are covered in more detail:137

1) Event Selection in Section 2.1138

2) Simulate Events in Section 2.2139

3) Dataset Creation in Section 2.3140

4) Dimensionality Reduction in Section 2.5141

5) Dynamic Modeling in Section 2.6142

6) Model Ensemble in Section 2.7143

7) Uncertainty Quantification in Section 2.8144

Steps that are developed in either the physical or reduced space are color coded145

as blue and orange, respectively. To begin, a novel discrete sampling methodology is in-146

troduced to determine a set of geomagnetic storms that encompasses a wide range of so-147

lar and geomagnetic activity. This list of storms is then run through RAM-SCB to pro-148

duce simulation outputs that generate the ML datasets used to develop the emulator.149

A dimensionality reduction is applied that identifies the dominant spatial modes of vari-150

ability and transforms the ML datasets into the reduced space. This is done to enable151

future data assimilation applications by significantly simplifying the calculations needed152

for high-dimensional systems (Mehta & Linares, 2018; Maulik et al., 2022). A dynamic153

model, in this case a recurrent neural network, is then developed to predict the system’s154

temporal variations in the reduced space, where the inclusion of a neural network en-155

ables nonlinear modeling. The resulting dynamic model is deterministic, meaning that156

it only provides a point estimate. Thus, we leverage an ensemble of deterministic mod-157

els to compute an uncertainty quantification (UQ). The final step is to then reconstruct158

the model ensemble’s predictions and uncertainty statistics back into the physical space159

by reversing the dimensionality reduction transformation. It is important to note that160

any development in the reduced space can be evaluated in the physical space by utiliz-161

ing this reconstruction step.162

2.1 Event Selection163

The first and arguably most important step of any ML-based model development164

is to build proper training, validation, and test datasets. Here, we use the definitions com-165

mon in ML literature where the validation dataset refers to out-of-sample data not seen166

by the model during training that can be used to measure performance, optimize meth-167

ods, and make decisions. The test dataset is also out-of-sample but is only used to mea-168

sure model performance. Using NASA’s SPDF (Space Physics Data Facility) OMNIWeb169

database, we analyze solar wind and geomagnetic data from 2000-2020, all at a 1-minute170

cadence. The following solar wind parameters were queried: velocity components (Vx,171

Vy, Vz) in GSE coordinates, interplanetary magnetic field (IMF) components (Bx, By,172

Bz) in GSM coordinates, proton density, proton temperature, and flow pressure. The173

AL and SYM-H geomagnetic indices were also included in the query. Simulating this en-174
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Figure 1. Overview of emulator workflow from creation of the ML datasets, through the

reduced-order dynamic modeling, culmination of the model ensemble, and ending with the final

probabilistic output. Steps developed in either the physical or reduced space are color coded in

blue and orange, respectively.

tire span in physics-based models such as RAM-SCB would be extremely challenging and175

computationally expensive. Therefore, we developed a custom discrete sampling method-176

ology to determine a set of random events that adequately covers this entire span of so-177

lar wind drivers and ring current responses.178

The 21 years of OMNIWeb data from 2000-2020 are split into smaller, more man-179

ageable weekly segments, each representing a candidate simulation interval. These 7-day180

intervals are long enough to encompass a space weather event & recovery period but short181

enough to minimize the likelihood that separate events would be grouped together. When182

initializing large-scale physics-based simulations, the initial condition should be set to183

low activity levels so that the internal components can stabilize before the system is per-184

turbed. RAM-SCB is known to not perform well when simulations are initialized with185

heightened activity levels (Jordanova, Engel, et al., 2022; Jordanova et al., 2014). There-186

fore, we filter out weekly intervals that begin with radial SW velocities (Vx) exceeding187

500 km/s. A 7-day sliding window is implemented to avoid disqualifying events solely188

based on this initialization criteria, which is marched daily and identified 7,664 candi-189

dates. We limit the amount of missing data in each candidate interval to a cumulative190

total of 36 hours (1.5 days) for any given parameter, which amounts to roughly 21% of191

the data within that week. Any smaller gaps that pass through this filter are linearly192

interpolated using the entire weekly timeseries. Applying these two filters reduced the193

number of possible candidates down from 7,664 to 2,839 weekly intervals.194

This work introduces a novel custom discrete sampling methodology that efficiently195

and effectively samples our full parameter space. Each of the 2,839 week-long candidate196

intervals are located in a 4-dimensional parameter space using a set of summary statis-197

tics: 1) minimum SYM-H, 2) mean AL, 3) mean Vx, and 4) minimum Bz. The strength198

of the ring current disturbance and overall geomagnetic activity is captured by taking199

the minimum SYM-H. The mean AL is used to describe the impulsive energy dissipa-200

tion and injection of plasma into the inner magnetosphere. The strength of the SW drivers201

are characterized by the mean Vx and minimum Bz. We then leverage concepts behind202

Latin hypercube sampling (LHS) that normally aim to efficiently reproduce the under-203

lying probability distributions (Deutsch & Deutsch, 2012) but instead utilize them to204

provide sufficient coverage of our parameter space. In lieu of splitting each parameter’s205

distribution into evenly-spaced probability intervals, we take the full range of each pa-206

rameter and separate it into 10 linearly-space bins. Each bin is then assigned an equal207

probability, and a bin index is randomly drawn with replacement. In the event that a208
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bin for any given parameter is empty, another index is randomly selected until a bin with209

at least one candidate event is chosen. Once an occupied bin is identified, a candidate210

interval is then randomly selected, with uniform probability, from the bin. This is re-211

peated for each parameter, providing a pool of 4 candidate intervals. To finalize a se-212

lection, an interval from this pool is then randomly selected, removed from each of the213

parameter spaces, and then the selection process is repeated for the number of desired214

samples. This differs from LHS, which is typically used to efficiently sample continuous215

probability distributions that contain the majority of samples in the high-probability re-216

gions of the parameter space. Instead, we are aiming for a more uniform converge of the217

parameter space to avoid a heavily imbalanced training dataset dominated by quiescent218

times.219

Table 1. Training Events Identified by the Novel Sampling Methodology.

Event Start Date min(SYM-H) mean(AL) mean(Vx) min(Bz)

TRNG 1 2001-03-31 -437.0 -216.3 -580.4 -44.4
TRNG 2 2001-04-07 -280.0 -272.2 -605.7 -20.3
TRNG 3 2001-10-16 -219.0 -173.8 -379.6 -17.8
TRNG 4 2001-11-24 -234.0 -77.9 -506.1 -26.6
TRNG 5 2002-09-05 -168.0 -224.2 -440.7 -22.8
TRNG 6 2003-03-14 -67.0 -283.4 -670.2 -7.4
TRNG 7 2003-11-09 -134.0 -412.9 -638.5 -8.5
TRNG 8 2003-11-20 -490.0 -251.5 -542.9 -51.3
TRNG 9 2004-07-19 -168.0 -287.0 -505.4 -18.6
TRNG 10 2005-07-08 -114.0 -253.4 -435.7 -18.9
TRNG 11 2005-09-10 -137.0 -381.8 -706.5 -6.5
TRNG 12 2005-11-30 -25.0 -102.5 -607.2 -3.6
TRNG 13 2007-11-13 -24.0 -53.0 -516.9 -5.6
TRNG 14 2008-07-12 -41.0 -116.9 -566.1 -7.7
TRNG 15 2009-03-08 -45.0 -79.3 -409.8 -10.2
TRNG 16 2009-09-09 -20.0 -50.5 -332.4 -6.1
TRNG 17 2011-01-07 -49.0 -82.1 -531.2 -4.6
TRNG 18 2012-05-02 -32.0 -53.1 -305.2 -8.3
TRNG 19 2013-01-17 -58.0 -62.9 -376.7 -12.3
TRNG 20 2013-10-30 -57.0 -84.0 -348.6 -8.1

A total of 30 events were selected using this sampling methodology, with 20 used220

for the training (TRNG) dataset (see Table 1) and 5 used for each of the validation (VAL)221

and test (TST) datasets (see Table 2). Figure 2 displays the training, validation, test,222

and remaining samples (SAMP) in red, green, orange, and dark blue, respectively. His-223

tograms of each sample parameter’s distribution are shown on the diagonal plots. The224

panels below the diagonal show 2-D scatter plots between the various parameter pairs,225

and the bivariate kernel density estimates (KDE) (Wȩglarczyk, 2018; Waskom, 2021) are226

plotted above the diagonal. This split leads to a training/validation/test ratio of 66/17/17%.227

The events in each dataset were selected such that they contained a wide range of ac-228

tivity levels, with the training dataset having the largest possible range in each of the229

parameter spaces. The VAL 2 and TST 2 simulations begin only days apart, so the ex-230

trema in SYM-H and Bz are the same for both events because of this overlap. However,231

due to their offset, the initial state and evolution of each week-long interval will differ.232

These two events constitute a period of prolonged geomagnetic activity where two sig-233

nificant storms occurred within a few days of each other. Each storm is captured very234

differently in the two intervals, although the most severe activity overlaps into both events235

and is emphasized by the minimum statistic.236
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Table 2. Validation and Test Events Identified by the Novel Sampling Methodology.

Event Start Date min(SYM-H) mean(AL) mean(Vx) min(Bz)

VAL 1 2003-05-05 -93.0 -297.5 -670.1 -7.5
VAL 2 2004-11-05 -394.0 -409.3 -542.7 -44.7
VAL 3 2005-01-12 -107.0 -251.9 -618.7 -12.3
VAL 4 2012-11-09 -118.0 -101.0 -357.5 -17.4
VAL 5 2017-12-01 -47.0 -129.5 -443.0 -11.1

TST 1 2002-04-19 -185.0 -206.3 -482.8 -13.7
TST 2 2004-11-03 -394.0 -277.3 -475.3 -44.7
TST 3 2005-08-24 -179.0 -164.9 -479.3 -32.4
TST 4 2013-04-24 -52.0 -132.2 -435.1 -12.8
TST 5 2017-03-26 -86.0 -259.1 -586.1 -9.2

Figure 2. Pairplot displaying the TRNG, VAL, and TST events identified by the novel cus-

tom discrete sampling methodology. It visualizes the sampling taken within each parameter’s

distribution, where histograms of each parameter are shown on the diagonal plots. The panels

below and above the diagonal show 2-D scatter plots between parameter pairs and the bivariate

KDEs, respectively. The remaining samples (SAMP) are shown in dark blue.
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2.2 Simulate Events237

RAM-SCB is a unique inner magnetosphere model developed at Los Alamos Na-238

tional Laboratory (LANL) that combines a kinetic ring current plasma model (RAM)239

(Jordanova, Zaharia, & Welling, 2010; Jordanova, Engel, et al., 2022) with a 3-D self-240

consistent magnetic field model (SCB) (Zaharia et al., 2006; Jordanova et al., 2006). RAM241

and SCB are two separate components that are two-way coupled for self-consistent evo-242

lution (Jordanova, Engel, et al., 2022). RAM-SCB began as a research-based code with243

limited options but is now a powerful and highly configurable open-source software that244

is highly parallelizable (Engel et al., 2019; Jordanova, Engel, et al., 2022). By default,245

RAM-SCB models 4 species of charged particles (H+, He+, and O+, and e−) in ener-246

gies ranging from 100 eV to 500 keV. Its spatial domain spans from 2 to 6.5 RE with247

a 0.25 RE resolution along the magnetic equatorial plane. One of its many data prod-248

ucts is the equatorial particle flux, which is provided in terms of magnetic local time (MLT),249

radial distance (RE), energy (keV), and pitch angle (PA) (Jordanova, Engel, et al., 2022).250

All 30 events (20 training, 5 validation, and 5 test) were run using WVU’s Thorny251

Flat cluster, each with an identical configuration. All system environment information252

and input files are provided for reproducibility purposes (Cruz et al., 2023). Each sim-253

ulation utilizes 13 CPU cores, is run in its own standalone run directory, and outputs254

92 GB of data. The total 210 days of simulation time were completed in just under 48255

days of computational time, resulting in an average speed of 4.4x real-time. An overall256

wall time of 16 days was ultimately needed because multiple simulations were run simul-257

taneously over several compute nodes on the Thorny Flat cluster. The total amassed out-258

puts for the set of 30 simulations was 3 TB.259

2.3 Dataset Creation260

RAM-SCB outputs equatorial, directional differential flux as a 4-D hypercube for261

each various plasma species identified in its setting file (PARAM.in), which we set to in-262

clude all default species (H+, He+, and O+, and e−) for each simulation. There are 72263

pitch angles over 35 energy channels with spatial dimensions of 25 MLTs and 20 radial264

distances, equating to a data shape of (72, 35, 25, 20) per timestep. Each 7-day simu-265

lation has outputs at a 10-minute cadence, resulting in 1,008 timesteps per simulation.266

RAM-SCB’s particle flux is saved in NetCDF files at the output cadence, meaning there267

are 1,008 individual flux files per simulation, each roughly 40 MB. The resulting data268

shape for an entire simulation of particle species comes out to be (1008, 72, 35, 25, 20).269

We decided to develop this proof of concept using protons (H+) since they are known270

to be the most dominant species for convection in Earth’s ring current (Daglis et al., 1999;271

Jordanova et al., 2012, 2014). Concatenating the 20 training simulations all together cre-272

ates a data structure with shape (20160, 72, 35, 25, 20) that occupies roughly 101 GB273

of physical memory. Any operation (add, subtract, mean, etc.) roughly doubles the mem-274

ory usage to around ∼200 GB, requiring significant computational resources to work di-275

rectly on a data structure this size.276

In creating new datasets, there are many unforeseen steps needed in order to get277

the data in a suitable state for analysis. To start, our RAM-SCB simulations are all run278

using double precision, thus small numbers (i.e. 10−300) are found in the loss cone and279

at the inner boundary. To mitigate the propagation of these small numbers as well as280

reduce memory usage, we converted our data to single precision, which resets the min-281

imum threshold to around 10−45. In addition, RAM-SCB uses ghost cells for the inner282

radial boundary condition at 1.75 RE, across all pitch angles and energy channels that283

should not be included in physical analyses. To remove ghost cells and reduce the em-284

ulated area, we truncated all radial distances below 3 RE , resulting a data shape of (20160,285

72, 35, 25, 15) that occupies 71 GB of physical memory.286
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Because of this dataset’s size, our emulator is developed using only a subset of the287

RAM-SCB particle flux data product. Developing an emulator on a smaller subset of the288

data has the benefit of speeding calculations up because there is less data, thus making289

each step in the workflow both simpler and faster. Once the emulation process is demon-290

strated on this smaller subset, it can then be expanded to incorporate RAM-SCB’s full291

4-D data product. Since maintaining the spatial information is key for modeling the sys-292

tem’s dynamics, we decided to only use a single energy channel and integrate the pitch293

angle distribution to obtain omnidirectional flux. The 208 keV energy channel was se-294

lected since the differential flux is already separated by energy. We then integrated di-295

rectional flux into omnidirectional flux (normalized per steradian) following Bourdarie296

et al. (2012) to further reduce the dimensionality:297

jomni =

∫ π

0
j(E,α) sin(α) dα∫ π

0
sin(α) dα

(1)

This results in omnidirectional differential flux (jomni) with units of cm−2 s−1 sr−1
298

keV −1, where α is the pitch angle and j(E,α) is the directional differential flux at a spe-299

cific energy (E) and pitch angle (α). By removing the pitch angle information and se-300

lecting a single energy channel, the training data is now reduced to just the spatial di-301

mensions with a shape of (20160, 25, 15) that occupies 30 MB of physical memory. This302

same process is also applied to the validation and test datasets.303

2.4 Metrics304

The metric used to describe error in the physical space is the median symmetric305

accuracy (MdSA; S. K. Morley et al., 2018). Ring current particle flux spans many or-306

ders of magnitude, is strictly positive, and has a physically meaningful zero value (Zheng307

et al., 2019). Normally, datasets with large ranges utilize relative error metrics, such as308

the percent error, that are able to scale values over these large ranges. The mean abso-309

lute percent error (MAPE) is widely used in space science data analysis (S. K. Morley310

et al., 2018; Zheng et al., 2019) but has drawbacks. The MdSA metric was developed311

to help mitigate many of these concerns (S. K. Morley et al., 2018), aimed at inner mag-312

netospheric flux data. First, it is a relative error metric that penalizes over- and under-313

estimations equally. The median is also used instead of the mean because it is a robust314

central tendency statistic that is resistant to outliers and bad data. For the development315

of the uncertainty quantification in Section 2.8, the median statistic will be used when-316

ever an average is taken over the temporal range (t), since outliers are expected to arise317

during the highest solar and geomagnetic activity levels. Lastly, MdSA is easily inter-318

preted as a straight-forward accuracy, or percent error. Equation 2 shows how to com-319

pute the MdSA, where Q = pred
truth is defined as the accuracy ratio.320

MdSA = 100 ( exp(Median( |loge(Q)| ) ) − 1) (2)

The metric used to determine the bias in either the physical or reduced spaces is321

the symmetric signed percentage bias (SSPB; S. K. Morley et al., 2018). Similarly to the322

MdSA, the SSPB is a relative error metric that penalized over & under estimations equally.323

The median is also used in its calculations as a robust central tendency statistic that is324

resistant to outliers and bad data. The SSPB metric is interpreted like a mean percent-325

age error where an unbiased prediction is at 0% SSPB and an over- or under-prediction326

produces positive and negative SSPB, respectively.327
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SSPB = 100 sgn(Median(loge(Q)) ) ( exp( |Median(loge(Q)) | ) − 1) (3)

The standard metric of mean squared error (MSE) is used to describe the errors328

of the temporal coefficients in the reduced space (ref. Equation 5). It is also key to note329

that the MSE optimized in the dynamic models (Section 2.6) will have gone through mul-330

tiple transformations (logarithmic, dimensional reduction, and standardization), mak-331

ing it extremely difficult to interpret. Thus, any model performance metrics must be de-332

termined post-process by reconstructing the predictions back into the physical space. This333

is one of the unique challenges of working with ROMs: the ML algorithms analyze the334

reduced-space representations of the data, which are not necessarily interpretable.335

The reliability metric used for the UQ is the calibration error score (CES). It is used336

for consistency with developments in the thermosphere (Licata, Mehta, Tobiska, and Huzur-337

bazar (2022); Licata, Mehta, Weimer, et al. (2022); Licata and Mehta (2022, 2023)) and338

is a relative metric that is easily interpreted as a percent error. The CES measures the339

deviation of the observed cumulative probability p(α̂r,m) from the expected cumulative340

probability p(αr,m). The above probabilities are calculated using the process described341

in Section 2.5.1 of Licata, Mehta, Tobiska, and Huzurbazar (2022), where the prediction342

intervals span from 5-99% in increments of 5%. The reliability of the uncertainty esti-343

mates is visualized by plotting p(α̂r,m) against p(αr,m), also known as a calibration curve.344

The calibration curves presented in this work are under the assumption of a Gaussian345

distribution, and the reliability under non-Gaussian distributions will require further in-346

vestigation. An uncertainty estimate that matches a normal distribution is indicated by347

a 45◦ line (i.e., y = x) on the calibration curve. Any deviation from this line indicates348

an over or underestimation of the uncertainty for a curve that is above or below the line,349

respectively. Here, the calibration curves and CES are all calculated in the reduced space.350

The CES calculation is shown in Equation 4,351

CES =
100%

r ·m
∑
r

∑
m

∣∣∣p(αr,m)− p(α̂r,m)
∣∣∣ (4)

where r is the number of reduced-space coefficients and m is the number of pre-352

diction intervals used to determine the cumulative probabilities.353

2.5 Dimensionality Reduction354

The next step in the emulation process is to reduce the dimensionality of the datasets.355

A system’s spatial variations are normally represented by a set of basis vectors that are356

both independent in time and mutually orthogonal, or what is commonly known as em-357

pirical orthogonal functions (EOF) (Bjornsson & Venegas, 1997; D. Wilks, 2011). The358

temporal variations αi(t) are then added in as weights to the spatial EOFs (Mehta &359

Linares, 2017; Mehta et al., 2018; Licata, Mehta, Tobiska, & Huzurbazar, 2022), which360

we will be referring to as the reduced-order temporal coefficients. This is shown in Equa-361

tion 5, where X ∈ Rn, s represents the spatial domain, t represents the temporal do-362

main, and U contains the spatial modes.363

X (s, t) = X (s) + X̃ (s, t) where X̃ (s, t) ≈
r∑

i=1

αi (t)Ui (s) (5)

One of the most challenging aspects of ROM on space weather systems is to prop-364

erly adjust the timing of the temporal variation predictions with the corresponding in-365
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puts driver(s) (Mehta & Linares, 2017). The resulting reduced-space transformation has366

a controlled loss of accuracy with respect to the physical model, through optimized trun-367

cation, along with the benefit of being in a much more manageable & practical form for368

analysis (Mehta et al., 2018). Before the dimensionality can be reduced, though, a log-369

arithmic transformation (log10) is normally applied (Zheng et al., 2019). Transforma-370

tions using logarithms not only reshape skewed distributions into more normalized dis-371

tributions but also significantly reduce their value range (D. S. Wilks, 2011). This also372

implies that the antilogarithm must be taken directly after the dimensional reduction373

is reversed during any reconstructions back into the physical space.374

The ROM process begins by reducing the spatial dimensionality of the system by375

applying a principal component analysis (PCA). PCA is an unsupervised method used376

to map high-dimensional data into an uncorrelated lower-dimensional space by means377

of a linear rotation and scaling. In some literature, PCA and EOF can be used inter-378

changeably (Bjornsson & Venegas, 1997). PCA is a popular starting point for reducing379

the dimensionality of space weather domains because it is a simple yet powerful method380

(McGranaghan et al., 2015; Mehta & Linares, 2017; Licata & Mehta, 2022; Licata, Mehta,381

Tobiska, & Huzurbazar, 2022; Licata & Mehta, 2023). Once the logarithmic transfor-382

mation (log10) has been applied, the next step is to remove the spatial mean X(s) from383

the training data (see Equation 5), which is referred to as centering the data. We use384

the spatial mean because the mean is taken over the temporal dimension, and it is this385

mean of the training dataset that is used when transforming any and all data between386

the physical and reduced spaces. The last preparation step before performing the actual387

PCA is to convert the data into a 2-D array (Bjornsson & Venegas, 1997; D. Wilks, 2011).388

Since we are analyzing only a single energy of omnidirectional flux, the spatial dimen-389

sions (25, 15) will be collapsed into a single array of size n = 375, resulting in a data390

shape of (20160, 375). Our PCA is implemented using a singular value decomposition391

(SVD) solver (Pedregosa et al., 2011),392

X̃ = UΣV T where X̃ =

 x̃1 x̃2 ... x̃n

 , (6)

where U contains the left singular vectors of X̃X̃
T
, V contains the right singular393

vectors of X̃T X̃, Σ is a diagonal matrix containing the squares of the corresponding eigen-394

values, and all are arranged in descending order. We use this PCA decomposition to trans-395

form the ML datasets into the reduced-space representation.396

The spatial modes of variability identified by the PCA decomposition often reveal397

or resemble known physical processes and phenomenon (McGranaghan et al., 2015). Di-398

rect interpretations, however, are not necessarily guaranteed since each mode may con-399

tain multiple processes or various combinations of physical processes. Figure 3 shows the400

mean and first 7 right singular vectors from the PCA, or spatial modes of variability, on401

RAM-SCB’s grid (for the 208 keV proton flux). Upon visual inspection, there are roughly402

3 trends: 1) radial falloff, 2) symmetric rings, and 3) asymmetric structures. The mean403

and Mode 1 are both examples of the radial falloff and reminiscent of the ring current’s404

expected location. During quiescent times, the ring current is normally confined to ra-405

dial distances under 4.5 RE (R < 4.5 RE) for high-energy protons (E > 200 keV) (Jordanova406

et al., 2014), which is validated by the mean plot. During the main phase of a geomag-407

netic storm, most all particle fluxes are reduced at radial distances R > 4.5 RE , and the408

ring current is compressed closer towards the Earth (Jordanova et al., 2012). Mode 1 agrees409

with this reduction and compression, which by definition is also the most dominant mode410

of variability. The symmetric rings in Modes 2, 4, and 7 seem to simply resemble basis411

functions for the symmetric ring current, which becomes more defined at higher parti-412
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cle energies. During the main and recovery phases of a geomagnetic storm, each parti-413

cle’s drift is known to vary radially (Jordanova et al., 2012), creating similar symmet-414

ric rings. The asymmetric structures in Modes 3, 5, and 6 are more difficult to interpret415

and will require further analysis because the ring current is comprised of both a sym-416

metric and asymmetric portion, or partial ring current (Daglis et al., 1999; Russell et417

al., 2016), as well as drifting injected particles. Most of the asymmetric modes show vari-418

ations between dawn and dusk, which is the expected drift path for ions (H+) in the ring419

current.420

Figure 3. Mean and first 7 spatial modes of variability identified by the PCA from the right

singular vectors plotted on RAM-SCB’s grid. The modes are ordered in terms of importance,

meaning the mean is the most dominant followed by mode 1, and so on.

PCA’s ability to reduce the dimensionality of a dataset comes into play when the421

modes that contribute the least to the system’s variability are identified and removed.422

Determining the point of truncation for an emulator is a balance between minimizing423

the amount of reconstruction error and reducing the dimensionality of the system for enough424

observability (Mehta & Linares, 2018) in later data assimilation applications. Typically,425

the truncation point is set to where the reconstruction error is on the order of a few per-426

cent and the dimensionality is reduced to around 10. We decided to truncate our PCA427

at 20 modes (r=20), which reduces the spatial dimensionality from X̃ ∈ Rn to X̃ ∈428

Rr. The cumulative variance contribution is plotted on the left axis of Figure 4, where429

the first 20 modes are shown to capture 82.9% of the variability. Figure 4 also reveals430
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that the truncation error (right axis) from the reconstruction back to the physical space431

using 20 PCA modes is 2.9% MdSA.432

Figure 4. The cumulative variance contribution (orange) for each mode of the PCA, and

truncation error (blue) of the reconstruction back into the physical space using the specified num-

ber of modes on the training dataset.

To illustrate the robustness of the PCA decomposition, 3 different timesteps from433

the VAL 4 simulation (see Table 2) are reconstructed back to the physical space and shown434

in Figure 5. Timesteps were chosen before, during, and after the geomagnetic storm, and435

the resulting truncation errors between the actual (left plots) and reconstructed (mid-436

dle plots) fluxes are plotted on the right. The errors in the plots for before and after the437

storm are on the same order as the truncation error, with an MdSA of 3.4% and 1.6%,438

respectively. However, errors are expected to increase during the geomagnetic storm, since439

the linear PCA would not be able to capture any nonlinearities in the system’s dynam-440

ics. Even though local errors rose up to 33% during the storm, the MdSA only increased441

a few percent to 5.9%.442

2.6 Dynamic Modeling443

For dynamic models such as RAM-SCB, ML algorithms capable of capturing the444

temporal evolution of these systems are required. A class of neural network that is well445

suited for modeling time-series data is a recurrent neural network. We implement a Long-446

Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997; Gers et al., 2002) re-447

current neural network to model and predict RAM-SCB’s temporal variations (Wang et448

al., 2022; Licata & Mehta, 2023). Since magnetospheric responses tend to lag behind their449

SW drivers (Bargatze et al., 1985; Mehta et al., 2018), an LSTM copes with this tem-450

poral hysteresis by incorporating knowledge of previous timesteps, often referred to as451

the lookback period, in its short-term memory while still maintaining information on any452

long-term trends in its cell state (Licata & Mehta, 2023). An LSTM can also capture453

nonlinear relationships between the input drivers and reduced-space temporal coefficients.454

The preconditioning of the inner magnetosphere (Kozyra et al., 1998, 2002; S. Morley455

& Lockwood, 2006) adds another layer of complexity on how the LSTM learns the dy-456

namics of this system. The ability to capture nonlinear correlations while also manag-457

ing the aforementioned temporal hysteresis and preconditioning is why we chose an LSTM458

for the dynamic modeling of our emulator. LSTMs require a unique input structure, con-459
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Figure 5. Snapshots taken before, during, and after the geomagnetic storm of the VAL 4

simulation with the truncation errors (right) between the actual (left) and reconstructed (middle)

fluxes. The truncation errors for the before, during and after snapshots are 3.4%, 5.9%, and 1.6%

MdSA, respectively.

taining the reduced-space temporal coefficients as well as a set of user-defined input drivers.460

We chose the same parameters used during the discrete sampling in Section 2.1 (SYM-461

H index, AL index, IMF Bz, and SW Vx) as input drivers with the addition of the SW462

density. The LSTM input structures are built following the process outlined in Section463

2.2 of Licata and Mehta (2023).464

2.6.1 Hyperparameter Tuner465

We implement a hyperparameter tuner to identify suitable LSTM architectures us-466

ing TensorFlow’s (Abadi et al., 2015) API and Keras Tuner (O’Malley et al., 2019). Nor-467

mally, each layer of a neural network is configured with a set of specific settings (acti-468

vation function, number of neurons, input shape, etc.). A systematic grid search of these469

settings is then performed that builds many different combinations to train and test. In-470

stead, a hyperparameter tuner not only automates this grid search but also applies an471

optimization scheme to determine an optimal set of hyperparameters (Goodfellow et al.,472

2016; O’Malley et al., 2019). When developing a tuner, each setting of interest is instead473

replaced with a range of values that the tuner can search. We utilize a Bayesian Opti-474

mization (O’Malley et al., 2019) scheme, which begins by estimating distributions for475

each hyperparameter from the processed trials and computes expected distributions for476

the next trial (Snoek et al., 2012). A set of hyperparameters with the highest probabil-477

ity of improving the objective performance is then selected from each expected distri-478

bution (Snoek et al., 2012) to begin training the next trial. The method used in Keras479

Tuner begins with a random search of the hyperparameter space for a select number of480

initial trials to develop the hyperparameter distributions and then applies the Bayesian481

optimization scheme on the remaining trials. Our hyperparameter tuner is setup to per-482

form 50 total trials, with the first 25 being a random grid search and the final 25 trials483

using the Bayesian Optimization scheme.484
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A summary of our hyperparameter tuner’s configuration is shown in Table 3. Nor-485

mally, datasets with a large number of samples, or timesteps in our case, are split into486

smaller batches (Wilson & Martinez, 2003; Montavon et al., 2012). We split our datasets487

by cutting each simulation in half. Splitting the data into batches also allows for the or-488

der in which the batches are trained to be shuffled during each epoch of training. This489

batch shuffling has the added benefit of better generalizing a model (Montavon et al.,490

2012; Goodfellow et al., 2016; Licata & Mehta, 2023). Splitting the data into batches,491

however, has the drawback of truncating additional data because each batch requires a492

lookback period of a few timesteps to predict the initial epoch. Our hyperparameter tuner493

is also set to perform 2 separate executions per trial to help mitigate any potential per-494

formance degradation from the weight initialization (O’Malley et al., 2019; Licata & Mehta,495

2023). This increases the tuner’s overall runtime but is a much more robust configura-496

tion. Lastly, a callback to terminate the training of any individual model if a loss of NaN497

is returned is used as a precautionary measure to mitigate the effects of exploding gra-498

dients (Goodfellow et al., 2016).499

Table 3. Hyperparameter Tuner Configuration.

Setting Choice

Scheme Bayesian Optimization
Total Trials 50
Initial Search 25
Repeats per Trial 2
Epochs per Trial 50
Shuffle Batches Yes
Termination NaN
Loss Metric MSE
Minimization Parameter Validation MSE

A summary of the hyperparameter space is shown in Table 4. To start, we include500

hyperparameters that determine how deep the neural network can go by choosing the501

number of LSTM and fully-connected, or dense, layers to include in the architecture for502

each trial. Each of these layers then has its own set of hyperparameters from which to503

choose from. Immediately following each dense layer is a dropout layer, which randomly504

shuts off neurons to help generalize a model by encouraging connections to take differ-505

ent paths (G. E. Hinton et al., 2012). The choice of an optimizer is also treated as a hy-506

perparameter, where the tuner is given choices of: AdaGrad (Duchi et al., 2011), RM-507

Sprop (G. Hinton et al., 2012), AdaDelta (Zeiler, 2012), and Adam (Kingma & Ba, 2014).508

To end, we include a custom hyperparameter to determine the LSTM’s lookback period509

because the inner magnetosphere’s responses have varying lag times with each of the so-510

lar wind drivers (Bargatze et al., 1985; Maggiolo et al., 2017; Stumpo et al., 2020). This511

presented an additional challenge in that the LSTM’s input shape needs to be changed512

for each trial of the hyperparameter tuner.513

2.6.2 LSTM Training514

During training, an LSTM typically make predictions using the true values of both515

the input drivers and state outputs, or reduced-space coefficients in our case. The true516

state outputs are available because the training, validation, and test datasets are all pre-517

determined from the simulations. This evaluation method of using the true input drivers518

and state outputs to predict each timestep is known as a one-step prediction method.519

In operations, however, the true state output is not always available. When forecasting,520

the predicted state outputs are instead used to predict future timesteps, as outlined in521
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Table 4. Hyperparameter Space.

Hyperparameter Range

Architecture:
No. of LSTM Layers [1, 2]
No. of Dense Layers [1, 3]
Lookback Period [3, 24]

Optimizer AdaGrad, AdaDelta,
RMSProp, Adam

LSTM Layer:
Neurons [32, 300]

Activation Func. Tanh, Sigmoid,
SoftSign

Dense Layer:
Neurons [64, 600]

Activation Func. ReLu, Elu, Sigmoid,
SoftSign, SoftPlus

Dropout Layer:
Dropout Rate [0.01, 0.50]

Figure 3 of Licata and Mehta (2023). After the current timestep t is predicted, the look-522

backs are marched forward for the next timestep t+1. The corresponding lookback for523

t is then updated with the predicted output. The next timestep t+1 can then be pre-524

dicted, and the lookbacks are again marched forward for the following timestep t+2.525

Now, any lookbacks corresponding to the previous two timesteps are updated with their526

respective predictions. This process is repeated for the length of the forecast window.527

This evaluation method is known as a dynamic prediction and is one of the advantages528

gained by developing an emulator.529

Our hyperparameter tuner is implemented with a fixed number of epochs so that530

it can search the entire hyperparameter space in a reasonable amount of time. This, how-531

ever, does not guarantee that these models have converged, so we included optimizers532

in the tuner that utilize momentum (Goodfellow et al., 2016; Montavon et al., 2012), which533

helps mitigate the effects of local minima in the loss function. The top architectures iden-534

tified by the tuner are then put through a more rigorous training. Each of these archi-535

tectures is allowed to reach a maximum of 1,000,000 epochs, but this value does not have536

to be reached because an early stopping (Goodfellow et al., 2016) callback with a pa-537

tience period (Montavon et al., 2012) was implemented to prevent any overfitting. This538

is a much more robust training but requires additional computational resources and time,539

which is why it was not implemented in the hyperparameter tuner.540

2.7 Model Ensemble541

Our emulator implements a model ensemble to not only provide an uncertainty es-542

timate but also increase overall model performance. An ensemble of models typically out-543

performs a single model (Weigel et al., 2008; Kioutsioukis & Galmarini, 2014; Xiao et544

al., 2018; S. Morley et al., 2018; Elvidge et al., 2016, 2023) due to the fact that a diverse545

set of models will normally contain individual models that predict certain portions of546

the training data better than others. Combining models in a way that emphasizes the547

best performing model will ultimately increase performance. Since the predictions of the548

LSTM models from the hyperparameter tuner are deterministic, a model ensemble pro-549

vides the ability to compute statistics from multiple models to determine an error dis-550

tribution.551
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To encourage diversity in our model ensemble, 5 separate instances of the top 5 ar-552

chitectures are trained from scratch, providing an ensemble of 25 models. This increase553

in the number of architectures is an enhancement to the method developed by Licata554

and Mehta (2023). Models trained with the same architectures will differ because the555

weight initialization is random, dropout is included, and the batches are shuffled dur-556

ing training (Goodfellow et al., 2016; Montavon et al., 2012). This provides confidence557

that models within an architecture contain enough diversity and statistics to determine558

an error distribution. Also, the top models from a hyperparameter tuner are normally559

identified by their performance on the validation dataset, which in our case is the MSE560

of the reduced-space temporal coefficients. Instead, we determine the tuner’s top archi-561

tectures by analyzing the validation dataset’s performance using the physical-space met-562

ric (MdSA), which may not yield the same results.563

2.8 Uncertainty Quantification564

The emulator’s last step is to combine the ensemble of deterministic models into565

a single probabilistic model, where we leverage the 3-tier hierarchical approach of Licata566

and Mehta (2023) to produce a robust and reliable uncertainty estimate. Multi-model567

ensembles have a history of applying a 2-tier weighted average method to combine mod-568

els (Sewell, 2008; Huang et al., 2009; D. S. Wilks, 2011; Elvidge et al., 2016, 2023), but569

Licata and Mehta (2023) adds another tier to the method while also computing a vari-570

ance. To begin, each of the 25 models must be evaluated over the training dataset us-571

ing a dynamic prediction. For better interpretability, the indexes in the next sections have572

the following definitions: i refers to the architecture, j refers to the individual model within573

an architecture, k refers to the reduced-space coefficient’s index, and t refers to the timestep574

from the above training dataset evaluation. As stated in Section 2.4, the central tendency575

metric (mean vs median) used in the UQ calculations varies depending on the dataset.576

The RAM-SCB dynamic predictions have a small number of timesteps with large errors577

(see Figure 8), considered to be outliers, which justifies the use of the median statistic578

whenever an average is taken over the temporal dimension (t). Implementing the me-579

dian statistic instead of the mean is another modification made to the method developed580

by Licata and Mehta (2023).581

Combining models with a weighted average is more robust than taking a simple582

average because the weights can be computed to place more emphasis on predictions with583

a higher accuracy. In Equation 7 (right), the median absolute error (MdAE) is taken over584

t for each individual model’s evaluation and inverted to place more weight on models that585

have the least error. These weights w̃i,j,k are then normalized within each architecture586

using Equation 7 (left) so that the combination can be calculated as a simple weighted587

sum.588

wi,j,k =
w̃i,j,k∑
j

w̃i,j,k
where w̃i,j,k =

1

MdAEi,j,k
(7)

The resulting weights wi,j,k are then used to calculate the mean prediction and vari-589

ance for each architecture, creating the 2nd tier of this hierarchical ensemble method.590

This is done by performing a weighted sum over the individual models within an archi-591

tecture as shown in Equation 8. In these equations, α̂i,j,k,t are the dynamic predictions592

from each individual model, α̂i,k,t is the mean prediction for each architecture, and σ̂2
i,k,t593

is each architecture’s estimated variance.594

α̂i,k,t =
∑
j

wi,j,k α̂i,j,k,t and σ̂2
i,k,t =

∑
j

wi,j,k (α̂i,k,t − α̂i,j,k,t)
2

(8)
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This variance calculation assumes a Gaussian distribution for each architecture,595

but combining these distributions to develop the final emulator’s uncertainty estimate596

may not end up Gaussian. This is because each architecture’s mean and variance may597

differ, meaning their distributions will not necessarily be independent or uncorrelated598

with each other, resulting in a non-Gaussian distribution. A visual depiction of this can599

be found in Figure 7 of Soltanzadeh et al. (2011), which shows the resulting non-Gaussian600

probability density function (PDF) from a Bayesian model averaging (BMA) ensemble.601

To provide a more robust and reliable UQ, Licata and Mehta (2023) apply a scaling fac-602

tor to the uncertainty, called σ-scaling (Laves et al., 2021). The concept behind σ-scaling603

is to inflate the variance whenever predictions within an architecture are very precise but604

not accurate. Equation 9 shows how to calculate the σ-scaling factor, Si,k, for each ar-605

chitecture and reduced-space coefficient, where αk,t is the training dataset’s ground truth606

(i.e., from the original simulations). This is another deviation from Licata and Mehta607

(2023) in that we use the median statistic instead of the mean to calculate our scaling608

factors. Laves et al. (2021) also developed Si,k to be applied to the standard deviation609

(i.e. σ), but we instead apply S2
i,k to each architecture’s variance σ̂2

i,k,t.610

Si,k =

√√√√Median

[
(αk,t − α̂i,k,t)

2

σ̂2
i,k,t

]
(9)

The mean and variance estimates from each architecture are then combined to de-611

termine the ensemble’s overall mean α̂k,t and variance σ̂2
k,t, which define the emulator’s612

probabilistic output. This is also the 3rd and final tier of the hierarchical ensemble method.613

The calculations are shown in Equation 10, where ni is the number of architectures, α̂i,k,t614

is each architecture’s mean prediction, and σ̂2
i,k,t is the variance estimate for each archi-615

tecture with the σ-scaling factor already applied. A simple average is used here because616

this combination is conducted on the 2nd tier of the hierarchical ensemble. Licata and617

Mehta (2023) demonstrate that if the same number of models are trained within each618

architecture then the pooled variance calculation simplifies to a simple average. The re-619

sult is referred to as a probabilistic output because of the included error distribution from620

the uncertainty estimate.621

α̂k,t =
1

ni

∑
i

α̂i,k,t and σ̂2
k,t =

1

ni

∑
i

σ̂2
i,k,t (10)

3 Results622

3.1 Hyperparameter Tuner623

Keras Tuner typically lists the best models in descending order by the defined met-624

ric on the validation dataset. Since our MSE is in the reduced space, the hyperparam-625

eter tuner’s best models are instead listed in terms of the physical-space metric, MdSA,626

and shown in Table 5. As seen in the test and validation metrics, most all errors hover627

around 5% MdSA with biases under ±1% SSPB after only 50 epochs of training, but there628

is still a bit of diversity seen in these values. This diversity is important when identify-629

ing which architectures to include in the model ensemble because equal performance in630

very similar architectures would not benefit the ensemble. With this said, the top 5 ar-631

chitectures in this table were selected to develop our model ensemble. The tuner settled632

on a shallow architecture, where all of the top 10 architectures had only 1 LSTM and633

1 dense layer. Only the Best Model #2 differed by having 2 dense layers. Each also used634

the AdaGrad optimizer with a lookback period of 3 timesteps, or 30 minutes of simu-635
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lation time. These hyperparameters may seem like these architectures are extremely sim-636

ilar, but this is merely a summary of the entire hyperparameter space (see Section 2.6.1).637

Overall, the performances shown in Table 5 provides strong support that the training638

data sufficiently sampled the event space to capture the dynamics found in RAM-SCB’s639

particle flux data product. It is also important to note that these metrics are derived from640

a one-step prediction and not the dynamic prediction, or forecast evaluation method, used641

for the performance metrics in the next sections.642

Table 5. Top 10 LSTM Architectures from the Hyperparameter Tuner.

Best TRNG TRNG TRNG VAL VAL VAL TEST TEST TEST
Model MSE MdSA SSPB MSE MdSA SSPB MSE MdSA SSPB

1 0.159 4.22% 0.57% 0.380 5.29% 0.44% 0.269 5.05% 0.35%
2 0.156 4.24% 0.37% 0.398 5.33% 0.69% 0.278 5.23% 0.88%
3 0.150 4.14% -0.02% 0.395 5.49% -0.63% 0.274 4.91% -0.22%
4 0.156 4.26% -0.36% 0.367 5.58% -0.61% 0.260 4.85% 0.54%
5 0.187 4.10% 0.73% 0.273 5.59% 0.06% 0.207 5.30% 0.46%
6 0.166 4.29% -0.03% 0.408 5.72% -1.54% 0.275 4.96% -0.32%
7 0.168 4.40% 0.04% 0.394 5.74% -0.39% 0.276 5.51% -0.14%
8 0.190 4.32% -0.11% 0.288 5.80% -0.58% 0.213 5.42% 0.79%
9 0.206 4.66% 0.70% 0.348 5.91% 0.31% 0.240 5.88% 1.88%
10 0.205 5.15% 0.13% 0.328 6.35% -0.22% 0.241 6.67% 1.17%

3.2 Dynamic Prediction643

Based on a detailed analysis, we found relatively high errors during the initial few644

hours of each simulation. Figure 6 shows the relative frequency of errors across all 20645

training simulations. The simulation time is binned every hour (6 timesteps) while the646

errors are binned every 10% MdSA. Figure 6 is interpreted as a histogram, where the647

errors for every hour of each simulation are binned and presented as a percentage. Ver-648

ified by the mean MdSA in Figure 8, the relative frequencies of low errors (i.e. <10%)649

are the dominant trend seen in dark blue (Figure 6). The inlay, however, highlights a650

shorter trend of errors in the initial few hours. A more in-depth look at the input drivers651

(SYM-H, AL, and Bz) during the onset of each simulation showed that not all param-652

eters began at quiescent levels. This meant that each simulation’s initialization, or spin-653

up, period was set with heightened activity, which is known to affect the simulation re-654

sults. Since the input drivers of each simulation varied in activity level, the spin-up pe-655

riods ultimately differed across all simulations, so a simple cutoff time could not be de-656

termined. The individual energy channels within each simulation are also expected to657

have varying spin-up times, so we decided to use this finding as a lesson learned for run-658

ning large-scale physics-based simulation models such as RAM-SCB. Future work from659

this project will incorporate a more robust initialization period that allows each simu-660

lation to reach a steady state before the event of interest begins. Of course, these ini-661

tialization periods will not be included when creating the training, validation, and test662

dataset, but it should mitigate the errors seen in the initial few hours of Figure 6.663

As stated in Section 2.7, the top 5 architectures identified by the hyperparameter664

tuner are processed through a more rigorous training and evaluated using a dynamic pre-665

diction. An hourly forecast window was chosen for the dynamic prediction because it seemed666

natural to forecast double the lookback period. Figure 7 shows the errors of the dynamic667

prediction evaluation for the TRNG 5 simulation (see Table 1) using the tuner’s best model.668

The SYM-H and IMF Bz drivers are included below the error plot to visually check for669

correlations between increased errors and heightened activity levels. The errors in Fig-670
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Figure 6. Relative error histogram of dynamic prediction errors from all 20 training simula-

tions. The simulation time is binned hourly, while the errors are binned every 10% MdSA. The

inlay highlights the relative high errors seen at the onset of each simulation.

ure 7, visually, almost directly coincide with heightened activity in each of the drivers,671

which is expected. This LSTM model was able to dynamically predict this week-long sim-672

ulation in just 22 seconds with a mean MdSA less than 8%, even though the peak er-673

ror just before the 400th timestep reaches a factor of 2. This mean MdSA error is an av-674

erage over the simulation period where the reconstructed MdSA is determined at each675

timestep. The threshold for errors reaching a factor of 2 is important because Boyd et676

al. (2019) shows that even instruments on the same spacecraft can have flux values of677

the inner magnetosphere that disagree by a factor of 2. The quartiles (25%, 50%, 75%)678

for this simulation came out to 3.37%, 5.10%, and 8.82% MdSA, respectively.679

Figure 7. Hourly dynamic prediction results of the TRNG 5 simulation from the LSTM

tuner’s best model. Reconstructed errors (blue) in the physical space (MdSA) are plotted along

with the SYM-H index (orange) and IMF Bz component (green).
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Similarly, Figure 8 shows the results of the dynamic prediction evaluation for all680

20 training simulations using the hyperparameter tuner’s best model. This LSTM model681

was able to dynamically predict all 20 week-long simulations in approx. 7 minutes with682

a mean MdSA of 8.5%. This error value is an average over the entire training dataset,683

where the MdSA is determined from the reconstructed fluxes for each timestep of ev-684

ery simulation. The quartiles (25%, 50%, 75%) came out to 3.57%, 5.66%, and 9.50%685

MdSA, respectively. This means that more than 75% of the errors in this entire dataset686

have less than 10% MdSA. As in the single simulation results, Figure 8 has timesteps687

in which the MdSA peaks during heightened activity levels throughout the various sim-688

ulations. For instance, errors around 100%, or a factor of 2, can be seen in Simulations689

4, 8, 12, 13, and 17. Errors upward of 200% (factors of 3, 4, and 5) can be seen in Sim-690

ulations 3, 7, 15, 16, and 17. These error spikes must be put into context, though, as Boyd691

et al. (2019) has shown that even instruments on the same spacecraft can have flux val-692

ues that disagree by a factor of 2. The SYM-H index and IMF Bz are also plotted di-693

rectly below the errors to determine if these error spikes visually coincide with height-694

ened activity levels. The largest errors do coincide with the deepest SYM-H depressions,695

which indicate significant levels of geomagnetic activity. The IMF’s Bz component fluc-696

tuations line up with the lower error regions (i.e. < 100% MdSA), although its ampli-697

tude ranges on a much smaller scale than that of SYM-H.698

Figure 8. Hourly dynamic prediction results for all 20 training simulations, each one block on

the bottom axis, from the LSTM tuner’s best model. Reconstructed errors (blue) in the physical

space (MdSA) are plotted along with the SYM-H index (orange) and IMF Bz component (green).

3.3 Reduced-Order Probabilistic Emulator699

As stated in Section 2.7, a model ensemble is leveraged to create a probabilistic out-700

put from a system of deterministic models with the added benefit that an ensemble typ-701

ically outperforms a single model (Weigel et al., 2008; Kioutsioukis & Galmarini, 2014;702

Xiao et al., 2018; S. Morley et al., 2018; Elvidge et al., 2016, 2023). The 3-tier hierar-703

chical approach of first combining models within an architecture via a weighted average704

and then combining the various architectures though a simple mean provides this work’s705

final product, a reduced-order probabilistic emulator (ROPE) of RAM-SCB particle flux.706

A summary of our ROPE’s final performance metrics are shown in Table 6, where707

it has an average MdSA of roughly 10% with biases just under 2% SSPB using an hourly708
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dynamic prediction on both the validation and test datasets. As expected, the model en-709

semble outperformed the best individual model by a whole percentage point, which is710

a significant performance bump given the level of accuracy in the ensemble members (see711

Table 5). The biases stayed about the same between 1-2% SSPB. The ROPE’s training,712

validation, and test quartiles (25%, 50%, 75%) came out to (3.19%, 5.12%, and 9.01%),713

(3.88%, 6.84%, and 12.25%), and (3.28%, 5.55%, and 10.51%) MdSA, respectively.714

Table 6. Hourly dynamic prediction results for both the best individual model (deterministic)

and final probabilistic emulator (ROPE) over each of the ML datasets.

TRNG VAL TEST

Indiv. Model:
Dyn. Pred. (MdSA) 8.50% 11.44% 11.32%
Model Bias (SSPB) -1.80% 1.36% -1.26%

ROPE:
Dyn. Pred. (MdSA) 7.60% 10.34% 10.36%
Model Bias (SSPB) -1.53% -1.97% -1.80%
Calibration (CES) 8.97% 7.61% 7.15%

Each of the 25 LSTMs in the model ensemble are evaluated using a dynamic pre-715

diction. Running them in parallel took just 110 seconds to predict the 5 simulations found716

in each of the validation and test datasets. Similarly, running these 5 simulations in RAM-717

SCB using the same configuration and computational resources as in Section 2.2, also718

in parallel, takes roughly 38.2 hours. This results in a speed increase of 1,250x between719

the emulator and RAM-SCB, which highlights the efficiency gained by developing an em-720

ulator. The ROPE’s predictions (i.e ensemble’s combined hourly dynamic predictions)721

on the TST 3 simulation (see Table 2) are shown in Figure 9 with 2-σ bounds. Upon vi-722

sual inspection, the first 2 reduced-order coefficients express good agreement with the723

truth values. Since the PCA coefficients are numbered in descending order, having the724

best performance in the first few coefficients is ideal, so these are very promising results.725

Since our variance calculation assumes a Gaussian distribution (see Equation 8),726

we expect that approx. 95% of the ROPE’s predictions will fall within the 2-σ bounds.727

The actual observed percentages for the first 2 coefficients (shown in Figure 9) are 93.5%728

and 92.8%, respectively. This is a slight underestimation of the variance and only a few729

percentage points off, implying these uncertainty estimates are indeed well-calibrated.730

Figure 10 demonstrates that the uncertainty is mostly underestimated for the remain-731

ing coefficients. The CES for each dataset is provided in Table 6, with scores less than732

10%. These scores are interpreted as the emulator’s reduced-space predictions have er-733

ror distributions that deviate less than 10%, on average, from a normal distribution.734

Lastly, Figure 11 depicts the evolution of the particle flux predicted by our ROPE735

through the TST 1 simulation, similar to Figure 5. The before and after storm predic-736

tions show a high degree of resemblance between the true and predicted fluxes, with er-737

rors of 3.8% and 6.0% MdSA, respectively. These errors are on the order of the trun-738

cation error introduced by the PCA decomposition, demonstrating good performance.739

During the storm, however, local errors climb past 500%, which is expected but still rel-740

atively large even given the fact that this is evaluated using a dynamic prediction. The741

quartiles (25%, 50%, 75%) during the storm came out with errors of 12.68%, 27.73%,742

and 52.37%, respectively. This translates to 3 out of every 4 flux values, on average, will743

have an error less than 53% during a storm period where errors are expected to be high,744

which is well within the threshold of a factor of 2 (Boyd et al., 2019).745
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Figure 9. Hourly dynamic predictions of the first 2 reduced-space coefficients (α1 & α2) by

the ROPE on the TST 3 simulation. The prediction (blue) is plotted at each timestep along with

the truth (black) and 2-σ bounds (light blue).

4 Limitations and Future Work746

The goal of this work is to apply the emulator workflow (Licata & Mehta, 2023)747

to the ring current by demonstrating it on a smaller subset of RAM-SCB particle flux,748

which in this case is a single energy channel of omnidirectional flux. This is our great-749

est limitation but was chosen to build a solid foundation. Thus, subsequent work will750

expand this workflow to encompass the full energy spectrum and pitch angle distribu-751

tion found in the particle flux data product.752

The use of a linear PCA to reduce the system’s dimensionality is another limita-753

tion in this work. Expanding to incorporate RAM-SCB’s full energy spectrum will re-754

quire the dimensionality reduction to explore nonlinear techniques and ML methods such755

as a kernel PCA (k-PCA) or convolutional autoencoder (CAE). Since it is known that756

this region of the inner magnetosphere contains nonlinear dynamics (Daglis et al., 1999),757

a nonlinear dimensional reduction will also aid in capturing these dynamics. This can758

help mitigate the large error spikes seen during periods of heightened solar and geomag-759

netic activity in this work, which partially stems from the use of a linear PCA method760

for the dimensionality reduction.761

The hierarchical ensemble methodology is still a relatively novel approach for cre-762

ating probabilistic predictions. There is much to be explored and room for more improve-763

ments. Even though the first 2 reduced-space coefficients contained roughly 93% of the764

ground truth values in their 2-σ bounds, the uncertainties of the other coefficients were765

all underestimated. Our calibration curves are also under a Gaussian assumption, so mea-766

suring the reliability under non-Gaussian distributions will require further investigation.767

Exploring a debiasing or more sophisticated ensemble method (e.g Elvidge et al. (2023))768

may potentially improve the UQ’s performance. The emulation process also leveraged769

reduced-order modeling to facilitate future data assimilation applications. This can en-770

hance the workflow by assimilating an observable, such as the Dst index, back into the771

emulator to further calibrate it.772
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Figure 10. ROPE’s calibration curves for the ML datasets (training, validation, and test).

Each reduced-space coefficient has its own curve, where the first 10 are plotted in solid lines and

the remaining 10 have dotted lines. The black dashed line represents the perfectly calibrated

y = x line of the Gaussian assumption.
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Figure 11. Snapshots taken before, during, and after the geomagnetic storm in the TST 1

simulation with the prediction errors (right) between the actual (left) and reconstructed ROPE

hourly dynamic predictions (middle), plotted on RAM-SCB’s grid.

5 Summary773

This work builds upon the emulation process developed by Licata and Mehta (2023),774

but now applied to ring current dynamics, and creates a reduced-order probabilistic em-775

ulator of the RAM-SCB particle flux data product from the ground up. The resulting776

ROPE is the culmination of 25 independent LSTM models that are trained on 20 one-777

week-long simulations from RAM-SCB, where a hierarchical ensemble blends these de-778

terministic LSTMs together into a probabilistic prediction with a robust and reliable un-779

certainty estimate. The simulations that make up the training, validation, and test datasets780

are all derived from a novel approach of sampling over 20 years of solar and geomagnetic781

activity that were transformed into reduced-space representations by a PCA decompo-782

sition.783

Metrics showcasing low errors throughout each step of the emulation process demon-784

strate the effectiveness of this workflow. The hyperparameter tuner’s performance met-785

rics of roughly 5% MdSA over all ML datasets, evaluated using a one-step prediction,786

provides significant confidence that the event space was sufficiently sampled. However,787

more consideration is needed when initializing the simulations to obtain better results.788

The low truncation error from the PCA of 2.9% MdSA demonstrates its robustness in789

reducing the dimensionality of this system, although fluxes of H+ at higher energies (i.e.790

208 keV) are undoubtedly easier to capture with PCA than lower energies (e.g. 1-10 keV).791

The lookback period, number of LSTM layers, and number of dense layers from the hy-792

perparameter tuner results were all lower than expected, but this may have been an ar-793

tifact from modeling a smaller subset of the RAM-SCB particle flux data product. Once794

expanded to the full energy spectrum and pitch angle distribution, we expect the hyper-795

parameter tuner to provide a much more diverse set of architectures. The model ensem-796

ble is a relatively modern approach for determining the uncertainty of LSTM models and797

still a novel concept for the ring current, so there is much to be learned and tested from798
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the ensemble method. Our emulator provides a speed increase of 1,250x over RAM-SCB799

with an overall accuracy of roughly 10% MdSA using an hourly dynamic prediction.800

6 Open Research801

The OMNIWeb data used in this paper can be downloaded at https://omniweb802

.gsfc.nasa.gov/form/omni min.html. The RAM-SCB source code (Jordanova, En-803

gel, et al., 2022) can be found at https://github.com/lanl/RAM-SCB/, and the ver-804

sion used in this work was tagged v.2.1.1. Both TensorFlow (Abadi et al., 2015) and Keras805

Tuner (O’Malley et al., 2019) were downloaded using Anaconda (Anaconda Software Dis-806

tribution, 2020). The input files for the RAM-SCB simulations, ML datasets, and code807

to run ROPE are available at https://zenodo.org/record/8313973 (Cruz et al., 2023).808
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