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Abstract

Climate risk management relies on accurate predictions of key climate variations such as El Niño-Southern Oscillation (ENSO),

but the skill of ENSO predictions has recently plateaued or even degraded. Here we analyze the North American Multi-Model

Ensemble (NMME) and estimate how the seasonal prediction of ENSO may benefit from reducing initial prediction errors. An

analysis of predictable signals and system noises identifies a high-predictability regime and a low-predictability regime. The

latter corresponds to the spring predictability barrier and is related to a rapid drop in the signal-to-noise ratio, which is caused

by the comparably strong dampening of predictable signals. Reducing first-month prediction errors (FPEs) will likely reduce

root-mean-square errors of the ENSO prediction. As a conservative estimate, halving the FPEs may extend the NMME’s skill by

one to two months. Importantly, this study identifies the regions where reducing FPE is the most effective. Unlike the predictions

initialized after the boreal spring, the March-initialized predictions of the wintertime ENSO will likely benefit the most from

FPE reductions in the tropical Northwest Pacific. An opportunistic thought experiment suggests the buoy observation changes

during 1995–2020 may have contributed to FPEs associated with large cold biases (>1K) in some El Niño-year predictions.

While data availability prevented in-depth analyses of physical processes, the findings suggest that prioritizing modeling and

observation in certain regions can improve climate predictions cost-effectively. The analytical framework here is applicable to

other climate processes, thus holding wide potential for benefiting climate predictions.
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Key Points 18 

• The ratio of predictable signals and system noise explains the spring predictability 19 

barrier of ENSO and reveals biases in climate models.  20 

• Reducing initial prediction errors will likely extend the ENSO prediction skill of a 21 

multi-model ensemble system by at least 1-2 months. 22 

• Observations in the tropical Northwest Pacific may mitigate the predictability barrier 23 

and reduce prediction errors cost-effectively.  24 



Abstract 25 

 26 

Climate risk management relies on accurate predictions of key climate variations such as El 27 

Niño-Southern Oscillation (ENSO), but the skill of ENSO predictions has recently plateaued or 28 

even degraded. Here we analyze the North American Multi-Model Ensemble (NMME) and 29 

estimate how the seasonal prediction of ENSO may benefit from reducing initial prediction 30 

errors. An analysis of predictable signals and system noises identifies a high-predictability 31 

regime and a low-predictability regime. The latter corresponds to the spring predictability barrier 32 

and is related to a rapid drop in the signal-to-noise ratio, which is caused by the comparably 33 

strong dampening of predictable signals. Reducing first-month prediction errors (FPEs) will 34 

likely reduce root-mean-square errors of the ENSO prediction. As a conservative estimate, 35 

halving the FPEs may extend the NMME’s skill by one to two months. Importantly, this study 36 

identifies the regions where reducing FPE is the most effective. Unlike the predictions initialized 37 

after the boreal spring, the March-initialized predictions of the wintertime ENSO will likely 38 

benefit the most from FPE reductions in the tropical Northwest Pacific. An opportunistic thought 39 

experiment suggests the buoy observation changes during 1995–2020 may have contributed to 40 

FPEs associated with large cold biases (>1K) in some El Niño-year predictions. While data 41 

availability prevented in-depth analyses of physical processes, the findings suggest that 42 

prioritizing modeling and observation in certain regions can improve climate predictions cost-43 

effectively. The analytical framework here is applicable to other climate processes, thus holding 44 

wide potential for benefiting climate predictions. 45 

 46 

  47 



Plain Language Summary 48 

To manage climate risks effectively, accurate predictions of events like El Niño-Southern 49 

Oscillation (ENSO) are crucial. However, ENSO predictions have plateaued or worsened 50 

recently. Our study examined a collection of climate models called the North American Multi-51 

Model Ensemble to find ways to improve seasonal ENSO predictions. Our analysis explores why 52 

the predictions are less skillful when they are made in the springtime of the northern hemisphere. 53 

The low skill is attributed to the relatively high sensitivity of the climate system to small 54 

perturbations in the input that help start model simulations (“butterfly effect”). The small 55 

perturbations can be reduced via science investments such as strengthening the observation of 56 

oceanic conditions. Following Dr. Edward Lorenz and others, we estimate such reductions may 57 

extend skillful ENSO predictions by at least 1-2 months. Crucially, our research pinpoints the 58 

specific regions where better observations may be particularly effective in reducing ENSO 59 

prediction errors. One of the regions is the Pacific waters near Guam, where budget-related 60 

changes in our observation capability allow a simple test of our idea. Despite some limitations, 61 

our findings suggest that modeling and observation improvements in particular regions could 62 

enhance climate predictions and benefit society in a cost-effective manner.  63 

 64 

Keywords 65 

Predictability, Climate, El Niño-Southern Oscillation, Ensemble Prediction, Signal-to-noise 66 

Ratio, Observation  67 



1. Introduction 68 

Thanks to continuous improvements in global climate models (GCMs) and observational 69 

networks, skillful predictions of climate anomalies on the seasonal to interannual scales have 70 

become increasingly accessible (e.g., Palmer & Anderson, 1994; Stern & Miyakoda, 1995; 71 

Shukla, 1998; Becker et al., 2022). Besides delivering predictions on their own, GCM 72 

simulations also helped machine learning and other methods push the envelope of predicting 73 

climate extremes (e.g., Murakami et al., 2016) and anomalies (e.g., Ham et al., 2019). Over the 74 

recent two decades, climate predictions have delivered significant societal benefits (Palmer et al., 75 

2005; Becker et al., 2022) while co-benefiting the projection of anthropogenic climate change 76 

(e.g., Jain et al., 2023). As the need for climate risk management increases, improving 77 

predictions of societally important climate variations warrants continuous commitment. Yet 78 

surprisingly, the recent progress in theoretical understanding and model development has not led 79 

to skill gains in predicting the El Niño–Southern Oscillation (ENSO) (Chen & Cane, 2008; 80 

Barnston et al., 2012; Becker et al., 2020).  81 

The skillfulness of modern climate predictions partly arises from the multi-model ensemble 82 

configuration. These ensembles often deliver superior skills in comparison to individual models 83 

(e.g., Doblas-Reyes et al., 2000; Palmer et al., 2004; Hagedorn et al., 2005; Weisheimer et al., 84 

2009; Kirtman et al., 2014). Bundling multiple models affords an opportunity for diverse model 85 

representations of physical processes to mitigate the biases of individual models (Hagedorn et 86 

al., 2005). Such bundling also increases the ensemble size and helps sample the probability 87 

space, ultimately making predictions more reliable (e.g., Hagedorn et al., 2005; Tompkins et al., 88 

2017). These findings motivated the implementation of operational multi-model prediction 89 

systems, including the European multi-model systems (Palmer et al., 2004; Weisheimer et al., 90 



2009; Buontempo et al., 2022) and the North American Multi-Model Ensemble (NMME) 91 

(Kirtman et al., 2014; Becker et al., 2022). As summarized by Becker et al. (2022), numerous 92 

studies also explored how to post-process multi-model ensemble predictions to achieve better 93 

skill. Despite encouraging progress elsewhere, the skill of multi-model ensembles (at least the 94 

NMME) in the ENSO prediction has plateaued or even degraded in the past decade (Barnston et 95 

al., 2012; Becker et al., 2020).  96 

On the seasonal to interannual scales, many societally valuable climate predictions are initial-97 

value problems of predicting slowly varying climate processes (Palmer & Anderson, 1994). As 98 

suggested by the development of the weather forecasting (Lorenz, 1982; Bauer et al., 2015), an 99 

effective way to improve the skill of initial-value predictions is through high-quality initial 100 

conditions (ICs). Better ICs reduce initial prediction errors (IPEs) (Lorenz, 1982) and can be 101 

attained via improvements in observational networks, data assimilation, and model initialization. 102 

Nonetheless, implementing this strategy for climate predictions has proven more difficult. While 103 

weather forecasts are supported by atmospheric ICs from a vast network of observations (e.g., 104 

remote sensing), climate predictions heavily rely on oceanic ICs from sparse in-situ observations, 105 

especially in cloudy regions or beneath the ocean surface. Maintaining networks of in-situ 106 

oceanic observations can be challenging. For example, the in-situ buoy observations of the 107 

Tropical Pacific Observation System experienced a crisis and a subsequent decline in the 2010s 108 

(Ando et al., 2017; Fujii et al., 2015). Meanwhile, proper data assimilation and model 109 

initialization are complex and computationally intensive for the coupled climate system (Palmer 110 

& Zanna, 2013). The development of relevant model components often requires substantial effort 111 

(e.g., Goddard et al., 2001; Zhang et al., 2007; Lu et al., 2020) but does not always lead to skill 112 

gains (e.g., Chen & Cane, 2008). To effectively allocate resources, it is conducive to establish a 113 



priori knowledge about the potential skill gains from research activities, such as the 114 

circumstances where climate predictions may benefit from additional oceanic observations.  115 

Motivated by these practical needs, this study explores the sensitivity of seasonal climate 116 

prediction to IPEs with a focus on the ENSO. Because of its global impacts, the ENSO has long 117 

been at the center of climate research and service (Latif et al., 1998; McPhaden et al., 2006). 118 

While modern models can deliver skillful predictions, the predictions initialized around the 119 

boreal spring often show lower prediction skills (Latif et al., 1994; Barnston et al., 2019; Tippett 120 

et al., 2019). Known as the spring predictability barrier, this low-skill regime received persistent 121 

research interest. Zebiak and Cane (1987) and Battisti (1988) first linked the predictability 122 

barrier to the weak instability growth rate of the equatorial Pacific during the springtime and 123 

argued that it reduces the memory of the coupled climate system. Using a conceptual recharge 124 

oscillator model, Levine and McPhaden (2015) showed that the annual cycle in the ENSO 125 

growth rate contributes to a spring predictability barrier. Other low-dimensional models also 126 

provided valuable insights into the ENSO predictability and its barrier (e.g., Newman & 127 

Sardeshmukh, 2017; Liu et al., 2019; Tippett & L’Heureux, 2020).  128 

Another line of the spring predictability barrier research developed around error growth and 129 

stochastic forcings. Webster and Yang (1992) hypothesized that the predictability barrier is 130 

related to the faster springtime error growth in coupled forecasts and the interference from the 131 

Asian summer monsoon. Torrence and Webster (1998) suggested that the springtime climate 132 

system has a low signal-to-noise ratio (SNR) and is thus most susceptible to perturbations. The 133 

hypotheses were partly supported by GCM experiments. For example, Larson and Kirtman 134 

(2015) showed that the IPE growth is the largest in boreal spring, though the error growth rate in 135 

boreal summer appears comparable. Additionally, March was identified as a window of 136 



opportunity for stochastic perturbations of zonal wind to impose a long-lasting impact on the 137 

eastern Pacific (Larson & Kirtman, 2017). Intriguingly, the spring predictability barrier is less 138 

evident in models that emphasize the initialization procedure, have lower levels of system noise 139 

(Chen et al., 1995, 2004), or parameterize state-dependent atmospheric perturbations (Lopez & 140 

Kirtman, 2014). 141 

To the best of our knowledge, recent climate studies paid little attention to the sensitivity of 142 

multi-model ensemble predictions to IPEs. Inspired by findings analyzing a prediction system 143 

that contributes to the NMME (G. Zhang et al., 2021), we posit that multi-model ensembles may 144 

offer insights into how reducing IPEs may improve predictions of climate anomalies such as the 145 

ENSO. Compared to a single-GCM study, multi-model ensembles—given their high prediction 146 

skills and large ensemble size—likely represent the climate system more reliably. This helps 147 

increase confidence in using the “perfect model” assumption (Lorenz, 1982) and generalizing 148 

conclusions from predictability analyses. Additionally, GCMs are often bounded by priori that 149 

differ from those in low-dimensional ENSO models. Therefore, multi-model ensembles may 150 

help validate past studies as independent sources or reveal novel findings.  Accordingly, we 151 

address three research questions revolving around the ENSO prediction: 152 

1. How may multi-model ensembles help understand the ENSO predictability, 153 

especially its spring barrier? 154 

2. To what extent may reducing IPEs improve the skills of ENSO prediction? 155 

3. What are the key oceanic observations that may drive such improvements?  156 

Answering these questions will likely help with future development in climate predictions, 157 

especially when paired with strategies and tools that have been proven effective in improving 158 

weather forecasting. 159 



 160 

2. Data and Methods 161 

2.1 Prediction Data and Pre-processing 162 

To study the spring barrier for predicting the wintertime ENSO, we look for multi-model 163 

ensembles that include predictions initialized in February–April and have a forecast lead of at 164 

least nine months. Additionally, we prioritize predictions with hindcasts for 1981–2010 over 165 

1991–2020. The purpose is to account for more models (as in 2023), maximize the ensemble 166 

size, and bolster analyses related to the signal-to-noise ratio (SNR). These constraints exclude 167 

the European multi-model ensemble and several models in the NMME. The seasonal prediction 168 

systems used here are NCEP-CFSv2, NCAR-CESM1, GFDL-FLOR, COLA-RSMAS-CCSM4, 169 

and CanCM4i archived by IRI/LDEO 170 

(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). The ensemble size of this group is 171 

seventy-eight, much larger than that of any individual prediction system.  172 

These five prediction systems use various ICs, with the exception that the NCEP-CFSv2 and 173 

COLA-RSMAS-CCSM4 share the ICs from the same reanalysis system. The NMME models use 174 

data assimilation procedures to various degrees, and simulations forced by boundary forcings are 175 

often used to generate ICs of certain model components (e.g., atmosphere). The sometimes ad-176 

hoc approaches, together with the limited access to the actual IC data, made it challenging to 177 

directly analyze the impacts of ICs. Accordingly, we follow the approach of Lorenz (1982) and 178 

instead emphasize IPEs. These errors are closely associated with imperfections in the model 179 

initialization, including the observation uncertainty, data assimilation, and shocks in the spin-up 180 

of coupled GCMs. Interested readers can find more about the model initialization and other 181 

details in the references in Table 1. 182 



This study focuses on analyzing the sea surface temperature (SST) since most of the public 183 

NMME data has only monthly aggregations of limited surface variables. This issue makes it 184 

challenging to conduct in-depth analyses of physical processes involving the subsurface ocean or 185 

high-frequency atmospheric perturbations. Due to model drifts, all the prediction systems of the 186 

NMME have their own model climatology that also depends on the initialization time. To 187 

calculate the SST anomalies, we remove the 30-year hindcast climatology independently for 188 

each model and each initialization time. The validation of SST predictions uses the monthly 189 

Optimum Interpolation SST (OISST) dataset (Reynolds et al., 2002). For brevity, the discussion 190 

of the ENSO prediction will be framed around the Niño 3.4 index, which is the area mean of SST 191 

anomalies in the equatorial Pacific (5°N-5°S, 170°W-120°W).  192 

 193 

2.2 Predictability Analysis 194 

Following the common practice of predictability analyses (e.g., Lorenz, 1982), we adopt the 195 

perfect model assumption. Specifically, we assume that the NMME ensembles realistically 196 

replicate the climate system and that the findings from studying the model systems are applicable 197 

to the real-world climate. While this assumption is likely reasonable given the NMME’s skill in 198 

predicting the ENSO, the discussion will actively consider alternative possibilities, model biases, 199 

and their implications. With the perfect model assumption and a large ensemble, we consider the 200 

ensemble mean as the predictable signal. Accordingly, the error growth in predictions can be 201 

estimated using the root-mean-square error (RMSE) around the ensemble mean. With additional 202 

assumptions about the error growth, we estimate the potential impacts of reducing first-month 203 

prediction errors (FPEs) on the skill of ENSO prediction.  204 



Our ENSO predictability analysis is also inspired by past SNR studies (e.g., Shukla, 1998; 205 

Torrence & Webster, 1998). To link the SNR to the skill metric, anomaly correlation coefficient 206 

(ACC), we follow Eade et al. (2014) and use a variation of SNR. Specifically, we define the 207 

strength of predictable signals as the temporal standard deviation of the ensemble mean (𝜎௦௜௚). 208 

Similarly, the temporal standard deviations of individual ensemble members can be calculated. 209 

Their average is considered as an indicator of the total variability of the noisy model system 210 (𝜎௧௢௧). The 𝜎௦௜௚/𝜎௧௢௧ is closely associated with the SNR and defined as the predictable 211 

component in the model hindcasts (PC) (Eade et al., 2014). For a perfectly reliable prediction 212 

system, its PC value is expected to be comparable to the ACC of the ensemble mean and the 213 

observation. Otherwise, 𝐴𝐶𝐶/𝑃𝐶 < 1 indicates an overconfident, under-dispersive prediction 214 

system, whereas 𝐴𝐶𝐶/𝑃𝐶 > 1 indicates an underconfident, over-dispersive prediction system.  215 

To map the sensitivity of ENSO predictions to FPEs, we use the ensemble sensitivity 216 

analysis (Ancell & Hakim, 2007; Hakim & Torn, 2008; Torn & Hakim, 2008). The ensemble 217 

sensitivity is formally defined as the linear regression between a forecast response function and 218 

the ICs (Ancell & Hakim, 2007). Mathematically, the ensemble sensitivity is closely linked to 219 

the ensemble transform Kalman filter and the adjoint sensitivity analysis, yet the calculation is 220 

more straightforward and computationally inexpensive (Ancell & Hakim, 2007). Another 221 

advantage of this ensemble sensitivity analysis is its compatibility with statistical significance 222 

tests, which help deal with sampling errors. This technique was first developed to explore the 223 

relationship between the IC state variables and a 24-hour forecast of an extratropical cyclone and 224 

has later found wide applications in atmospheric predictability problems (see Ancell & Coleman, 225 

2022 and references therein). But to the best of our knowledge, this technique has not been 226 

applied to climate predictions. Following Torn and Hakim (2008) and other studies, we will use 227 



the ensemble sensitivity analysis to evaluate the error growth and estimate the impact of missing 228 

observations in an opportunistic thought experiment (more details in Section 3.3). 229 

 230 

3. Results 231 

3.1 Predictability Analysis 232 

We first examine the ACC (Figure 1a) and the PC (Figure 1b) of the predictions initialized 233 

between February and August. Based on the evolution of ACC and PC, the predictions can be 234 

categorized into two regimes: (I) initial ACC and PC values are relatively high but drop rapidly, 235 

which correspond to the predictions initialized in February-April, and (II) initial values are 236 

relatively low but decrease slowly, which correspond to the predictions initialized in June-237 

August. With few exceptions, the ACC skill of the NMME is lower than the PC, suggesting the 238 

NMME is generally underconfident and over-dispersive. In other words, the error growth in the 239 

simulated ENSO may be faster than in the real world. Meanwhile, the rapid decay of PC in the 240 

springtime is consistent with the concurrent ACC drop. Therefore, the results from modern 241 

GCMs and simple statistical models (Torrence and Webster 1998) are qualitatively consistent, 242 

suggesting that the relatively low SNR in the springtime contributes to the ENSO predictability 243 

barrier.  244 

To better understand the spring predictability barrier in GCMs, we analyze the 𝜎௦௜௚ and 𝜎௧௢௧ 245 

components of the PC. Figure 1c-d shows that Niño 3.4 anomalies decay rapidly in the 246 

springtime before growing in the summertime, consistent with the annual cycle of the ENSO. For 247 

predictions initialized in the springtime (Regime I), the annual cycle dampens SST anomalies 248 

immediately after model initialization.  The dampening of predictable signals is relatively fast 249 

and persistent, contributing to the rapid PC drop. Taking the February-initialized prediction as an 250 



example, the signal strength decreases by about 0.8K (80%) over four months, while the total 251 

variability decreases by about 0.6 K (60%). This preferred dampening of predictable signals 252 

contributes to a rapid loss of predictability in the springtime. In comparison, the signal and noise 253 

components experience strong growth in the predictions initialized in the summertime (Regime 254 

II), with the signal dominating the overall variability till the seasonal peak of ENSO. These 255 

characteristics are consistent with the persistence of high prediction skills. Overall, the season-256 

dependent evolution of the PC is consistent with the predictability barrier studies that emphasize 257 

the annual cycle of ENSO growth (Zebiak & Cane, 1987; Battisti, 1988; Levine & McPhaden, 258 

2015; Liu et al., 2019). 259 

Figure 1c-d also suggest intriguing inconsistencies of the model systems initialized in the 260 

boreal spring and summer. A close inspection of Figure 1c suggests the timing of the dampening-261 

growth transition depends on the initialization month. Specifically, this transition occurs in June 262 

for the predictions initialized in February-April, but the May-initialized prediction suggests the 263 

transition occurs in May or even earlier. After this transition, the growth rate of Niño 3.4 264 

anomalies in identical calendar months also shows a spurious dependence on the initialization 265 

month (Figure 1c). For example, the summer-initialized predictions suggest the signal growth 266 

during July-December is about 0.16 K month-1. The value is notably higher than the July-267 

December growth rate (0.12 K month-1) indicated by the spring-initialized predictions. For a 268 

system that faithfully simulates the real-world system, such differences should be minimal and 269 

show little dependence on the initialization time. These inconsistent growth rates suggest GCM 270 

biases in simulating the stochastic forcing and signal growth of the ENSO system.  Such biases 271 

likely interfere with the spring predictability barrier manifested in the NMME predictions, as 272 



predictability barriers are sensitive to the dampening-growth transition (Liu et al., 2019) and the 273 

signal growth rate (Levine & McPhaden, 2015; Liu et al., 2019).  274 

Interestingly, some characteristics of NMME differ greatly from individual contributing 275 

models. While the NMME is generally over-dispersive and underconfident in the ENSO 276 

predictions, its members such as GFDL-FLOR and NCEP-CFSv2 are under-dispersive and 277 

overconfident (Figures S1 and S2). The two models also show large differences in the growth 278 

rate of predictable signals and system noises. While such differences are interesting, we will 279 

refrain from an extensive discussion of individual models. Overall, the ENSO prediction by 280 

individual models has room for improvement and will likely benefit from a well-calibrated 281 

representation of the signal growth and system noise.  282 

We next follow Lorenz (1982) and turn to the IPEs to estimate the predictability limit. For 283 

brevity, we focus on the error growth in the March-initialized and July-initialized predictions 284 

(Figure 2). In the March-initialized prediction, the first-month RMSE is about 0.2 K, or ~0.1 K 285 

(30%) smaller than that in the July-initialized prediction. Nonetheless, the error growth rates in 286 

these predictions are comparable (0.08 K month-1) afterward. The comparable growth rates in the 287 

springtime and the summertime are consistent with the COLA-RSMAS model (Larson and 288 

Kirtman 2015). This finding may appear to contrast the faster-error-growth hypothesis by 289 

Webster and Yang (1992), but the conclusion would depend on the choice of error growth 290 

metric. The error growth—if measured with the error doubling time—would be relatively fast for 291 

the spring-initialized predictions since they have smaller initial RMSE. Toward the end of the 292 

forecast range, the error growth shows signs of slow-down and saturation. Due to the relatively 293 

large uncertainty in estimating RMSE (Figure 2), it is not apparent whether the error growth 294 



needs to be fitted with the two-parameter empirical model by Lorenz (1982). For simplicity, we 295 

characterize the error growth with linear regressions instead. 296 

As shown by Lorenz (1982) and ensuing studies (e.g., Simmons et al., 1995), an error growth 297 

model helps estimate the impact of reducing IPEs on the forecasts afterward. Here we assume the 298 

method is applicable to seasonal climate prediction and estimate the potential error reduction (or 299 

skill gain) in predicting the wintertime ENSO. We consider two scenarios of error reduction: 300 

50% for an optimistic but technically plausible estimate, and 90% for an estimate of 301 

predictability bounds. In Figure 2, reducing the magnitude of first-month errors is equivalent to 302 

shifting the regression lines. The results suggest that halving errors may extend the skills of 303 

March-initialized predictions by one month or July-initialized predictions by two months. If the 304 

first-month errors decrease by 90%, the prediction skills may extend by two months and four 305 

months, respectively. While the potential skill gains with halving first-month errors may appear 306 

small, they are likely meaningful given that the improvement of seasonal ENSO predictions may 307 

have stalled or backtracked (Chen & Cane, 2008; Barnston et al., 2012; Becker et al., 2020). We 308 

speculate that such skill gains are potentially larger as the slope of error growth may be 309 

unrealistically large for the over-dispersive NMME (𝐴𝐶𝐶/𝑃𝐶 > 1; Figure 1a-b).  Analysis of 310 

individual models indeed suggests the estimate of error growth rate has some uncertainty 311 

(Figures S3 and S4) and could be smaller than values indicated by Figure 2. 312 

 313 

3.2 Ensemble Sensitivity Analysis 314 

In practice, IPEs may be reduced with better observations, data assimilation, and model 315 

initialization. These error sources in principle can be disentangled with well-designed forecast 316 

experiments and the ensemble sensitivity analysis (e.g., Torn & Hakim, 2008). Due to data 317 



limitations, this study examines the SST only and traces error sources back to the first-month 318 

prediction. We analyzed predictions initialized in the springtime and the summertime (Figures 3, 319 

S5, and S6). The results suggest that the ENSO prediction errors generally originate from the 320 

equatorial Pacific, but the March-initialized prediction shows a distinct pattern of error growth. 321 

Given its relevance to the spring predictability barrier, the ensuing discussion will focus on the 322 

March-initialized prediction. 323 

To highlight the most robust relationship, we first evaluate the relationship between 324 

December Niño 3.4 and the SST predictions in earlier months (Figure 3). Looking backward, the 325 

errors in predicting December Niño 3.4 can be traced back to a pattern resembling the ENSO 326 

pattern during the summertime (Figures 3d-f). This pattern also appears in the predictions 327 

initialized during the summertime and later months (Figures S5 and S6). The results suggest the 328 

error growth during the summertime primarily arises from the ENSO process itself. However, 329 

the sensitivity patterns in the springtime (Figure 3a-c) differ and show associations with off-330 

equatorial regions. For example, the sensitivity pattern in April suggests that high Niño 3.4 331 

values in December are associated with warmth in the off-equatorial regions of the tropical 332 

Central and Eastern Pacific. During March and April, the North Pacific pattern resembles the 333 

North Pacific meridional mode (Chiang & Vimont, 2004), which can lead to El Niño 334 

development in the observation (Chang et al., 2007) and GCMs (Larson & Kirtman, 2014; L. 335 

Zhang et al., 2009). The South Pacific pattern manifests in the tropics and thus differs from the 336 

South Pacific meridional mode (H. Zhang et al., 2014) 337 

It is intriguing to compare the sensitivity patterns and the modern understanding of ENSO 338 

development. On one hand, the ensemble sensitivity analysis identifies plausible error sources 339 

that may feed into the ENSO growth (e.g., equatorial development and extratropical precursors). 340 



Without a priori about the growth mechanisms, such consistency is encouraging for the 341 

application of the ensemble sensitivity analysis. On the other hand, the sensitivity patterns 342 

suggest additional regions of error sources, such as the West Pacific and the South Pacific in 343 

March. The differences from meridional modes could arise from possible biases of the NMME 344 

models in simulating the meridional modes. Yet an alternative explanation is possible: the key 345 

regions for error growth do not necessarily have to be regions with the maximum SST variance 346 

(i.e., meridional modes). If one holds the perfect model assumption, the additional high-347 

sensitivity regions in GCM simulations could instead indicate a new opportunity to help models 348 

mitigate the spring predictability barrier. 349 

 350 

3.3 Impacts of First-Month Prediction Error 351 

Focusing on the March-initialized prediction by the NMME, we hypothesize that the ENSO 352 

prediction in some high-sensitivity years may benefit from reducing first-month prediction errors 353 

(FPEs). Figure 4a shows the regression of December Niño 3.4 predictions onto the March SST 354 

predictions. The regression coefficients indicate the sensitivity of December predictions to the 355 

FPEs in March. The coefficients are evaluated for individual years separately and averaged over 356 

1982-2010. Despite large year-to-year variations (not shown), the greatest regression coefficients 357 

tend to appear in the tropical Northwest Pacific and the Southeast Pacific (Figure 4a). While the 358 

average regression coefficients are about one, values in individual years can reach four or higher 359 

(not shown). Noting that the uncertainty among SST observational datasets often exceeds 0.1 K 360 

(Yang et al., 2021), first-month prediction errors caused by March observational biases could be 361 

associated with a non-trivial error (≥0.4K) in predicting the December Niño 3.4.  362 



What could contribute to FPEs and their changes in practice? We conduct an opportunistic 363 

thought experiment about increasing IC errors in the high-sensitivity regions. For the tropical 364 

Northwest Pacific, a main source of oceanic observation data is the Triangle Trans‐Ocean Buoy 365 

Network (TRITON) (Ando et al., 2017; black dots in Figure 4a). The TRITON array was 366 

deployed in 1998 and gradually expanded in later years. But starting in the early 2010s, the off-367 

equator buoys were decommissioned. Fujii et al. (2015) showed that the loss of buoy data is 368 

impactful on local SST errors in several ocean data assimilation systems. For the GFDL 369 

assimilation system, the RMSE against the observed SST in the tropical Northwest Pacific may 370 

increase by >0.8 K (see their Figure 10).  371 

Consistent with Fujii et al. (2015), Figure 4b suggests the absence of TRITON data may 372 

contribute to a cold bias in March SST predictions. We define the bais as the difference between 373 

predictions and observation (OISST). Coincident with the absence of TRITON data (pre-1998 374 

and post-2012), March-initialized GFDL-FLOR predictions show first-month cold biases of ~0.3 375 

K in the tropical Northwest Pacific (Figure 4b). Such biases are not apparent in other regions 376 

(e.g., the Southeast Pacific; Figure 4b), suggesting the cold biases are related to region-specific 377 

changes. Since the sensitivity regression coefficient can reach four (e.g., 2016) in the tropical 378 

Northwest Pacific, the initial cold biases may lead to a 1.2 K cold bias in the prediction of 379 

December Niño 3.4.  380 

Accordingly, we formulate a simple linear model to estimate the impacts of reducing the 381 

IPEs in the tropical Northwest Pacific (Figure 4c-d). The linear model can also serve as a bias 382 

correction, and its workflow is outlined in Figure 4d. When selecting the region of SST input, we 383 

examine the correlations between the March SST and December Niño 3.4 predictions. For 384 

March-initialized GFDL-FLOR, the Niño 3.4 prediction is more sensitive to the SST of the 385 



Northwest Pacific (Figure 4b). Focusing on this region, we define a correction term for 386 

predicting December Niño 3.4 as the product of the March SST biases and the sensitivity 387 

regression coefficients. The application of this correction is conditional: it is only activated when 388 

the ensemble sensitivity analysis suggests that March SST errors and December Niño 3.4 errors 389 

are correlated at the 90% confidence level.  390 

Figure 4c shows the conditionally corrected predictions and the original predictions. By 391 

replacing the predicted SST in the Northwest Pacific with the observation, the simple conditional 392 

correction reduces the mean average error (MAE) by 0.11 K (14%). The most substantial 393 

improvements exceed 1 K and appear in 1997, 1998, and 2016, when the TRITON observations 394 

were absent. While such bias corrections are not equivalent to reducing global FPEs (Figure 2), 395 

the results are consistent with the expectation that reducing IPEs helps improve the ENSO 396 

prediction. Meanwhile, the three years with the most substantial improvements are around 397 

extreme El Niño conditions. The underlying physical processes and whether the high sensitivity 398 

depends on a specific climate state warrant future study.  399 

 400 

4. Summary and Discussion 401 

This study was partly inspired by early pioneering research in predicting the Earth system 402 

(e.g., Lorenz 1982). To explore potential avenues to improve climate prediction, we analyze the 403 

NMME predictions and use the ENSO prediction as a testing ground. The analyses focus on the 404 

ENSO’s seasonal predictability and sensitivity to first-month prediction errors. The key findings 405 

are summarized as follows:  406 

• The predictions initialized in the springtime experience a rapid drop in the predictable 407 

component, consistent with the SNR interpretation of the spring predictability barrier 408 



(Torrence and Webster 1998). Furthermore, predictable signals in the equatorial 409 

Pacific SST are preferentially dampened relative to noises.  410 

• Contributors of the ENSO predictability barrier, such as the dampening-growth 411 

transition and the post-spring growth rate, are found to depend on the initialization 412 

time of the NMME models. These model biases may have interfered with the 413 

simulated spring predictability barrier and suggest inconsistency between the NMME 414 

and the real world. 415 

• Reducing IPEs will likely extend the skill of predicting the wintertime ENSO. 416 

Halving the errors may extend the prediction skills by one to two months. The 417 

practical limit of such skill gains may be up to four months. These estimates with the 418 

NMME could be conservative since the error growth might be too fast in this over-419 

dispersive model group.   420 

• Where reducing IPEs may be effective varies across seasons and years. For example, 421 

the March-initialized predictions will likely benefit from error reductions in the 422 

tropical Northwest Pacific rather than the equatorial Pacific or the off-equatorial East 423 

Pacific. The ensemble sensitivity analysis also suggests much higher sensitivity in 424 

some El Niño-year predictions (e.g., 1997, 1998, and 2016). 425 

• Using changes in the TRITON array as an opportunistic test, we found that reducing 426 

March SST prediction errors may reduce the MAE of December Niño 3.4 prediction 427 

by about 14%. For the GFDL-FLOR, the potential improvements may exceed 1 K in 428 

some high-sensitivity years. 429 

Admittedly, the seasonal prediction of the ENSO may have been near the predictability limit 430 

(Chen & Cane, 2008; Newman & Sardeshmukh, 2017), and the prediction skill is subject to 431 



impacts of the ENSO decadal variability (Balmaseda et al., 1995; Barnston et al., 2012; 432 

Weisheimer et al., 2022). Nonetheless, avenues toward better climate predictions are worth 433 

pursuing. Such effort is critical when climate risk management increasingly needs reliable 434 

predictions, and improving predictions in a cost-effective way is particularly valuable. Our 435 

predictability analysis suggests such improvements for the ENSO prediction are possible by 436 

reducing IPEs. Importantly, our ensemble sensitivity analysis highlighted the tropical Northwest 437 

Pacific as a region where better ICs may be particularly effective.  438 

The discussion of this study focuses on the NMME group instead of individual models. We 439 

caution that the conclusions about the NMME group should not be extended to individual models 440 

without scrutiny. For example, the NMME is over-dispersive in simulating the ENSO system, 441 

even though the contributing models suffer from overconfidence issues. As suggested by Figures 442 

S1-S4, the characteristics of the ENSO system (e.g., signal growth and system noise) simulated 443 

by individual models are highly diverse. To address the spring predictability barrier, future 444 

research should consider constraining the uncertainty of the related system parameters. We also 445 

caution that many NMME models show negative prediction skills in the tropical Pacific 446 

(Newman & Sardeshmukh, 2017), so model biases may also need to be addressed to fully 447 

materialize the benefits of reducing IPEs.   448 

Although the findings based on the ensemble sensitivity analysis are promising, a notable 449 

caveat of this study is the lack of independent verification by numeric experiments. While 450 

complex and expensive to implement, such experiments may eliminate ambiguities related to 451 

changes in models or their input, such as the 2011 change of the SST input for GFDL FLOR 452 

(Bushuk et al., 2019). By making additional variables available, numeric experiments can 453 

facilitate the analysis of physical processes (e.g., Bushuk et al., 2019). For the ENSO prediction, 454 



this will enable analysis of the subsurface ocean and atmosphere-ocean anomalies, which may be 455 

important sources of predictability (e.g., Li et al., 2023). One may also follow Fujii et al. (2015) 456 

or Torn and Hakim (2008) and quantify the impacts of observational errors using data 457 

assimilation systems. Together with the ensemble sensitivity analysis, these experiments may 458 

assist the management and improvements of the climate observation system.  459 

We hope our findings may motivate future improvements in climate prediction. The 460 

analytical framework used here has found success in improving weather forecasting and showed 461 

promises with the ENSO prediction. In principle, the framework is applicable to other climate 462 

variations or anomalies, including droughts, heatwaves, cyclone activity, and renewable energy 463 

resources. Systematic applications to societally important phenomena may help maximize the 464 

societal benefits of research and development. A well-coordinated effort might lead to a 465 

revolution like what the weather community has celebrated (Bauer et al., 2015) and bolster 466 

climate risk management. 467 
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Table 1 Summary of the Analyzed NMME Models  690 

Model Name NCEP-
CFSv2 

NCAR-
CESM1 

GFDL-
CM25-FLOR 

COLA-
RSMAS-
CCSM4 

CanCM4i 

Ensemble 
Size 24 10 24 10 10 

 Availability 
(IRI/LDEO)  1982-2010 1980-2010, 

2016-2017 1980-2020 1982-present 1981-2010, 
2016-present 

Reference Saha et al., 
(2014) 

Small et al., 
(2014) 

Vecchi et al., 
(2014) 

Infanti & 
Kirtman, 
(2016) 

Merryfield et 
al., (2013) 
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 693 

Figure 1 The skill and predictable component of the Niño 3.4 predictions by the NMME 694 

models initialized in February–August. (a) The anomaly correlation coefficient (unitless) 695 

between the multi-model means and the observation. (b) The predictable component 696 

(𝝈𝒔𝒊𝒈/𝝈𝒕𝒐𝒕; unitless) indicated by the NMME models. (c) The signal variability part (𝝈𝒔𝒊𝒈; 697 

unit: K) of the predictable component. (d) The total variability part (𝝈𝒕𝒐𝒕; unit: K) of the 698 

predictable component. All the examined predictions are grouped based on the 699 

initialization time during 1982-2010. For each group, we evaluate ten monthly steps of 700 

predictions, with the first step corresponding to the month when the predictions are 701 

initialized. The horizontal axis indicates the valid time of monthly predictions. 702 

 703 



 704 

Figure 2 Error growth in the December Niño 3.4 predictions by the NMME models 705 

initialized in March and July. Blue solid lines show the RMSE around the NMME 706 

ensemble mean. Error bars indicate the ±𝟏 standard deviation range of the RMSE in 707 

individual years between 1982 and 2010. Black dashed lines show the linear regressions of 708 

error growth. The dotted lines show the potential error growth if first-month prediction 709 

errors can be reduced by 50% and 90%. The horizontal axis shows the prediction lead 710 

time. Following the convention of the data source, the prediction lead time is denoted with 711 

the middle point of monthly mean windows. For example, a 0.5-month lead corresponds to 712 

the first-month prediction immediately after model initialization.    713 
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 715 

Figure 3 The correlation between the ensemble spreads of the predicted December Niño 3.4 716 

and the SST at the earlier steps. The analyzed NMME predictions are initialized in March 717 

1982-2010. The correlation coefficients are calculated for each individual year and then 718 

averaged to highlight the regions with the most robust relationship. We evaluated the 719 

statistical significance of correlation coefficients for each year, and the regions where 95% 720 

confidence level correlations appear in at least 9 years are denoted with the stippling. 721 

Subplots (a)-(f) show prediction steps of Months 0.5 to 5.5, which correspond to the 722 

monthly means valid from March to August. 723 



 724 

Figure 4 The ensemble sensitivity analysis and the estimated impacts of reducing model 725 

biases. The input data are the March SST predictions and the December Niño 3.4 726 

predictions by (a) the NMME models and (b-c) the GFDL-FLOR initialized in March. (a) 727 

Regression coefficients of the December Niño 3.4 predictions onto the March SST 728 

predictions. The dots indicate the location of the buoy observations by the TRITON (black) 729 

and the Tropical Atmosphere Ocean (TAO; blue) projects. The black dash lines highlight 730 

two high-sensitivity regions, the tropical Northwest Pacific (0-18ºN, 130ºE-160ºW) and the 731 

tropical Southeast Pacific (5ºS-20ºS, 90ºW-140ºW). (b) The prediction biases of the March 732 

SST averaged in the tropical Northwest and Southeast Pacific. The line legends indicate the 733 

correlation coefficients between the March SST averages and the December Niño 3.4 734 

predictions. (c) The raw prediction and the corrected prediction of December Niño 3.4. The 735 

line legends show the mean absolute errors evaluated against the observation. (d) The 736 

workflow of generating the corrected prediction in (c). 737 
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