
P
os
te
d
on

13
S
ep

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
69
46
20
69
.9
08
54
45
7/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Fetch-limited, strongly forced wind waves in waters with frazil and

grease ice - spectral modelling and satellite observations in an

Antarctic coastal polynya

Agnieszka Herman1 and Katarzyna Bradtke2

1Polish Academy of Sciences
2University of Gdansk

September 13, 2023

Abstract

Sea ice-waves interactions have been widely studied in the marginal ice zone, at relatively low wind speeds and wave frequencies.

Here, we focus on very different conditions typical of coastal polynyas: extremely high wind speeds and locally-generated,

short, steep waves. We overview available parameterizations of relevant physical processes (nonlinear wave-wave interactions,

energy input by wind, whitecapping and ice-related dissipation) and discuss modifications necessary to adjust them to polynya

conditions. We use satellite-derived data and spectral modelling to analyze waves in ten polynya events in the Terra Nova Bay,

Antarctica. We estimate the wind-input reduction factor over ice in the wave-energy balance equation at 0.56. By calibrating

the model to satellite observations we show that exact treatment of quadruplet wave-wave interactions (as opposed to the

default Discrete Interaction Approximation) is necessary to fit the model to data, and that the power n>4 in the sea-ice source

term S ice˜fˆn (where f denotes wave frequency) is required to reproduce the observed very strong attenuation in spectral tail

in frazil streaks. We use a very-high resolution satellite image of a fragment of one of the polynyas to determine whitecap

fraction. We show that there are more than twofold differences in whitecap fraction over ice-free and ice-covered regions, and

that the model produces realistic whitecap fractions without any tuning of the whitecapping source term. Finally, we estimate

the polynya-area-integrated wind input, energy dissipation due to whitecapping, and whitecap fraction to be on average below

25%, 10% and 30%, respectively, of the corresponding open-water values.
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Key Points:7
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Abstract14

Sea ice–waves interactions have been widely studied in the marginal ice zone, at rela-15

tively low wind speeds and wave frequencies. Here, we focus on very different conditions16

typical of coastal polynyas: extremely high wind speeds and locally-generated, short, steep17

waves. We overview available parameterizations of relevant physical processes (nonlin-18

ear wave–wave interactions, energy input by wind, whitecapping and ice-related dissi-19

pation) and discuss modifications necessary to adjust them to polynya conditions. We20

use satellite-derived data and spectral modelling to analyze waves in ten polynya events21

in the Terra Nova Bay, Antarctica. We estimate the wind-input reduction factor over22

ice in the wave-energy balance equation at 0.56. By calibrating the model to satellite ob-23

servations we show that exact treatment of quadruplet wave–wave interactions (as op-24

posed to the default Discrete Interaction Approximation) is necessary to fit the model25

to data, and that the power n > 4 in the sea-ice source term Sice ∼ fn (where f de-26

notes wave frequency) is required to reproduce the observed very strong attenuation in27

spectral tail in frazil streaks. We use a very-high resolution satellite image of a fragment28

of one of the polynyas to determine whitecap fraction. We show that there are more than29

twofold differences in whitecap fraction over ice-free and ice-covered regions, and that30

the model produces realistic whitecap fractions without any tuning of the whitecapping31

source term. Finally, we estimate the polynya-area-integrated wind input, energy dis-32

sipation due to whitecapping, and whitecap fraction to be on average below 25%, 10%33

and 30%, respectively, of the corresponding open-water values.34

Plain Language Summary35

As ocean waves propagate through areas covered with sea ice, they both affect and36

are affected by the ice. Until recently, wave–ice interactions have been analyzed in the37

so-called marginal ice zone (MIZ), the external part of sea ice cover neighboring the open38

ocean. In this work, we study a largely unexplored case of wave–ice interactions that take39

place in Antarctic coastal polynyas at extremely high wind speeds (often exceeding 10040

kph) and low air temperatures (often below −20◦C). These waves are very different from41

those in the MIZ and therefore allow us to learn new aspects of the physics of wave growth42

and dissipation in sea ice. In our study we use numerical wave modeling and satellite data43

analysis, and seek optimal combinations of model settings to reproduce the observations.44

For example, we determine a scaling factor that describes how the energy input from wind45

is reduced over polynyas due to the presence of the ice. We also show that sea ice reduces46

wave breaking – and that the model is able to reproduce this effect. Taken together, our47

results contribute not only to a better understanding of polynya dynamics, but also to48

more reliable modeling of waves in sea ice in general.49

1 Introduction50

Interactions between sea ice and ocean surface waves have been in recent years ex-51

tensively studied theoretically, observationally and numerically (Squire, 2018, 2020; Liu52

et al., 2020; Shen, 2022, and references there). Significance of waves–ice interactions for53

short-term dynamics of sea ice and the upper ocean, and for longer-term evolution of sea54

ice cover in (sub)polar regions has been demonstrated in a number of studies (e.g., Roach55

et al., 2018, 2019; Boutin et al., 2020). The main focus of waves-in-ice research has been56

on attenuation of ocean waves in sea ice, caused by energy-conserving scattering and/or57

dissipation within and under the ice. Importantly, the evolution of wave energy spec-58

tra in sea ice is usually analyzed on a component-by-component basis, that is, attenu-59

ation coefficients are estimated from pairs of observed spectra at two different locations60

separately for individual frequency bins (e.g., Cheng et al., 2017; Stopa, Sutherland, &61

Ardhuin, 2018; Kohout et al., 2020; Alberello et al., 2022), disregarding energy exchange62

between spectral components that is crucial for evolution of ocean surface waves in open63
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water (e.g., Holthuijsen, 2007). These empirically determined apparent attenuation co-64

efficients are then implemented in spectral wave models (e.g., Collins & Rogers, 2017;65

Rogers, 2019). Not surprisingly, measurements made in different ice types (frazil, grease66

ice, pancakes, ice floes, etc.) and ice thickness lead to different estimations of those co-67

efficients (see Rogers, Meylan, & Kohout, 2018, for an overview). A more serious prob-68

lem with this approach is that the apparent attenuation represents not only sea-ice re-69

lated scattering and dissipation, but is a net effect of all processes involved, including70

wind-wave growth, dissipation unrelated to ice, and nonlinear wave–wave interactions.71

Arguably, disentangling sea ice effects from the net attenuation requires a combination72

of process-oriented observations and theoretical models capturing the underlying physics.73

In spite of some recent progress in this respect (see, e.g.., Voermans et al., 2019; Smith74

& Thomson, 2019a, 2019b; Herman, 2021), the goal of making the spectral wave mod-75

els in sea ice comparably versatile as they are in open water remains a big challenge.76

In attempts to achieve that goal it is important to collect data from a wide range77

of waves-in-ice conditions. At present, a serious limitation is the fact that our understand-78

ing of sea ice–waves interactions is based exclusively on data from and models of the marginal79

ice zone (MIZ; Dumont, 2022). The focus on the MIZ implies that our observations and80

modelling efforts are limited to a certain range of conditions typical for this environment.81

In particular, waves in the MIZ tend to have low u∗/c ratios (where u∗ denotes the fric-82

tion velocity of the wind at the sea surface, and c is wave phase speed; the ratio u∗/c83

is an inverse of the wave age). In the MIZ typically u∗/c ≪ 0.1 for wave frequencies84

at and close to the spectral peak. This means that these waves are weakly forced by wind85

(Janssen et al., 1989) and, consequently, have low steepness and do not break. As a re-86

sult, in the spectral energy balance the wind input and wave breaking terms are dom-87

inated by terms representing dissipation and scattering in sea ice. It is noteworthy that88

situations deviating from that picture (e.g., those with negative apparent attenuation89

indicating dominance of wave growth over dissipation) are often removed from the ob-90

servations prior to the analysis (e.g., Cheng et al., 2017).91

As a step towards broadening the picture and extending wave–ice interactions anal-92

yses to a wider range of conditions, we turn our attention towards a setting with features93

that in many ways are the opposite of the MIZ-typical conditions described above: coastal94

(or latent heat) polynyas during catabatic wind events (Morales Maqueda et al., 2004).95

Polynya openings are associated with very high wind speeds, often exceeding 30 m·s−1,96

and advection of very cold and dry continental air masses, resulting in offshore drift of97

the ice pack and extremely high ocean–atmosphere turbulent heat and moisture fluxes98

(up to 2000 W·m−2; Guest, 2021a, 2021b). All these factors combined lead to strong tur-99

bulence and convective, wind- and wave-induced mixing in the ocean mixed layer (OML;100

Herman et al., 2020), and to intense frazil ice formation (Thompson et al., 2020; Nakata101

et al., 2021). Crucially for this study, waves in coastal polynyas are young, fetch-limited,102

strongly forced (u∗/c > 0.1), and therefore short and steep, with a strong tendency to103

break. Over most of polynya area, energy input from the wind dominates over the net104

dissipation, so that the wave energy grows with offshore distance in spite of increasing105

ice concentration. Moreover, the sea surface in polynyas is a complex mosaic of open-106

water areas and patches of young (frazil, grease and shuga) ice forming characteristic elon-107

gated streaks (Eicken & Lange, 1989; Ciappa & Pietranera, 2013; Hollands & Dierking,108

2016; Thompson et al., 2020). The properties of those streaks in one of the most widely109

studied Antarctic coastal polynyas, the Terra Nova Bay Polynya (TNBP; Fig. 1), have110

been recently analyzed by Bradtke and Herman (2023). One of the findings of this pre-111

vious study was a significant slowdown of the observed wave growth in the analyzed polynya112

events in comparison to the expected open-water wave growth under given wind condi-113

tions, an effect that can be attributed only to wave–ice interactions. Inspired by this find-114

ing, in this work we conduct an extensive analysis of wave evolution in a series of TNBP115

events, based on the results from Bradtke and Herman (2023), an additional satellite data116

source providing information on wave breaking patterns, and spectral wave modelling.117

–3–
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The overall influence of frazil streaks on waves and, more generally, on the sea sur-118

face properties has been described in several earlier studies based on qualitative visual119

observations (e.g., Ciappa & Pietranera, 2013; Hollands & Dierking, 2016; Ackley et al.,120

2022). Rapid attenuation of short waves in streaks, attributable to a high bulk viscos-121

ity of grease ice, leads to a reduction of surface roughness (and thus wind friction veloc-122

ity u∗), decrease of the mean wave steepness, and weakening of wave breaking and white-123

cap generation (Ackley et al., 2022), thus reducing the sea spray generation and the spray-124

associated component of the ocean–atmosphere turbulent heat flux (Guest, 2021b). The125

question how to quantify and parameterize these effects and, crucially, how they influ-126

ence the spatial evolution of the polynya wave field – with feedbacks to sea ice thermo-127

dynamics and dynamics – remains to be answered. In this study, we make the first at-128

tempt at estimating the role of individual source terms in the wave-energy balance in129

shaping the polynya wave fields. We use the satellite-derived ice concentration and wave130

data from Bradtke and Herman (2023), combined with wind fields from a regional weather131

model, to set up and calibrate a spectral wave model of the TNBP, for ten polynya events132

from the period 2016–2021. We review the available formulations of the relevant source133

terms – wind input, deep-water dissipation, quadruplet wave–wave interactions, and at-134

tenuation in sea ice – and seek the combination of model settings that best reproduces135

observations. We also discuss the (numerous) uncertainties and limitations of the avail-136

able observations and models. In our analysis, we pay particular attention to the influ-137

ence of frazil streaks on wave breaking. To this end, we adopted an image filtering tech-138

nique for detection of breakers in very-high resolution (0.5 m) visible satellite images of139

the sea surface. We then compare the spatial variability of two different, but closely re-140

lated variables – the satellite-derived surface area fraction covered by breakers, and the141

simulated wave energy dissipation due to whitecapping – and estimate the reduction of142

the total (polynya-surface-integrated) energy dissipation due to the presence of sea ice.143

2 Data Sources and Processing144

2.1 Ice concentration, wave properties and wind data145

As mentioned in the introduction, this analysis is based on the data and results of146

Bradtke and Herman (2023). From the set of satellite images analyzed there, ten have147

been selected for the present study (Table 1, Supplementary Fig. S1), based on their suf-148

ficiently large spatial extent (given the images’ resolution of 10 m, no reliable wave in-149

formation can be obtained from nearshore areas and from relatively small polynyas due150

to too small wavelength-to-pixel-size ratios). The ten images were obtained with two satel-151

lite sensors: OLI (Operational Land Imager) and MSI (Multispectral Instument) on board152

Landsat-8 and Sentinel-2 satellites, respectively. All details related to image processing153

and analysis can be found in Bradtke and Herman (2023) and are not repeated here. The154

data used in this study include, for each polynya, maps of polynya extent, ice concen-155

tration A, and peak wavelength Lp (and the corresponding deep-water wave period Tp156

and frequency fp = T−1
p ). As discussed in Bradtke and Herman (2023), the peak wave-157

length, together with wave direction at the spectral peak (not considered here), are two158

spectral characteristics that can be robustly determined from visible satellite imagery.159

Indisputably, the lack of information on wave heights and the shape of the tails of the160

spectra is a serious limitation. However, as the analysis in the following sections will show,161

spatial variability of Tp alone provides valuable insight into the properties of the under-162

lying wave field and, crucially, constrains the possible combinations of the adjustable pa-163

rameters in spectral modelling, thus allowing inferences about individual physical pro-164

cesses at play.165

The results of the Antarctic Mesoscale Prediction System (AMPS; Powers et al.,166

2012, https://www.earthsystemgrid.org/project/amps.html) are used as a source167

of surface atmospheric data. Results from a nested subdomain (the so called Ross Island168

grid) are used, with resolution of 1.1 km in 2016 and 0.89 km in 2019–2021. For each169
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Figure 1. (a) Location of the TNBP and spatial distribution of sea ice on 19 Sep. 2019 on

the Sentinel-2 MSI RGB composite (Copernicus Sentinel data 2019); the outline of the polynya

and the location of the Manuela weather station on Inexpressible Island (I.I.) are marked with

the black polygon and red dot, respectively. The orange rectangle shows extent of the analyzed

subsets of WorldView-2 Panchromatic image (imagery© 2019 Maxar Technologies), fragments

of which are zoomed in panels (b) and (c). The dashed white line and white dots in (a) show the

location of the transect and points at which the results are analyzed in section 4.

Table 1. Summary of polynya events analyzed in this study

Date Time Sensor Ta,M Uw,M θw,M Sp Le Lc

(UTC) (◦C) (m·s−1) (degr) (km2) (km) (km)

2016-10-05 2120 MSI −22.5 24.1 260 1043 36.2 63.7
2016-10-06 2050 MSI −24.6 25.4 262 740 40.8 62.3
2016-10-17 2050 OLI −21.4 28.4 261 1110 33.8 46.7
2016-10-22 2110 MSI −22.3 21.3 259 975 28.3 46.8
2016-10-24 2100 OLI −17.4 28.7 257 1762 53.3 55.2
2019-09-19 2100 MSI −26.5 33.8 258 1920 56.3 50.0
2019-09-29 2110 OLI −23.4 32.4 250 1729 45.4 57.9
2020-10-19 2100 OLI −26.2 23.5 261 674 36.2 46.9
2020-10-26 2100 OLI −20.6 23.3 266 1648 39.5 65.7
2021-10-07 2130 MSI −23.2 28.1 272 736 35.5 52.2

Ta,M, Uw,M, θw,M – air temperature, wind speed and direction, respectively, at the Manuela

weather station; Sp – polynya surface area; Le and Lc – polynya extent in cross-shore

and along-shore direction, respectively.

–5–
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polynya, 9-hour forecasts from 12 UTC valid for 21 UTC were selected, i.e., the time clos-170

est to the acquisition time of the satellite scenes (Table 1). The 2-m AMPS wind vec-171

tors were recomputed onto the 10-m height with the algorithm based on the Monin–Obukhov172

similarity theory, as described in Guest (2021b). (Note that the measured wind data from173

the Manuela weather station in Table 1 are provided for informative purpose only; the174

wave modelling is based exclusively on the spatially-variable AMPS wind fields.)175

2.2 Wave breaking patterns176

The only additional source of satellite data used here, but not in Bradtke and Her-177

man (2023), is a very-high resolution panchromatic (PAN) satellite image taken by the178

WorldView-2 (WV2) satellite (imagery © 2019 Maxar Technologies) showing a fragment179

of the polynya from 19. Sep. 2019 (see Figs. 1 and 2 for a location and for zoomed frag-180

ments). The image was acquired at 21:22 UTC, i.e., 22 minutes after the correspond-181

ing MSI image, but considering the stable wind and air temperature forcing on that day182

it is reasonable to assume that the wave and sea ice conditions were very similar as well.183

We analyze a fragment of the scene taken by the satellite which covers an area of 18.3×5.5 km2.184

We use the standard LV2A product, without atmospheric correction, georeferenced and185

resampled to a grid of 0.5·m (the viewing geometry provides effective resolution of 0.53 m)186

in UTM zone 58S projection. Due to the small size of the analyzed area and cloudless187

sky, it can be assumed that the influence of the atmosphere on the image brightness is188

spatially homogeneous. During the satellite overpass the sea surface was illuminated by189

the Sun from a direction of 54.1◦ (azimuth angle) and an elevation angle of 7.7◦. With190

the predominant direction of wave propagation towards the east (see Supplementary Fig.191

S1), this geometry of illumination causes shadowing of the windward slopes of steep waves.192

This makes it easier to identify them on a satellite image. However, the limited avail-193

ability of light makes it impossible to analyze features occurring in shadowed areas of194

open water.195

As can be seen on the WV2 image (Fig. 2), whitecaps strongly contrast with darker196

water, even if the water reflectance is raised by frazil ice. The lighting conditions make197

also the very bright crests of steep waves clearly visible against the background of the198

frazil streaks. Therefore, in order to detect potential breakers in the analyzed image, we199

were looking for sharp contrast between neighboring pixels by applying a moving-window200

filter that calculates the sum of differences between a given pixel and the eight nearest201

pixels in the directions between 225◦ and 315◦ (SW to NW). Initially, the panchromatic202

image was de-noised with an edge-preserving filter. Pixels for which the calculated con-203

trast value was higher than the image average by more than 3 standard deviations (the204

same threshold for the whole image) were identified as sharply contrasted objects. To205

limit false alarms, only those objects that met the size criterion (more than 3 pixels con-206

nected by sides or corners) and contained bright pixels (the brightness threshold was de-207

termined by unsupervised ISODATA classification of the de-noised PAN image) were con-208

sidered as potential breakers (Fig. 2). In the next step, the surface area of pixels recog-209

nized as breakers was used to calculate whitecap fraction W within 200×200 m2 grid cells210

snapped to the grid of the wave model (see further section 3.3); and zonal fraction WX211

was calculated in vertical zones 200 m wide, oriented perpendicularly to the xUTM axis.212

Due to differences in spatial patterns of frazil streaks in the upper and lower parts of the213

PAN image, it was divided into 2 subsets (see Fig. 1b) and zonal statistics were calcu-214

lated for each of them separately. Finally, ice–water mask derived from WV2 data was215

used to calculate whitecap fraction WX separately for ice-free and ice-covered regions,216

respectively.217

Due to the lack of independent observations that could be used to validate our al-218

gorithm, its adjustable parameters have been selected in such a way that, first, the out-219

lines of detected breakers (Fig. 2) correspond as close as possible to a visual assessment220

by a human observer, and second, if any bias in the results is present, it is towards overde-221

–6–
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Figure 2. Zoomed fragments of WorldView-2 Panchromatic image (Imagery ©2019 Maxar

Technologies) showing variability in pixel brightness due to the presence of frazil ice, waves and

effects of their breaking. Outlines of detected breakers are marked in red.

tection in ice and underdetection in water rather than vice versa. Thus, in spite of un-222

avoidable uncertainties, the differences between ice-covered and ice-free regions can be223

treated as reliable and under- rather than overestimated.224

Image processing and visualization was performed with the Trimble eCognition De-225

veloper and ESRI ArcGIS Pro software.226

3 Spectral Wave Modeling227

3.1 Definitions and assumptions228

Let us consider a stationary wave field described by spatially variable wave energy229

spectra E(x, f, θ), where x is location in horizontal space, and f , θ are wave frequency230

and propagation direction, respectively. Let us further assume that the waves are forced231

by time-independent wind with 10-m speed u10(x) and direction θw(x), and that the wa-232

ter depth is large, so that refraction, bottom friction and other processes related to wave–233

–7–



manuscript submitted to JGR: Oceans

bottom interactions can be omitted. The wind-induced, tidal and other currents are omit-234

ted as well. Finally, let the sea ice concentration be described by A(x).235

Under these assumptions, the wave energy conservation equation (e.g., Holthuijsen,236

2007) reduces to:237

cg · ∇E = [1−A+ ainA]Sin + Sds + Snl +ASice, (1)

where cg = cg[cos θ, sin θ], cg = dσ/dk is the group velocity, and the angular frequency238

σ = 2πf and wave number k fulfill the deep-water dispersion relation σ2 = gk, with239

g gravitational acceleration. No changes of the dispersion relation due to the presence240

of frazil/grease ice are considered here – an assumption consistent with that of a low thick-241

ness and low Reynolds number of frazil/grease ice in streaks (e.g., Collins et al., 2017,242

note that observations and models of wave dispersion in frazil ice referred to in this and243

similar papers are limited to frazil/pancakes mixtures typical for freezing conditions in244

the MIZ – ice type that can be found in the outermost regions of polynyas, but not in245

their central parts of interest here). The source terms on the right-hand side of (1) de-246

scribe energy generation by wind Sin, deep-water dissipation Sds, quadruplet wave–wave247

interactions Snl, and attenuation by sea ice Sice. As can be seen in (1), Sice is scaled with248

ice concentration A. The coefficient ain ∈ [0, 1] allows for analogous scaling of Sin: the249

wind input is unaffected by ice if ain = 1 and it equals zero over ice if ain = 0. The250

two remaining source terms, Sds, Snl, are unaffected by the presence of the ice. Justi-251

fication for this treatment of source terms is provided below.252

3.2 Overview of source terms formulations253

In most spectral wave models (e.g., SWAN, WaveWatchIII, or WAM), several dif-254

ferent formulations of each source term in (1) are implemented. Their optimal choice de-255

pends on a particular application (domain size, water depth, expected u∗/c ratios, pres-256

ence of swell, etc.). Reviewing those formulations is out of the scope of this paper. In-257

stead, we concentrate here on selected parameterizations suitable for polynya conditions,258

with focus on those available in SWAN (Simulating WAves Nearshore; Booij et al., 1999),259

which is the model used in our simulations. Whenever several choices seem adequate,260

the more widely used ones (or, preferably, default) are selected.261

3.2.1 Snl262

Starting with the Snl term, it is important to recall that the nonlinear wave–wave263

interactions are inherently related to the dispersion relation of waves or, more precisely,264

to the existence of certain combinations of wavenumber vectors and wave frequencies among265

the components of the wave energy spectra (resonance conditions; see, e.g., Holthuijsen,266

2007). Therefore, as long as the assumptions made in section 3.1 hold (large water depth267

and validity of the open-water dispersion relation in frazil streaks), it is reasonable to268

assume that the quadruplet wave–wave interactions remain “active” and can be com-269

puted in the same way in ice-covered and ice-free areas (it should be noted, hoewever,270

that in different ice types different types of nonlinear interactions may occur, e.g. tri-271

ads in fields of large floes in which hydroelastic effects are significant, see, e.g., Deike et272

al., 2017).273

In SWAN and other spectral wave models, the DIA (discrete interaction approx-274

imation) by Hasselmann et al. (1985) is the default way of computing Snl. Out of the275

very large number of quadruplet combinations in a given energy spectrum, DIA consid-276

ers only two quadruplets for each spectral component (see SWAN Team, 2022, for de-277

tails of DIA and its implementation in SWAN). Without making premature references278

to our model setup and simulations, we remark here that in spite of many attempts, we279

were unable to calibrate SWAN to the data when using DIA: the simulated wave peri-280

ods were strongly biased in a way that could not be reduced by any reasonable combi-281

–8–
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nation of tunable coefficients. Replacing the DIA with the near-exact method (Van Vled-282

der, 2006) removed the problems, suggesting that a careful treatment of quadruplet in-283

teractions is crucial for reproducing wave growth in polynyas (and in similar settings)284

with spectral wave models. This finding is not surprising if one considers the crucial role285

of nonlinear wave–wave interactions in modifying waves propagating through oil spills.286

Although energy dissipation within the oil layer is limited to very short waves, with fre-287

quencies well over 1 Hz (with particularly strong attenuation in the range 3.5–6.8 Hz due288

to Marangoni resonance), transfer of energy from lower frequencies to that highly dis-289

sipative frequency range by quadruplets leads to a very effective dissipation mechanism,290

attenuating waves with frequencies as low as 0.7 Hz (Alpers & Hühnerfuss, 1989; Bene-291

tazzo et al., 2019). How relevant similar combinations of processes are for sea ice remains292

to be studied. Notably, the importance of nonlinear interactions (combined with wind293

input) in reproducing the observed apparent attenuation rates of high-amplitude waves294

in the MIZ under storm conditions has been shown by Li et al. (2015).295

3.2.2 Sin and Sds296

For Sin and Sds – the two source terms that are very closely related in spectral wave297

models (Holthuijsen, 2007) – the formulation of Van der Westhuijsen et al. (2007) is se-298

lected. It combines wind input of Yan (1987) with nonlinear saturation-based whitecap-299

ping based on Alves and Banner (2003) and dissipation due to non-breaking waves based300

on Komen et al. (1984). Contrary to earlier models of whitecapping, which computed301

breaking probability from spectral-mean wave steepness (Komen et al., 1984), the for-302

mulation of Alves and Banner (2003) and the modified version of Van der Westhuijsen303

et al. (2007) used in SWAN make use of the observed links between wave breaking and304

wave groups. Accordingly, the so-called spectral saturation B(k) – a measure of wave305

steepness – is computed from directionally-integrated spectrum Ē(f) ≡
∫ 2π

θ=0
E(f, θ)dθ306

within narrow frequency bands. Thus, dissipation is local in the wavenumber space. This307

is particularly relevant for the present case: it allows for breaking of short, steep, fast-308

growing waves in open-water patches between frazil streaks, even if the longer waves at309

the peak of the spectrum have milder slopes, so that the spectral-average wave steep-310

ness does not exceed the critical value. The older algorithms fail to reproduce this case311

of breaking limited to the narrow frequency range of the spectrum. Importantly as well,312

although Sds is routinely referred to as the ‘whitecapping source term’, it is in fact sup-313

posed to represent all (largely unknown) deep-water dissipation mechanisms, including314

turbulence. Sds is thus computed as a weighted sum of two contributions, whitecapping315

Swc and dissipation unrelated to wave breaking Snbr:316

Sds = fbrSwc + (1− fbr)Snbr, (2)

where fbr ∈ [0, 1]. For Swc we have:317

Swc = −Cds

[
B(k)

Br

]p/2
(gk)1/2E(f, θ), (3)

where the saturation B(k) = cgk
3Ē(f), and Cds, Br and p are tuning coefficients (see318

SWAN Team, 2022, for their treatment in SWAN). Details of calculation of Snbr and fbr319

can be found in the SWAN documentation. Crucially, in strongly forced, short waves an-320

alyzed here, fbr ≃ 1 over the whole energy-carrying wave frequency range (f between,321

approximately, 0.13 and 0.6 Hz), i.e., both around the peak and in the tail of the spec-322

trum (0.13 Hz is the lowest peak frequency found in satellite images analyzed in this study).323

Thus, Sds ≃ Swc. Under different conditions, when fbr < 1 and the contribution of324

Snbr to Sds is substantial, it might be suitable to multiply Snbr by ice concentration A325

in order to turn off Snbr over ice (reflecting the fact that frazil and grease ice suppresses326

turbulence due to its large viscosity). In our simulations it did not produce any notice-327

able differences in the results.328
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In general, very little is known about wave breaking in frazil and grease ice. As dis-329

cussed further in section 4.2 and as can be seen in Figs. 1 and 2, long waves do occasion-330

ally break within ice streaks in TNBP, although much less frequently than in the sur-331

rounding open water. As in the case of Snl, we may seek analogies with oil slicks, for which332

available observations suggest that the oil’s high (and legendary) effectiveness in sup-333

pressing wave breaking is a secondary effect of other processes rather than a direct me-334

chanical response of the waves to the oil presence (e.g., Cox et al., 2017). For spectral335

modelling it means that – provided other source terms are properly computed – the ef-336

fect of reduced whitecap dissipation in ice-covered areas should be obtained as a mod-337

elling result in spite of Swc being computed in the same way everywhere (note that this338

is the default setting in SWAN).339

As for the wind input term Sin, its general form is:340

Sin = βinE, where βin ≡ βin(u∗/c, θrel) (4)

and where θrel is the angle between wind direction and propagation direction of the given341

spectral component. In the model of Yan (1987):342

βin = max

{[
a1

(u∗

c

)2

+ a2
u∗

c
+ a3

]
cos θrel + a4, 0

}
. (5)

The coefficients used in SWAN (recalibrated from the original ones by Van der West-343

huijsen et al., 2007) are: a1 = 4.0 ·10−2, a2 = 5.52 ·10−3, a3 = 5.2 ·10−5, a4 = −3.02 ·344

10−4. An important advantage of this model is that, contrary to the earlier ones formu-345

lated for low wind speeds, it is suitable for strongly forced waves as well. As will be shown346

below, in polynyas this condition is fulfilled over most of both geographic and spectral347

space (i.e., the majority of polynya surface area, and energy-carrying wave frequency range),348

with an exception of the longest waves at the downwind end of the polynya.349

For a given 10-m wind speed u10, change in Sin due to the presence of sea ice may350

result from three factors: (i) change of the form of the βin function (5); (ii) change of the351

wave phase speed c due to a modified dispersion relation in ice; and (iii) change of u∗352

due to a modified roughness of the surface. If we assume that expression (5) remains valid353

– to the best of our knowledge there are no data available that could be used to verify354

this assumption – and if we keep the assumption made earlier about the dispersion re-355

lation in polynyas, the only factor that remains is the surface drag. (Note that the in-356

flunce of the dispersion relation in sea ice on wind wave growth has been analyzed by357

Zhao & Zhang, 2020)358

The relationship between u∗ and u10 is u2
∗ = CDu

2
10, where CD is the 10-m drag359

coefficient. In spectral wave models, CD = CDn, i.e. it represents the neutral drag co-360

efficient and it is a function of u10 only. The default CDn(u10) relationship used in SWAN361

is by Zijlema et al. (2012), which reproduces the observed drop of surface drag at very362

high wind speeds (Janssen & Bidlot, 2023):363

CDn =
(
0.55 + 2.97ũ− 1.49ũ2

)
· 10−3, where ũ = u10/uref (6)

and uref = 31.5 m·s−1 is a reference wind speed at which CDn reaches maximum. This364

formulation disregards possible spatial variability in surface properties, as well as effects365

of atmospheric stability – both factors which very likely are important in polynyas, with366

complicated spatial patterns of frazil–open water patches, and at air temperature Ta of-367

ten 20–30◦C lower than the sea surface temperature Ts ≃ −1.7◦C (see Table 2.1 for Ta368

during the analyzed events).369

The wind drag over open ocean has been analyzed for many years under a wide range370

of wind and sea state conditions. Over vast areas of the oceans, especially far from the371

coasts and frontal zones, the assumption CD ≃ CDn is justified, because the air–sea tem-372

perature differences tend to be small. At very low air temperatures, however, the neg-373
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Figure 3. Surface drag and wind input over open water and sea ice. In (a), colors show the

open-water surface drag coefficient CD(u10, Ta) (in 103); magenta symbols mark the ten (u10, Ta)

combinations in the analyzed TNBP events (Table 1). In (b), colors show the open-water u∗/c

ratio (–) in function of wave frequency f and wind speed u10. The dashed contours mark: the

value of βin,w = 0 (white), u∗/c = 0.1 (black) and u∗/c = a2/a1 ≃ 0.14 (magenta). The dotted

rectangle marks the approximate boundary of a region relevant for polynyas (see text for details).

In (c), the ratio βin,i/βin,w is shown for four selected values of wind speed (continuous lines; left

axis), together with the corresponding curves for βin,w (dashed lines; right axis). The black line

with diamonds shows the mean ratio βin,i/βin,w at u10 = 25 m·s−1 within the frequency range

f ∈ [0.13, 0.6] Hz (thick red line). Panel (d) is analogous to (b), but for sea ice instead of open

water. Note that all results in (a)–(d) are for θrel = 0; they change very little for |θrel| < 30◦.

ative vertical stability of the lower atmosphere leads to a stronger ocean–atmosphere cou-374

pling and increased drag at the surface (an effect that, over polynyas, is partially reduced375

by very high wind speeds). For CDn given by (6), CD(u10, Ta) can be determined using376

the Monin–Obukhov stability theory. The result is shown in Fig. 3a, together with the377

combinations of u10 and Ta in the analyzed polynya events (magenta symbols). As they378

all cluster at the plateau of relatively constant values of CD, in the rest of this analy-379

sis we set, for the sake of simplicity, the open-water drag to CDw = 2 · 10−3.380

Studies on the surface drag over an ice-covered ocean concentrate mainly on the381

Arctic ice pack and the MIZ, i.e., conditions where the surface morphology and the as-382

sociated form drag play an important role (e.g., Garbrecht et al., 2002; Lüpkes & Birn-383

baum, 2005; Lüpkes et al., 2012; Mchedlishvili et al., 2023). Observations for frazil and384

grease ice are rare and limited to low-wind and mildly-sloped wave conditions (see Guest,385

2021b, and references there). For frazil and grease ice, drag coefficients between 0.7·10−3
386
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and 1.3·10−3 have been reported. No formula relating wind speed to surface drag, anal-387

ogous to (6) and valid for frazil/grease sea ice has been proposed so far. In polynyas, the388

sea surface in ice-covered areas is characterized by the presence of long waves (with length389

and amplitude similar to those in the surrounding open water) and absence of high-frequency390

waves (Fig. 1). It is an open question how these unique surface properties – very smooth391

at length scales of centimeters to meters, undulating at length scales of tens of meters392

– modify the bulk drag coefficient. Aware of uncertainties behind this assumption, we393

select the middle value from the range reported above (1·10−3), increase it by 5% to ac-394

count for stability effects analogous to those in open water (Fig. 3a), and arrive at the395

value CDi = 1.05 · 10−3 for ice-covered parts of the polynyas.396

With these CDw and CDi, the ratio u∗/c can be computed for a range of (f, u10)397

combinations over open water and ice (Fig. 3b,d). When the wind speed is low and the398

waves are long (MIZ-typical conditions), u∗/c is small and, consequently, in equation (5),399

the second term in square brackets is larger than the first one (regions to the left of the400

dashed magenta lines in Fig. 3b,d). Thus, βin is approximately linearly proportional to401

u∗/c and its values are very low (they equal zero to the left of the dashed white lines in402

Fig. 3b,d). Conversely, for short waves and high wind speeds, βin is large and propor-403

tional to (u∗/c)
2. Crucially, over both ice and open water, most of the combinations of404

f and u10 relevant for polynyas lie in the strongly-forced regime (dotted rectangles in405

Fig. 3b,d). For wind speeds between, say, 20 and 35 m·s−1, the ratio βin,i/βin,w decreases406

slowly with f (it approaches CDi/CDw as f → ∞), but it remains fairly constant for407

wave frequencies f > 0.2 Hz (Fig. 3c). It drops rapidly to very low values as f drops408

below 0.2 Hz, but for those long waves βin itself is very small (dashed lines in Fig. 3c)409

– if these waves grow, its due to nonlinear wave–wave interactions and not due to direct410

energy input from the wind. Therefore, for the sake of simplicity, we set ain in (1) to a411

constant value, equal to the mean βin,i/βin,w over frequency range f ∈ [0.13, 0.6] Hz at412

wind speed u10 = 25 m·s−1 (a typical value for our set of TNBP events). Thus, ain =413

0.56 in all our simulations, as marked with the black line in Fig. 3c.414

By drawing an analogy to oil slicks once again, we notice that the observed ratios415

of u∗ over slicks to that over open water are close to 0.8 (e.g., Alpers & Hühnerfuss, 1989),416

leading to the ratios βin,i/βin,w of 0.66–0.67, higher than but comparable to our estimate.417

3.2.3 Sice418

Finally, for the ice dissipation term Sice in (1), an empirical expression used in both419

SWAN and WaveWatchIII wave models (Collins & Rogers, 2017; Rogers, 2019) has the420

form of a sum:421

Sice = αiceE =

nm∑
n=0

αice,nf
nE, (7)

where αice,n for n = 1, . . . , nm are coefficients that can be tuned to a particular situ-422

ation or set to values from one of the published studies (see, e.g., Rogers, Meylan, & Ko-423

hout, 2018; Rogers, Posey, et al., 2018, for an overview of available formulae). The de-424

fault settings in SWAN are from Meylan et al. (2014), with αice,2 = 1.06·10−3 s2m−1,425

αice,4 = 2.3·10−2 s4m−1 and the remaining αice,n equal to zero. With this set of coef-426

ficients, the energy attenuation in ice gradually changes slope from f2 for long waves to427

f4 in the tail of the spectrum. Several subsequent studies use this form of Sice with re-428

tuned αice,2 and αice,4 (e.g., Rogers, Meylan, & Kohout, 2018; Rogers et al., 2021). Gen-429

erally, their values in frazil and grease ice are even a few times lower than in pancakes430

and ice floes. Some observations provide evidence for f5 or f6 in the spectral tail (Rogers431

et al., 2021, and references there), leading to a different combination of zero and non-432

zero coefficients in (7).433

Notably, Sice in (7), being purely empirical, does not differentiate between various434

physical energy dissipation mechanisms that are relevant in different ice types. The change435

–12–



manuscript submitted to JGR: Oceans

of slope of αice(f) from low to high wave frequency, described above, is often attributed436

to different (combinations of) physical attenuation mechanisms dominating in the long-437

wave and short-wave parts of the spectrum. In frazil and grease ice analyzed here, how-438

ever, it seems reasonable to assume that viscous dissipation is the only relevant process439

and that, at least within the relatively narrow frequency range carrying most energy, a440

single exponent n can be used for all f .441

Additional formulations of Sice with dependence on ice thickness have been pro-442

posed and are implemented in SWAN. They are not considered here. As this study con-443

centrates on the active-frazil parts of polynyas, i.e., before the ice consolidates into a rel-444

atively compact ice cover, no significant effects of ice thickness are expected. Analogously,445

we do not consider here a source term describing wave scattering in sea ice, as this pro-446

cess is not relevant in frazil and grease ice.447

3.3 Model setup and simulations448

The simulations in this analysis are performed with SWAN version 41.45 (http://449

www.swan.tudelft.nl). In accordance with the assumptions formulated in section 3.1,450

several simplifications are made in the model setup. A rectangular model domain with451

200 m spatial resolution is used, with realistic coastlines, but a constant water depth of452

500 m. For each polynya, two sea ice maps have been prepared, one with ice concentra-453

tion within the polynya A = 0 (for reference, open-water model runs; see below), and454

one with ice concentration obtained by averaging the values of A determined in Bradtke455

and Herman (2023) within each 200×200 m2 grid cell of the model. In both cases, the456

ice pack surrounding the polynya has ice concentration A = 1. The model is run in a457

stationary mode and forced with wind fields from AMPS (section 2). No currents are458

taken into account. In spectral space, directional resolution of 10◦ and 52 frequency bins459

logarithmically spaced between 0.05 and 1.576 Hz are used. Thus, the maximum frequency460

is close to six times the highest expected peak frequency (∼0.25 Hz), and the frequency461

increment factor equals 1.07, as recommended for simulations with the near-exact quadru-462

plet wave–wave interaction algorithm (SWAN Team, 2022).463

In the simulations, several combinations of ain, and αice are considered, as listed464

in Table 2. Setup S0, with ain = 1 and αice = 0 provides a reference, open-water test465

case. In setup S1, wind input over sea ice is turned off (ain = 0) and this is the only466

effect ice has on waves (Sice = 0). In setup group S2, ain = 0.56, as determined in sec-467

tion 3.2. S2 0 is analogous to S1. In S2 f24 (M14) the default SWAN settings for Sice468

are used, based on Meylan et al. (2014). In the remaining four setups the sea ice source469

term is fitted to observations by running the model several times with different combi-470

nations of coefficients and selecting the version that results in the best agreement be-471

tween satellite-derived and simulated peak wave periods. Among many possible crite-472

ria of ‘the best’ agreement, the mean bias has been selected, as this is the main deficiency473

of setup S0 that we aim at removing. Thus, the optimization is stopped when the rel-474

ative bias, defined as the average ratio (Tp,obs−Tp,mod)/Tp,obs, does not exceed 1% (Ta-475

ble 2). The resulting αice(f) are shown in Fig. 4.476

Obviously, many more combinations of non-zero αice,n than those considered here477

could be tested, including those that are predicted by various theoretical models of vis-478

cous and viscoelastic dissipation in sea ice (Meylan et al., 2018). However, as we have479

no means to extract quantitative information on spectral tails from the available satel-480

lite imagery, insight gained from additional simulations would be rather limited. As we481

demonstrate in the next section, setups S2 f4, S2 f5 and S2 f6 are sufficient to illustrate482

the sensitivity of the model to ice-related dissipation at high wave frequencies and to for-483

mulate some important conclusions regarding frequency dependence of Sice in polynyas.484
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Table 2. Summary of SWAN simulations: sea-ice related model parameters and model perfor-

mance

Model parameters Statistics of Tp

Setup ID ain αice,n c.c. bias rel. bias s.d.d.

S0 1 0 for all n 0.87 1.15 s 0.19 0.49 s
S1 0 0 for all n 0.80 −0.06 s −0.01 0.39 s
S2 0 0.56 0 for all n 0.85 0.66 s 0.11 0.42 s

S2 f24 (M14) 0.56 αice,2 = 1.06 · 10−3, αice,4 = 0.230 · 10−1 0.84 0.34 s 0.06 0.40 s
S2 f24 (fitted) 0.56 αice,2 = 0.53 · 10−3, αice,4 = 1.035 · 10−1 0.80 −0.02 s −0.003 0.43 s
S2 f4 (fitted) 0.56 αice,4 = 1.2 · 10−1 0.87 0.07 s 0.01 0.37 s
S2 f5 (fitted) 0.56 αice,5 = 0.66 0.86 0.04 s 0.01 0.40 s
S2 f6 (fitted) 0.56 αice,6 = 3.2 0.83 0.05 s 0.01 0.45 s

c.c. – correlation coefficient, s.d.d. – standard deviation of differences

Figure 4. The five αice(f) curves considered in model version S2. Blue and red thin dashed

lines show the components of the two versions of S2 f24 (M14 and fitted), and the black vertical

lines mark the range of wave frequencies corresponding to the observed peak periods.

4 Results485

In the following, we first compare the performance of the tested model setups (Ta-486

ble 2) in terms of their ability to reproduce the observed patterns of peak periods Tp in487

all ten polynya events. Subsequently, we perform a detailed analysis of the satellite ob-488

servations and modelling results for the polynya from 19. Sep. 2019. It is selected for489

this purpose for two reasons. First, due to its very large size, it covers the whole range490

of observed wave periods in the analyzed dataset. Second, it is the only image for which491

the (nearly) simultaneous wave breaking patterns could be obtained from the WV2 im-492

age, as described in section 2.2. The whitecap fraction W and energy dissipation Swc within493

the WV2 scene and over the whole polynya are discussed in section 4.3. Finally, in sec-494

tion 4.4, we return to the whole dataset of 10 polynyas and analyze global (polynya-surface495

averaged) statistics of individual source terms.496
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(a)  S0                                                                     (b) S1                                                                     (c) S2_0                                                                  (d) S2_f24 (M14)

(e)  S2_f24 (fitted)                                                  (f) S2_f4 (fitted)                                                     (g) S2_f5 (fitted)                                                    (h) S2_f6 (fitted)

Figure 5. Scatterplots of observed and modelled peak periods, Tp,obs and Tp,mod, from the

simulations listed in Table 2. The color scale shows values in percent of the total number of data

points (i.e., all values in each plot sum up to 100), and magenta lines show the linear regression

to the data.

4.1 Performance of the tested model setups497

For the purpose of model–observations comparison, the satellite-derived maps of498

Tp from the 10 polynyas are averaged within the meshes of the SWAN grid, resulting in499

a dataset of over 2.3·105 values. The observed peak periods have values between 4 and500

8 s, with the mean and median equal to 5.87 s and 5.81 s, respectively.501

As expected from the results of a simple one-dimensional (1D) model in Bradtke502

and Herman (2023), setup S0 significantly overestimates the wave periods – on average503

by 1.15 s or close to 20% (Table 2 and Fig. 5a). This effect occurs in spite of the well504

documented tendency of SWAN and other spectral models to underestimate wave pe-505

riods (see, e.g., Rogers et al., 2003). Moreover, the AMPS wind speeds used as model506

input generally tend to be slightly lower than the wind speeds measured at the Manuela507

station, i.e., if there is a bias in the model forcing, it is towards too weak rather than too508

strong winds. Thus, as already concluded in Bradtke and Herman (2023), sea ice is the509

only likely factor responsible for the discrepancy between the observed wave periods and510

those expected in open water.511

Not surprisingly, the bias is reduced in setup S1, with ain = 0, even though no512

energy dissipation in sea ice is assumed. In fact, the mean bias in S1 is close to zero, and513

the standard deviation of differences is reduced relative to S0. However, these improve-514

ments are achieved at the cost of lowered correlation coefficients; moreover, the model515

clearly underestimates the large wave periods (Fig. 5b), i.e., the wave growth is inhib-516

ited in downwind parts of polynyas with high ice concentration. Obviously, the assump-517

tion behind S1 that the influence of frazil streaks is strong enough to completely shut518

down the wind input, but at the same time that the ice has no direct influence on waves519

through dissipation, seems unrealistic. However, adding to S1 any αice > 0 would lead520

to an even worse model performance and to a negative bias. Hence, the lack of wind in-521
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put over ice-covered areas is an unlikely explanation for the observations and, accord-522

ingly, ‘deactivation’ of Sin over ice is not a good choice.523

As can be seen in Table 2, setting ain to 0.56 as in S2 0 reduces approximately half524

of the mean bias of S0 (Fig. 5c), with a still further reduction in setup S2 f24 (M14), i.e.,525

when the default Sice SWAN setting is used (Fig. 5d). The performance can be improved526

further by fitting αice,2 and αice,4. However, the fitted value of αice,2 is twice as low as527

in the corresponding setup with M14, and αice,4 is over four times higher, meaning that528

the fitted αice is dominated by the f4 term: the change of slope towards f2 takes place529

at frequencies well below 0.1 Hz, i.e., outside of the range of wave frequencies found in530

our dataset (compare blue and red curves in Fig. 4). Indeed, dropping the αice,2 term531

as in S2 f4 results in the fitted value of αice,4 very close to that in S2 f24 (Table 2). More-532

over, although setup S2 f4 has only one fitted coefficient as opposed to two in S2 f24, it533

gives the best global statistics not only in terms of the mean bias, but also the correla-534

tion coefficient and standard deviation of differences – and it performs well in the whole535

range of the observed values of Tp (Fig. 5f). Therefore, the simpler version S2 f4 is pre-536

ferred over S2 f24.537

Finally, the last two tested setups are S2 f5 and S2 f6, which, as expected, leads538

to a stronger (weaker) attenuation of the lowest (highest) wave periods (Fig. 5f–h). With539

increasing power n the scatter gets slightly higher and the correlation coefficient lower540

(Table 2), but, arguably, the differences between the global statistical measures of se-541

tups S2 f4, S2 f5 and S2 f6 are rather subtle. This is not surprising as the analysis so542

far is limited to the peak periods, i.e., the frequency range in which the strength of dis-543

sipation in S2 f4, S2 f5 and S2 f6 is very similar (Fig. 4). The differences between these544

setups can be expected to be more substantial in the tails of the wave energy spectra.545

Unfortunately, as stated earlier, we cannot perform any quantitative comparison between546

the observed and modelled spectral tails. However, as we will see in the next section, large547

qualitative differences between the results of S2 f4, S2 f5 and S2 f6 allow for some (care-548

ful) conclusions.549

4.2 The polynya from 19. Sep. 2019550

The polynya from 19. Sep. 2019 (Fig. 1) is the largest among the ten polynyas anal-551

ysed here (see Sp in Table 1). At the time the analysed satellite image was acquired, the552

area had been subject to prolonged strong WNW winds with speeds exceeding 20 m·s−1
553

for ∼36 hours, and exceeding 30 m·s−1 for close to 24 hours (not shown). As the polynya554

has a relatively regular, symmetric shape, it is useful to examine the wind forcing, and555

the observed and simulated wave properties on a transect along its central axis (white556

dashed line in Fig. 1; corresponding maps can be found in Supplementary Figs. S2 and557

S3). At 21 UTC the AMPS wind (Fig. 6a) along that line oscillates between 30 and 35 m·s−1
558

up to a distance x of ∼50 km from shore, and drops to 25–30 m·s−1 only within the last559

∼10 km of the polynya. It also gradually changes direction from WNW to WSW, but560

this change is not fast, in the order of 10◦ per 30 km. In terms of ice concentration (Fig. 6b),561

two clearly different regions can be distinguished: for x below and above 40 km. In the562

first region, the ice concentration varies strongly as the analyzed profile crosses sea-ice563

and open-water patches, but on average it remains rather low (mean value 0.41). In the564

second region, it rarely drops below one (mean value 0.98).565

As can be seen in Fig. 6c, the no-ice setup of SWAN (S0) significantly overpredicts566

the peak wave period (by almost 2 s, i.e., close to 30%, in the offshore part of the polynya).567

It also predicts significant wave heights Hs exceeding 5 m (see Supplementary Fig. S3568

for corresponding maps of Tp and Hs). The three ‘best’ setups identified in section 4.1,569

S2 f4–S2 f6, produce almost indistinguishable Tp(x) and Hs(x) curves. In agreement with570

observations, Tp at the downwind end of the polynya exceeds 7 s (corresponding to peak571

wavelengths of 75–80 m). Notably, Hs reaches maximum at the end of the varying-ice-572
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(a)
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Figure 6. Wind speed u10 and direction θw (a), ice concentration A (b), significant wave

height Hs and peak period Tp (c), wind input Sin (d), and dissipation due to wave breaking Sds

and in sea ice Sice (e) along the central line of the polynya from 19. Sep. 2019 (see Fig. 1 for

transect location). In (c)–(e), the modelling results are shown for four model setups: S0 (dotted

lines), S2 f4 (dashed lines), S2 f5 (continuous lines) and S2 f6 (dash-dotted lines); thick yel-

low line in (c) shows the observed Tp. The black vertical dashed lines at x = 5 km mark the

boundary of the nearshore region where no reliable wave properties could be determined from the

satellite data.
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(e) (f)

(a)

(d)

S0

S2_f4 S2_f5 S2_f6

Figure 7. Wave energy spectra Ē(f) along the central line of the polynya from 19. Sep. 2019

(see Fig. 1 for transect location) from four model setups: S0, S2 f4, S2 f5 and S2 f6. In (a,b),

every 5th spectrum along the transect is drawn for each setup (S0, S2 f4 and S2 f5 in a, S0,

S2 f4 and S2 f6 in b); black arrows mark the direction of increasing x, and the dashed black line

has the slope f−4. In (c)–(f), colors show log10 Ē (n m2s) for S0 (c), S2 f4 (d), S2 f5 (e) and

S2 f6 (f).

concentration zone, close to x = 40 km, and then stays roughly constant at ∼3 m, in-573

dicating an approximate balance between wind input and dissipation.574

In spite of very similar evolution of the spectral peaks, however, the results of the575

three setups differ substantially from each other for frequencies above ∼0.4 Hz (Fig. 7).576

In S2 f4, the tails of the spectra remain very close those in the open-water case S0, even577

at the downwind end of the polynya. That is, E ∼ f−4 in the tail (Fig. 7a). In open578

water it is a signature of the balance between wind input and whitecapping dissipation579

(red and yellow curves in Fig. 8a–e; see also Fig. 6d,e). Indeed, in S2 f4 S̃in and Sds dom-580

inate in the spectral tail wherever the ice concentration is relatively low (Fig. 8h). At581

higher A, S̃ice is comparable to Sds (Fig. 8f,g) or even higher (Fig. 8i,j), but the frequency582

dependence of both source terms is the same – in terms of their mathematical form they583

are interchangeable. In S2 f5 and S2 f6, to the contrary, ice-induced dissipation of the584

high-frequency waves is strong enough so that they are almost entirely removed from the585

spectra as soon as the ice concentration exceeds ∼0.5. This produces spectral shapes sim-586

ilar to those observed in the MIZ (compare brown curves in Fig. 5a,b with, e.g., Fig. 6587

of Rogers et al. (2016) or Fig. 2 of Montiel et al. (2022)). As the waves propagate through588

the patches of grease ice and open water in the central parts of the polynya, the short589

waves in the spectral tail disappear and reappear as in Fig. 7e,f – an aspect of the re-590

sults that qualitatively agrees with what is seen in the WV2 image (Figs. 1 and 2).591

The consequences of very strong dissipation of short waves in S2 f5 and, especially,592

S2 f6 are clearly seen in the plots of source terms in Fig. 8k–u. As the wave energy at593

frequencies higher than ∼0.4 Hz is zero or close to zero in ice-covered locations, the wind594

input there is close to zero as well – as are all other source terms. Remarkably, in these595
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (r) (s) (t) (u)

Figure 8. One-dimensional wave energy spectra Ē(f) and source terms at 5 locations along

the central line of polynya from 19. Sep. 2019 (white dots in Fig. 1a), from model setups

S0 (a–e), S2 f4 (f–j), S2 f5 (k–o) and S2 f6 (p–u). For wind input and sea ice source terms,

S̃in = [1 − A + ainA]Sin and S̃ice = ASice are shown (see equation 1). The black lines show Stot,

the sum of all source terms. Note different y-axis scales in (a–e) and (f–u). The ice concentration

A at points 1–5 equals 0.72, 0.85, 0.29, 1.00 and 1.00, respectively.
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areas the dissipation in sea ice is particularly strong in the range 0.2–0.4 Hz, i.e., just596

below the no-energy range. If the ice concentration is not too high (Fig. 8k,l,p,r), this597

energy sink is strengthened by whitecapping, leading to a negative overall energy bal-598

ance in spite of energy input from wind and, to a lesser extent, from quadruplets. At ice599

concentration close to 1 (Fig. 8n,o,t,u), the role of whitecapping and quadruplets becomes600

less significant, and the first-order energy balance is between wind input and ice dissi-601

pation. As a net effect, the energy spectra evolve towards narrow, swell-like shapes (see602

maps of directional spreading in Supplementary Fig. S3).603

4.3 Wave breaking604

The total surface area of breaking waves estimated from the WV2 data covers 1.08%605

of the whole area of the analyzed image. Their spatial distribution is inversely correlated606

with sea ice concentration (Fig. 9a). Considering the whole area of the WV2 image, the607

contribution of breaking waves to the open-water surface is 1.5%, more than twice as much608

as in the ice-covered areas, where it is 0.6%. Locally, however, this difference depends609

on the spatial pattern of frazil streaks – which can bee seen when the two subsets of the610

WV2 area are analyzed separately (Fig. 10).611

Over much of the lower part of the WV2 image (subset 2), the average ice concen-612

tration calculated in vertical sections is relatively low and remains between 0.2 and 0.4613

with no visible spatial trend (Fig.10). This subset shows narrow streaks of frazil ice that614

only begin to increase in width and merge near the center of the image and gradually615

form a more compact ice cover. Under these conditions, the average whitecap fraction616

WX changes similarly in open water and in ice, with WX reaching a maximum at the617

distance of about 14–16 km from the ice sheet. In this area, the difference between WX618

in water and ice remains roughly constant. Only when the average ice concentration in-619

creases to about 0.5, at the distance of 21.5 km from shore, a rapid decrease of WX in620

streaks and a corresponding increase in open water is observed, producing an order-of-621

magnitude difference between the WX in open-water and ice-covered areas.622

In the upper part of the image (subset 1), the variability of whitecap fraction in623

open water are similar (Fig. 10), with a maximum at an approximately the same distance624

from shore. However, the difference between WX in open water and ice in subset 1 is gen-625

erally larger than in subset 2, which can be at least partly explained by the presence of626

the very wide and long (width ∼500 m) ‘mega-streak’ – a dominating feature in subset 1.627

As can be seen i Fig. 9a, it contains almost no whitecaps, contributing to reduced WX628

values.629

The satellite-based wave breaking patterns cannot be directly compared with mod-630

elling results, because spectral wave models do not produce whitecap fraction as output.631

Therefore, a relationship between W and energy dissipation rate Swc is necessary. To632

this end, we use formulae derived by Anguelova and Hwang (2016). Assuming that the633

water is deep, we have:634

W = cWω4
pSwc, (8)

where ωp = 2π/Tp denotes the peak wave frequency and the coefficient cW is a com-635

bination of several empirical constants: cW = tb[4bρwg
3 log(cmax/cmin)α

4
c ]

−1. Their val-636

ues vary strongly between different field and laboratory experiments. Here, without any637

tuning, we adopt the values from Anguelova and Hwang (2016) for three out of the four638

coefficients: the bubble persistence time tb = 2 s, the breaking strength parameter b =639

0.013, and the ratio of maximum to minimum breaker speed cmax/cmin = 10. The fourth640

one, αc ∈ (0, 1), denotes the ratio of the threshold breaker speed to the peak wave phase641

speed. In Anguelova and Hwang (2016), αc = 0.3 is used based on the average from642

experiments analyzed in Gemmrich et al. (2008). Here, we instead use the modal value643

of the αc distribution from the case in Gemmrich et al. (2008) with the highest u∗/c ra-644

tio, as it represents a situation closest to the one analyzed here. Thus, we set αc = 0.35.645
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Figure 9. Observed and modelled wave breaking patterns in the area covered by the WV2

image (orange rectangle in Fig. 1). The left panels show maps of whitecap fraction W from the

WV2 image (a) and from SWAN simulations with model setup S0 (b), S2 f4 (c), S2 f5 (d) and

S2 f6 (e). Right panels show scatterplots of W against ice concentration A for wind speeds below

and above 30 m·s−1 (green and blue dots).
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Figure 10. Average ice concentration AX (right axes) and whitecap fraction WX computed

separately over ice-covered and ice-free regions (left axes) of subsets 1 and 2 of the analyzed

WV2 image. XUTM and x denote the UTM coordinates and the distance from the ice sheet,

respectively.

The resulting maps of W in the WV2 region from model setups S0, S2 f4, S2 f5646

and S2 f6 are shown in Fig. 9b–e. Not surprisingly, the results of the no-ice setup S0 are647

completely different from satellite observations. However, the remaining three setups pro-648

duce spatial patterns which are very similar to the observed one – and, at a general level,649

very similar to each other (this is also true for the whole polynya; see Supplementary Figs.650

S4 and S5). The best agreement is obtained for S2 f5, which also produces very simi-651

lar range of values, generally with W < 0.03. In S2 f6, wave breaking is very weak, mostly652

with W < 0.01 and with only isolated hotspots of whitecap fractions reaching 0.02. In653

S2 f4, to the contrary, values exceeding 0.03 are not rare, especially in the leftmost part654

of the region (a feature absent in satellite-derived data).655

It is noteworthy that that the spatial patterns of W and Sds are markedly differ-656

ent (Supplementary Fig. S5) due to the strong wave-frequency dependence of W in equa-657

tion (8). For the same whitecap fraction W , energy dissipation is lower in long waves658

than in short waves, and vice versa, the same energy dissipation is associated with higher659

values of W when the waves are shorter. This is responsible for the clearly visible fetch660

dependence of W in our simulations: the largest values of W can be found nearshore (in661

all model versions, including S0), when they exceed 0.1. In the case of Sds, it is predom-662

inantly influenced by wind speed u10 and ice concentration A (Supplementary Figs. S6663

and S7). Indeed, as Supplementary Fig. S7 shows for the example of setup S2 f5, Sds(u10, A)664

can be easily fit to the data, with the dependence on wind speed being Sds ∼ u2.88
10 , which665

is very close to the relationship Sds ∼ u3
10 reported in the literature (Anguelova & Hwang,666

2016).667

4.4 Global source terms statistics668

Although the differences between setups S2 f4–S2 f6 manifest themselves mainly669

in the tails of the spectra, their effects are clearly visible in spectrally integrated source670

terms as well (see Fig. 6d,e and maps in Supplementary Fig. S4). The overall spatial pat-671

terns remain similar, as they are dictated by the variability of ice concentration, but the672

amplitude of all source terms varies strongly between setups. Consequently, the total (polynya-673
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Figure 11. Box plots showing statistics of the ratios S̃in,tot(S2)/S̃in,tot(S0) (a),

Sds,tot(S2)/Sds,tot(S0) (b) and Wtot(S2)/Wtot(S0) (c) for the three model versions S2 f4, S2 f5

and S2 f6 and for the ten polynyas analyzed. Red lines show the median values and blue boxes

mark the interquartile range.

integrated) energy input from wind, S̃in,tot, as well as dissipation within sea ice S̃ice,tot674

and due to whitecapping Sds,tot (with the associated Wtot), exhibit very large differences675

between the ice-free and ice-influenced model versions, hinting at the crucial role of sea676

ice in modifying polynyas’ ocean–atmosphere interactions.677

The box plots in Fig. 11 show statistics of the ratios of those global variables in678

ice-influenced and ice-free model runs, for the ten polynyas analyzed. Although some vari-679

ability between the ten cases is present, the results are fairly robust (notably, there is680

no significant correlation between the analyzed ratios and polynya size). Considering that,681

based on the analysis so far, model settings S2 f5 and S2 f6 best describe available ob-682

servations, it is save to conclude that the polynya-wide wind input is typically reduced683

to below 25% of that over open water, the energy dissipation due to whitecapping is re-684

duced to below 10%, and the corresponding coverage of sea surface by whitecaps is re-685

duced to below 30%. These (conservative) estimates decrease with increasing exponent686

n in the Sice source term. Consequences of the lowered wind input and whitecapping are687

briefly discussed in the next section.688

5 Discussion and conclusions689

This study has shown that wind waves in coastal polynyas with frazil streaks are690

significantly modified by sea ice – and that the role of ice is much more complex than691

simply dissipating wave energy through viscous processes in a spectral-component-by-692

component manner. Rather, the net effect of sea ice is a combined result of dissipation,693

reduced wind input, reduced whitecapping, and modified nonlinear energy transfer within694

energy spectra. The ‘patchiness’ of the grease ice cover, typical of polynyas, and the as-695

sociated alternating removal and re-generation of short waves in the tail of the spectrum696

play here a particular role. Regarding the four relevant source terms in the wave energy697

balance equation, the main conclusions of this study are:698

• Contrary to the common ‘binary’ treatment of Sin in waves-in-ice modelling (e.g.,699

Li et al., 2015; Cheng et al., 2017; Rogers et al., 2016, 2021), wind input over grease700

ice is neither equal to that over open water (ain = 1) nor zero (ain = 0). Un-701

der conditions of strongly forced waves analyzed here, a constant value of the wind702

reduction factor ain = 0.56 has been determined based on theoretical arguments703

and led to a satisfactory model performance. However, as detailed in section 3.2,704

ain is in fact a function of wind speed and wave frequency. Using a simple param-705
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eterization with constant ain seems reasonable considering very limited observa-706

tional data on wave growth in ice covered waters, but the analysis in this study707

provides a general framework for more complex formulations in the future, appli-708

cable over a wider range of wave ages and frequencies. Regarding the largely un-709

known variability of the surface drag coefficient CDn over grease ice in presence710

of waves, a promising direction of further research might be analogous to param-711

eterizations of surface drag used in modelling of oil spills, in which the net rough-712

ness length is computed as a weighted sum of three components, associated with713

an aerodynamically smooth surface, long waves and short waves, respectively, and714

the weight of the last component is different over oil and water, reflecting very strong715

attenuation of short waves in oil-covered regions (Bourassa et al., 1999; Zheng et716

al., 2013; Blair et al., 2023).717

• Whitecapping is strongly reduced in regions where frazil streaks are present – not718

only within streaks themselves, but also in open-water areas between them – con-719

firming existing qualitative observations from TNBP (Guest, 2021a, 2021b; Ack-720

ley et al., 2022). Crucially, in the model this effect is obtained without any mod-721

ifications to the formulation of the Sds term. Rather, reduced whitecapping is a722

consequence of reduced wave steepness, which in turn results from reduced wind723

input and from dissipation in sea ice. This does not mean, however, that the open-724

water formulations of Sds used in the present spectral wave models are fully ad-725

equate for grease ice regions. It seems likely that the critical steepness used to com-726

pute Swc in equation (3) is slightly higher in water covered with grease ice than727

in open water. Moreover, at the same sea surface area fraction covered with break-728

ers in open water and in grease ice, the amount of dissipated wave energy might729

be different due to suppressed turbulence and air bubble formation in the latter730

case.731

• As long as the developing ice cover is thin and the open-water dispersion relation732

holds, the quadruplet wave–wave interactions remain unaffected and can be com-733

puted in the same way as in open water. However, in combination with strong ice-734

related dissipation in the high-frequency part of the spectrum, their role in regions735

covered with frazil streaks becomes particularly important. In our simulations, there736

were substantial differences between the results obtained with DIA and with the737

quasi-exact method. When using DIA, the very strong positive bias of the wave738

periods could not be reduced by any reasonable combination of adjustable coef-739

ficients. With the quasi-exact method, the bias was much smaller and the model740

calibration unproblematic. Obviously, considering the fact that the computational741

costs of computing quadruplets in an exact way are over 103 times higher than742

those of DIA, our finding cannot be treated as a recommendation for waves-in-743

ice modelling, especially in operational or climate applications. However, one should744

be aware of biases and uncertainties associated with the usage of DIA, and of the745

danger related to the interpretation of the results of DIA-based models, in which746

Sice and possibly other source terms must compensate DIA-related biases.747

• We did not find any evidence of the change of slope n of the sea ice source term748

with wave frequency. The most straightforward interpretation is that a single phys-749

ical mechanism is responsible for energy dissipation in the analyzed case, with vis-750

cous or viscoelastic dissipation the most likely candidates. Crucially, although with751

the observational data at our disposal we were not able to determine the value of752

n, we show that n > 4 is necessary for a sufficiently strong attenuation in the753

tail of the spectrum, i.e., for preventing the slope in the tail from reaching the E ∼754

f−4 shape, typical for open water. Very importantly, this finding does not con-755

tradict observations of n < 4 in earlier studies (Meylan et al., 2018, and refer-756

ences there), where it refers to the apparent attenuation from pairs of measured757

spectra.758

• Considering the previous conclusion together with the comparison between the satellite-759

derived and modelled wave breaking patterns, n = 5 seems to produce the best760
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results – but this should be treated as an indication rather than a firm conclusion761

(and, obviously, n does not have to be a natural number).762

• On average, the presence of frazil and grease ice in the analyzed polynyas leads763

to a reduction of the total wind input to less than 25% of that over open water,764

and to the reduction of whitecapping dissipation to less than 10%, with the cor-765

responding reduction of the surface area fraction covered with whitecaps to be-766

low 30%. Exact values of those ratios depend on the value of n in the Sice term767

and thus on the intensity of sea ice dissipation.768

Some of the above conclusions are specific for polynya conditions. As noted sev-769

eral times throughout this paper, waves in the MIZ typically have lower frequency, are770

weakly forced by wind, and propagate through a wider variety of ice types. Neverthe-771

less, at several locations where wave–ice interactions have been studied, the conditions772

are in between those of an ‘ideal’ MIZ and of a coastal polynya. The Beaufort Sea in the773

summer and autumn is a good example (Rogers et al., 2016; Smith & Thomson, 2016):774

the wind fetch is relatively short, frequent low pressure systems are associated with high775

wind speeds, and a typical ice type is a thin frazil-pancake mixture. Therefore, a proper776

treatment of the Sin and, close to the ice edge, Sds terms is important for reliable spec-777

tral modelling, and the present study provides important clues to the formulation of those778

terms. On the other hand, some of the assumptions made here might be unsuitable for779

the MIZ. The contribution of nonbreaking-waves dissipation Snbr to the total Sds is just780

one example – it is negligible in a coastal polynya, where whitecapping dominates over781

other dissipation mechanisms (fbr ≃ 1 in equation (2)), but the opposite might be true782

for the MIZ, where the waves do not break, but turbulent dissipation in the under-ice783

boundary layer (Voermans et al., 2019; Herman, 2021) dominates the Sds term.784

Our study provides also a very good example of limitations for model development785

caused by the lack of sufficient observational data. Performing wave-in-ice measurements786

in the MIZ is very challenging. In coastal polynyas, it is even more difficult due to, first,787

extreme weather conditions (very high wind speeds, very low air temperatures), and sec-788

ond, short wavelengths, requiring higher spatial (in the case of satellite and airborne im-789

agery) and temporal (in the case of wave buoys and other in situ sensors) resolution. In790

the TNBP and other coastal polynyas, peak wavelengths only rarely exceed 80–90 m and791

are lower than that over most of the polynya area. Thus, the usage of many popular syn-792

thetic aperture radar (SAR) data sources to retrieve wave energy spectra (e.g., Stopa,793

Ardhuin, et al., 2018; Wadhams et al., 2018) becomes problematic, as their resolution794

is comparable with wavelength. Even if peak wavelengths can be determined with suf-795

ficient accuracy, estimation of the spectral tails is unreliable. This study has shown that,796

although spatial variability of peak periods (and other wave properties at the spectral797

peak) provides a very valuable information on the underlying physics, there are limita-798

tions to this approach and the knowledge of spectral tails is crucial for making inferences799

about the frequency dependence of physical processes shaping the energy spectra. No-800

tably, collecting in situ wave data from polynyas is challenging as well, e.g., in the case801

of wave buoys a serious problem is contamination of measured velocities from heavy buoy802

tilting, heaving, as well as very fast drift (exceeding 1 m/s; Ackley et al., 2022). In gen-803

eral, the question facing both observations and modelling is whether and how data anal-804

ysis methods, (semi)empirical parameterizations etc., formulated and tested under ‘typ-805

ical’ conditions, can be transferred to the extreme conditions of polynyas without vio-806

lating their underlying assumptions. In particular, in the case of spectral wave modelling,807

it is an open issue how expressions (4)–(6) can be made more adequate for polynya events.808

A related challenge is reconciling information from observations and models. In this study,809

we obtained two different measures of wave breaking in the analyzed area – one in the810

form of whitecap fraction W (from a visible satellite image), and one in the form of en-811

ergy dissipated per unit surface area Swc (from a spectral wave model). The W (Swc) for-812

mula from Anguelova and Hwang (2016) with default coefficients happens to produce813

model-based values of W very close to those determined from satellite data. However,814

–25–



manuscript submitted to JGR: Oceans

this and similar relationships suffer from the same problems as the ones mentioned above:815

the wind speeds in this study are outside the range of observations used to formulate them.816

Finally, it is worth commenting on the consequences of the significantly reduced817

wind input and whitecapping dissipation due to the presence of sea ice in polynyas. One818

of them are lower rates of sea spray production (due to both lower whitecap fractions819

W and, likely, less intense bubble and spray generation in breaking waves when grease820

ice is present), which has been shown to contribute large part of the total ocean–atmosphere821

turbulent heat flux at high wind speeds. Thus, suppressed whitecapping should lead to822

significantly lower ocean mixed layer heat loss and, consequently, lower sea ice produc-823

tion rates.824

Data Availability Statement825
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put files necessary to reproduce our simulations, together with modeling results, can be827

found at https://zenodo.org/record/8308164 (Herman & Bradtke, 2023).828

Acknowledgments829

This work has been financed by Polish National Science Centre projects no. 2018/31/B/ST10/00195830

(“Observations and modeling of sea ice interactions with the atmospheric and oceanic831

boundary layers”) and 2022/47/B/ST10/01129 (“Sea ice, waves and turbulence – from832

laboratory scale to improved large-scale modelling”), and by the University of Gdansk,833

Laboratory of Physical Oceanography, DS 531-OA02-D425-23. All calculations were car-834

ried out at the Academic Computer Centre (TASK) in Gdańsk, Poland.835
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Key Points:7

• Spectral wave model tuned to reproduce satellite-derived wave properties (peak8

period, whitecap fraction) in Terra Nova Bay Polynya.9

• Frazil streaks in polynyas modify wind waves by reducing whitecapping and en-10

ergy input from wind and increasing viscous dissipation.11

• Nonlinear wave–wave interactions are crucial in both ice-covered and ice-free ar-12

eas.13
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Abstract14

Sea ice–waves interactions have been widely studied in the marginal ice zone, at rela-15

tively low wind speeds and wave frequencies. Here, we focus on very different conditions16

typical of coastal polynyas: extremely high wind speeds and locally-generated, short, steep17

waves. We overview available parameterizations of relevant physical processes (nonlin-18

ear wave–wave interactions, energy input by wind, whitecapping and ice-related dissi-19

pation) and discuss modifications necessary to adjust them to polynya conditions. We20

use satellite-derived data and spectral modelling to analyze waves in ten polynya events21

in the Terra Nova Bay, Antarctica. We estimate the wind-input reduction factor over22

ice in the wave-energy balance equation at 0.56. By calibrating the model to satellite ob-23

servations we show that exact treatment of quadruplet wave–wave interactions (as op-24

posed to the default Discrete Interaction Approximation) is necessary to fit the model25

to data, and that the power n > 4 in the sea-ice source term Sice ∼ fn (where f de-26

notes wave frequency) is required to reproduce the observed very strong attenuation in27

spectral tail in frazil streaks. We use a very-high resolution satellite image of a fragment28

of one of the polynyas to determine whitecap fraction. We show that there are more than29

twofold differences in whitecap fraction over ice-free and ice-covered regions, and that30

the model produces realistic whitecap fractions without any tuning of the whitecapping31

source term. Finally, we estimate the polynya-area-integrated wind input, energy dis-32

sipation due to whitecapping, and whitecap fraction to be on average below 25%, 10%33

and 30%, respectively, of the corresponding open-water values.34

Plain Language Summary35

As ocean waves propagate through areas covered with sea ice, they both affect and36

are affected by the ice. Until recently, wave–ice interactions have been analyzed in the37

so-called marginal ice zone (MIZ), the external part of sea ice cover neighboring the open38

ocean. In this work, we study a largely unexplored case of wave–ice interactions that take39

place in Antarctic coastal polynyas at extremely high wind speeds (often exceeding 10040

kph) and low air temperatures (often below −20◦C). These waves are very different from41

those in the MIZ and therefore allow us to learn new aspects of the physics of wave growth42

and dissipation in sea ice. In our study we use numerical wave modeling and satellite data43

analysis, and seek optimal combinations of model settings to reproduce the observations.44

For example, we determine a scaling factor that describes how the energy input from wind45

is reduced over polynyas due to the presence of the ice. We also show that sea ice reduces46

wave breaking – and that the model is able to reproduce this effect. Taken together, our47

results contribute not only to a better understanding of polynya dynamics, but also to48

more reliable modeling of waves in sea ice in general.49

1 Introduction50

Interactions between sea ice and ocean surface waves have been in recent years ex-51

tensively studied theoretically, observationally and numerically (Squire, 2018, 2020; Liu52

et al., 2020; Shen, 2022, and references there). Significance of waves–ice interactions for53

short-term dynamics of sea ice and the upper ocean, and for longer-term evolution of sea54

ice cover in (sub)polar regions has been demonstrated in a number of studies (e.g., Roach55

et al., 2018, 2019; Boutin et al., 2020). The main focus of waves-in-ice research has been56

on attenuation of ocean waves in sea ice, caused by energy-conserving scattering and/or57

dissipation within and under the ice. Importantly, the evolution of wave energy spec-58

tra in sea ice is usually analyzed on a component-by-component basis, that is, attenu-59

ation coefficients are estimated from pairs of observed spectra at two different locations60

separately for individual frequency bins (e.g., Cheng et al., 2017; Stopa, Sutherland, &61

Ardhuin, 2018; Kohout et al., 2020; Alberello et al., 2022), disregarding energy exchange62

between spectral components that is crucial for evolution of ocean surface waves in open63
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water (e.g., Holthuijsen, 2007). These empirically determined apparent attenuation co-64

efficients are then implemented in spectral wave models (e.g., Collins & Rogers, 2017;65

Rogers, 2019). Not surprisingly, measurements made in different ice types (frazil, grease66

ice, pancakes, ice floes, etc.) and ice thickness lead to different estimations of those co-67

efficients (see Rogers, Meylan, & Kohout, 2018, for an overview). A more serious prob-68

lem with this approach is that the apparent attenuation represents not only sea-ice re-69

lated scattering and dissipation, but is a net effect of all processes involved, including70

wind-wave growth, dissipation unrelated to ice, and nonlinear wave–wave interactions.71

Arguably, disentangling sea ice effects from the net attenuation requires a combination72

of process-oriented observations and theoretical models capturing the underlying physics.73

In spite of some recent progress in this respect (see, e.g.., Voermans et al., 2019; Smith74

& Thomson, 2019a, 2019b; Herman, 2021), the goal of making the spectral wave mod-75

els in sea ice comparably versatile as they are in open water remains a big challenge.76

In attempts to achieve that goal it is important to collect data from a wide range77

of waves-in-ice conditions. At present, a serious limitation is the fact that our understand-78

ing of sea ice–waves interactions is based exclusively on data from and models of the marginal79

ice zone (MIZ; Dumont, 2022). The focus on the MIZ implies that our observations and80

modelling efforts are limited to a certain range of conditions typical for this environment.81

In particular, waves in the MIZ tend to have low u∗/c ratios (where u∗ denotes the fric-82

tion velocity of the wind at the sea surface, and c is wave phase speed; the ratio u∗/c83

is an inverse of the wave age). In the MIZ typically u∗/c ≪ 0.1 for wave frequencies84

at and close to the spectral peak. This means that these waves are weakly forced by wind85

(Janssen et al., 1989) and, consequently, have low steepness and do not break. As a re-86

sult, in the spectral energy balance the wind input and wave breaking terms are dom-87

inated by terms representing dissipation and scattering in sea ice. It is noteworthy that88

situations deviating from that picture (e.g., those with negative apparent attenuation89

indicating dominance of wave growth over dissipation) are often removed from the ob-90

servations prior to the analysis (e.g., Cheng et al., 2017).91

As a step towards broadening the picture and extending wave–ice interactions anal-92

yses to a wider range of conditions, we turn our attention towards a setting with features93

that in many ways are the opposite of the MIZ-typical conditions described above: coastal94

(or latent heat) polynyas during catabatic wind events (Morales Maqueda et al., 2004).95

Polynya openings are associated with very high wind speeds, often exceeding 30 m·s−1,96

and advection of very cold and dry continental air masses, resulting in offshore drift of97

the ice pack and extremely high ocean–atmosphere turbulent heat and moisture fluxes98

(up to 2000 W·m−2; Guest, 2021a, 2021b). All these factors combined lead to strong tur-99

bulence and convective, wind- and wave-induced mixing in the ocean mixed layer (OML;100

Herman et al., 2020), and to intense frazil ice formation (Thompson et al., 2020; Nakata101

et al., 2021). Crucially for this study, waves in coastal polynyas are young, fetch-limited,102

strongly forced (u∗/c > 0.1), and therefore short and steep, with a strong tendency to103

break. Over most of polynya area, energy input from the wind dominates over the net104

dissipation, so that the wave energy grows with offshore distance in spite of increasing105

ice concentration. Moreover, the sea surface in polynyas is a complex mosaic of open-106

water areas and patches of young (frazil, grease and shuga) ice forming characteristic elon-107

gated streaks (Eicken & Lange, 1989; Ciappa & Pietranera, 2013; Hollands & Dierking,108

2016; Thompson et al., 2020). The properties of those streaks in one of the most widely109

studied Antarctic coastal polynyas, the Terra Nova Bay Polynya (TNBP; Fig. 1), have110

been recently analyzed by Bradtke and Herman (2023). One of the findings of this pre-111

vious study was a significant slowdown of the observed wave growth in the analyzed polynya112

events in comparison to the expected open-water wave growth under given wind condi-113

tions, an effect that can be attributed only to wave–ice interactions. Inspired by this find-114

ing, in this work we conduct an extensive analysis of wave evolution in a series of TNBP115

events, based on the results from Bradtke and Herman (2023), an additional satellite data116

source providing information on wave breaking patterns, and spectral wave modelling.117
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The overall influence of frazil streaks on waves and, more generally, on the sea sur-118

face properties has been described in several earlier studies based on qualitative visual119

observations (e.g., Ciappa & Pietranera, 2013; Hollands & Dierking, 2016; Ackley et al.,120

2022). Rapid attenuation of short waves in streaks, attributable to a high bulk viscos-121

ity of grease ice, leads to a reduction of surface roughness (and thus wind friction veloc-122

ity u∗), decrease of the mean wave steepness, and weakening of wave breaking and white-123

cap generation (Ackley et al., 2022), thus reducing the sea spray generation and the spray-124

associated component of the ocean–atmosphere turbulent heat flux (Guest, 2021b). The125

question how to quantify and parameterize these effects and, crucially, how they influ-126

ence the spatial evolution of the polynya wave field – with feedbacks to sea ice thermo-127

dynamics and dynamics – remains to be answered. In this study, we make the first at-128

tempt at estimating the role of individual source terms in the wave-energy balance in129

shaping the polynya wave fields. We use the satellite-derived ice concentration and wave130

data from Bradtke and Herman (2023), combined with wind fields from a regional weather131

model, to set up and calibrate a spectral wave model of the TNBP, for ten polynya events132

from the period 2016–2021. We review the available formulations of the relevant source133

terms – wind input, deep-water dissipation, quadruplet wave–wave interactions, and at-134

tenuation in sea ice – and seek the combination of model settings that best reproduces135

observations. We also discuss the (numerous) uncertainties and limitations of the avail-136

able observations and models. In our analysis, we pay particular attention to the influ-137

ence of frazil streaks on wave breaking. To this end, we adopted an image filtering tech-138

nique for detection of breakers in very-high resolution (0.5 m) visible satellite images of139

the sea surface. We then compare the spatial variability of two different, but closely re-140

lated variables – the satellite-derived surface area fraction covered by breakers, and the141

simulated wave energy dissipation due to whitecapping – and estimate the reduction of142

the total (polynya-surface-integrated) energy dissipation due to the presence of sea ice.143

2 Data Sources and Processing144

2.1 Ice concentration, wave properties and wind data145

As mentioned in the introduction, this analysis is based on the data and results of146

Bradtke and Herman (2023). From the set of satellite images analyzed there, ten have147

been selected for the present study (Table 1, Supplementary Fig. S1), based on their suf-148

ficiently large spatial extent (given the images’ resolution of 10 m, no reliable wave in-149

formation can be obtained from nearshore areas and from relatively small polynyas due150

to too small wavelength-to-pixel-size ratios). The ten images were obtained with two satel-151

lite sensors: OLI (Operational Land Imager) and MSI (Multispectral Instument) on board152

Landsat-8 and Sentinel-2 satellites, respectively. All details related to image processing153

and analysis can be found in Bradtke and Herman (2023) and are not repeated here. The154

data used in this study include, for each polynya, maps of polynya extent, ice concen-155

tration A, and peak wavelength Lp (and the corresponding deep-water wave period Tp156

and frequency fp = T−1
p ). As discussed in Bradtke and Herman (2023), the peak wave-157

length, together with wave direction at the spectral peak (not considered here), are two158

spectral characteristics that can be robustly determined from visible satellite imagery.159

Indisputably, the lack of information on wave heights and the shape of the tails of the160

spectra is a serious limitation. However, as the analysis in the following sections will show,161

spatial variability of Tp alone provides valuable insight into the properties of the under-162

lying wave field and, crucially, constrains the possible combinations of the adjustable pa-163

rameters in spectral modelling, thus allowing inferences about individual physical pro-164

cesses at play.165

The results of the Antarctic Mesoscale Prediction System (AMPS; Powers et al.,166

2012, https://www.earthsystemgrid.org/project/amps.html) are used as a source167

of surface atmospheric data. Results from a nested subdomain (the so called Ross Island168

grid) are used, with resolution of 1.1 km in 2016 and 0.89 km in 2019–2021. For each169
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Figure 1. (a) Location of the TNBP and spatial distribution of sea ice on 19 Sep. 2019 on

the Sentinel-2 MSI RGB composite (Copernicus Sentinel data 2019); the outline of the polynya

and the location of the Manuela weather station on Inexpressible Island (I.I.) are marked with

the black polygon and red dot, respectively. The orange rectangle shows extent of the analyzed

subsets of WorldView-2 Panchromatic image (imagery© 2019 Maxar Technologies), fragments

of which are zoomed in panels (b) and (c). The dashed white line and white dots in (a) show the

location of the transect and points at which the results are analyzed in section 4.

Table 1. Summary of polynya events analyzed in this study

Date Time Sensor Ta,M Uw,M θw,M Sp Le Lc

(UTC) (◦C) (m·s−1) (degr) (km2) (km) (km)

2016-10-05 2120 MSI −22.5 24.1 260 1043 36.2 63.7
2016-10-06 2050 MSI −24.6 25.4 262 740 40.8 62.3
2016-10-17 2050 OLI −21.4 28.4 261 1110 33.8 46.7
2016-10-22 2110 MSI −22.3 21.3 259 975 28.3 46.8
2016-10-24 2100 OLI −17.4 28.7 257 1762 53.3 55.2
2019-09-19 2100 MSI −26.5 33.8 258 1920 56.3 50.0
2019-09-29 2110 OLI −23.4 32.4 250 1729 45.4 57.9
2020-10-19 2100 OLI −26.2 23.5 261 674 36.2 46.9
2020-10-26 2100 OLI −20.6 23.3 266 1648 39.5 65.7
2021-10-07 2130 MSI −23.2 28.1 272 736 35.5 52.2

Ta,M, Uw,M, θw,M – air temperature, wind speed and direction, respectively, at the Manuela

weather station; Sp – polynya surface area; Le and Lc – polynya extent in cross-shore

and along-shore direction, respectively.
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polynya, 9-hour forecasts from 12 UTC valid for 21 UTC were selected, i.e., the time clos-170

est to the acquisition time of the satellite scenes (Table 1). The 2-m AMPS wind vec-171

tors were recomputed onto the 10-m height with the algorithm based on the Monin–Obukhov172

similarity theory, as described in Guest (2021b). (Note that the measured wind data from173

the Manuela weather station in Table 1 are provided for informative purpose only; the174

wave modelling is based exclusively on the spatially-variable AMPS wind fields.)175

2.2 Wave breaking patterns176

The only additional source of satellite data used here, but not in Bradtke and Her-177

man (2023), is a very-high resolution panchromatic (PAN) satellite image taken by the178

WorldView-2 (WV2) satellite (imagery © 2019 Maxar Technologies) showing a fragment179

of the polynya from 19. Sep. 2019 (see Figs. 1 and 2 for a location and for zoomed frag-180

ments). The image was acquired at 21:22 UTC, i.e., 22 minutes after the correspond-181

ing MSI image, but considering the stable wind and air temperature forcing on that day182

it is reasonable to assume that the wave and sea ice conditions were very similar as well.183

We analyze a fragment of the scene taken by the satellite which covers an area of 18.3×5.5 km2.184

We use the standard LV2A product, without atmospheric correction, georeferenced and185

resampled to a grid of 0.5·m (the viewing geometry provides effective resolution of 0.53 m)186

in UTM zone 58S projection. Due to the small size of the analyzed area and cloudless187

sky, it can be assumed that the influence of the atmosphere on the image brightness is188

spatially homogeneous. During the satellite overpass the sea surface was illuminated by189

the Sun from a direction of 54.1◦ (azimuth angle) and an elevation angle of 7.7◦. With190

the predominant direction of wave propagation towards the east (see Supplementary Fig.191

S1), this geometry of illumination causes shadowing of the windward slopes of steep waves.192

This makes it easier to identify them on a satellite image. However, the limited avail-193

ability of light makes it impossible to analyze features occurring in shadowed areas of194

open water.195

As can be seen on the WV2 image (Fig. 2), whitecaps strongly contrast with darker196

water, even if the water reflectance is raised by frazil ice. The lighting conditions make197

also the very bright crests of steep waves clearly visible against the background of the198

frazil streaks. Therefore, in order to detect potential breakers in the analyzed image, we199

were looking for sharp contrast between neighboring pixels by applying a moving-window200

filter that calculates the sum of differences between a given pixel and the eight nearest201

pixels in the directions between 225◦ and 315◦ (SW to NW). Initially, the panchromatic202

image was de-noised with an edge-preserving filter. Pixels for which the calculated con-203

trast value was higher than the image average by more than 3 standard deviations (the204

same threshold for the whole image) were identified as sharply contrasted objects. To205

limit false alarms, only those objects that met the size criterion (more than 3 pixels con-206

nected by sides or corners) and contained bright pixels (the brightness threshold was de-207

termined by unsupervised ISODATA classification of the de-noised PAN image) were con-208

sidered as potential breakers (Fig. 2). In the next step, the surface area of pixels recog-209

nized as breakers was used to calculate whitecap fraction W within 200×200 m2 grid cells210

snapped to the grid of the wave model (see further section 3.3); and zonal fraction WX211

was calculated in vertical zones 200 m wide, oriented perpendicularly to the xUTM axis.212

Due to differences in spatial patterns of frazil streaks in the upper and lower parts of the213

PAN image, it was divided into 2 subsets (see Fig. 1b) and zonal statistics were calcu-214

lated for each of them separately. Finally, ice–water mask derived from WV2 data was215

used to calculate whitecap fraction WX separately for ice-free and ice-covered regions,216

respectively.217

Due to the lack of independent observations that could be used to validate our al-218

gorithm, its adjustable parameters have been selected in such a way that, first, the out-219

lines of detected breakers (Fig. 2) correspond as close as possible to a visual assessment220

by a human observer, and second, if any bias in the results is present, it is towards overde-221
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Figure 2. Zoomed fragments of WorldView-2 Panchromatic image (Imagery ©2019 Maxar

Technologies) showing variability in pixel brightness due to the presence of frazil ice, waves and

effects of their breaking. Outlines of detected breakers are marked in red.

tection in ice and underdetection in water rather than vice versa. Thus, in spite of un-222

avoidable uncertainties, the differences between ice-covered and ice-free regions can be223

treated as reliable and under- rather than overestimated.224

Image processing and visualization was performed with the Trimble eCognition De-225

veloper and ESRI ArcGIS Pro software.226

3 Spectral Wave Modeling227

3.1 Definitions and assumptions228

Let us consider a stationary wave field described by spatially variable wave energy229

spectra E(x, f, θ), where x is location in horizontal space, and f , θ are wave frequency230

and propagation direction, respectively. Let us further assume that the waves are forced231

by time-independent wind with 10-m speed u10(x) and direction θw(x), and that the wa-232

ter depth is large, so that refraction, bottom friction and other processes related to wave–233
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bottom interactions can be omitted. The wind-induced, tidal and other currents are omit-234

ted as well. Finally, let the sea ice concentration be described by A(x).235

Under these assumptions, the wave energy conservation equation (e.g., Holthuijsen,236

2007) reduces to:237

cg · ∇E = [1−A+ ainA]Sin + Sds + Snl +ASice, (1)

where cg = cg[cos θ, sin θ], cg = dσ/dk is the group velocity, and the angular frequency238

σ = 2πf and wave number k fulfill the deep-water dispersion relation σ2 = gk, with239

g gravitational acceleration. No changes of the dispersion relation due to the presence240

of frazil/grease ice are considered here – an assumption consistent with that of a low thick-241

ness and low Reynolds number of frazil/grease ice in streaks (e.g., Collins et al., 2017,242

note that observations and models of wave dispersion in frazil ice referred to in this and243

similar papers are limited to frazil/pancakes mixtures typical for freezing conditions in244

the MIZ – ice type that can be found in the outermost regions of polynyas, but not in245

their central parts of interest here). The source terms on the right-hand side of (1) de-246

scribe energy generation by wind Sin, deep-water dissipation Sds, quadruplet wave–wave247

interactions Snl, and attenuation by sea ice Sice. As can be seen in (1), Sice is scaled with248

ice concentration A. The coefficient ain ∈ [0, 1] allows for analogous scaling of Sin: the249

wind input is unaffected by ice if ain = 1 and it equals zero over ice if ain = 0. The250

two remaining source terms, Sds, Snl, are unaffected by the presence of the ice. Justi-251

fication for this treatment of source terms is provided below.252

3.2 Overview of source terms formulations253

In most spectral wave models (e.g., SWAN, WaveWatchIII, or WAM), several dif-254

ferent formulations of each source term in (1) are implemented. Their optimal choice de-255

pends on a particular application (domain size, water depth, expected u∗/c ratios, pres-256

ence of swell, etc.). Reviewing those formulations is out of the scope of this paper. In-257

stead, we concentrate here on selected parameterizations suitable for polynya conditions,258

with focus on those available in SWAN (Simulating WAves Nearshore; Booij et al., 1999),259

which is the model used in our simulations. Whenever several choices seem adequate,260

the more widely used ones (or, preferably, default) are selected.261

3.2.1 Snl262

Starting with the Snl term, it is important to recall that the nonlinear wave–wave263

interactions are inherently related to the dispersion relation of waves or, more precisely,264

to the existence of certain combinations of wavenumber vectors and wave frequencies among265

the components of the wave energy spectra (resonance conditions; see, e.g., Holthuijsen,266

2007). Therefore, as long as the assumptions made in section 3.1 hold (large water depth267

and validity of the open-water dispersion relation in frazil streaks), it is reasonable to268

assume that the quadruplet wave–wave interactions remain “active” and can be com-269

puted in the same way in ice-covered and ice-free areas (it should be noted, hoewever,270

that in different ice types different types of nonlinear interactions may occur, e.g. tri-271

ads in fields of large floes in which hydroelastic effects are significant, see, e.g., Deike et272

al., 2017).273

In SWAN and other spectral wave models, the DIA (discrete interaction approx-274

imation) by Hasselmann et al. (1985) is the default way of computing Snl. Out of the275

very large number of quadruplet combinations in a given energy spectrum, DIA consid-276

ers only two quadruplets for each spectral component (see SWAN Team, 2022, for de-277

tails of DIA and its implementation in SWAN). Without making premature references278

to our model setup and simulations, we remark here that in spite of many attempts, we279

were unable to calibrate SWAN to the data when using DIA: the simulated wave peri-280

ods were strongly biased in a way that could not be reduced by any reasonable combi-281
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nation of tunable coefficients. Replacing the DIA with the near-exact method (Van Vled-282

der, 2006) removed the problems, suggesting that a careful treatment of quadruplet in-283

teractions is crucial for reproducing wave growth in polynyas (and in similar settings)284

with spectral wave models. This finding is not surprising if one considers the crucial role285

of nonlinear wave–wave interactions in modifying waves propagating through oil spills.286

Although energy dissipation within the oil layer is limited to very short waves, with fre-287

quencies well over 1 Hz (with particularly strong attenuation in the range 3.5–6.8 Hz due288

to Marangoni resonance), transfer of energy from lower frequencies to that highly dis-289

sipative frequency range by quadruplets leads to a very effective dissipation mechanism,290

attenuating waves with frequencies as low as 0.7 Hz (Alpers & Hühnerfuss, 1989; Bene-291

tazzo et al., 2019). How relevant similar combinations of processes are for sea ice remains292

to be studied. Notably, the importance of nonlinear interactions (combined with wind293

input) in reproducing the observed apparent attenuation rates of high-amplitude waves294

in the MIZ under storm conditions has been shown by Li et al. (2015).295

3.2.2 Sin and Sds296

For Sin and Sds – the two source terms that are very closely related in spectral wave297

models (Holthuijsen, 2007) – the formulation of Van der Westhuijsen et al. (2007) is se-298

lected. It combines wind input of Yan (1987) with nonlinear saturation-based whitecap-299

ping based on Alves and Banner (2003) and dissipation due to non-breaking waves based300

on Komen et al. (1984). Contrary to earlier models of whitecapping, which computed301

breaking probability from spectral-mean wave steepness (Komen et al., 1984), the for-302

mulation of Alves and Banner (2003) and the modified version of Van der Westhuijsen303

et al. (2007) used in SWAN make use of the observed links between wave breaking and304

wave groups. Accordingly, the so-called spectral saturation B(k) – a measure of wave305

steepness – is computed from directionally-integrated spectrum Ē(f) ≡
∫ 2π

θ=0
E(f, θ)dθ306

within narrow frequency bands. Thus, dissipation is local in the wavenumber space. This307

is particularly relevant for the present case: it allows for breaking of short, steep, fast-308

growing waves in open-water patches between frazil streaks, even if the longer waves at309

the peak of the spectrum have milder slopes, so that the spectral-average wave steep-310

ness does not exceed the critical value. The older algorithms fail to reproduce this case311

of breaking limited to the narrow frequency range of the spectrum. Importantly as well,312

although Sds is routinely referred to as the ‘whitecapping source term’, it is in fact sup-313

posed to represent all (largely unknown) deep-water dissipation mechanisms, including314

turbulence. Sds is thus computed as a weighted sum of two contributions, whitecapping315

Swc and dissipation unrelated to wave breaking Snbr:316

Sds = fbrSwc + (1− fbr)Snbr, (2)

where fbr ∈ [0, 1]. For Swc we have:317

Swc = −Cds

[
B(k)

Br

]p/2
(gk)1/2E(f, θ), (3)

where the saturation B(k) = cgk
3Ē(f), and Cds, Br and p are tuning coefficients (see318

SWAN Team, 2022, for their treatment in SWAN). Details of calculation of Snbr and fbr319

can be found in the SWAN documentation. Crucially, in strongly forced, short waves an-320

alyzed here, fbr ≃ 1 over the whole energy-carrying wave frequency range (f between,321

approximately, 0.13 and 0.6 Hz), i.e., both around the peak and in the tail of the spec-322

trum (0.13 Hz is the lowest peak frequency found in satellite images analyzed in this study).323

Thus, Sds ≃ Swc. Under different conditions, when fbr < 1 and the contribution of324

Snbr to Sds is substantial, it might be suitable to multiply Snbr by ice concentration A325

in order to turn off Snbr over ice (reflecting the fact that frazil and grease ice suppresses326

turbulence due to its large viscosity). In our simulations it did not produce any notice-327

able differences in the results.328
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In general, very little is known about wave breaking in frazil and grease ice. As dis-329

cussed further in section 4.2 and as can be seen in Figs. 1 and 2, long waves do occasion-330

ally break within ice streaks in TNBP, although much less frequently than in the sur-331

rounding open water. As in the case of Snl, we may seek analogies with oil slicks, for which332

available observations suggest that the oil’s high (and legendary) effectiveness in sup-333

pressing wave breaking is a secondary effect of other processes rather than a direct me-334

chanical response of the waves to the oil presence (e.g., Cox et al., 2017). For spectral335

modelling it means that – provided other source terms are properly computed – the ef-336

fect of reduced whitecap dissipation in ice-covered areas should be obtained as a mod-337

elling result in spite of Swc being computed in the same way everywhere (note that this338

is the default setting in SWAN).339

As for the wind input term Sin, its general form is:340

Sin = βinE, where βin ≡ βin(u∗/c, θrel) (4)

and where θrel is the angle between wind direction and propagation direction of the given341

spectral component. In the model of Yan (1987):342

βin = max

{[
a1

(u∗

c

)2

+ a2
u∗

c
+ a3

]
cos θrel + a4, 0

}
. (5)

The coefficients used in SWAN (recalibrated from the original ones by Van der West-343

huijsen et al., 2007) are: a1 = 4.0 ·10−2, a2 = 5.52 ·10−3, a3 = 5.2 ·10−5, a4 = −3.02 ·344

10−4. An important advantage of this model is that, contrary to the earlier ones formu-345

lated for low wind speeds, it is suitable for strongly forced waves as well. As will be shown346

below, in polynyas this condition is fulfilled over most of both geographic and spectral347

space (i.e., the majority of polynya surface area, and energy-carrying wave frequency range),348

with an exception of the longest waves at the downwind end of the polynya.349

For a given 10-m wind speed u10, change in Sin due to the presence of sea ice may350

result from three factors: (i) change of the form of the βin function (5); (ii) change of the351

wave phase speed c due to a modified dispersion relation in ice; and (iii) change of u∗352

due to a modified roughness of the surface. If we assume that expression (5) remains valid353

– to the best of our knowledge there are no data available that could be used to verify354

this assumption – and if we keep the assumption made earlier about the dispersion re-355

lation in polynyas, the only factor that remains is the surface drag. (Note that the in-356

flunce of the dispersion relation in sea ice on wind wave growth has been analyzed by357

Zhao & Zhang, 2020)358

The relationship between u∗ and u10 is u2
∗ = CDu

2
10, where CD is the 10-m drag359

coefficient. In spectral wave models, CD = CDn, i.e. it represents the neutral drag co-360

efficient and it is a function of u10 only. The default CDn(u10) relationship used in SWAN361

is by Zijlema et al. (2012), which reproduces the observed drop of surface drag at very362

high wind speeds (Janssen & Bidlot, 2023):363

CDn =
(
0.55 + 2.97ũ− 1.49ũ2

)
· 10−3, where ũ = u10/uref (6)

and uref = 31.5 m·s−1 is a reference wind speed at which CDn reaches maximum. This364

formulation disregards possible spatial variability in surface properties, as well as effects365

of atmospheric stability – both factors which very likely are important in polynyas, with366

complicated spatial patterns of frazil–open water patches, and at air temperature Ta of-367

ten 20–30◦C lower than the sea surface temperature Ts ≃ −1.7◦C (see Table 2.1 for Ta368

during the analyzed events).369

The wind drag over open ocean has been analyzed for many years under a wide range370

of wind and sea state conditions. Over vast areas of the oceans, especially far from the371

coasts and frontal zones, the assumption CD ≃ CDn is justified, because the air–sea tem-372

perature differences tend to be small. At very low air temperatures, however, the neg-373
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Figure 3. Surface drag and wind input over open water and sea ice. In (a), colors show the

open-water surface drag coefficient CD(u10, Ta) (in 103); magenta symbols mark the ten (u10, Ta)

combinations in the analyzed TNBP events (Table 1). In (b), colors show the open-water u∗/c

ratio (–) in function of wave frequency f and wind speed u10. The dashed contours mark: the

value of βin,w = 0 (white), u∗/c = 0.1 (black) and u∗/c = a2/a1 ≃ 0.14 (magenta). The dotted

rectangle marks the approximate boundary of a region relevant for polynyas (see text for details).

In (c), the ratio βin,i/βin,w is shown for four selected values of wind speed (continuous lines; left

axis), together with the corresponding curves for βin,w (dashed lines; right axis). The black line

with diamonds shows the mean ratio βin,i/βin,w at u10 = 25 m·s−1 within the frequency range

f ∈ [0.13, 0.6] Hz (thick red line). Panel (d) is analogous to (b), but for sea ice instead of open

water. Note that all results in (a)–(d) are for θrel = 0; they change very little for |θrel| < 30◦.

ative vertical stability of the lower atmosphere leads to a stronger ocean–atmosphere cou-374

pling and increased drag at the surface (an effect that, over polynyas, is partially reduced375

by very high wind speeds). For CDn given by (6), CD(u10, Ta) can be determined using376

the Monin–Obukhov stability theory. The result is shown in Fig. 3a, together with the377

combinations of u10 and Ta in the analyzed polynya events (magenta symbols). As they378

all cluster at the plateau of relatively constant values of CD, in the rest of this analy-379

sis we set, for the sake of simplicity, the open-water drag to CDw = 2 · 10−3.380

Studies on the surface drag over an ice-covered ocean concentrate mainly on the381

Arctic ice pack and the MIZ, i.e., conditions where the surface morphology and the as-382

sociated form drag play an important role (e.g., Garbrecht et al., 2002; Lüpkes & Birn-383

baum, 2005; Lüpkes et al., 2012; Mchedlishvili et al., 2023). Observations for frazil and384

grease ice are rare and limited to low-wind and mildly-sloped wave conditions (see Guest,385

2021b, and references there). For frazil and grease ice, drag coefficients between 0.7·10−3
386
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and 1.3·10−3 have been reported. No formula relating wind speed to surface drag, anal-387

ogous to (6) and valid for frazil/grease sea ice has been proposed so far. In polynyas, the388

sea surface in ice-covered areas is characterized by the presence of long waves (with length389

and amplitude similar to those in the surrounding open water) and absence of high-frequency390

waves (Fig. 1). It is an open question how these unique surface properties – very smooth391

at length scales of centimeters to meters, undulating at length scales of tens of meters392

– modify the bulk drag coefficient. Aware of uncertainties behind this assumption, we393

select the middle value from the range reported above (1·10−3), increase it by 5% to ac-394

count for stability effects analogous to those in open water (Fig. 3a), and arrive at the395

value CDi = 1.05 · 10−3 for ice-covered parts of the polynyas.396

With these CDw and CDi, the ratio u∗/c can be computed for a range of (f, u10)397

combinations over open water and ice (Fig. 3b,d). When the wind speed is low and the398

waves are long (MIZ-typical conditions), u∗/c is small and, consequently, in equation (5),399

the second term in square brackets is larger than the first one (regions to the left of the400

dashed magenta lines in Fig. 3b,d). Thus, βin is approximately linearly proportional to401

u∗/c and its values are very low (they equal zero to the left of the dashed white lines in402

Fig. 3b,d). Conversely, for short waves and high wind speeds, βin is large and propor-403

tional to (u∗/c)
2. Crucially, over both ice and open water, most of the combinations of404

f and u10 relevant for polynyas lie in the strongly-forced regime (dotted rectangles in405

Fig. 3b,d). For wind speeds between, say, 20 and 35 m·s−1, the ratio βin,i/βin,w decreases406

slowly with f (it approaches CDi/CDw as f → ∞), but it remains fairly constant for407

wave frequencies f > 0.2 Hz (Fig. 3c). It drops rapidly to very low values as f drops408

below 0.2 Hz, but for those long waves βin itself is very small (dashed lines in Fig. 3c)409

– if these waves grow, its due to nonlinear wave–wave interactions and not due to direct410

energy input from the wind. Therefore, for the sake of simplicity, we set ain in (1) to a411

constant value, equal to the mean βin,i/βin,w over frequency range f ∈ [0.13, 0.6] Hz at412

wind speed u10 = 25 m·s−1 (a typical value for our set of TNBP events). Thus, ain =413

0.56 in all our simulations, as marked with the black line in Fig. 3c.414

By drawing an analogy to oil slicks once again, we notice that the observed ratios415

of u∗ over slicks to that over open water are close to 0.8 (e.g., Alpers & Hühnerfuss, 1989),416

leading to the ratios βin,i/βin,w of 0.66–0.67, higher than but comparable to our estimate.417

3.2.3 Sice418

Finally, for the ice dissipation term Sice in (1), an empirical expression used in both419

SWAN and WaveWatchIII wave models (Collins & Rogers, 2017; Rogers, 2019) has the420

form of a sum:421

Sice = αiceE =

nm∑
n=0

αice,nf
nE, (7)

where αice,n for n = 1, . . . , nm are coefficients that can be tuned to a particular situ-422

ation or set to values from one of the published studies (see, e.g., Rogers, Meylan, & Ko-423

hout, 2018; Rogers, Posey, et al., 2018, for an overview of available formulae). The de-424

fault settings in SWAN are from Meylan et al. (2014), with αice,2 = 1.06·10−3 s2m−1,425

αice,4 = 2.3·10−2 s4m−1 and the remaining αice,n equal to zero. With this set of coef-426

ficients, the energy attenuation in ice gradually changes slope from f2 for long waves to427

f4 in the tail of the spectrum. Several subsequent studies use this form of Sice with re-428

tuned αice,2 and αice,4 (e.g., Rogers, Meylan, & Kohout, 2018; Rogers et al., 2021). Gen-429

erally, their values in frazil and grease ice are even a few times lower than in pancakes430

and ice floes. Some observations provide evidence for f5 or f6 in the spectral tail (Rogers431

et al., 2021, and references there), leading to a different combination of zero and non-432

zero coefficients in (7).433

Notably, Sice in (7), being purely empirical, does not differentiate between various434

physical energy dissipation mechanisms that are relevant in different ice types. The change435
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of slope of αice(f) from low to high wave frequency, described above, is often attributed436

to different (combinations of) physical attenuation mechanisms dominating in the long-437

wave and short-wave parts of the spectrum. In frazil and grease ice analyzed here, how-438

ever, it seems reasonable to assume that viscous dissipation is the only relevant process439

and that, at least within the relatively narrow frequency range carrying most energy, a440

single exponent n can be used for all f .441

Additional formulations of Sice with dependence on ice thickness have been pro-442

posed and are implemented in SWAN. They are not considered here. As this study con-443

centrates on the active-frazil parts of polynyas, i.e., before the ice consolidates into a rel-444

atively compact ice cover, no significant effects of ice thickness are expected. Analogously,445

we do not consider here a source term describing wave scattering in sea ice, as this pro-446

cess is not relevant in frazil and grease ice.447

3.3 Model setup and simulations448

The simulations in this analysis are performed with SWAN version 41.45 (http://449

www.swan.tudelft.nl). In accordance with the assumptions formulated in section 3.1,450

several simplifications are made in the model setup. A rectangular model domain with451

200 m spatial resolution is used, with realistic coastlines, but a constant water depth of452

500 m. For each polynya, two sea ice maps have been prepared, one with ice concentra-453

tion within the polynya A = 0 (for reference, open-water model runs; see below), and454

one with ice concentration obtained by averaging the values of A determined in Bradtke455

and Herman (2023) within each 200×200 m2 grid cell of the model. In both cases, the456

ice pack surrounding the polynya has ice concentration A = 1. The model is run in a457

stationary mode and forced with wind fields from AMPS (section 2). No currents are458

taken into account. In spectral space, directional resolution of 10◦ and 52 frequency bins459

logarithmically spaced between 0.05 and 1.576 Hz are used. Thus, the maximum frequency460

is close to six times the highest expected peak frequency (∼0.25 Hz), and the frequency461

increment factor equals 1.07, as recommended for simulations with the near-exact quadru-462

plet wave–wave interaction algorithm (SWAN Team, 2022).463

In the simulations, several combinations of ain, and αice are considered, as listed464

in Table 2. Setup S0, with ain = 1 and αice = 0 provides a reference, open-water test465

case. In setup S1, wind input over sea ice is turned off (ain = 0) and this is the only466

effect ice has on waves (Sice = 0). In setup group S2, ain = 0.56, as determined in sec-467

tion 3.2. S2 0 is analogous to S1. In S2 f24 (M14) the default SWAN settings for Sice468

are used, based on Meylan et al. (2014). In the remaining four setups the sea ice source469

term is fitted to observations by running the model several times with different combi-470

nations of coefficients and selecting the version that results in the best agreement be-471

tween satellite-derived and simulated peak wave periods. Among many possible crite-472

ria of ‘the best’ agreement, the mean bias has been selected, as this is the main deficiency473

of setup S0 that we aim at removing. Thus, the optimization is stopped when the rel-474

ative bias, defined as the average ratio (Tp,obs−Tp,mod)/Tp,obs, does not exceed 1% (Ta-475

ble 2). The resulting αice(f) are shown in Fig. 4.476

Obviously, many more combinations of non-zero αice,n than those considered here477

could be tested, including those that are predicted by various theoretical models of vis-478

cous and viscoelastic dissipation in sea ice (Meylan et al., 2018). However, as we have479

no means to extract quantitative information on spectral tails from the available satel-480

lite imagery, insight gained from additional simulations would be rather limited. As we481

demonstrate in the next section, setups S2 f4, S2 f5 and S2 f6 are sufficient to illustrate482

the sensitivity of the model to ice-related dissipation at high wave frequencies and to for-483

mulate some important conclusions regarding frequency dependence of Sice in polynyas.484
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Table 2. Summary of SWAN simulations: sea-ice related model parameters and model perfor-

mance

Model parameters Statistics of Tp

Setup ID ain αice,n c.c. bias rel. bias s.d.d.

S0 1 0 for all n 0.87 1.15 s 0.19 0.49 s
S1 0 0 for all n 0.80 −0.06 s −0.01 0.39 s
S2 0 0.56 0 for all n 0.85 0.66 s 0.11 0.42 s

S2 f24 (M14) 0.56 αice,2 = 1.06 · 10−3, αice,4 = 0.230 · 10−1 0.84 0.34 s 0.06 0.40 s
S2 f24 (fitted) 0.56 αice,2 = 0.53 · 10−3, αice,4 = 1.035 · 10−1 0.80 −0.02 s −0.003 0.43 s
S2 f4 (fitted) 0.56 αice,4 = 1.2 · 10−1 0.87 0.07 s 0.01 0.37 s
S2 f5 (fitted) 0.56 αice,5 = 0.66 0.86 0.04 s 0.01 0.40 s
S2 f6 (fitted) 0.56 αice,6 = 3.2 0.83 0.05 s 0.01 0.45 s

c.c. – correlation coefficient, s.d.d. – standard deviation of differences

Figure 4. The five αice(f) curves considered in model version S2. Blue and red thin dashed

lines show the components of the two versions of S2 f24 (M14 and fitted), and the black vertical

lines mark the range of wave frequencies corresponding to the observed peak periods.

4 Results485

In the following, we first compare the performance of the tested model setups (Ta-486

ble 2) in terms of their ability to reproduce the observed patterns of peak periods Tp in487

all ten polynya events. Subsequently, we perform a detailed analysis of the satellite ob-488

servations and modelling results for the polynya from 19. Sep. 2019. It is selected for489

this purpose for two reasons. First, due to its very large size, it covers the whole range490

of observed wave periods in the analyzed dataset. Second, it is the only image for which491

the (nearly) simultaneous wave breaking patterns could be obtained from the WV2 im-492

age, as described in section 2.2. The whitecap fraction W and energy dissipation Swc within493

the WV2 scene and over the whole polynya are discussed in section 4.3. Finally, in sec-494

tion 4.4, we return to the whole dataset of 10 polynyas and analyze global (polynya-surface495

averaged) statistics of individual source terms.496
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(a)  S0                                                                     (b) S1                                                                     (c) S2_0                                                                  (d) S2_f24 (M14)

(e)  S2_f24 (fitted)                                                  (f) S2_f4 (fitted)                                                     (g) S2_f5 (fitted)                                                    (h) S2_f6 (fitted)

Figure 5. Scatterplots of observed and modelled peak periods, Tp,obs and Tp,mod, from the

simulations listed in Table 2. The color scale shows values in percent of the total number of data

points (i.e., all values in each plot sum up to 100), and magenta lines show the linear regression

to the data.

4.1 Performance of the tested model setups497

For the purpose of model–observations comparison, the satellite-derived maps of498

Tp from the 10 polynyas are averaged within the meshes of the SWAN grid, resulting in499

a dataset of over 2.3·105 values. The observed peak periods have values between 4 and500

8 s, with the mean and median equal to 5.87 s and 5.81 s, respectively.501

As expected from the results of a simple one-dimensional (1D) model in Bradtke502

and Herman (2023), setup S0 significantly overestimates the wave periods – on average503

by 1.15 s or close to 20% (Table 2 and Fig. 5a). This effect occurs in spite of the well504

documented tendency of SWAN and other spectral models to underestimate wave pe-505

riods (see, e.g., Rogers et al., 2003). Moreover, the AMPS wind speeds used as model506

input generally tend to be slightly lower than the wind speeds measured at the Manuela507

station, i.e., if there is a bias in the model forcing, it is towards too weak rather than too508

strong winds. Thus, as already concluded in Bradtke and Herman (2023), sea ice is the509

only likely factor responsible for the discrepancy between the observed wave periods and510

those expected in open water.511

Not surprisingly, the bias is reduced in setup S1, with ain = 0, even though no512

energy dissipation in sea ice is assumed. In fact, the mean bias in S1 is close to zero, and513

the standard deviation of differences is reduced relative to S0. However, these improve-514

ments are achieved at the cost of lowered correlation coefficients; moreover, the model515

clearly underestimates the large wave periods (Fig. 5b), i.e., the wave growth is inhib-516

ited in downwind parts of polynyas with high ice concentration. Obviously, the assump-517

tion behind S1 that the influence of frazil streaks is strong enough to completely shut518

down the wind input, but at the same time that the ice has no direct influence on waves519

through dissipation, seems unrealistic. However, adding to S1 any αice > 0 would lead520

to an even worse model performance and to a negative bias. Hence, the lack of wind in-521
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put over ice-covered areas is an unlikely explanation for the observations and, accord-522

ingly, ‘deactivation’ of Sin over ice is not a good choice.523

As can be seen in Table 2, setting ain to 0.56 as in S2 0 reduces approximately half524

of the mean bias of S0 (Fig. 5c), with a still further reduction in setup S2 f24 (M14), i.e.,525

when the default Sice SWAN setting is used (Fig. 5d). The performance can be improved526

further by fitting αice,2 and αice,4. However, the fitted value of αice,2 is twice as low as527

in the corresponding setup with M14, and αice,4 is over four times higher, meaning that528

the fitted αice is dominated by the f4 term: the change of slope towards f2 takes place529

at frequencies well below 0.1 Hz, i.e., outside of the range of wave frequencies found in530

our dataset (compare blue and red curves in Fig. 4). Indeed, dropping the αice,2 term531

as in S2 f4 results in the fitted value of αice,4 very close to that in S2 f24 (Table 2). More-532

over, although setup S2 f4 has only one fitted coefficient as opposed to two in S2 f24, it533

gives the best global statistics not only in terms of the mean bias, but also the correla-534

tion coefficient and standard deviation of differences – and it performs well in the whole535

range of the observed values of Tp (Fig. 5f). Therefore, the simpler version S2 f4 is pre-536

ferred over S2 f24.537

Finally, the last two tested setups are S2 f5 and S2 f6, which, as expected, leads538

to a stronger (weaker) attenuation of the lowest (highest) wave periods (Fig. 5f–h). With539

increasing power n the scatter gets slightly higher and the correlation coefficient lower540

(Table 2), but, arguably, the differences between the global statistical measures of se-541

tups S2 f4, S2 f5 and S2 f6 are rather subtle. This is not surprising as the analysis so542

far is limited to the peak periods, i.e., the frequency range in which the strength of dis-543

sipation in S2 f4, S2 f5 and S2 f6 is very similar (Fig. 4). The differences between these544

setups can be expected to be more substantial in the tails of the wave energy spectra.545

Unfortunately, as stated earlier, we cannot perform any quantitative comparison between546

the observed and modelled spectral tails. However, as we will see in the next section, large547

qualitative differences between the results of S2 f4, S2 f5 and S2 f6 allow for some (care-548

ful) conclusions.549

4.2 The polynya from 19. Sep. 2019550

The polynya from 19. Sep. 2019 (Fig. 1) is the largest among the ten polynyas anal-551

ysed here (see Sp in Table 1). At the time the analysed satellite image was acquired, the552

area had been subject to prolonged strong WNW winds with speeds exceeding 20 m·s−1
553

for ∼36 hours, and exceeding 30 m·s−1 for close to 24 hours (not shown). As the polynya554

has a relatively regular, symmetric shape, it is useful to examine the wind forcing, and555

the observed and simulated wave properties on a transect along its central axis (white556

dashed line in Fig. 1; corresponding maps can be found in Supplementary Figs. S2 and557

S3). At 21 UTC the AMPS wind (Fig. 6a) along that line oscillates between 30 and 35 m·s−1
558

up to a distance x of ∼50 km from shore, and drops to 25–30 m·s−1 only within the last559

∼10 km of the polynya. It also gradually changes direction from WNW to WSW, but560

this change is not fast, in the order of 10◦ per 30 km. In terms of ice concentration (Fig. 6b),561

two clearly different regions can be distinguished: for x below and above 40 km. In the562

first region, the ice concentration varies strongly as the analyzed profile crosses sea-ice563

and open-water patches, but on average it remains rather low (mean value 0.41). In the564

second region, it rarely drops below one (mean value 0.98).565

As can be seen in Fig. 6c, the no-ice setup of SWAN (S0) significantly overpredicts566

the peak wave period (by almost 2 s, i.e., close to 30%, in the offshore part of the polynya).567

It also predicts significant wave heights Hs exceeding 5 m (see Supplementary Fig. S3568

for corresponding maps of Tp and Hs). The three ‘best’ setups identified in section 4.1,569

S2 f4–S2 f6, produce almost indistinguishable Tp(x) and Hs(x) curves. In agreement with570

observations, Tp at the downwind end of the polynya exceeds 7 s (corresponding to peak571

wavelengths of 75–80 m). Notably, Hs reaches maximum at the end of the varying-ice-572
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(a)

(b)

(c)

(d)

(e)

Figure 6. Wind speed u10 and direction θw (a), ice concentration A (b), significant wave

height Hs and peak period Tp (c), wind input Sin (d), and dissipation due to wave breaking Sds

and in sea ice Sice (e) along the central line of the polynya from 19. Sep. 2019 (see Fig. 1 for

transect location). In (c)–(e), the modelling results are shown for four model setups: S0 (dotted

lines), S2 f4 (dashed lines), S2 f5 (continuous lines) and S2 f6 (dash-dotted lines); thick yel-

low line in (c) shows the observed Tp. The black vertical dashed lines at x = 5 km mark the

boundary of the nearshore region where no reliable wave properties could be determined from the

satellite data.
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(b) (c)

(e) (f)

(a)

(d)

S0

S2_f4 S2_f5 S2_f6

Figure 7. Wave energy spectra Ē(f) along the central line of the polynya from 19. Sep. 2019

(see Fig. 1 for transect location) from four model setups: S0, S2 f4, S2 f5 and S2 f6. In (a,b),

every 5th spectrum along the transect is drawn for each setup (S0, S2 f4 and S2 f5 in a, S0,

S2 f4 and S2 f6 in b); black arrows mark the direction of increasing x, and the dashed black line

has the slope f−4. In (c)–(f), colors show log10 Ē (n m2s) for S0 (c), S2 f4 (d), S2 f5 (e) and

S2 f6 (f).

concentration zone, close to x = 40 km, and then stays roughly constant at ∼3 m, in-573

dicating an approximate balance between wind input and dissipation.574

In spite of very similar evolution of the spectral peaks, however, the results of the575

three setups differ substantially from each other for frequencies above ∼0.4 Hz (Fig. 7).576

In S2 f4, the tails of the spectra remain very close those in the open-water case S0, even577

at the downwind end of the polynya. That is, E ∼ f−4 in the tail (Fig. 7a). In open578

water it is a signature of the balance between wind input and whitecapping dissipation579

(red and yellow curves in Fig. 8a–e; see also Fig. 6d,e). Indeed, in S2 f4 S̃in and Sds dom-580

inate in the spectral tail wherever the ice concentration is relatively low (Fig. 8h). At581

higher A, S̃ice is comparable to Sds (Fig. 8f,g) or even higher (Fig. 8i,j), but the frequency582

dependence of both source terms is the same – in terms of their mathematical form they583

are interchangeable. In S2 f5 and S2 f6, to the contrary, ice-induced dissipation of the584

high-frequency waves is strong enough so that they are almost entirely removed from the585

spectra as soon as the ice concentration exceeds ∼0.5. This produces spectral shapes sim-586

ilar to those observed in the MIZ (compare brown curves in Fig. 5a,b with, e.g., Fig. 6587

of Rogers et al. (2016) or Fig. 2 of Montiel et al. (2022)). As the waves propagate through588

the patches of grease ice and open water in the central parts of the polynya, the short589

waves in the spectral tail disappear and reappear as in Fig. 7e,f – an aspect of the re-590

sults that qualitatively agrees with what is seen in the WV2 image (Figs. 1 and 2).591

The consequences of very strong dissipation of short waves in S2 f5 and, especially,592

S2 f6 are clearly seen in the plots of source terms in Fig. 8k–u. As the wave energy at593

frequencies higher than ∼0.4 Hz is zero or close to zero in ice-covered locations, the wind594

input there is close to zero as well – as are all other source terms. Remarkably, in these595
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (r) (s) (t) (u)

Figure 8. One-dimensional wave energy spectra Ē(f) and source terms at 5 locations along

the central line of polynya from 19. Sep. 2019 (white dots in Fig. 1a), from model setups

S0 (a–e), S2 f4 (f–j), S2 f5 (k–o) and S2 f6 (p–u). For wind input and sea ice source terms,

S̃in = [1 − A + ainA]Sin and S̃ice = ASice are shown (see equation 1). The black lines show Stot,

the sum of all source terms. Note different y-axis scales in (a–e) and (f–u). The ice concentration

A at points 1–5 equals 0.72, 0.85, 0.29, 1.00 and 1.00, respectively.
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areas the dissipation in sea ice is particularly strong in the range 0.2–0.4 Hz, i.e., just596

below the no-energy range. If the ice concentration is not too high (Fig. 8k,l,p,r), this597

energy sink is strengthened by whitecapping, leading to a negative overall energy bal-598

ance in spite of energy input from wind and, to a lesser extent, from quadruplets. At ice599

concentration close to 1 (Fig. 8n,o,t,u), the role of whitecapping and quadruplets becomes600

less significant, and the first-order energy balance is between wind input and ice dissi-601

pation. As a net effect, the energy spectra evolve towards narrow, swell-like shapes (see602

maps of directional spreading in Supplementary Fig. S3).603

4.3 Wave breaking604

The total surface area of breaking waves estimated from the WV2 data covers 1.08%605

of the whole area of the analyzed image. Their spatial distribution is inversely correlated606

with sea ice concentration (Fig. 9a). Considering the whole area of the WV2 image, the607

contribution of breaking waves to the open-water surface is 1.5%, more than twice as much608

as in the ice-covered areas, where it is 0.6%. Locally, however, this difference depends609

on the spatial pattern of frazil streaks – which can bee seen when the two subsets of the610

WV2 area are analyzed separately (Fig. 10).611

Over much of the lower part of the WV2 image (subset 2), the average ice concen-612

tration calculated in vertical sections is relatively low and remains between 0.2 and 0.4613

with no visible spatial trend (Fig.10). This subset shows narrow streaks of frazil ice that614

only begin to increase in width and merge near the center of the image and gradually615

form a more compact ice cover. Under these conditions, the average whitecap fraction616

WX changes similarly in open water and in ice, with WX reaching a maximum at the617

distance of about 14–16 km from the ice sheet. In this area, the difference between WX618

in water and ice remains roughly constant. Only when the average ice concentration in-619

creases to about 0.5, at the distance of 21.5 km from shore, a rapid decrease of WX in620

streaks and a corresponding increase in open water is observed, producing an order-of-621

magnitude difference between the WX in open-water and ice-covered areas.622

In the upper part of the image (subset 1), the variability of whitecap fraction in623

open water are similar (Fig. 10), with a maximum at an approximately the same distance624

from shore. However, the difference between WX in open water and ice in subset 1 is gen-625

erally larger than in subset 2, which can be at least partly explained by the presence of626

the very wide and long (width ∼500 m) ‘mega-streak’ – a dominating feature in subset 1.627

As can be seen i Fig. 9a, it contains almost no whitecaps, contributing to reduced WX628

values.629

The satellite-based wave breaking patterns cannot be directly compared with mod-630

elling results, because spectral wave models do not produce whitecap fraction as output.631

Therefore, a relationship between W and energy dissipation rate Swc is necessary. To632

this end, we use formulae derived by Anguelova and Hwang (2016). Assuming that the633

water is deep, we have:634

W = cWω4
pSwc, (8)

where ωp = 2π/Tp denotes the peak wave frequency and the coefficient cW is a com-635

bination of several empirical constants: cW = tb[4bρwg
3 log(cmax/cmin)α

4
c ]

−1. Their val-636

ues vary strongly between different field and laboratory experiments. Here, without any637

tuning, we adopt the values from Anguelova and Hwang (2016) for three out of the four638

coefficients: the bubble persistence time tb = 2 s, the breaking strength parameter b =639

0.013, and the ratio of maximum to minimum breaker speed cmax/cmin = 10. The fourth640

one, αc ∈ (0, 1), denotes the ratio of the threshold breaker speed to the peak wave phase641

speed. In Anguelova and Hwang (2016), αc = 0.3 is used based on the average from642

experiments analyzed in Gemmrich et al. (2008). Here, we instead use the modal value643

of the αc distribution from the case in Gemmrich et al. (2008) with the highest u∗/c ra-644

tio, as it represents a situation closest to the one analyzed here. Thus, we set αc = 0.35.645
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Figure 9. Observed and modelled wave breaking patterns in the area covered by the WV2

image (orange rectangle in Fig. 1). The left panels show maps of whitecap fraction W from the

WV2 image (a) and from SWAN simulations with model setup S0 (b), S2 f4 (c), S2 f5 (d) and

S2 f6 (e). Right panels show scatterplots of W against ice concentration A for wind speeds below

and above 30 m·s−1 (green and blue dots).
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Figure 10. Average ice concentration AX (right axes) and whitecap fraction WX computed

separately over ice-covered and ice-free regions (left axes) of subsets 1 and 2 of the analyzed

WV2 image. XUTM and x denote the UTM coordinates and the distance from the ice sheet,

respectively.

The resulting maps of W in the WV2 region from model setups S0, S2 f4, S2 f5646

and S2 f6 are shown in Fig. 9b–e. Not surprisingly, the results of the no-ice setup S0 are647

completely different from satellite observations. However, the remaining three setups pro-648

duce spatial patterns which are very similar to the observed one – and, at a general level,649

very similar to each other (this is also true for the whole polynya; see Supplementary Figs.650

S4 and S5). The best agreement is obtained for S2 f5, which also produces very simi-651

lar range of values, generally with W < 0.03. In S2 f6, wave breaking is very weak, mostly652

with W < 0.01 and with only isolated hotspots of whitecap fractions reaching 0.02. In653

S2 f4, to the contrary, values exceeding 0.03 are not rare, especially in the leftmost part654

of the region (a feature absent in satellite-derived data).655

It is noteworthy that that the spatial patterns of W and Sds are markedly differ-656

ent (Supplementary Fig. S5) due to the strong wave-frequency dependence of W in equa-657

tion (8). For the same whitecap fraction W , energy dissipation is lower in long waves658

than in short waves, and vice versa, the same energy dissipation is associated with higher659

values of W when the waves are shorter. This is responsible for the clearly visible fetch660

dependence of W in our simulations: the largest values of W can be found nearshore (in661

all model versions, including S0), when they exceed 0.1. In the case of Sds, it is predom-662

inantly influenced by wind speed u10 and ice concentration A (Supplementary Figs. S6663

and S7). Indeed, as Supplementary Fig. S7 shows for the example of setup S2 f5, Sds(u10, A)664

can be easily fit to the data, with the dependence on wind speed being Sds ∼ u2.88
10 , which665

is very close to the relationship Sds ∼ u3
10 reported in the literature (Anguelova & Hwang,666

2016).667

4.4 Global source terms statistics668

Although the differences between setups S2 f4–S2 f6 manifest themselves mainly669

in the tails of the spectra, their effects are clearly visible in spectrally integrated source670

terms as well (see Fig. 6d,e and maps in Supplementary Fig. S4). The overall spatial pat-671

terns remain similar, as they are dictated by the variability of ice concentration, but the672

amplitude of all source terms varies strongly between setups. Consequently, the total (polynya-673
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Figure 11. Box plots showing statistics of the ratios S̃in,tot(S2)/S̃in,tot(S0) (a),

Sds,tot(S2)/Sds,tot(S0) (b) and Wtot(S2)/Wtot(S0) (c) for the three model versions S2 f4, S2 f5

and S2 f6 and for the ten polynyas analyzed. Red lines show the median values and blue boxes

mark the interquartile range.

integrated) energy input from wind, S̃in,tot, as well as dissipation within sea ice S̃ice,tot674

and due to whitecapping Sds,tot (with the associated Wtot), exhibit very large differences675

between the ice-free and ice-influenced model versions, hinting at the crucial role of sea676

ice in modifying polynyas’ ocean–atmosphere interactions.677

The box plots in Fig. 11 show statistics of the ratios of those global variables in678

ice-influenced and ice-free model runs, for the ten polynyas analyzed. Although some vari-679

ability between the ten cases is present, the results are fairly robust (notably, there is680

no significant correlation between the analyzed ratios and polynya size). Considering that,681

based on the analysis so far, model settings S2 f5 and S2 f6 best describe available ob-682

servations, it is save to conclude that the polynya-wide wind input is typically reduced683

to below 25% of that over open water, the energy dissipation due to whitecapping is re-684

duced to below 10%, and the corresponding coverage of sea surface by whitecaps is re-685

duced to below 30%. These (conservative) estimates decrease with increasing exponent686

n in the Sice source term. Consequences of the lowered wind input and whitecapping are687

briefly discussed in the next section.688

5 Discussion and conclusions689

This study has shown that wind waves in coastal polynyas with frazil streaks are690

significantly modified by sea ice – and that the role of ice is much more complex than691

simply dissipating wave energy through viscous processes in a spectral-component-by-692

component manner. Rather, the net effect of sea ice is a combined result of dissipation,693

reduced wind input, reduced whitecapping, and modified nonlinear energy transfer within694

energy spectra. The ‘patchiness’ of the grease ice cover, typical of polynyas, and the as-695

sociated alternating removal and re-generation of short waves in the tail of the spectrum696

play here a particular role. Regarding the four relevant source terms in the wave energy697

balance equation, the main conclusions of this study are:698

• Contrary to the common ‘binary’ treatment of Sin in waves-in-ice modelling (e.g.,699

Li et al., 2015; Cheng et al., 2017; Rogers et al., 2016, 2021), wind input over grease700

ice is neither equal to that over open water (ain = 1) nor zero (ain = 0). Un-701

der conditions of strongly forced waves analyzed here, a constant value of the wind702

reduction factor ain = 0.56 has been determined based on theoretical arguments703

and led to a satisfactory model performance. However, as detailed in section 3.2,704

ain is in fact a function of wind speed and wave frequency. Using a simple param-705
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eterization with constant ain seems reasonable considering very limited observa-706

tional data on wave growth in ice covered waters, but the analysis in this study707

provides a general framework for more complex formulations in the future, appli-708

cable over a wider range of wave ages and frequencies. Regarding the largely un-709

known variability of the surface drag coefficient CDn over grease ice in presence710

of waves, a promising direction of further research might be analogous to param-711

eterizations of surface drag used in modelling of oil spills, in which the net rough-712

ness length is computed as a weighted sum of three components, associated with713

an aerodynamically smooth surface, long waves and short waves, respectively, and714

the weight of the last component is different over oil and water, reflecting very strong715

attenuation of short waves in oil-covered regions (Bourassa et al., 1999; Zheng et716

al., 2013; Blair et al., 2023).717

• Whitecapping is strongly reduced in regions where frazil streaks are present – not718

only within streaks themselves, but also in open-water areas between them – con-719

firming existing qualitative observations from TNBP (Guest, 2021a, 2021b; Ack-720

ley et al., 2022). Crucially, in the model this effect is obtained without any mod-721

ifications to the formulation of the Sds term. Rather, reduced whitecapping is a722

consequence of reduced wave steepness, which in turn results from reduced wind723

input and from dissipation in sea ice. This does not mean, however, that the open-724

water formulations of Sds used in the present spectral wave models are fully ad-725

equate for grease ice regions. It seems likely that the critical steepness used to com-726

pute Swc in equation (3) is slightly higher in water covered with grease ice than727

in open water. Moreover, at the same sea surface area fraction covered with break-728

ers in open water and in grease ice, the amount of dissipated wave energy might729

be different due to suppressed turbulence and air bubble formation in the latter730

case.731

• As long as the developing ice cover is thin and the open-water dispersion relation732

holds, the quadruplet wave–wave interactions remain unaffected and can be com-733

puted in the same way as in open water. However, in combination with strong ice-734

related dissipation in the high-frequency part of the spectrum, their role in regions735

covered with frazil streaks becomes particularly important. In our simulations, there736

were substantial differences between the results obtained with DIA and with the737

quasi-exact method. When using DIA, the very strong positive bias of the wave738

periods could not be reduced by any reasonable combination of adjustable coef-739

ficients. With the quasi-exact method, the bias was much smaller and the model740

calibration unproblematic. Obviously, considering the fact that the computational741

costs of computing quadruplets in an exact way are over 103 times higher than742

those of DIA, our finding cannot be treated as a recommendation for waves-in-743

ice modelling, especially in operational or climate applications. However, one should744

be aware of biases and uncertainties associated with the usage of DIA, and of the745

danger related to the interpretation of the results of DIA-based models, in which746

Sice and possibly other source terms must compensate DIA-related biases.747

• We did not find any evidence of the change of slope n of the sea ice source term748

with wave frequency. The most straightforward interpretation is that a single phys-749

ical mechanism is responsible for energy dissipation in the analyzed case, with vis-750

cous or viscoelastic dissipation the most likely candidates. Crucially, although with751

the observational data at our disposal we were not able to determine the value of752

n, we show that n > 4 is necessary for a sufficiently strong attenuation in the753

tail of the spectrum, i.e., for preventing the slope in the tail from reaching the E ∼754

f−4 shape, typical for open water. Very importantly, this finding does not con-755

tradict observations of n < 4 in earlier studies (Meylan et al., 2018, and refer-756

ences there), where it refers to the apparent attenuation from pairs of measured757

spectra.758

• Considering the previous conclusion together with the comparison between the satellite-759

derived and modelled wave breaking patterns, n = 5 seems to produce the best760
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results – but this should be treated as an indication rather than a firm conclusion761

(and, obviously, n does not have to be a natural number).762

• On average, the presence of frazil and grease ice in the analyzed polynyas leads763

to a reduction of the total wind input to less than 25% of that over open water,764

and to the reduction of whitecapping dissipation to less than 10%, with the cor-765

responding reduction of the surface area fraction covered with whitecaps to be-766

low 30%. Exact values of those ratios depend on the value of n in the Sice term767

and thus on the intensity of sea ice dissipation.768

Some of the above conclusions are specific for polynya conditions. As noted sev-769

eral times throughout this paper, waves in the MIZ typically have lower frequency, are770

weakly forced by wind, and propagate through a wider variety of ice types. Neverthe-771

less, at several locations where wave–ice interactions have been studied, the conditions772

are in between those of an ‘ideal’ MIZ and of a coastal polynya. The Beaufort Sea in the773

summer and autumn is a good example (Rogers et al., 2016; Smith & Thomson, 2016):774

the wind fetch is relatively short, frequent low pressure systems are associated with high775

wind speeds, and a typical ice type is a thin frazil-pancake mixture. Therefore, a proper776

treatment of the Sin and, close to the ice edge, Sds terms is important for reliable spec-777

tral modelling, and the present study provides important clues to the formulation of those778

terms. On the other hand, some of the assumptions made here might be unsuitable for779

the MIZ. The contribution of nonbreaking-waves dissipation Snbr to the total Sds is just780

one example – it is negligible in a coastal polynya, where whitecapping dominates over781

other dissipation mechanisms (fbr ≃ 1 in equation (2)), but the opposite might be true782

for the MIZ, where the waves do not break, but turbulent dissipation in the under-ice783

boundary layer (Voermans et al., 2019; Herman, 2021) dominates the Sds term.784

Our study provides also a very good example of limitations for model development785

caused by the lack of sufficient observational data. Performing wave-in-ice measurements786

in the MIZ is very challenging. In coastal polynyas, it is even more difficult due to, first,787

extreme weather conditions (very high wind speeds, very low air temperatures), and sec-788

ond, short wavelengths, requiring higher spatial (in the case of satellite and airborne im-789

agery) and temporal (in the case of wave buoys and other in situ sensors) resolution. In790

the TNBP and other coastal polynyas, peak wavelengths only rarely exceed 80–90 m and791

are lower than that over most of the polynya area. Thus, the usage of many popular syn-792

thetic aperture radar (SAR) data sources to retrieve wave energy spectra (e.g., Stopa,793

Ardhuin, et al., 2018; Wadhams et al., 2018) becomes problematic, as their resolution794

is comparable with wavelength. Even if peak wavelengths can be determined with suf-795

ficient accuracy, estimation of the spectral tails is unreliable. This study has shown that,796

although spatial variability of peak periods (and other wave properties at the spectral797

peak) provides a very valuable information on the underlying physics, there are limita-798

tions to this approach and the knowledge of spectral tails is crucial for making inferences799

about the frequency dependence of physical processes shaping the energy spectra. No-800

tably, collecting in situ wave data from polynyas is challenging as well, e.g., in the case801

of wave buoys a serious problem is contamination of measured velocities from heavy buoy802

tilting, heaving, as well as very fast drift (exceeding 1 m/s; Ackley et al., 2022). In gen-803

eral, the question facing both observations and modelling is whether and how data anal-804

ysis methods, (semi)empirical parameterizations etc., formulated and tested under ‘typ-805

ical’ conditions, can be transferred to the extreme conditions of polynyas without vio-806

lating their underlying assumptions. In particular, in the case of spectral wave modelling,807

it is an open issue how expressions (4)–(6) can be made more adequate for polynya events.808

A related challenge is reconciling information from observations and models. In this study,809

we obtained two different measures of wave breaking in the analyzed area – one in the810

form of whitecap fraction W (from a visible satellite image), and one in the form of en-811

ergy dissipated per unit surface area Swc (from a spectral wave model). The W (Swc) for-812

mula from Anguelova and Hwang (2016) with default coefficients happens to produce813

model-based values of W very close to those determined from satellite data. However,814
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this and similar relationships suffer from the same problems as the ones mentioned above:815

the wind speeds in this study are outside the range of observations used to formulate them.816

Finally, it is worth commenting on the consequences of the significantly reduced817

wind input and whitecapping dissipation due to the presence of sea ice in polynyas. One818

of them are lower rates of sea spray production (due to both lower whitecap fractions819

W and, likely, less intense bubble and spray generation in breaking waves when grease820

ice is present), which has been shown to contribute large part of the total ocean–atmosphere821

turbulent heat flux at high wind speeds. Thus, suppressed whitecapping should lead to822

significantly lower ocean mixed layer heat loss and, consequently, lower sea ice produc-823

tion rates.824

Data Availability Statement825
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found at https://zenodo.org/record/8308164 (Herman & Bradtke, 2023).828
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References836

Ackley, S., Smith, M., Guest, P., Herman, A., & Shen, H. (2022). Winds, waves and837

ice formation in a coastal polynya. In Proc. 26th iahr international symposium838
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This file contains additional figures presenting the results of satellite data analysis (Fig. S1) and spectral wave modelling (Figs. S2–S7), described in the main 
paper. 

 

 



  

 

   

 

   
Figure S1 (continued on the following four pages): Satellite images analyzed in the study (panchromatic band reflectance; red lines mark the boundaries of regions classified 
as polynyas; blue dot mark the location of Manuela WS), frazil ice concentration A, mean wave direction at the peak frequency p (degrees), and peak wavelength Lp (m). 
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Figure S1 (continued) 
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Figure S1 (continued) 
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Figure S1 (continued) 
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Figure S1 (continued) 
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Figure S2. Maps of frazil ice concentration A and AMPS wind speed (m/s; colors) and direction (arrows) for the polynya from 19. Sep. 2019. 
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Figure S3. Maps of significant wave height Hs (m), peak wave period Tp (s) and directional spreading  (degr) for model setups S0, S2_f4 (fitted), S2_f5 (fitted) and S2_f6 
(fitted). Polynya from 19.09.2019. 
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Figure S4. Maps of Sin, Sds and Sice (integrated over f and ; in W/m2) for model setups S0, S2_f4 (fitted), S2_f5 (fitted) and S2_f6 (fitted). Polynya from 19.09.2019. 
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Figure S5. Maps of simulated Swc (integrated over f and ; in W/m2) and W () for model setups S0, S2_f4 (fitted), S2_f5 (fitted), and S2_f6 (fitted). Polynya from 19. Sep. 
2019. 
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Figure S6. Scatterplots of simulated Swc (top) and W (bottom) against ice concentration A for the polynya from 19 Sep. 2019. Colors show 
different wind speed classes (legend to the right; in m/s). Note different scales on the y axes in the top plots. Note also that no results for S0 are shown  
as in this case A = 0 everywhere.  

 

  



 

 

 

Figure S7. Scatterplot of simulated Sds against ice concentration A and wind speed U10, for the polynya from 19.09.2019 (model setupS2_f5). Black dots are modelling 
results, color surface shows the least-square fit of the function Sds = a(dA)bU10

c. The fitted coefficients are a = 5109, b = 8.55, c = 2.88 and d = 4.07. The correlation 
coefficient between the fitted and original values equals 0.87 and the root-mean-square error 1.3 W/m2.   


