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Abstract

Fluid-filled cracks sustain a slow guided wave (Krauklis wave or crack wave) whose resonant frequencies are widely used for

interpreting long period (LP) and very long period (VLP) seismic signals at active volcanoes. Significant efforts have been made

to model this process using analytical developments along an infinite crack or numerical methods on simple crack geometries.

In this work, we develop an efficient hybrid numerical method for computing resonant frequencies of complex-shaped fluid-filled

cracks and networks of cracks and apply it to explain the ratio of spectral peaks in the VLP signals from the Fani Maoré

submarine volcano that formed in Mayotte in 2018. By coupling triangular boundary elements and the finite volume method,

we successfully handle complex geometries and achieve computational efficiency by discretizing solely the crack surfaces. The

resonant frequencies are directly determined through eigenvalue analysis. After proper verification, we systematically analyze

the resonant frequencies of rectangular and elliptical cracks, quantifying the effect of aspect ratio and crack stiffness ratio. We

then discuss theoretically the contribution of fluid viscosity and seismic radiation to energy dissipation. Finally, we obtain a

crack geometry that successfully explains the characteristic ratio between the first two modes of the VLP seismic signals from

the Fani Maoré submarine volcano in Mayotte. Our work not only reveals rich eigenmodes in complex-shaped cracks but also

contributes to illuminating the subsurface plumbing system of active volcanoes. The developed model is readily applicable to

crack wave resonances in other geological settings, such as glacier hydrology and hydrocarbon reservoirs.
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2Géoazur, Université Côte d’Azur (UCA), IRD, CNRS, Observatoire de la Côte d’Azur, 06560, Valbonne,8
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Abstract19

Fluid-filled cracks sustain a slow guided wave (Krauklis wave or crack wave) whose res-20

onant frequencies are widely used for interpreting long period (LP) and very long pe-21

riod (VLP) seismic signals at active volcanoes. Significant efforts have been made to model22

this process using analytical developments along an infinite crack or numerical methods23

on simple crack geometries. In this work, we develop an efficient hybrid numerical method24

for computing resonant frequencies of complex-shaped fluid-filled cracks and networks25

of cracks and apply it to explain the ratio of spectral peaks in the VLP signals from the26

Fani Maoré submarine volcano that formed in Mayotte in 2018. By coupling triangu-27

lar boundary elements and the finite volume method, we successfully handle complex ge-28

ometries and achieve computational efficiency by discretizing solely the crack surfaces.29

The resonant frequencies are directly determined through eigenvalue analysis. After proper30

verification, we systematically analyze the resonant frequencies of rectangular and ellip-31

tical cracks, quantifying the effect of aspect ratio and crack stiffness ratio. We then dis-32

cuss theoretically the contribution of fluid viscosity and seismic radiation to energy dis-33

sipation. Finally, we obtain a crack geometry that successfully explains the character-34

istic ratio between the first two modes of the VLP seismic signals from the Fani Maoré35

submarine volcano in Mayotte. Our work not only reveals rich eigenmodes in complex-36

shaped cracks but also contributes to illuminating the subsurface plumbing system of37

active volcanoes. The developed model is readily applicable to crack wave resonances38

in other geological settings, such as glacier hydrology and hydrocarbon reservoirs.39

1 Introduction40

Slow guided waves that propagate along fluid-filled cracks, named crack waves or41

Krauklis waves, can be used for inferring the geometries of subsurface cracks and the fluid42

properties in a wide range of geological settings (Krauklis, 1962; Ferrazzini & Aki, 1987;43

Paillet & White, 1982; B. Chouet, 1986; Korneev, 2008; Tang & Cheng, 1989; Lipovsky44

& Dunham, 2015). In volcanology, crack wave resonances along magma-filled sills and45

dikes have been used for interpreting long period (LP, 0.5-2 s) and very long period (VLP,46

2 to 100 s) seismic signals at many volcanos, including Mount Redoubt (B. A. Chouet47

et al., 1994), Aso (Kawakatsu et al., 2000; Niu & Song, 2020), Galeras (Cruz & Chouet,48

1997), Asama (Fujita & Ida, 2003), Kusatsi-Shirane (Kumagai et al., 2003; Nakano &49

Kumagai, 2005), Etna (Lokmer et al., 2008), and Erebus (Aster, 2019). Crack waves (and50
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their induced tube waves in wellbores) are used for diagnosing the fracture geometries51

in unconventional hydrocarbon reservoirs (Henry et al., 2002; Tary et al., 2014; Lipovsky52

& Dunham, 2015; Liang et al., 2017). The resonating or humming signals in glaciers have53

also been attributed to crack waves (Métaxian et al., 2003; Stuart et al., 2005; Gräff et54

al., 2019; McQuillan & Karlstrom, 2021). Natural cracks in the subsurface are complex55

in shape and usually form an inter-connected network. Therefore, efficient methods for56

computing resonant modes of single cracks and networks of cracks are necessary for in-57

terpreting frequencies measured in the field.58

Since its first discovery by Krauklis (1962), crack waves have been studied analyt-59

ically (Aki et al., 1977; Ferrazzini & Aki, 1987; Korneev, 2008; Lipovsky & Dunham, 2015),60

experimentally (Tang & Cheng, 1988; Nakagawa et al., 2016; Cao et al., 2021), and nu-61

merically by various methods (e.g., B. Chouet, 1986; Yamamoto & Kawakatsu, 2008;62

Frehner & Schmalholz, 2010; O’Reilly et al., 2017; Liang et al., 2020; Shauer et al., 2021;63

Jin et al., 2022). Analytically derived dispersion relations are useful for understanding64

the propagation behavior but are meant for an infinitely long crack and do not account65

for the restriction of the finite crack tip. The finite difference method (FDM) is normally66

based on cartesian grids in 2D (Fehler & Aki, 1978) or 3D (B. Chouet, 1986; Liang et67

al., 2020) and limited to a tabular crack shape. Maeda and Kumagai (2013) and Maeda68

and Kumagai (2017) performed a large number of numerical simulations on rectangu-69

lar cracks using a FDM simulator developed by B. Chouet (1986). With that, they ob-70

tained a set of empirical fitting formulas for resonant frequencies given the crack aspect71

ratio α and stiffness ratio CL = KfL/(Gw0), where Kf is the fluid bulk modulus, G72

the solid shear modulus, L the crack length and w0 the crack aperture. However, such73

relations only apply to longitudinal or transverse modes on rectangular cracks (Maeda74

& Kumagai, 2013, 2017). Notably, O’Reilly et al. (2017) simulated a non-planar fluid-75

filled crack using FDM on a curvilinear grid and adopted a lubrication-type approxima-76

tion in the fluid (Lipovsky & Dunham, 2015), neglecting fluid acoustics in the crack width77

direction while resolving the narrow viscous boundary layer close to the crack wall. This78

treatment removes the time step restriction introduced by extremely fine mesh size in79

the crack width direction and accelerates the computation. However, their work was lim-80

ited to 2D geometries. The finite element method (FEM) is more flexible for handling81

complex crack geometries and has been used to study crack waves in 2D (Frehner & Schmal-82

holz, 2010; Frehner, 2013) and 3D (Shauer et al., 2021). Particularly, Shauer et al. (2021)83
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produced the first simulation of an elliptical fluid-filled crack using the generalized finite84

element method (GFEM). However, similar to FDM, FEM needs to discretize the vol-85

ume, which results in a large number of elements and high computational cost. On the86

other hand, the boundary element method (BEM) reduces the simulation space from a87

domain to boundary surfaces, drastically decreasing the number of degrees of freedom,88

and has been used to study waves in fluid-filled cracks (Yamamoto & Kawakatsu, 2008;89

Pointer et al., 1998; Jin et al., 2022) and other inclusions (Zheng et al., 2016; Sun et al.,90

2020). However, previous BEM simulations are either in two dimensions or focus on the91

wave diffraction instead of analyzing the resonant frequencies. Currently, the study of92

resonant frequencies of complex-shaped fluid-filled cracks and crack networks in three93

dimensions remain unknown.94

In this work, we propose an efficient hybrid numerical method to simulate crack95

wave resonance in complex-shaped cracks or crack networks filled with an inviscid fluid,96

by coupling the boundary element method (BEM) for the solid response and the finite97

volume method (FVM) for acoustics in the fluid. By using triangular elements in both98

BEM and FVM on the crack surfaces, we successfully handle complex crack shapes and99

intersections. We restrict our attention to the low frequency limit where the crack wave100

is much slower than the solid body waves, such that the solid response can be approx-101

imated as quasi-static (Korneev, 2008; Lipovsky & Dunham, 2015; Liang et al., 2020).102

An eigenvalue analysis is performed to extract the resonant modes directly in the fre-103

quency domain, circumventing errors from time discretization and spectral analysis of104

the time domain simulation data. We first verify our method by comparing results with105

analytical solutions in the rigid wall limit and with numerical solutions from existing meth-106

ods for both a rectangular (B. Chouet, 1986; Maeda & Kumagai, 2017) and elliptical cracks107

(Shauer et al., 2021). An example is then provided to demonstrate the simulation ca-108

pability for intersecting cracks. The effect of crack aspect ratio and stiffness ratio on res-109

onant frequencies (longitudinal, transverse, and mixed modes) is systematically inves-110

tigated for both rectangular and elliptical cracks. Although our current model does not111

include viscous or radiation loss, we provide some theoretical discussion on these effects112

under simple assumptions (boundary layer limit and quasi-dynamic approximation). Fi-113

nally, we present a crack shape compatible with the first two spectral peaks of VLP seis-114

mic signals from the Fani Maoré, Mayotte submarine volcano and discuss the potential115

of the methodology for future applications in volcanology and other geological settings.116
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Figure 1. Schematics of an arbitrarily-shaped fluid-filled crack, its spatial discretization (with

unknown variables placed in the element centroids, red dots), and a zoom-in view at an intersec-

tion between two cracks.

2 Methods117

In this section, we present the governing equations, discretization, and eigenmode118

analysis for computing the resonant frequencies.119

2.1 Governing equations120

We consider the oscillation of inviscid fluids in complex-shaped thin cracks embed-121

ded in a 3D homogeneous linear elastic solid (Figure 1). The initial opening of the crack122

is w0, which is assumed to be a constant and much smaller than the wavelength λ. We123

adopt a similar lubrication approximation as B. Chouet (1986), Yamamoto and Kawakatsu124

(2008) and O’Reilly et al. (2017), and treat the fluid pressure and velocities as uniform125

in the crack thickness direction, reducing the crack from a 3D body to a 2D surface S.126

Following O’Reilly et al. (2017), we consider a small crack curvature so that its effect127

on the fluid momentum balance is negligible. Thus, the mass and momentum balance128

of the fluid on the crack surface are written as129

1

w0

∂w

∂t
+

1

Kf

∂p

∂t
+

∂vξ
∂ξ

+
∂vη
∂η

= 0, (1)

130

ρf
∂vξ
∂t

+
∂p

∂ξ
= 0, (2)

131

ρf
∂vη
∂t

+
∂p

∂η
= 0, (3)

where ρf and Kf are fluid density and bulk modulus, w is the crack opening perturba-132

tion, p is the fluid pressure perturbation, t is time, and ξ and η are two locally perpen-133
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dicular coordinates tangent to the crack surface, vξ and vη are the fluid velocities in the134

ξ and η directions, respectively. Eliminating vξ and vη in (1) using (2)-(3), we have135

ρf

(
1

w0

∂2w

∂t2
+

1

Kf

∂2p

∂t2

)
−∆p = 0, (4)

where ∆ = ∂2

ξ2 + ∂2

η2 is the tangential Laplace operator along the crack surface. The136

coupling between fluid and solid is encapsulated in the relation between the crack open-137

ing perturbation w and pressure perturbation p, which must balance the solid normal138

stress perturbation σn on the crack wall (assumed positive in compression). Since we fo-139

cus on the low frequency limit, the solid response is approximately quasi-static (Korneev,140

2008; Lipovsky & Dunham, 2015; Liang et al., 2020), and p for a linear elastic solid can141

be expressed as (Segall, 2010):142

p (x) =

∫
S

K (x, ξ)w (ξ) dA, (5)

where K(x, ξ) is the Green’s function that relates a unit open dislocation impulse at ξ143

to the normal stress change at x. The expressions of K in an elastic whole space and half144

space are available analytically for a uniform dislocation on both rectangular elements145

(Okada, 1985, 1992) and triangular elements (Nikkhoo & Walter, 2015).146

2.2 Discretization147

We discretize the crack surfaces into Ne triangular elements. The unknown aver-148

age pressures p̄ and openings w̄, placed at element centroids (as shown in Figure 1), are149

related by150

p̄ = Kw̄, (6)

where K is a Ne by Ne matrix and K(i, j) denotes the fluid pressure (or solid normal151

stress) change at the centroid of the i-th element caused by a unit open dislocation on152

the j-th element. We use the full space Green’s function in this study but one can also153

use the half space solution.154

We then discretize the tangential Laplacian operator by a finite volume scheme with155

a two-point flux (TPF) approximation following Karimi-Fard et al. (2004), which has156

been widely used for diffusive flows through a discrete fracture network in hydrocarbon157

reservoirs (e.g., Li & Lee, 2008; Moinfar et al., 2013; Xu et al., 2017; Berre et al., 2019).158

This scheme is only first-order accurate and is thus rarely used in wave propagation prob-159

lems due to the strong numerical diffusion in time domain simulations (e.g., Durran, 2013).160
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However, it is a sufficient scheme for our problem as we focus on resolving only the spa-161

tial distribution of eigenmodes in the frequency domain and the low order of accuracy162

can be remedied by using more elements. Here, we briefly present the key derivation steps163

and the readers are referred to Karimi-Fard et al. (2004) for a detailed description.164

We consider an arbitrary planar triangular element i with a surface Si and bound-165

ary edges lij , where j is the index of the neighboring elements. Each i and j pair forms166

a hydraulic connection. When multiple cracks intersect, multiple connections share the167

same edge. We integrate equation (4) over each element i’s surface, leading to:168

ρfAi

[
1

w0

∂2w̄i

∂t2
+

1

Kf

∂2p̄i
∂t2

]
=

∫
Si

∆pds, (7)

where169

p̄i =
1

Ai

∫
Si

pds, (8)

170

w̄i =
1

Ai

∫
Si

wds, (9)

are the average pressure and opening of element i, respectively. Applying the divergence171

theorem to the right hand side of equation (7), we have:172 ∫
Si

∆pds =

∫
Si

∇⃗ · ∇⃗pds =

∫
l

∂p

∂n
dl = −

nc∑
j=1

Di→jQi→j , (10)

where ∂p/∂n is the pressure gradient normal to the boundary edges, nc is the total num-173

ber of connections in contact with element i, Qi→j is the flux going out from element174

i to element j. Since Qi→j = −Qj→i, we only store Qi→j for each (i, j) pair and its175

positive flux direction is pre-defined by an indicator function Ii→j = −Ij→i = 1. Di→j176

is the discrete divergence operator and Di→j = Ii→j = 1.177

The assumption of the TPF scheme is to approximate the flux term in the follow-178

ing form (equation (7) in Karimi-Fard et al. (2004)):179

Qi→j = Ii→jTij(pi − pj), (11)

where pi and pj are pressures defined at the centroids of the two neigboring elements.180

Tij is the scalar transmissibility and is expressed as181

Tij =
αiαj∑nc

k=1 αk
, (12)

182

αk =
lij
dk

n⃗k · f⃗k, (13)
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where lij is the length of the connecting edge, dk and f⃗k are the length and unit direc-183

tional vector from midpoint of the edge to the centroid of element k, n⃗k is a unit nor-184

mal vector perpendicular to the edge and pointing towards element k, as shown in Fig-185

ure 1. Fluxes on the crack boundaries are set to zero. Combining equations (10) and (11),186

we have:187 ∫
Si

∆pds = −
nc∑
j=1

Di→jIi→jTij (pi − pj) . (14)

It is apparent that changing the positive flux direction from i → j to j → i flips the188

sign of both Di→j and Ii→j and thus results in the same Laplacian term. Substituting189

equation (14) into equation (7) and rewriting in the matrix form, we have the spatially190

discretized equation without external forcing:191

ρf

(
1

w0
K−1 +

1

Kf

)
∂2p̄

∂t2
= −A−1DQ = −A−1DTp̄, (15)

where A is a diagonal matrix of size Ne by Ne denoting the area of each element, Q =192

Tp̄ is the flux vector whose size is the total number of connections Nc, T is the trans-193

missibility matrix (including the indicator function) of size Nc by Ne that maps the vec-194

tor p̄ to Q, and D is the divergence matrix of size Ne by Nc that maps Q to the net flux195

out of each element. The structure of matrices D and T for a system of three intersect-196

ing crack elements are described in Appendix A.197

We further introduce the following dimensionless quantities:198

K∗ = K/(G/L),A∗ = A/L2, w = w∗/w0, t
∗ = t/(L/cl), p̄

∗ = p̄/(ρfc
2
l ), (16)

where G is the solid shear modulus, L is a representative length of the crack and cl =199 √
Gw0/ (ρfL) is a representative crack wave speed. Different non-dimensionalization strate-200

gies exist, such as the one by B. Chouet (1986) which normalizes wave speeds by the solid201

compressional wave speed cp. We choose cl instead, because in the long wavelength limit,202

where compliance of the crack dominates, this choice conveniently results in a fundamen-203

tal frequency of the order of unity. The nondimensionalised equation is204 (
1

CL
I+ (K∗)

−1

)
∂2p̄∗

∂t∗2
= −A∗−1DTp̄∗, (17)

where CL = KfL/Gw0 is the key dimensionless parameter, named crack stiffness ra-205

tio by B. Chouet (1986). The crack wave limit is achieved with CL ≫ 1, where the crack206

is much more compliant than the fluid. CL can be related to the representative crack207

wave speed cl by CL = c2f/c
2
l , where cf is the fluid acoustic wave speed. The crack topol-208
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ogy (for instance, the aspect ratio α for a rectangular or elliptical crack) and solid Pois-209

son’s ratio νs are encapsulated into the dimensionless stiffness matrix K∗. The solid Pois-210

son’s ratio is set to 0.25 throughout this manuscript, unless otherwise mentioned.211

2.3 Eigenmode analysis212

We directly obtain the resonant frequencies through eigenmode analysis in the fre-213

quency domain. The spatially discretized dimensionless equation is written as214

∂2p̄∗

∂t∗2
= −Bp̄∗, (18)

where215

B =

(
1

CL
I+ (K∗)

−1

)−1

A∗−1DT. (19)

The nondimensionalised Fourier transform is defined as216

û (ω∗) =

∫ +∞

−∞
u (t∗) eiω

∗t∗dt∗, (20)

where217

ω∗ = ω/ (cl/L) , (21)

is the dimensionless angular frequency. The dimensionless frequency is218

f∗ = ω∗/(2π) = f/(cl/L). (22)

Taking the Fourier transform of equation (18), we have:219

(ω∗)
2ˆ̄p = Bˆ̄p, (23)

where (ω∗)
2
and ˆ̄p are the eigenvalues and eigenvectors of the real matrix B. Since we220

deal with inviscid fluids, we only seek real positive eigenvalues, which correspond to un-221

damped oscillatory modes. The resulting eigenvectors determine the spatial distribution222

of the pressure on the crack surface. Solving the resonant frequencies in dimensionless223

form is advantageous, because one can easily scale the solution to other parameters, such224

as crack length, crack width and solid stiffness, given the same dimensionless parame-225

ters, CL, νs and crack topology.226

3 Verification and examples227

In this section, we first verify our implementation by comparing our results to an-228

alytical solutions in the rigid solid limit and numerical solutions from existing studies.229
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We then present an example of simple intersecting crack geometry to demonstrate the230

utility of our method.231

Table 1. The error between the theoretical and numerical resonant frequencies for the first 16

modes

Mode Theoretical value Numerical value Error (%)

1 0.5000 0.5004 0.074

2 0.8333 0.8325 0.105

3 0.9718 0.9706 0.127

4 1.0000 1.0008 0.078

5 1.3017 1.3018 0.009

6 1.5000 1.5010 0.066

7 1.6667 1.6647 0.118

8 1.7159 1.7172 0.072

9 1.7401 1.7370 0.175

10 1.9437 1.9413 0.122

11 2.0000 2.0014 0.068

12 2.1667 2.1693 0.123

13 2.2423 2.2409 0.060

14 2.5000 2.4954 0.184

15 2.5000 2.5010 0.042

16 2.5495 2.5426 0.270

3.1 Comparison with analytical solutions in a rigid solid232

We compute the K matrix using the subroutines developed by Nikkhoo and Wal-233

ter (2015), which have been extensively used by other studies. The bulk part that needs234

to be validated is the FVM discretization of the Laplacian term. For that, we set solid235

rigidity to infinity and compare the numerical results to the analytical solution of the236

resonant frequencies of linear acoustic waves in a 2D rectangular domain with zero-flux237

boundaries (Rona, 2007). The solution is in a dimensionless form with a rectangular do-238

main of size 1 by 0.5 and a wave speed of 1. The comparison results for the first 16 modes239

are tabulated in Table 1. The excellent agreement between our numerical results and the240
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analytical solutions, with relative differences smaller than 0.2%, verifies our FVM dis-241

cretization of the Laplacian term.242

3.2 Comparison to numerical solutions by existing studies243

We compare solutions by our method (BEM+FVM) to those by B. Chouet (1986),244

Maeda and Kumagai (2017) and Shauer et al. (2021). With B. Chouet (1986) and Maeda245

and Kumagai (2017), we compare resonant frequencies of longitudinal modes for a rect-246

angular crack for various values of CL (5, 15, 25, 50, 75, 100). With the GFEM by Shauer247

et al. (2021), we compare solutions of multiple modes on both rectangular and ellipti-248

cal cracks. The eigenmodes can be straightforwardly classified as longitudinal (variation249

only along the major crack axis), transverse (variation only along the minor crack axis),250

and mixed modes for a rectangular crack, but less so for an elliptical crack. Since the251

method by Shauer et al. (2021) discretizes the problem in time and, therefore, does not252

readily provide resonant frequencies, we ran their code to excite the fluid oscillation on253

the crack with CL = 100 by a point injection source and then extract the resonant fre-254

quencies from the spectral peaks of the pressure records at a few receiving points. We255

use a Gaussian time function for the injection source f (t) = exp
(
−(t− tc)

2
/T 2

)
with256

tc = 0.5, T = 0.1, to ensure a smooth start and a sufficiently wide spectrum to cover257

enough eigenmodes. Note that if either excitation or receiving points are placed on the258

nodal line, the eigenmode can not be excited or recorded. Therefore, not all eigenmodes259

are excited in the time domain simulation and we also only compare selective modes with260

Shauer et al. (2021), which is sufficient for verification purposes. The detailed geome-261

tries and simulation data are presented in Appendix B. Notably, the code of Shauer et262

al. (2021) has the capability of both considering (fully dynamic, FD) or neglecting the263

solid inertia (quasi-static, QS), allowing to investigate the impact of the solid inertia on264

crack wave resonant frequencies.265

Tables 2 and 3 show the comparison of dimensionless resonant frequencies of se-266

letive eigenmodes from the GFEM program by Shauer et al. (2021) with those by our267

method for a rectangular and elliptical crack, respectively, with an aspect ratio of 0.5,268

major axis length of 1, and CL of 100. The relative difference between our results and269

those from Shauer et al. (2021) are near 2% or less, with or without solid inertia. This270

close agreement not only demonstrates the validity of our approach but also reassures271

that the quasi-static solid response is a very good approximation when computing the272
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Table 2. Resonant frequencies by BEM+FVM and GFEM with or without inertia (FD or QS),

rectangular crack

Mode
Resonant frequencies detected at receiving points by GFEM BEM+FVM

Error FD

(%)

Error QS

(%)

(-0.5, 0) (-0.2, 0.25) (0, 0.25)

FD QS FD QS FD QS

1 1.236 1.236 1.236 1.236 1.210 2.15 2.15

2 2.727 2.691 2.662 2.44 1.09

3 2.890 2.873 2.818 2.782 2.835 1.94 1.34

4 3.453 3.418 3.373 2.37 1.33

5 4.454 4.400 4.436 4.382 4.385 1.57 0.34

6 4.526 4.491 4.466 1.34 0.56

7 6.035 5.964 5.980 0.92 0.27

8 6.399 6.273 6.344 6.236 6.330 1.09 0.90

The bold values are used for error calculation. We use a of CL=100 and aspect ratio of 0.5

Mode eigenfunctions are shown in Figure 2.

Table 3. Resonant frequencies by BEM+FVM and GFEM without inertia (QS), elliptical

crack

Mode
The resonant frequencies can be detected at detection points

BEM+FVM Error (%)
(-0.5, 0) (0, 0.25) (0, 0)

1 1.527 1.518 0.59

2 3.027 3.090 3.050 0.75

3 3.290 3.241 1.51

5 4.890 4.816 1.54

7 6.890 6.853 6.944 6.771 1.76

8 7.308 7.235 7.107 1.80

The bold values are used for error calculation. We use a of CL=100 and aspect ratio of 0.5

Mode eigenfunctions are shown in Figure 3.
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crack wave resonant frequencies, at least for a CL of 100. A similar conclusion has also273

been reached by Shauer et al. (2021). Since we assume a quasi-static solid response, it274

is reasonable that our results have a better agreement to those by GFEM without in-275

ertia.276

Figure 2. Dimensionless frequencies and eigenfunctions of the first 16 resonant modes (num-

bered in an ascending order in frequencies) of a rectangular crack with CL=100 and aspect

ratio of 0.5 calculated by BEM+FVM. The errors of selective resonant frequencies between the

BEM+FVM and GFEM without inertia are shown in Table 2. The white color indicates the

nodal lines.

The pressure eigenfunctions of the first 16 resonant modes are displayed in Figure277

2 for a rectangular crack and Figure 3 for an elliptical crack, showing a rich spectrum278

of spatial variations including longitudinal, transverse, and mixed modes. Different modes279

can produce different near and far field radiation patterns, that may be detectable in real280

seismic data (e.g., Liang et al., 2020).281

The dimensionless frequencies of the first 9 longitudinal modes for rectangular cracks282

by various methods with different crack stiffness ratios are shown in Figure 4. The re-283

sults of Shauer et al. (2021) are only computed for a CL of 100. For ease of comparison,284

we convert dimensionless frequencies f∗ in our studies to those in B. Chouet (1986) fC
∗,285
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Figure 3. Same as Figure 2 but for an elliptical crack.

which are related by f∗
C = f∗cl/cP . Overall, our results match well with those by Shauer286

et al. (2021) (relative error < 3%) and also qualitatively well with those by B. Chouet287

(1986) and Maeda and Kumagai (2017). However, there are quantitative discrepancies288

between our results and those by B. Chouet (1986) (relative error 8.83-23.43%) and Maeda289

and Kumagai (2017) (relative error 2.72-16.63%, see the supporting information for tab-290

ulated errors). Particularly, both B. Chouet (1986) and Maeda and Kumagai (2017) sys-291

tematically give lower frequencies than those by our method and Shauer et al. (2021).292

We suspect these discrepancies are likely due to differences in spatial and temporal sam-293

pling, or domain sizes used in the FDM code in B. Chouet (1986) and Maeda and Ku-294

magai (2017). Particularly, a truncated domain in the FDM results in a more compli-295

ant solid response (Korneev et al., 2014), which in turn results in a lower crack wave speed296

and resonant frequencies. Our method uses boundary elements and thus an infinite do-297

main is directly satisfied. For this reason, when comparing results with Shauer et al. (2021),298

we deliberately used a very large domain (10 times the length of the crack) in the GFEM299

code to minimize its boundary effect using an unstructured grid, coarsening in regions300

far from the crack.301
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Figure 4. Dimensionless frequencies f∗
C of longitudinal modes for rectangular cracks with

different CL (5, 15, 25, 50, 75, 100) by various methods, and a zoom-in view of the case CL = 100

on the right panel. Results by B. Chouet (1986) and Maeda and Kumagai (2017) are slightly

shifted in the horizontal axis to avoid overcrowding the figure.

3.3 An example of intersecting cracks302

We now apply our method to one example of intersecting cracks, one full ellipse303

with a half-elliptical branch, and obtain the first 16 eigenmodes, shown in Figure 5. In-304

teractions between multiple cracks result in more complex resonant modes than in sin-305

gle cracks (shown in Figures 3 and 4). For example, the fundamental mode now involves306

fluid exchange between the major crack and the branch, and has a lower frequency than307

the fundamental mode of the major crack (the second mode in this case). When nodal308

lines coincide with the intersecting edge, resonances can be isolated on the major crack,309

such as modes 2, 7, 8, 13 and 16. Temporal manifestation of these modes requires a more310

peculiar condition: the excitation must not be located in the branch. One can certainly311

add more complexities in the crack network, such as asymmetries, non-planarity or more312

intricate coupling, and expect to encounter richer eigenmodes. However, such modeling313

only becomes meaningful when more compelling observations exist and require. We will314

demonstrate later how a particular crack shape can explain the ratio of the first two spec-315

tral peaks in the VLP seismic data at the Fani Maoré, Mayotte submarine volcano. Ex-316
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cept for that, we decide to leave the analysis of eigenmodes of a more complex crack net-317

work for future investigation.318

Figure 5. The first 16 eigenmodes of a simple two-intersecting-cracks geometry: a half ellipse

intersecting a full ellipse (aspect ratio 0.5) along its minor axis. The major axis length of the full

elliptical crack is chosen as L for the non-dimensionalisation.

4 Effect of aspect ratio α and crack stiffness ratio CL319

In this section, we present the effect of α and CL on the resonant frequencies of rect-320

angular and elliptical cracks, with major and minor axes in the x− and y−directions,321

respectively. Maeda and Kumagai (2017) presented a similar analysis for rectangular cracks,322

but only on longitudinal and transverse modes. Here, we include the mixed modes and323

the results for elliptical cracks. We fixed CL = 100 when varying α (from 0.05 to 1.00324

with an increment of 0.05 ) and fix α = 0.5 when varying CL (from 5 to 100 with an325

increment of 5). The frequencies of the first 16 eigenmodes are tabulated in the Support-326
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ing information. Here, we select 9 representative modes and visualize them in Figures327

6-9. For rectangular cracks, we associate to each mode a pair of numbers (i, j) that de-328

note the number of half wavelengths in the x− and y−directions. For instance, the fun-329

damental mode (1, 0) is a longitudinal mode with one half wavelength pressure variation330

in the x−direction and quasi-uniform in the y−direction. Such numbering becomes less331

obvious for elliptical cracks, especially when the aspect ratio approaches 1, for which the332

eigenfunctions are better characterized by radial and circumferential variations. Nonethe-333

less, for the ease of comparing results with rectangular cracks, we still number the rep-334

resentative modes in Figures 7 and 9 approximately into longitudinal, transverse, and335

mixed modes.336

Figure 6. Dimensionless resonant frequencies of representative modes of rectangular cracks

as a function of the aspect ratio α. CL is fixed to 100. The eigenfunctions displayed are for an

aspect ratio of 0.55. Certain high order mixed and transverse modes rank outside of the first 16

eigenmodes that we store, which causes the apparent absence of data at low aspect ratios.

4.1 Effect of aspect ratio337

The variation of resonant frequencies with aspect ratio is shown in Figure 6 and338

7 for rectangular and elliptical cracks, respectively. For both cases, decreasing the as-339

pect ratio increases the crack stiffness from the transverse direction and results in higher340

resonant frequencies for all the modes. This effect is relatively mild for longitudinal modes341

but rather steep for transverse and mixed modes. For instance, when α of a rectangu-342
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Figure 7. Same as Figure 6 but for elliptical cracks. Note that the mode numbers (i, j) are

not strictly valid for an elliptical crack but are useful for our interpretation (more explanation in

the main text).

lar crack decreases from 1.0 to 0.1, the frequency of the fundamental mode (1, 0) increases343

by ∼ 1.8 fold while the frequency of the mixed mode (1, 1) increases by ∼ 14.6 fold. As344

a result, the first few resonant modes are predominantly longitudinal for both rectan-345

gular and elliptical cracks at low aspect ratios (below 0.2). For a similar mode, the res-346

onant frequency of an elliptical crack is consistently higher than that of the rectangu-347

lar crack. This is expected as the elliptical crack is narrower in the transverse direction348

and thus stiffer than a rectangular crack of the same length and aspect ratio.349

Another clear feature, for both rectangular and elliptical cracks, is that frequen-350

cies of modes with same wavelengths in the transverse direction converge as α decreases.351

For instance, frequencies of mixed modes (1, 1) and (2, 1) converge to the values of trans-352

verse mode (0, 1). Similar convergence also exists for modes (0, 2) and (1, 2). This is353

expected because the crack wave speed, in the limit of low aspect ratio, is primarily con-354

trolled by the short wavelength in the transverse direction. As α increases, the frequen-355

cies of different modes become more intermingled and mode degeneration occurs, where356

modes with distinct eigenfunctions share the same frequency. It is well known that mode357

degeneration occurs at α = 1 due to the geometric symmetry of a square or circle. What358

we show here is that mode degeneration also occurs at intermediate aspect ratios. For359
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Figure 8. Resonant frequencies of representative modes of rectangular cracks as a function of

the crack stiffness CL. The aspect ratio α is set as 0.5

Figure 9. Same as Figure 8 but for elliptical cracks

instance, modes (3, 0) and (0, 1) for both a rectangular and elliptical crack share sim-360

ilar frequencies when α ≈ 0.35.361

4.2 Effect of crack stiffness ratio362

Since the normalization constant (cf/
√
CL)/L for frequency changes with CL, we363

visualize the actual resonant frequency f , instead of f∗. We use cf = 1 m/s and L =364

1 m to scale f∗ to f . CL is the key dimensionless parameter that controls the crack wave365
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propagation: the higher the value of CL, the lower the phase velocity (e.g., B. Chouet,366

1986; Maeda & Kumagai, 2017). As a result, the resonant frequencies of all modes for367

both rectangular (Figure 8) and elliptical cracks (Figure 9) decrease continuously as CL368

increases. Again, for a similar mode, the resonant frequencies of an elliptical crack is con-369

sistently higher than those of a rectangular crack given the same axial lengths.370

5 Energy dissipation371

Since we currently focus on computing crack resonant frequencies in complex crack372

geometries, we assume both an inviscid fluid and a quasi-static solid and we do not con-373

sider energy dissipation, from either fluid viscosity or seismic radiation. When damp-374

ing exists, the resonant frequency becomes complex and the rate of decay is quantified375

by the quality factor376

Q =
Re (f)

2Im (f)
, (24)

which is also the number of cycles for an oscillation’s energy to fall off to e−2π ∼ 0.2%377

of its original value. The effect of viscous damping has been investigated analytically with378

fully dynamic (Korneev, 2008) and quasi-static solid response (Lipovsky & Dunham, 2015)379

on an infinite crack. However, the applicability of the Q formula on a finite crack has380

not yet been tested. In addition, the convoluted derivation in Korneev (2008) makes it381

difficult to quantify the relative contribution of different dissipative sources to the to-382

tal energy loss. On the other hand, numerical studies on rectangular cracks (e.g., Ku-383

magai & Chouet, 2000) have investigated the Q caused by seismic radiation but adopted384

a simplistic treatment of the fluid viscosity, either an inviscid or fully-developed flow. In385

this section, we offer a semi-analytical discussion of energy dissipation under a few as-386

sumptions and attempt to address two questions: (1) does the formula of Q developed387

by Lipovsky and Dunham (2015) for an infinite crack also apply to a finite crack? (2)388

which of the two sources of energy dissipation, fluid viscosity and seismic radiation, is389

more significant?390

5.1 The applicability of Q formula from dispersion to a finite crack391

We consider a viscous fluid with kinematic viscosity µ. To focus on the effect of392

the finite geometry, we compare analytical solutions by Lipovsky and Dunham (2015)393

to numerical solutions by Liang et al. (2020) for a rectangular crack, both of which as-394
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sume a quasi-static solid response. For simplicity, we focus on the boundary layer limit395

ζ = w0/
√
4ν/ω ≫ 1, (25)

where the crack aperture w0 is much larger than the thickness of the viscous boundary396

layer
√
4υ/ω. In this limit, Q is high and ω can be well approximately by the inviscid397

solution. The analytical formula of Q for crack waves with real wavenumber is given by398

equation (80) in Lipovsky and Dunham (2015) and, after neglecting the small imaginary399

part of phase velocity when ζ ≫ 1, we have:400

Q =
√
2ζ. (26)

The hypothesis is that this expression for Q also holds, at least approximately for a fi-401

nite rectangular crack, regardless of its geometric shape, as long as w0, µ and ω are known.402

We perform numerical simulations using the program by Liang et al. (2020), who em-403

ployed a finite difference method on a stretched grid to deal with the narrow viscous bound-404

ary layer. We set L = 100 m, Kf = 1 Pa, G = 1 Pa, w0 = 1 m, which results in a CL405

of 100, and solve for the inviscid resonant angular frequencies ω of rectangular cracks406

of two aspect ratios, 0.5 and 1.0. We then adjust µ so that ζ takes the values of 10, 20,407

40, 60, 80, 100 and 200. We consider the first two modes of the crack with aspect ratio408

of 0.5 and the fundamental mode of the square crack to represent different mode types409

and crack shapes. The Q values of viscous cases are obtained using the methodology by410

Liang et al. (2020) and the comparison to equation (26) is shown in Figure 10.411

As shown in Figure 10, the prediction by the analytical formula in Lipovsky and412

Dunham (2015) matches well the numerical solutions. The agreement gets better at large413

ζ, where the assumption of boundary layer limit becomes more accurate. The differences414

between the numerical and analytical solutions are less than 5% at Q > 40, while the415

difference at Q = 10 is ∼ 14%. Another encouraging finding is that aspect ratios and416

mode numbers of rectangular cracks have a negligible impact on the value of Q as long417

as ζ is the same. We thus postulate that the Q formula is likely to hold also for other418

crack shapes or even a crack network. We further propose that one may first approxi-419

mate the resonant frequency ω of complex shaped cracks using the inviscid solution ef-420

ficiently determined by our method, and then directly estimate Q using the analytical421

formula. However, future numerical studies considering both complex crack geometry422

and fluid viscosity are necessary to rigorously test this hypothesis.423
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Figure 10. Quality factor of various resonant modes of rectangular cracks as a function of the

boundary layer thickness ratio ζ.

5.2 The competition between radiation and viscous damping424

Instead of considering the fully dynamic solid response (e.g., Korneev, 2008), we425

assume a quasi-dynamic solid response (e.g., Rice, 1993; Geubelle & Rice, 1995), which426

allows to explicit extract the instantaneous long wavelength emission perpendicular to427

the crack surface, the radiation damping (RD) term. We also consider an infinite crack428

in two dimensions for the ease of theoretical treatment following Lipovsky and Dunham429

(2015). By neglecting the wave mediated stresses and the seismic diffraction at the fi-430

nite crack tips, the radiation we consider is an underestimate, but it is still useful for un-431

derstanding the relative importance of various dissipation sources. Since resonances tend432

to be overdamped in the fully developed flow limit ζ ≫ 40 (Korneev, 2008; Lipovsky433

& Dunham, 2015), we continue to focus on the boundary layer limit ζ ≪ 40. We ex-434

plicitly identify the radiation and viscous damping terms in the governing equation and435

then compute the ratio of their magnitudes.436

The width-averaged crack wave equation considering viscous wall traction is ob-437

tained by combining the mass and momentum balance equations in Lipovsky and Dun-438

ham (2015),439

ρf
Kf

∂2p

∂t2
+

ρf
w0

∂2w

∂t2
− ∂2p

∂x2
− 2

w0

∂τ

∂x
= 0, (27)
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where τ is the wall shear traction. We introduce the double Fourier transform of an ar-440

bitrary function F (x, t) as441

F̂ (k, ω) =

∫ +∞

−∞

∫ +∞

−∞
F (x, t) e−i(kx−ωt)dtdx. (28)

Applying it to equation (27) leading to442

−ω2ρf

(
p̂

Kf
+

ŵ

w0

)
+ k2p̂− ik

2

w0
τ̂ = 0. (29)

Using equation (38) in Lipovsky and Dunham (2015) and neglecting horizontal wall mo-443

tion, the wall shear traction is related to fluid pressure by444

τ̂ = −ikw0Ωp̂/2, (30)

where445

Ω =
(√

i/ζ
)
tanh

(
ζ/

√
i
)
, (31)

and tends to
√
i/ζ in the boundary layer limit. Therefore, the viscous damping (V D)446

term in the equation is447

V D = k2Ωp̂. (32)

Applying the quasi-dynamic solid response (Geubelle & Rice, 1995), the fluid pressure448

and crack opening are related by449

p̂ =
Gkŵ

2 (1− υs)
− iωηRŵ, (33)

where the two terms on the right hand side are the quasi-static response and radiation450

damping (RD), respectively, and ηR = ρscp/2 is the radiation damping coefficient. The451

ratio between the QS and RD terms is approximately c2s/(cpc) (dropping terms involv-452

ing Poisson’s ratio), where c = ω/k is the crack wave phase velocity. In the low-frequency453

limit, which we are interested in, the crack wave speed is much smaller than the speeds454

of the solid body waves, c ≪ cs ∼ cp, and thus the RD term is much smaller than the455

QS term. Substituting equation (33) into (29) and approximating ŵ/p̂ using the QS part,456

we obtain the RD term in equation (29) as457

RD = iω3 ρfnR

Kf
ŵ ≈ iω3 ρfnR

Kf

2 (1− υs)

Gk
p̂. (34)

The ratio between RD and V D is458

RD

VD
= ic3

ρfnR

Kf

2 (1− υs)

GΩ
= i

cpc
3

c2fc
2
s

(1− υs)

Ω
. (35)
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In the boundary layer limit, the magnitude of this ratio becomes459 ∣∣∣∣RD

VD

∣∣∣∣ = cpc
3

c2fc
2
s

ζ (1− υs) . (36)

When the overall damping is small, the crack wave phase velocity as a function of wave-460

length λ is well approximated by the inviscid dispersion relation:461

c =

√
2πGw0

λρf (1− υs)
∼ cf/sqrtCλ, (37)

where Cλ = Kfλ/Gw0 is a crack stiffness ratio similar to CL but replacing L by λ. Fi-462

nally, we obtain RD/V D, which scales as463 ∣∣∣∣RD

VD

∣∣∣∣ ∼ cpcf
c2s

ζ

C
3/2
λ

=
cpcs
c2f

ζ

(
w0ρs
λρf

)3/2

, (38)

after dropping small constants such as 2, π and µs. |RD/V D| is governed by three di-464

mensionless parameters:
cpcf
c2s

, Cλ and ζ. The first parameter one is controlled by the body465

wave speeds of the solid and fluid and is not related to the crack geometry. For a typ-466

ical crustal rock and liquid fluid, for instance with cf = 1500 m/s, cp = 4500 m/s, and467

cs = 2500 m/s,
cpcf
c2s

is near unity. However, exsolved gases in liquid fluid, common in468

shallow volcanic or geothermal environments (e.g., Kumagai & Chouet, 1999, 2001), can469

significantly decrease the sound speed of the mixture, resulting in a much smaller
cpcf
c2s

.470

The trade-off between Cλ and ζ in controlling |RD/V D| is displayed in Figure 11. In471

the regime of high ζ and low Cλ, seismic radiation dominates over viscous damping, while472

in the regime of low ζ and high Cλ vice versa. Note that increasing λ or decreasing fre-473

quency ω while fixing other parameters increases Cλ and simultaneously decreases ζ, both474

of which lead to a lower percentage of damping in radiation.475

6 Application to VLP seismic signals during the Mayotte volcano-seismic476

crisis477

Since 10 May 2018, an unprecedented submarine volcano-seismic crisis occurred478

30 km east of Mayotte Island (France), featuring a lithosphere-scale dyke intrusion and479

drainage (∼ 5 km3) of deep magma reservoirs and producing exceptionally deep seismic-480

ity and substantial surface deformation (Cesca, Letort, et al., 2020; Feuillet et al., 2021;481

Saurel et al., 2021; Mittal et al., 2022; Mercury et al., 2022; Retailleau et al., 2022). By482

mid June of 2018, sustained long duration and highly oscillatory VLP seismic signals (see483

an example in Figure 12a) have been observed and persist since, which are associated484

with resonances of magma-filled cracks excited by nearby volcano-tectonic (VT) events485
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Figure 11. |RD/V D| as a function of the crack stiffness ratio Cλ and the boundary layer

thickness ratio ζ. Parameters used are cf = 1500 m/s, cp = 4500 m/s, and cs = 2500 m/s.

or possible piston collapse movements (Cesca, Letort, et al., 2020; Feuillet et al., 2021).486

The stack of spectra of multiple VLP events reveals multiple resonant modes, among which487

the fundamental mode with period ∼15.5 s is present in all events, but not all higher modes488

are manifested in each event, probably due to differences in the excitation. The funda-489

mental frequency can be readily explained by the crack model upon choosing a proper490

crack length and aperture (Cesca, Letort, et al., 2020). However, as shown in Figure 12b,491

the uneven spacing between resonant modes implies additional complexity in the source.492

Particularly, the ratio between the first higher mode and the fundamental mode is f2/f1 ≈493

2.5. As shown in Figures 6 and 7, this value can not be explained by a simple rectan-494

gular or elliptical crack. Here, we show this observation can be explained by a dumbbell-495

shaped crack (Figure 12c). This crack shape is compatible with the f2/f1 data, but might496

still differ from the real crack geometry in Mayotte as we have not made a systematic497

attempt to also match the frequencies of other higher modes. However, this example is498

sufficient to demonstrate the potential application of the developed method. One pro-499

found question is perhaps whether one can reconstruct the topology of the crack given500

the information of all the resonant frequencies. Mark Kac also asked a similar question501

“Can one hear the shape of a drum?” (Kac, 1966). Unfortunately, the answer is nega-502

tive: there exist multiple isospectral geometries that share the same resonant frequen-503
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cies, as mathematically proven by Gordon et al. (1992). However, these isospectral ge-504

ometries are rare even though they do exist and one can still decipher the shape of the505

resonator given additional constraints of the vibration pattern, which in practice requires506

dense geophysical observation particularly in the near field. A formal inversion proce-507

dure would need to be developed in the future to find the optimal crack geometry or topol-508

ogy of interconnected crack networks that best explains all the observed resonant fre-509

quencies and other geophysical constraints.

Figure 12. (a) Normalized vertical acceleration waveform of an representative VLP event

(on 11 November 2018, bandpass filtered to 0.02-0.1 Hz) at the nearest broadband seismic sta-

tion YTMZ on land, during the volcano-seismic crisis near Mayotte. (b) Stacked spectrum of

21 strong VLP signals compiled by Cesca, Letort, et al. (2020), highlighting multiple unevenly

spaced resonant modes (dashed lines). Particularly, the frequency ratio between the first two

modes f2/f1 ≈ 2.5. The blue ticks indicate the integer multiples of the fundamental frequency.

(c) Eigenmodes of a possible crack shape that satisfies f2/f1 ≈ 2.5.

510
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7 Summary511

We have developed a hybrid method that couples the boundary element and finite512

volume method to efficiently compute the resonant modes of fluid-filled cracks with com-513

plex geometry. Particularly, the BEM reduces three dimensional cracks to 2D surfaces,514

substantially decreasing the number of degrees of freedom. By performing eigenmode515

analysis in the frequency domain, we avoid errors from both the time discretization and516

spectral analysis of the time domain data. We solve the problem in dimensionless form517

so that the results can be conveniently scaled to other crack sizes. After proper verifi-518

cation, we apply our method to an example of a crack network, revealing distinct res-519

onant frequencies and vibration patterns, which may be utilized to infer more accurately520

crack shapes from seismic data.521

We then systematically analyze the influence of crack aspect ratio and crack stiff-522

ness on the resonant frequencies for both rectangular and elliptical cracks, which are com-523

mon models for interpreting real data. In general, rectangular and elliptical cracks share524

similar eigenmode types and frequencies, while the elliptical crack has slightly higher res-525

onance frequencies due to the reduced length of the minor axis. At a high aspect ratio,526

the frequencies of various mode types (longitudinal, transverse and mixed) are intermin-527

gled and mode degeneration occurs. Reducing the aspect ratio increases the frequencies528

of all the modes, but more intensely for transverse and mixed modes than for longitu-529

dinal modes. In addition, at low aspect ratio, frequencies of modes (transverse or mixed)530

with the same wavelengths in the transverse direction converge and differentiating them531

requires additional knowledge of their vibration patterns. On the other hand, increas-532

ing CL results in a decrease in resonant frequencies for all modes, regardless of the crack533

geometry, which is primarily due to the decrease in crack wave propagation speed.534

The major part of this work does not consider fluid viscosity or seismic radiation,535

and thus cannot be used to directly compute the quality factor Q. However, by making536

a few assumptions, we offer additional theoretical discussion on the energy dissipation.537

First, by comparing numerical to analytical solutions, we confirm that the simple for-538

mula Q =
√
2ζ derived by Lipovsky and Dunham (2015) is a rather good approxima-539

tion for a rectangular crack when the thickness of the viscous boundary layer is much540

smaller than the crack width, regardless of crack aspect ratio or vibrational mode. This541

is an encouraging finding that suggests one may first obtain the inviscid resonant fre-542
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quencies using our method and then apply analytical formula to compute Q. Note that543

this formula still does not consider seismic radiation. We then derived the relative ra-544

tio of the radiation damping to viscous damping, assuming a quasi-dynamic solid response545

on an infinite crack. We show that this ratio is primarily controlled by three dimension-546

less parameters: cpcf/c
2
s, Cλ and ζ. Particularly, in the limit of high ζ and low Cλ, seis-547

mic radiation dominates over viscous damping while the opposite is true in the limit of548

low ζ and high Cλ. Note that the seismic radiation considered here is a lower bound as549

we neglected the wave-mediated stresses and the seismic radiation at the finite crack tip.550

However, our theoretical development still offers a valuable insight into the partition of551

damping in crack waves.552

Finally, we obtain one possible crack shape, a “dumbbell”, that successfully explains553

the ratio of frequencies of the first two modes in the VLP seismic data during the 2018554

Fani Maoré, Mayotte submarine volcanic eruption. This shape is one possibility and may555

be updated when additional higher modes and geophysical constraints are integrated into556

the analysis. In addition, the method developed here can be directly applied to other557

scenarios, such as unconventional oil and gas fields and glacier hydraulics. Future work558

requires a rigorous treatment of fluid viscosity, elastodynamics, and coupling to other559

geometries such as conduits and equidimensional chambers.560

8 Acknowledgments561

This work is funded by the early career research grant by the National Science Fun-562

dation of China (NSFC) with grant No. 42204059 and the Fundamental Research Funds563

for the Central Universities disseminated by IDMR at Sichuan University. It was also564

supported by the French government, through the UCAJEDI Investments in the Future565

project (ANR-15-IDEX-01) managed by the National Research Agency (ANR).566

9 Data Availability Statement567

The source code and the input files associated with the simulation cases are included568

in the Zenodo data respository at Liang et al. (2023). The VLP catalog of the Mayotte569

crisis is provided by Cesca, Heimann, et al. (2020) and is freely available online.570

–28–



manuscript submitted to JGR: Solid Earth

References571

Aki, K., Fehler, M., & Das, S. (1977). Source mechanism of volcanic tremor: Fluid-572

driven crack models and their application to the 1963 Kı̄lauea eruption. Jour-573

nal of Volcanology and Geothermal Research, 2 (3), 259–287. doi: 10.1016/0377574

-0273(77)90003-8575

Aster, R. C. (2019). Interrogating a surging glacier with seismic interferometry. Geo-576

physical Research Letters, 46 (14), 8162–8165. doi: 10.1029/2019GL084286577

Berre, I., Doster, F., & Keilegavlen, E. (2019). Flow in fractured porous media:578

A review of conceptual models and discretization approaches. Transport in579

Porous Media, 130 (1), 215–236. doi: 10.1007/s11242-018-1171-6580

Cao, H., Medici, E., & Askari, R. (2021). Physical modeling of fluid-filled fractures581

using the dynamic photoelasticity technique. Geophysics, 86 (1), T33–T43. doi:582

10.1190/geo2020-0037.1583

Cesca, S., Heimann, S., Letort, J., Razafindrakoto, H., Dahm, T., & Cotton, F.584

(2020). Seismic catalogues of the 2018–2019 volcano-seismic crisis offshore585

mayotte, comoro islands. v. 1.0 (october 2019). available at gfz data ser-586

vices. Retrieved from https://doi.org/10.5880/GFZ.2.1.2019.004 doi:587

10.5880/GFZ.2.1.2019.004588

Cesca, S., Letort, J., Razafindrakoto, H. N., Heimann, S., Rivalta, E., Isken, M. P.,589

. . . others (2020). Drainage of a deep magma reservoir near mayotte inferred590

from seismicity and deformation. Nature Geoscience, 13 (1), 87–93. doi:591

10.1038/s41561-019-0505-5592

Chouet, B. (1986). Dynamics of a fluid-driven crack in three dimensions by the finite593

difference method. Journal of Geophysical Research: Solid Earth, 91 (B14),594

13967–13992. doi: 10.1029/JB091iB14p13967595

Chouet, B. A., Page, R. A., Stephens, C. D., Lahr, J. C., & Power, J. A. (1994).596

Precursory swarms of long-period events at redoubt volcano (1989–1990),597

alaska: their origin and use as a forecasting tool. Journal of Volcanology and598

Geothermal Research, 62 (1-4), 95–135. doi: 10.1016/0377-0273(94)90030-2599

Cruz, F. G., & Chouet, B. A. (1997). Long-period events, the most characteristic600

seismicity accompanying the emplacement and extrusion of a lava dome in601

galeras volcano, colombia, in 1991. Journal of Volcanology and Geothermal602

Research, 77 (1-4), 121–158. doi: 10.1016/S0377-0273(96)00091-1603

–29–



manuscript submitted to JGR: Solid Earth

Durran, D. R. (2013). Numerical methods for wave equations in geophysical fluid dy-604

namics (Vol. 32). Springer Science & Business Media.605

Fehler, M., & Aki, K. (1978). Numerical study of diffraction of plane elas-606

tic waves by a finite crack with application to location of a magma lens.607

Bulletin of the Seismological Society of America, 68 (3), 573–598. doi:608

10.1785/BSSA0680030573609

Ferrazzini, V., & Aki, K. (1987). Slow waves trapped in a fluid-filled infinite crack:610

Implication for volcanic tremor. Journal of Geophysical Research: Solid Earth,611

92 (B9), 9215–9223. doi: 10.1029/JB092iB09p09215612

Feuillet, N., Jorry, S., Crawford, W. C., Deplus, C., Thinon, I., Jacques, E.,613

. . . others (2021). Birth of a large volcanic edifice offshore mayotte via614

lithosphere-scale dyke intrusion. Nature Geoscience, 14 (10), 787–795. doi:615

10.1038/s41561-021-00809-x616

Frehner, M. (2013). Krauklis wave initiation in fluid-filled fractures by a passing617

body wave. In Poromechanics v: Proceedings of the fifth biot conference on618

poromechanics (pp. 92–100). doi: 10.1061/9780784412992.011619

Frehner, M., & Schmalholz, S. M. (2010). Finite-element simulations of stoneley620

guided-wave reflection and scattering at the tips of fluid-filled fractures. Geo-621

physics, 75 (2), T23–T36. doi: 10.1190/1.3340361622

Fujita, E., & Ida, Y. (2003). Geometrical effects and low-attenuation reso-623

nance of volcanic fluid inclusions for the source mechanism of long-period624

earthquakes. Journal of Geophysical Research: Solid Earth, 108 (B2). doi:625

10.1029/2002JB001806626

Geubelle, P. H., & Rice, J. R. (1995). A spectral method for three-dimensional elas-627

todynamic fracture problems. Journal of the Mechanics and Physics of Solids,628

43 (11), 1791–1824. doi: 10.1016/0022-5096(95)00043-I629

Gordon, C., Webb, D. L., & Wolpert, S. (1992). One cannot hear the shape of a630

drum. Bulletin of the American Mathematical Society , 27 (1), 134–138. doi: 10631

.1090/S0273-0979-1992-00289-6632
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Métaxian, J.-P., Araujo, S., Mora, M., & Lesage, P. (2003). Seismicity related to the710

glacier of cotopaxi volcano, ecuador. Geophysical Research Letters, 30 (9). doi:711

10.1029/2002GL016773712

Mittal, T., Jordan, J. S., Retailleau, L., Beauducel, F., & Peltier, A. (2022). May-713

otte 2018 eruption likely sourced from a magmatic mush. Earth and Planetary714

Science Letters, 590 , 117566. doi: 10.1016/j.epsl.2022.117566715

Moinfar, A., Varavei, A., Sepehrnoori, K., & Johns, R. T. (2013, 07). Develop-716

ment of an Efficient Embedded Discrete Fracture Model for 3D Compositional717

Reservoir Simulation in Fractured Reservoirs. SPE Journal , 19 (02), 289-303.718

doi: 10.2118/154246-PA719

Nakagawa, S., Nakashima, S., & Korneev, V. A. (2016). Laboratory measurements720

of guided-wave propagation within a fluid-saturated fracture. Geophysical721

Prospecting , 64 (1), 143–156. doi: 10.1111/1365-2478.12223722

Nakano, M., & Kumagai, H. (2005). Response of a hydrothermal system to723

magmatic heat inferred from temporal variations in the complex frequen-724

cies of long-period events at kusatsu-shirane volcano, japan. Journal of725

volcanology and geothermal research, 147 (3-4), 233–244. doi: 10.1016/726

j.jvolgeores.2005.04.003727

Nikkhoo, M., & Walter, T. R. (2015). Triangular dislocation: an analytical, artefact-728

free solution. Geophysical Journal International , 201 (2), 1119–1141. doi: 10729

.1093/gji/ggv035730

Niu, J., & Song, T.-R. A. (2020). Real-time and in-situ assessment of conduit731

permeability through diverse long-period tremors beneath aso volcano,732

japan. Journal of Volcanology and Geothermal Research, 401 , 106964. doi:733

10.1016/j.jvolgeores.2020.106964734

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-735

–33–



manuscript submitted to JGR: Solid Earth

space. Bulletin of the seismological society of America, 75 (4), 1135–1154.736

Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-737

space. Bulletin of the Seismological Society of America, 82 (2), 1018–1040.738

O’Reilly, O., Dunham, E. M., & Nordström, J. (2017). Simulation of wave propa-739

gation along fluid-filled cracks using high-order summation-by-parts operators740

and implicit-explicit time stepping. SIAM Journal on Scientific Computing ,741

39 (4), B675–B702. Retrieved from https://doi.org/10.1137/16M1097511742

doi: 10.1137/16M1097511743

Paillet, F. L., & White, J. E. (1982, 08). Acoustic modes of propagation in744

the borehole and their relationship to rock properties. Geophysics, 47 (8),745

1215-1228. Retrieved from https://doi.org/10.1190/1.1441384 doi:746

10.1190/1.1441384747

Pointer, T., Liu, E., & Hudson, J. A. (1998). Numerical modelling of seismic748

waves scattered by hydrofractures: application of the indirect boundary el-749

ement method. Geophysical Journal International , 135 (1), 289–303. doi:750

10.1046/j.1365-246X.1998.00644.x751

Retailleau, L., Saurel, J.-M., Laporte, M., Lavayssière, A., Ferrazzini, V., Zhu,752

W., . . . others (2022). Automatic detection for a comprehensive view of753

mayotte seismicity. Comptes Rendus. Géoscience, 354 (S2), 153–170. doi:754
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Appendix A Matrices D and T for a simple crack intersection798

In this section, we show step by step how to construct matrices D and T for a sim-799

ple crack intersection shown in Figure A1. The element number and positive flux direc-800
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tion of each active connection as labeled. The boundary edges have zero flux and they801

do not contribute to D and T. Thus, we have five elements and five active connections802

numbered as {2 → 1, 3 → 2, 4 → 2, 5 → 2, 5 → 4}, where i → j defines the positive flux803

direction. The size of both D and T are 5 by 5.

Figure A1. Geometry of a simple crack intersection. The element number and the positive

flow direction of each active connection (non-zero flux) are indicated by the circled number and

arrow, respectively. The scalar transmisibilities are labled near each connection.

804

Let’s first consider the matrix D, which sums the flux from active connections to805

obtain the net out-flux from each element. We consider the first row of D as an exam-806

ple, relevant for element 1. The only connection that contributes to the net out-flux of807

element 1 is connection 1 with the positive direction of 2 → 1, the opposite to the out-808

flux direction. Thus, D(1, 1) = −1 and other entries of the first row are zeros. How-809

ever, for element 2, the positive flux of connection 1 aligns with the outflux direction,810

which leads to D(2, 1) = 1. Similarly, other entries of matrix D can be determined and811

the matrix D is:812

D =



−1 0 0 0 0

1 −1 −1 −1 0

0 1 0 0 0

0 0 1 0 −1

0 0 0 1 1


. (A1)
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We now proceed to construct the matrix T, which computes the flux on each active con-813

nection from the pressure on each cell. Note that we only store the flux in the positive814

direction. For instance, the flux on the first connection is Q2→1 = T21 (p2 − p1), which815

means T (1, 2) = −T (1, 1) = T21. Similarly, other entries of the matrix T can be com-816

puted and the full expression of T is:817

T =



−T21 T21 0 0 0

0 −T32 T32 0 0

0 −T42 0 T42 0

0 −T52 0 0 T52

0 0 0 −T54 T54


. (A2)

Appendix B Resonant frequencies from time domain results by GFEM818

In this section, we explain the procedure to obtain selective resonant frequencies819

from the time domain simulation results using the GFEM code developed by Shauer et820

al. (2021). As shown in Figure B1, we apply injection sources with a gaussian source time821

function on the certain position on the crack (red stars), obtain the pressure time series822

(duration of 50 s) on three receiving points (blue triangles), and then extract the res-823

onant frequencies at spectral peaks. For the rectangular crack, we place one source at824

the upperleft corner, which manages to excite all the first eight modes, and three receivers825

(R1, R2, and R3) at (-0.5, 0), (-0.20, 0.25), and (0, 0.25), respectively. Different receivers826

sample different eigenmodes. For instance, receiver R1 samples modes 1, 2, 5, and 8 as827

shown in Figure B1-c. The modes sampled by R2 and R3 are shown in Table 2. We make828

this choice to selectively sample closely-spaced modes, for instance mode 2 and 3, at dif-829

ferent receivers to avoid ambiguity.830

For the elliptical crack, we place two sources at the leftmost and uppermost ends,831

and three receivers at (-0.5, 0), (0, 0.25), (0, 0) respectively. Due to the excitation and832

monitoring geometry, we focus only sampling the longitudinal and transverse modes, which833

are clearly seperated peaks in the spectrum. The eigenmodes sampled by different re-834

ceivers are shown in Figure B1-f and Table 3.835
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Figure B1. (a, d) The source and receiver positions. (b, e) Pressure time series at three

receivers. (c, f) The normalized spectral amplitude of data at receiver R1. The vertial black

dashed lines are the resonant frequencies (with mode number labelled) computed by BEM+FVM

method.
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Abstract19

Fluid-filled cracks sustain a slow guided wave (Krauklis wave or crack wave) whose res-20

onant frequencies are widely used for interpreting long period (LP) and very long pe-21

riod (VLP) seismic signals at active volcanoes. Significant efforts have been made to model22

this process using analytical developments along an infinite crack or numerical methods23

on simple crack geometries. In this work, we develop an efficient hybrid numerical method24

for computing resonant frequencies of complex-shaped fluid-filled cracks and networks25

of cracks and apply it to explain the ratio of spectral peaks in the VLP signals from the26

Fani Maoré submarine volcano that formed in Mayotte in 2018. By coupling triangu-27

lar boundary elements and the finite volume method, we successfully handle complex ge-28

ometries and achieve computational efficiency by discretizing solely the crack surfaces.29

The resonant frequencies are directly determined through eigenvalue analysis. After proper30

verification, we systematically analyze the resonant frequencies of rectangular and ellip-31

tical cracks, quantifying the effect of aspect ratio and crack stiffness ratio. We then dis-32

cuss theoretically the contribution of fluid viscosity and seismic radiation to energy dis-33

sipation. Finally, we obtain a crack geometry that successfully explains the character-34

istic ratio between the first two modes of the VLP seismic signals from the Fani Maoré35

submarine volcano in Mayotte. Our work not only reveals rich eigenmodes in complex-36

shaped cracks but also contributes to illuminating the subsurface plumbing system of37

active volcanoes. The developed model is readily applicable to crack wave resonances38

in other geological settings, such as glacier hydrology and hydrocarbon reservoirs.39

1 Introduction40

Slow guided waves that propagate along fluid-filled cracks, named crack waves or41

Krauklis waves, can be used for inferring the geometries of subsurface cracks and the fluid42

properties in a wide range of geological settings (Krauklis, 1962; Ferrazzini & Aki, 1987;43

Paillet & White, 1982; B. Chouet, 1986; Korneev, 2008; Tang & Cheng, 1989; Lipovsky44

& Dunham, 2015). In volcanology, crack wave resonances along magma-filled sills and45

dikes have been used for interpreting long period (LP, 0.5-2 s) and very long period (VLP,46

2 to 100 s) seismic signals at many volcanos, including Mount Redoubt (B. A. Chouet47

et al., 1994), Aso (Kawakatsu et al., 2000; Niu & Song, 2020), Galeras (Cruz & Chouet,48

1997), Asama (Fujita & Ida, 2003), Kusatsi-Shirane (Kumagai et al., 2003; Nakano &49

Kumagai, 2005), Etna (Lokmer et al., 2008), and Erebus (Aster, 2019). Crack waves (and50
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their induced tube waves in wellbores) are used for diagnosing the fracture geometries51

in unconventional hydrocarbon reservoirs (Henry et al., 2002; Tary et al., 2014; Lipovsky52

& Dunham, 2015; Liang et al., 2017). The resonating or humming signals in glaciers have53

also been attributed to crack waves (Métaxian et al., 2003; Stuart et al., 2005; Gräff et54

al., 2019; McQuillan & Karlstrom, 2021). Natural cracks in the subsurface are complex55

in shape and usually form an inter-connected network. Therefore, efficient methods for56

computing resonant modes of single cracks and networks of cracks are necessary for in-57

terpreting frequencies measured in the field.58

Since its first discovery by Krauklis (1962), crack waves have been studied analyt-59

ically (Aki et al., 1977; Ferrazzini & Aki, 1987; Korneev, 2008; Lipovsky & Dunham, 2015),60

experimentally (Tang & Cheng, 1988; Nakagawa et al., 2016; Cao et al., 2021), and nu-61

merically by various methods (e.g., B. Chouet, 1986; Yamamoto & Kawakatsu, 2008;62

Frehner & Schmalholz, 2010; O’Reilly et al., 2017; Liang et al., 2020; Shauer et al., 2021;63

Jin et al., 2022). Analytically derived dispersion relations are useful for understanding64

the propagation behavior but are meant for an infinitely long crack and do not account65

for the restriction of the finite crack tip. The finite difference method (FDM) is normally66

based on cartesian grids in 2D (Fehler & Aki, 1978) or 3D (B. Chouet, 1986; Liang et67

al., 2020) and limited to a tabular crack shape. Maeda and Kumagai (2013) and Maeda68

and Kumagai (2017) performed a large number of numerical simulations on rectangu-69

lar cracks using a FDM simulator developed by B. Chouet (1986). With that, they ob-70

tained a set of empirical fitting formulas for resonant frequencies given the crack aspect71

ratio α and stiffness ratio CL = KfL/(Gw0), where Kf is the fluid bulk modulus, G72

the solid shear modulus, L the crack length and w0 the crack aperture. However, such73

relations only apply to longitudinal or transverse modes on rectangular cracks (Maeda74

& Kumagai, 2013, 2017). Notably, O’Reilly et al. (2017) simulated a non-planar fluid-75

filled crack using FDM on a curvilinear grid and adopted a lubrication-type approxima-76

tion in the fluid (Lipovsky & Dunham, 2015), neglecting fluid acoustics in the crack width77

direction while resolving the narrow viscous boundary layer close to the crack wall. This78

treatment removes the time step restriction introduced by extremely fine mesh size in79

the crack width direction and accelerates the computation. However, their work was lim-80

ited to 2D geometries. The finite element method (FEM) is more flexible for handling81

complex crack geometries and has been used to study crack waves in 2D (Frehner & Schmal-82

holz, 2010; Frehner, 2013) and 3D (Shauer et al., 2021). Particularly, Shauer et al. (2021)83
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produced the first simulation of an elliptical fluid-filled crack using the generalized finite84

element method (GFEM). However, similar to FDM, FEM needs to discretize the vol-85

ume, which results in a large number of elements and high computational cost. On the86

other hand, the boundary element method (BEM) reduces the simulation space from a87

domain to boundary surfaces, drastically decreasing the number of degrees of freedom,88

and has been used to study waves in fluid-filled cracks (Yamamoto & Kawakatsu, 2008;89

Pointer et al., 1998; Jin et al., 2022) and other inclusions (Zheng et al., 2016; Sun et al.,90

2020). However, previous BEM simulations are either in two dimensions or focus on the91

wave diffraction instead of analyzing the resonant frequencies. Currently, the study of92

resonant frequencies of complex-shaped fluid-filled cracks and crack networks in three93

dimensions remain unknown.94

In this work, we propose an efficient hybrid numerical method to simulate crack95

wave resonance in complex-shaped cracks or crack networks filled with an inviscid fluid,96

by coupling the boundary element method (BEM) for the solid response and the finite97

volume method (FVM) for acoustics in the fluid. By using triangular elements in both98

BEM and FVM on the crack surfaces, we successfully handle complex crack shapes and99

intersections. We restrict our attention to the low frequency limit where the crack wave100

is much slower than the solid body waves, such that the solid response can be approx-101

imated as quasi-static (Korneev, 2008; Lipovsky & Dunham, 2015; Liang et al., 2020).102

An eigenvalue analysis is performed to extract the resonant modes directly in the fre-103

quency domain, circumventing errors from time discretization and spectral analysis of104

the time domain simulation data. We first verify our method by comparing results with105

analytical solutions in the rigid wall limit and with numerical solutions from existing meth-106

ods for both a rectangular (B. Chouet, 1986; Maeda & Kumagai, 2017) and elliptical cracks107

(Shauer et al., 2021). An example is then provided to demonstrate the simulation ca-108

pability for intersecting cracks. The effect of crack aspect ratio and stiffness ratio on res-109

onant frequencies (longitudinal, transverse, and mixed modes) is systematically inves-110

tigated for both rectangular and elliptical cracks. Although our current model does not111

include viscous or radiation loss, we provide some theoretical discussion on these effects112

under simple assumptions (boundary layer limit and quasi-dynamic approximation). Fi-113

nally, we present a crack shape compatible with the first two spectral peaks of VLP seis-114

mic signals from the Fani Maoré, Mayotte submarine volcano and discuss the potential115

of the methodology for future applications in volcanology and other geological settings.116
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Figure 1. Schematics of an arbitrarily-shaped fluid-filled crack, its spatial discretization (with

unknown variables placed in the element centroids, red dots), and a zoom-in view at an intersec-

tion between two cracks.

2 Methods117

In this section, we present the governing equations, discretization, and eigenmode118

analysis for computing the resonant frequencies.119

2.1 Governing equations120

We consider the oscillation of inviscid fluids in complex-shaped thin cracks embed-121

ded in a 3D homogeneous linear elastic solid (Figure 1). The initial opening of the crack122

is w0, which is assumed to be a constant and much smaller than the wavelength λ. We123

adopt a similar lubrication approximation as B. Chouet (1986), Yamamoto and Kawakatsu124

(2008) and O’Reilly et al. (2017), and treat the fluid pressure and velocities as uniform125

in the crack thickness direction, reducing the crack from a 3D body to a 2D surface S.126

Following O’Reilly et al. (2017), we consider a small crack curvature so that its effect127

on the fluid momentum balance is negligible. Thus, the mass and momentum balance128

of the fluid on the crack surface are written as129

1

w0

∂w

∂t
+

1

Kf

∂p

∂t
+

∂vξ
∂ξ

+
∂vη
∂η

= 0, (1)

130

ρf
∂vξ
∂t

+
∂p

∂ξ
= 0, (2)

131

ρf
∂vη
∂t

+
∂p

∂η
= 0, (3)

where ρf and Kf are fluid density and bulk modulus, w is the crack opening perturba-132

tion, p is the fluid pressure perturbation, t is time, and ξ and η are two locally perpen-133
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dicular coordinates tangent to the crack surface, vξ and vη are the fluid velocities in the134

ξ and η directions, respectively. Eliminating vξ and vη in (1) using (2)-(3), we have135

ρf

(
1

w0

∂2w

∂t2
+

1

Kf

∂2p

∂t2

)
−∆p = 0, (4)

where ∆ = ∂2

ξ2 + ∂2

η2 is the tangential Laplace operator along the crack surface. The136

coupling between fluid and solid is encapsulated in the relation between the crack open-137

ing perturbation w and pressure perturbation p, which must balance the solid normal138

stress perturbation σn on the crack wall (assumed positive in compression). Since we fo-139

cus on the low frequency limit, the solid response is approximately quasi-static (Korneev,140

2008; Lipovsky & Dunham, 2015; Liang et al., 2020), and p for a linear elastic solid can141

be expressed as (Segall, 2010):142

p (x) =

∫
S

K (x, ξ)w (ξ) dA, (5)

where K(x, ξ) is the Green’s function that relates a unit open dislocation impulse at ξ143

to the normal stress change at x. The expressions of K in an elastic whole space and half144

space are available analytically for a uniform dislocation on both rectangular elements145

(Okada, 1985, 1992) and triangular elements (Nikkhoo & Walter, 2015).146

2.2 Discretization147

We discretize the crack surfaces into Ne triangular elements. The unknown aver-148

age pressures p̄ and openings w̄, placed at element centroids (as shown in Figure 1), are149

related by150

p̄ = Kw̄, (6)

where K is a Ne by Ne matrix and K(i, j) denotes the fluid pressure (or solid normal151

stress) change at the centroid of the i-th element caused by a unit open dislocation on152

the j-th element. We use the full space Green’s function in this study but one can also153

use the half space solution.154

We then discretize the tangential Laplacian operator by a finite volume scheme with155

a two-point flux (TPF) approximation following Karimi-Fard et al. (2004), which has156

been widely used for diffusive flows through a discrete fracture network in hydrocarbon157

reservoirs (e.g., Li & Lee, 2008; Moinfar et al., 2013; Xu et al., 2017; Berre et al., 2019).158

This scheme is only first-order accurate and is thus rarely used in wave propagation prob-159

lems due to the strong numerical diffusion in time domain simulations (e.g., Durran, 2013).160
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However, it is a sufficient scheme for our problem as we focus on resolving only the spa-161

tial distribution of eigenmodes in the frequency domain and the low order of accuracy162

can be remedied by using more elements. Here, we briefly present the key derivation steps163

and the readers are referred to Karimi-Fard et al. (2004) for a detailed description.164

We consider an arbitrary planar triangular element i with a surface Si and bound-165

ary edges lij , where j is the index of the neighboring elements. Each i and j pair forms166

a hydraulic connection. When multiple cracks intersect, multiple connections share the167

same edge. We integrate equation (4) over each element i’s surface, leading to:168

ρfAi

[
1

w0

∂2w̄i

∂t2
+

1

Kf

∂2p̄i
∂t2

]
=

∫
Si

∆pds, (7)

where169

p̄i =
1

Ai

∫
Si

pds, (8)

170

w̄i =
1

Ai

∫
Si

wds, (9)

are the average pressure and opening of element i, respectively. Applying the divergence171

theorem to the right hand side of equation (7), we have:172 ∫
Si

∆pds =

∫
Si

∇⃗ · ∇⃗pds =

∫
l

∂p

∂n
dl = −

nc∑
j=1

Di→jQi→j , (10)

where ∂p/∂n is the pressure gradient normal to the boundary edges, nc is the total num-173

ber of connections in contact with element i, Qi→j is the flux going out from element174

i to element j. Since Qi→j = −Qj→i, we only store Qi→j for each (i, j) pair and its175

positive flux direction is pre-defined by an indicator function Ii→j = −Ij→i = 1. Di→j176

is the discrete divergence operator and Di→j = Ii→j = 1.177

The assumption of the TPF scheme is to approximate the flux term in the follow-178

ing form (equation (7) in Karimi-Fard et al. (2004)):179

Qi→j = Ii→jTij(pi − pj), (11)

where pi and pj are pressures defined at the centroids of the two neigboring elements.180

Tij is the scalar transmissibility and is expressed as181

Tij =
αiαj∑nc

k=1 αk
, (12)

182

αk =
lij
dk

n⃗k · f⃗k, (13)
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where lij is the length of the connecting edge, dk and f⃗k are the length and unit direc-183

tional vector from midpoint of the edge to the centroid of element k, n⃗k is a unit nor-184

mal vector perpendicular to the edge and pointing towards element k, as shown in Fig-185

ure 1. Fluxes on the crack boundaries are set to zero. Combining equations (10) and (11),186

we have:187 ∫
Si

∆pds = −
nc∑
j=1

Di→jIi→jTij (pi − pj) . (14)

It is apparent that changing the positive flux direction from i → j to j → i flips the188

sign of both Di→j and Ii→j and thus results in the same Laplacian term. Substituting189

equation (14) into equation (7) and rewriting in the matrix form, we have the spatially190

discretized equation without external forcing:191

ρf

(
1

w0
K−1 +

1

Kf

)
∂2p̄

∂t2
= −A−1DQ = −A−1DTp̄, (15)

where A is a diagonal matrix of size Ne by Ne denoting the area of each element, Q =192

Tp̄ is the flux vector whose size is the total number of connections Nc, T is the trans-193

missibility matrix (including the indicator function) of size Nc by Ne that maps the vec-194

tor p̄ to Q, and D is the divergence matrix of size Ne by Nc that maps Q to the net flux195

out of each element. The structure of matrices D and T for a system of three intersect-196

ing crack elements are described in Appendix A.197

We further introduce the following dimensionless quantities:198

K∗ = K/(G/L),A∗ = A/L2, w = w∗/w0, t
∗ = t/(L/cl), p̄

∗ = p̄/(ρfc
2
l ), (16)

where G is the solid shear modulus, L is a representative length of the crack and cl =199 √
Gw0/ (ρfL) is a representative crack wave speed. Different non-dimensionalization strate-200

gies exist, such as the one by B. Chouet (1986) which normalizes wave speeds by the solid201

compressional wave speed cp. We choose cl instead, because in the long wavelength limit,202

where compliance of the crack dominates, this choice conveniently results in a fundamen-203

tal frequency of the order of unity. The nondimensionalised equation is204 (
1

CL
I+ (K∗)

−1

)
∂2p̄∗

∂t∗2
= −A∗−1DTp̄∗, (17)

where CL = KfL/Gw0 is the key dimensionless parameter, named crack stiffness ra-205

tio by B. Chouet (1986). The crack wave limit is achieved with CL ≫ 1, where the crack206

is much more compliant than the fluid. CL can be related to the representative crack207

wave speed cl by CL = c2f/c
2
l , where cf is the fluid acoustic wave speed. The crack topol-208
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ogy (for instance, the aspect ratio α for a rectangular or elliptical crack) and solid Pois-209

son’s ratio νs are encapsulated into the dimensionless stiffness matrix K∗. The solid Pois-210

son’s ratio is set to 0.25 throughout this manuscript, unless otherwise mentioned.211

2.3 Eigenmode analysis212

We directly obtain the resonant frequencies through eigenmode analysis in the fre-213

quency domain. The spatially discretized dimensionless equation is written as214

∂2p̄∗

∂t∗2
= −Bp̄∗, (18)

where215

B =

(
1

CL
I+ (K∗)

−1

)−1

A∗−1DT. (19)

The nondimensionalised Fourier transform is defined as216

û (ω∗) =

∫ +∞

−∞
u (t∗) eiω

∗t∗dt∗, (20)

where217

ω∗ = ω/ (cl/L) , (21)

is the dimensionless angular frequency. The dimensionless frequency is218

f∗ = ω∗/(2π) = f/(cl/L). (22)

Taking the Fourier transform of equation (18), we have:219

(ω∗)
2ˆ̄p = Bˆ̄p, (23)

where (ω∗)
2
and ˆ̄p are the eigenvalues and eigenvectors of the real matrix B. Since we220

deal with inviscid fluids, we only seek real positive eigenvalues, which correspond to un-221

damped oscillatory modes. The resulting eigenvectors determine the spatial distribution222

of the pressure on the crack surface. Solving the resonant frequencies in dimensionless223

form is advantageous, because one can easily scale the solution to other parameters, such224

as crack length, crack width and solid stiffness, given the same dimensionless parame-225

ters, CL, νs and crack topology.226

3 Verification and examples227

In this section, we first verify our implementation by comparing our results to an-228

alytical solutions in the rigid solid limit and numerical solutions from existing studies.229
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We then present an example of simple intersecting crack geometry to demonstrate the230

utility of our method.231

Table 1. The error between the theoretical and numerical resonant frequencies for the first 16

modes

Mode Theoretical value Numerical value Error (%)

1 0.5000 0.5004 0.074

2 0.8333 0.8325 0.105

3 0.9718 0.9706 0.127

4 1.0000 1.0008 0.078

5 1.3017 1.3018 0.009

6 1.5000 1.5010 0.066

7 1.6667 1.6647 0.118

8 1.7159 1.7172 0.072

9 1.7401 1.7370 0.175

10 1.9437 1.9413 0.122

11 2.0000 2.0014 0.068

12 2.1667 2.1693 0.123

13 2.2423 2.2409 0.060

14 2.5000 2.4954 0.184

15 2.5000 2.5010 0.042

16 2.5495 2.5426 0.270

3.1 Comparison with analytical solutions in a rigid solid232

We compute the K matrix using the subroutines developed by Nikkhoo and Wal-233

ter (2015), which have been extensively used by other studies. The bulk part that needs234

to be validated is the FVM discretization of the Laplacian term. For that, we set solid235

rigidity to infinity and compare the numerical results to the analytical solution of the236

resonant frequencies of linear acoustic waves in a 2D rectangular domain with zero-flux237

boundaries (Rona, 2007). The solution is in a dimensionless form with a rectangular do-238

main of size 1 by 0.5 and a wave speed of 1. The comparison results for the first 16 modes239

are tabulated in Table 1. The excellent agreement between our numerical results and the240
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analytical solutions, with relative differences smaller than 0.2%, verifies our FVM dis-241

cretization of the Laplacian term.242

3.2 Comparison to numerical solutions by existing studies243

We compare solutions by our method (BEM+FVM) to those by B. Chouet (1986),244

Maeda and Kumagai (2017) and Shauer et al. (2021). With B. Chouet (1986) and Maeda245

and Kumagai (2017), we compare resonant frequencies of longitudinal modes for a rect-246

angular crack for various values of CL (5, 15, 25, 50, 75, 100). With the GFEM by Shauer247

et al. (2021), we compare solutions of multiple modes on both rectangular and ellipti-248

cal cracks. The eigenmodes can be straightforwardly classified as longitudinal (variation249

only along the major crack axis), transverse (variation only along the minor crack axis),250

and mixed modes for a rectangular crack, but less so for an elliptical crack. Since the251

method by Shauer et al. (2021) discretizes the problem in time and, therefore, does not252

readily provide resonant frequencies, we ran their code to excite the fluid oscillation on253

the crack with CL = 100 by a point injection source and then extract the resonant fre-254

quencies from the spectral peaks of the pressure records at a few receiving points. We255

use a Gaussian time function for the injection source f (t) = exp
(
−(t− tc)

2
/T 2

)
with256

tc = 0.5, T = 0.1, to ensure a smooth start and a sufficiently wide spectrum to cover257

enough eigenmodes. Note that if either excitation or receiving points are placed on the258

nodal line, the eigenmode can not be excited or recorded. Therefore, not all eigenmodes259

are excited in the time domain simulation and we also only compare selective modes with260

Shauer et al. (2021), which is sufficient for verification purposes. The detailed geome-261

tries and simulation data are presented in Appendix B. Notably, the code of Shauer et262

al. (2021) has the capability of both considering (fully dynamic, FD) or neglecting the263

solid inertia (quasi-static, QS), allowing to investigate the impact of the solid inertia on264

crack wave resonant frequencies.265

Tables 2 and 3 show the comparison of dimensionless resonant frequencies of se-266

letive eigenmodes from the GFEM program by Shauer et al. (2021) with those by our267

method for a rectangular and elliptical crack, respectively, with an aspect ratio of 0.5,268

major axis length of 1, and CL of 100. The relative difference between our results and269

those from Shauer et al. (2021) are near 2% or less, with or without solid inertia. This270

close agreement not only demonstrates the validity of our approach but also reassures271

that the quasi-static solid response is a very good approximation when computing the272
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Table 2. Resonant frequencies by BEM+FVM and GFEM with or without inertia (FD or QS),

rectangular crack

Mode
Resonant frequencies detected at receiving points by GFEM BEM+FVM

Error FD

(%)

Error QS

(%)

(-0.5, 0) (-0.2, 0.25) (0, 0.25)

FD QS FD QS FD QS

1 1.236 1.236 1.236 1.236 1.210 2.15 2.15

2 2.727 2.691 2.662 2.44 1.09

3 2.890 2.873 2.818 2.782 2.835 1.94 1.34

4 3.453 3.418 3.373 2.37 1.33

5 4.454 4.400 4.436 4.382 4.385 1.57 0.34

6 4.526 4.491 4.466 1.34 0.56

7 6.035 5.964 5.980 0.92 0.27

8 6.399 6.273 6.344 6.236 6.330 1.09 0.90

The bold values are used for error calculation. We use a of CL=100 and aspect ratio of 0.5

Mode eigenfunctions are shown in Figure 2.

Table 3. Resonant frequencies by BEM+FVM and GFEM without inertia (QS), elliptical

crack

Mode
The resonant frequencies can be detected at detection points

BEM+FVM Error (%)
(-0.5, 0) (0, 0.25) (0, 0)

1 1.527 1.518 0.59

2 3.027 3.090 3.050 0.75

3 3.290 3.241 1.51

5 4.890 4.816 1.54

7 6.890 6.853 6.944 6.771 1.76

8 7.308 7.235 7.107 1.80

The bold values are used for error calculation. We use a of CL=100 and aspect ratio of 0.5

Mode eigenfunctions are shown in Figure 3.
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crack wave resonant frequencies, at least for a CL of 100. A similar conclusion has also273

been reached by Shauer et al. (2021). Since we assume a quasi-static solid response, it274

is reasonable that our results have a better agreement to those by GFEM without in-275

ertia.276

Figure 2. Dimensionless frequencies and eigenfunctions of the first 16 resonant modes (num-

bered in an ascending order in frequencies) of a rectangular crack with CL=100 and aspect

ratio of 0.5 calculated by BEM+FVM. The errors of selective resonant frequencies between the

BEM+FVM and GFEM without inertia are shown in Table 2. The white color indicates the

nodal lines.

The pressure eigenfunctions of the first 16 resonant modes are displayed in Figure277

2 for a rectangular crack and Figure 3 for an elliptical crack, showing a rich spectrum278

of spatial variations including longitudinal, transverse, and mixed modes. Different modes279

can produce different near and far field radiation patterns, that may be detectable in real280

seismic data (e.g., Liang et al., 2020).281

The dimensionless frequencies of the first 9 longitudinal modes for rectangular cracks282

by various methods with different crack stiffness ratios are shown in Figure 4. The re-283

sults of Shauer et al. (2021) are only computed for a CL of 100. For ease of comparison,284

we convert dimensionless frequencies f∗ in our studies to those in B. Chouet (1986) fC
∗,285
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Figure 3. Same as Figure 2 but for an elliptical crack.

which are related by f∗
C = f∗cl/cP . Overall, our results match well with those by Shauer286

et al. (2021) (relative error < 3%) and also qualitatively well with those by B. Chouet287

(1986) and Maeda and Kumagai (2017). However, there are quantitative discrepancies288

between our results and those by B. Chouet (1986) (relative error 8.83-23.43%) and Maeda289

and Kumagai (2017) (relative error 2.72-16.63%, see the supporting information for tab-290

ulated errors). Particularly, both B. Chouet (1986) and Maeda and Kumagai (2017) sys-291

tematically give lower frequencies than those by our method and Shauer et al. (2021).292

We suspect these discrepancies are likely due to differences in spatial and temporal sam-293

pling, or domain sizes used in the FDM code in B. Chouet (1986) and Maeda and Ku-294

magai (2017). Particularly, a truncated domain in the FDM results in a more compli-295

ant solid response (Korneev et al., 2014), which in turn results in a lower crack wave speed296

and resonant frequencies. Our method uses boundary elements and thus an infinite do-297

main is directly satisfied. For this reason, when comparing results with Shauer et al. (2021),298

we deliberately used a very large domain (10 times the length of the crack) in the GFEM299

code to minimize its boundary effect using an unstructured grid, coarsening in regions300

far from the crack.301
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Figure 4. Dimensionless frequencies f∗
C of longitudinal modes for rectangular cracks with

different CL (5, 15, 25, 50, 75, 100) by various methods, and a zoom-in view of the case CL = 100

on the right panel. Results by B. Chouet (1986) and Maeda and Kumagai (2017) are slightly

shifted in the horizontal axis to avoid overcrowding the figure.

3.3 An example of intersecting cracks302

We now apply our method to one example of intersecting cracks, one full ellipse303

with a half-elliptical branch, and obtain the first 16 eigenmodes, shown in Figure 5. In-304

teractions between multiple cracks result in more complex resonant modes than in sin-305

gle cracks (shown in Figures 3 and 4). For example, the fundamental mode now involves306

fluid exchange between the major crack and the branch, and has a lower frequency than307

the fundamental mode of the major crack (the second mode in this case). When nodal308

lines coincide with the intersecting edge, resonances can be isolated on the major crack,309

such as modes 2, 7, 8, 13 and 16. Temporal manifestation of these modes requires a more310

peculiar condition: the excitation must not be located in the branch. One can certainly311

add more complexities in the crack network, such as asymmetries, non-planarity or more312

intricate coupling, and expect to encounter richer eigenmodes. However, such modeling313

only becomes meaningful when more compelling observations exist and require. We will314

demonstrate later how a particular crack shape can explain the ratio of the first two spec-315

tral peaks in the VLP seismic data at the Fani Maoré, Mayotte submarine volcano. Ex-316

–15–



manuscript submitted to JGR: Solid Earth

cept for that, we decide to leave the analysis of eigenmodes of a more complex crack net-317

work for future investigation.318

Figure 5. The first 16 eigenmodes of a simple two-intersecting-cracks geometry: a half ellipse

intersecting a full ellipse (aspect ratio 0.5) along its minor axis. The major axis length of the full

elliptical crack is chosen as L for the non-dimensionalisation.

4 Effect of aspect ratio α and crack stiffness ratio CL319

In this section, we present the effect of α and CL on the resonant frequencies of rect-320

angular and elliptical cracks, with major and minor axes in the x− and y−directions,321

respectively. Maeda and Kumagai (2017) presented a similar analysis for rectangular cracks,322

but only on longitudinal and transverse modes. Here, we include the mixed modes and323

the results for elliptical cracks. We fixed CL = 100 when varying α (from 0.05 to 1.00324

with an increment of 0.05 ) and fix α = 0.5 when varying CL (from 5 to 100 with an325

increment of 5). The frequencies of the first 16 eigenmodes are tabulated in the Support-326
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ing information. Here, we select 9 representative modes and visualize them in Figures327

6-9. For rectangular cracks, we associate to each mode a pair of numbers (i, j) that de-328

note the number of half wavelengths in the x− and y−directions. For instance, the fun-329

damental mode (1, 0) is a longitudinal mode with one half wavelength pressure variation330

in the x−direction and quasi-uniform in the y−direction. Such numbering becomes less331

obvious for elliptical cracks, especially when the aspect ratio approaches 1, for which the332

eigenfunctions are better characterized by radial and circumferential variations. Nonethe-333

less, for the ease of comparing results with rectangular cracks, we still number the rep-334

resentative modes in Figures 7 and 9 approximately into longitudinal, transverse, and335

mixed modes.336

Figure 6. Dimensionless resonant frequencies of representative modes of rectangular cracks

as a function of the aspect ratio α. CL is fixed to 100. The eigenfunctions displayed are for an

aspect ratio of 0.55. Certain high order mixed and transverse modes rank outside of the first 16

eigenmodes that we store, which causes the apparent absence of data at low aspect ratios.

4.1 Effect of aspect ratio337

The variation of resonant frequencies with aspect ratio is shown in Figure 6 and338

7 for rectangular and elliptical cracks, respectively. For both cases, decreasing the as-339

pect ratio increases the crack stiffness from the transverse direction and results in higher340

resonant frequencies for all the modes. This effect is relatively mild for longitudinal modes341

but rather steep for transverse and mixed modes. For instance, when α of a rectangu-342
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Figure 7. Same as Figure 6 but for elliptical cracks. Note that the mode numbers (i, j) are

not strictly valid for an elliptical crack but are useful for our interpretation (more explanation in

the main text).

lar crack decreases from 1.0 to 0.1, the frequency of the fundamental mode (1, 0) increases343

by ∼ 1.8 fold while the frequency of the mixed mode (1, 1) increases by ∼ 14.6 fold. As344

a result, the first few resonant modes are predominantly longitudinal for both rectan-345

gular and elliptical cracks at low aspect ratios (below 0.2). For a similar mode, the res-346

onant frequency of an elliptical crack is consistently higher than that of the rectangu-347

lar crack. This is expected as the elliptical crack is narrower in the transverse direction348

and thus stiffer than a rectangular crack of the same length and aspect ratio.349

Another clear feature, for both rectangular and elliptical cracks, is that frequen-350

cies of modes with same wavelengths in the transverse direction converge as α decreases.351

For instance, frequencies of mixed modes (1, 1) and (2, 1) converge to the values of trans-352

verse mode (0, 1). Similar convergence also exists for modes (0, 2) and (1, 2). This is353

expected because the crack wave speed, in the limit of low aspect ratio, is primarily con-354

trolled by the short wavelength in the transverse direction. As α increases, the frequen-355

cies of different modes become more intermingled and mode degeneration occurs, where356

modes with distinct eigenfunctions share the same frequency. It is well known that mode357

degeneration occurs at α = 1 due to the geometric symmetry of a square or circle. What358

we show here is that mode degeneration also occurs at intermediate aspect ratios. For359
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Figure 8. Resonant frequencies of representative modes of rectangular cracks as a function of

the crack stiffness CL. The aspect ratio α is set as 0.5

Figure 9. Same as Figure 8 but for elliptical cracks

instance, modes (3, 0) and (0, 1) for both a rectangular and elliptical crack share sim-360

ilar frequencies when α ≈ 0.35.361

4.2 Effect of crack stiffness ratio362

Since the normalization constant (cf/
√
CL)/L for frequency changes with CL, we363

visualize the actual resonant frequency f , instead of f∗. We use cf = 1 m/s and L =364

1 m to scale f∗ to f . CL is the key dimensionless parameter that controls the crack wave365
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propagation: the higher the value of CL, the lower the phase velocity (e.g., B. Chouet,366

1986; Maeda & Kumagai, 2017). As a result, the resonant frequencies of all modes for367

both rectangular (Figure 8) and elliptical cracks (Figure 9) decrease continuously as CL368

increases. Again, for a similar mode, the resonant frequencies of an elliptical crack is con-369

sistently higher than those of a rectangular crack given the same axial lengths.370

5 Energy dissipation371

Since we currently focus on computing crack resonant frequencies in complex crack372

geometries, we assume both an inviscid fluid and a quasi-static solid and we do not con-373

sider energy dissipation, from either fluid viscosity or seismic radiation. When damp-374

ing exists, the resonant frequency becomes complex and the rate of decay is quantified375

by the quality factor376

Q =
Re (f)

2Im (f)
, (24)

which is also the number of cycles for an oscillation’s energy to fall off to e−2π ∼ 0.2%377

of its original value. The effect of viscous damping has been investigated analytically with378

fully dynamic (Korneev, 2008) and quasi-static solid response (Lipovsky & Dunham, 2015)379

on an infinite crack. However, the applicability of the Q formula on a finite crack has380

not yet been tested. In addition, the convoluted derivation in Korneev (2008) makes it381

difficult to quantify the relative contribution of different dissipative sources to the to-382

tal energy loss. On the other hand, numerical studies on rectangular cracks (e.g., Ku-383

magai & Chouet, 2000) have investigated the Q caused by seismic radiation but adopted384

a simplistic treatment of the fluid viscosity, either an inviscid or fully-developed flow. In385

this section, we offer a semi-analytical discussion of energy dissipation under a few as-386

sumptions and attempt to address two questions: (1) does the formula of Q developed387

by Lipovsky and Dunham (2015) for an infinite crack also apply to a finite crack? (2)388

which of the two sources of energy dissipation, fluid viscosity and seismic radiation, is389

more significant?390

5.1 The applicability of Q formula from dispersion to a finite crack391

We consider a viscous fluid with kinematic viscosity µ. To focus on the effect of392

the finite geometry, we compare analytical solutions by Lipovsky and Dunham (2015)393

to numerical solutions by Liang et al. (2020) for a rectangular crack, both of which as-394
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sume a quasi-static solid response. For simplicity, we focus on the boundary layer limit395

ζ = w0/
√
4ν/ω ≫ 1, (25)

where the crack aperture w0 is much larger than the thickness of the viscous boundary396

layer
√
4υ/ω. In this limit, Q is high and ω can be well approximately by the inviscid397

solution. The analytical formula of Q for crack waves with real wavenumber is given by398

equation (80) in Lipovsky and Dunham (2015) and, after neglecting the small imaginary399

part of phase velocity when ζ ≫ 1, we have:400

Q =
√
2ζ. (26)

The hypothesis is that this expression for Q also holds, at least approximately for a fi-401

nite rectangular crack, regardless of its geometric shape, as long as w0, µ and ω are known.402

We perform numerical simulations using the program by Liang et al. (2020), who em-403

ployed a finite difference method on a stretched grid to deal with the narrow viscous bound-404

ary layer. We set L = 100 m, Kf = 1 Pa, G = 1 Pa, w0 = 1 m, which results in a CL405

of 100, and solve for the inviscid resonant angular frequencies ω of rectangular cracks406

of two aspect ratios, 0.5 and 1.0. We then adjust µ so that ζ takes the values of 10, 20,407

40, 60, 80, 100 and 200. We consider the first two modes of the crack with aspect ratio408

of 0.5 and the fundamental mode of the square crack to represent different mode types409

and crack shapes. The Q values of viscous cases are obtained using the methodology by410

Liang et al. (2020) and the comparison to equation (26) is shown in Figure 10.411

As shown in Figure 10, the prediction by the analytical formula in Lipovsky and412

Dunham (2015) matches well the numerical solutions. The agreement gets better at large413

ζ, where the assumption of boundary layer limit becomes more accurate. The differences414

between the numerical and analytical solutions are less than 5% at Q > 40, while the415

difference at Q = 10 is ∼ 14%. Another encouraging finding is that aspect ratios and416

mode numbers of rectangular cracks have a negligible impact on the value of Q as long417

as ζ is the same. We thus postulate that the Q formula is likely to hold also for other418

crack shapes or even a crack network. We further propose that one may first approxi-419

mate the resonant frequency ω of complex shaped cracks using the inviscid solution ef-420

ficiently determined by our method, and then directly estimate Q using the analytical421

formula. However, future numerical studies considering both complex crack geometry422

and fluid viscosity are necessary to rigorously test this hypothesis.423
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Figure 10. Quality factor of various resonant modes of rectangular cracks as a function of the

boundary layer thickness ratio ζ.

5.2 The competition between radiation and viscous damping424

Instead of considering the fully dynamic solid response (e.g., Korneev, 2008), we425

assume a quasi-dynamic solid response (e.g., Rice, 1993; Geubelle & Rice, 1995), which426

allows to explicit extract the instantaneous long wavelength emission perpendicular to427

the crack surface, the radiation damping (RD) term. We also consider an infinite crack428

in two dimensions for the ease of theoretical treatment following Lipovsky and Dunham429

(2015). By neglecting the wave mediated stresses and the seismic diffraction at the fi-430

nite crack tips, the radiation we consider is an underestimate, but it is still useful for un-431

derstanding the relative importance of various dissipation sources. Since resonances tend432

to be overdamped in the fully developed flow limit ζ ≫ 40 (Korneev, 2008; Lipovsky433

& Dunham, 2015), we continue to focus on the boundary layer limit ζ ≪ 40. We ex-434

plicitly identify the radiation and viscous damping terms in the governing equation and435

then compute the ratio of their magnitudes.436

The width-averaged crack wave equation considering viscous wall traction is ob-437

tained by combining the mass and momentum balance equations in Lipovsky and Dun-438

ham (2015),439

ρf
Kf

∂2p

∂t2
+

ρf
w0

∂2w

∂t2
− ∂2p

∂x2
− 2

w0

∂τ

∂x
= 0, (27)
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where τ is the wall shear traction. We introduce the double Fourier transform of an ar-440

bitrary function F (x, t) as441

F̂ (k, ω) =

∫ +∞

−∞

∫ +∞

−∞
F (x, t) e−i(kx−ωt)dtdx. (28)

Applying it to equation (27) leading to442

−ω2ρf

(
p̂

Kf
+

ŵ

w0

)
+ k2p̂− ik

2

w0
τ̂ = 0. (29)

Using equation (38) in Lipovsky and Dunham (2015) and neglecting horizontal wall mo-443

tion, the wall shear traction is related to fluid pressure by444

τ̂ = −ikw0Ωp̂/2, (30)

where445

Ω =
(√

i/ζ
)
tanh

(
ζ/

√
i
)
, (31)

and tends to
√
i/ζ in the boundary layer limit. Therefore, the viscous damping (V D)446

term in the equation is447

V D = k2Ωp̂. (32)

Applying the quasi-dynamic solid response (Geubelle & Rice, 1995), the fluid pressure448

and crack opening are related by449

p̂ =
Gkŵ

2 (1− υs)
− iωηRŵ, (33)

where the two terms on the right hand side are the quasi-static response and radiation450

damping (RD), respectively, and ηR = ρscp/2 is the radiation damping coefficient. The451

ratio between the QS and RD terms is approximately c2s/(cpc) (dropping terms involv-452

ing Poisson’s ratio), where c = ω/k is the crack wave phase velocity. In the low-frequency453

limit, which we are interested in, the crack wave speed is much smaller than the speeds454

of the solid body waves, c ≪ cs ∼ cp, and thus the RD term is much smaller than the455

QS term. Substituting equation (33) into (29) and approximating ŵ/p̂ using the QS part,456

we obtain the RD term in equation (29) as457

RD = iω3 ρfnR

Kf
ŵ ≈ iω3 ρfnR

Kf

2 (1− υs)

Gk
p̂. (34)

The ratio between RD and V D is458

RD

VD
= ic3

ρfnR

Kf

2 (1− υs)

GΩ
= i

cpc
3

c2fc
2
s

(1− υs)

Ω
. (35)
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In the boundary layer limit, the magnitude of this ratio becomes459 ∣∣∣∣RD

VD

∣∣∣∣ = cpc
3

c2fc
2
s

ζ (1− υs) . (36)

When the overall damping is small, the crack wave phase velocity as a function of wave-460

length λ is well approximated by the inviscid dispersion relation:461

c =

√
2πGw0

λρf (1− υs)
∼ cf/sqrtCλ, (37)

where Cλ = Kfλ/Gw0 is a crack stiffness ratio similar to CL but replacing L by λ. Fi-462

nally, we obtain RD/V D, which scales as463 ∣∣∣∣RD

VD

∣∣∣∣ ∼ cpcf
c2s

ζ

C
3/2
λ

=
cpcs
c2f

ζ

(
w0ρs
λρf

)3/2

, (38)

after dropping small constants such as 2, π and µs. |RD/V D| is governed by three di-464

mensionless parameters:
cpcf
c2s

, Cλ and ζ. The first parameter one is controlled by the body465

wave speeds of the solid and fluid and is not related to the crack geometry. For a typ-466

ical crustal rock and liquid fluid, for instance with cf = 1500 m/s, cp = 4500 m/s, and467

cs = 2500 m/s,
cpcf
c2s

is near unity. However, exsolved gases in liquid fluid, common in468

shallow volcanic or geothermal environments (e.g., Kumagai & Chouet, 1999, 2001), can469

significantly decrease the sound speed of the mixture, resulting in a much smaller
cpcf
c2s

.470

The trade-off between Cλ and ζ in controlling |RD/V D| is displayed in Figure 11. In471

the regime of high ζ and low Cλ, seismic radiation dominates over viscous damping, while472

in the regime of low ζ and high Cλ vice versa. Note that increasing λ or decreasing fre-473

quency ω while fixing other parameters increases Cλ and simultaneously decreases ζ, both474

of which lead to a lower percentage of damping in radiation.475

6 Application to VLP seismic signals during the Mayotte volcano-seismic476

crisis477

Since 10 May 2018, an unprecedented submarine volcano-seismic crisis occurred478

30 km east of Mayotte Island (France), featuring a lithosphere-scale dyke intrusion and479

drainage (∼ 5 km3) of deep magma reservoirs and producing exceptionally deep seismic-480

ity and substantial surface deformation (Cesca, Letort, et al., 2020; Feuillet et al., 2021;481

Saurel et al., 2021; Mittal et al., 2022; Mercury et al., 2022; Retailleau et al., 2022). By482

mid June of 2018, sustained long duration and highly oscillatory VLP seismic signals (see483

an example in Figure 12a) have been observed and persist since, which are associated484

with resonances of magma-filled cracks excited by nearby volcano-tectonic (VT) events485
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Figure 11. |RD/V D| as a function of the crack stiffness ratio Cλ and the boundary layer

thickness ratio ζ. Parameters used are cf = 1500 m/s, cp = 4500 m/s, and cs = 2500 m/s.

or possible piston collapse movements (Cesca, Letort, et al., 2020; Feuillet et al., 2021).486

The stack of spectra of multiple VLP events reveals multiple resonant modes, among which487

the fundamental mode with period ∼15.5 s is present in all events, but not all higher modes488

are manifested in each event, probably due to differences in the excitation. The funda-489

mental frequency can be readily explained by the crack model upon choosing a proper490

crack length and aperture (Cesca, Letort, et al., 2020). However, as shown in Figure 12b,491

the uneven spacing between resonant modes implies additional complexity in the source.492

Particularly, the ratio between the first higher mode and the fundamental mode is f2/f1 ≈493

2.5. As shown in Figures 6 and 7, this value can not be explained by a simple rectan-494

gular or elliptical crack. Here, we show this observation can be explained by a dumbbell-495

shaped crack (Figure 12c). This crack shape is compatible with the f2/f1 data, but might496

still differ from the real crack geometry in Mayotte as we have not made a systematic497

attempt to also match the frequencies of other higher modes. However, this example is498

sufficient to demonstrate the potential application of the developed method. One pro-499

found question is perhaps whether one can reconstruct the topology of the crack given500

the information of all the resonant frequencies. Mark Kac also asked a similar question501

“Can one hear the shape of a drum?” (Kac, 1966). Unfortunately, the answer is nega-502

tive: there exist multiple isospectral geometries that share the same resonant frequen-503
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cies, as mathematically proven by Gordon et al. (1992). However, these isospectral ge-504

ometries are rare even though they do exist and one can still decipher the shape of the505

resonator given additional constraints of the vibration pattern, which in practice requires506

dense geophysical observation particularly in the near field. A formal inversion proce-507

dure would need to be developed in the future to find the optimal crack geometry or topol-508

ogy of interconnected crack networks that best explains all the observed resonant fre-509

quencies and other geophysical constraints.

Figure 12. (a) Normalized vertical acceleration waveform of an representative VLP event

(on 11 November 2018, bandpass filtered to 0.02-0.1 Hz) at the nearest broadband seismic sta-

tion YTMZ on land, during the volcano-seismic crisis near Mayotte. (b) Stacked spectrum of

21 strong VLP signals compiled by Cesca, Letort, et al. (2020), highlighting multiple unevenly

spaced resonant modes (dashed lines). Particularly, the frequency ratio between the first two

modes f2/f1 ≈ 2.5. The blue ticks indicate the integer multiples of the fundamental frequency.

(c) Eigenmodes of a possible crack shape that satisfies f2/f1 ≈ 2.5.

510
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7 Summary511

We have developed a hybrid method that couples the boundary element and finite512

volume method to efficiently compute the resonant modes of fluid-filled cracks with com-513

plex geometry. Particularly, the BEM reduces three dimensional cracks to 2D surfaces,514

substantially decreasing the number of degrees of freedom. By performing eigenmode515

analysis in the frequency domain, we avoid errors from both the time discretization and516

spectral analysis of the time domain data. We solve the problem in dimensionless form517

so that the results can be conveniently scaled to other crack sizes. After proper verifi-518

cation, we apply our method to an example of a crack network, revealing distinct res-519

onant frequencies and vibration patterns, which may be utilized to infer more accurately520

crack shapes from seismic data.521

We then systematically analyze the influence of crack aspect ratio and crack stiff-522

ness on the resonant frequencies for both rectangular and elliptical cracks, which are com-523

mon models for interpreting real data. In general, rectangular and elliptical cracks share524

similar eigenmode types and frequencies, while the elliptical crack has slightly higher res-525

onance frequencies due to the reduced length of the minor axis. At a high aspect ratio,526

the frequencies of various mode types (longitudinal, transverse and mixed) are intermin-527

gled and mode degeneration occurs. Reducing the aspect ratio increases the frequencies528

of all the modes, but more intensely for transverse and mixed modes than for longitu-529

dinal modes. In addition, at low aspect ratio, frequencies of modes (transverse or mixed)530

with the same wavelengths in the transverse direction converge and differentiating them531

requires additional knowledge of their vibration patterns. On the other hand, increas-532

ing CL results in a decrease in resonant frequencies for all modes, regardless of the crack533

geometry, which is primarily due to the decrease in crack wave propagation speed.534

The major part of this work does not consider fluid viscosity or seismic radiation,535

and thus cannot be used to directly compute the quality factor Q. However, by making536

a few assumptions, we offer additional theoretical discussion on the energy dissipation.537

First, by comparing numerical to analytical solutions, we confirm that the simple for-538

mula Q =
√
2ζ derived by Lipovsky and Dunham (2015) is a rather good approxima-539

tion for a rectangular crack when the thickness of the viscous boundary layer is much540

smaller than the crack width, regardless of crack aspect ratio or vibrational mode. This541

is an encouraging finding that suggests one may first obtain the inviscid resonant fre-542
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quencies using our method and then apply analytical formula to compute Q. Note that543

this formula still does not consider seismic radiation. We then derived the relative ra-544

tio of the radiation damping to viscous damping, assuming a quasi-dynamic solid response545

on an infinite crack. We show that this ratio is primarily controlled by three dimension-546

less parameters: cpcf/c
2
s, Cλ and ζ. Particularly, in the limit of high ζ and low Cλ, seis-547

mic radiation dominates over viscous damping while the opposite is true in the limit of548

low ζ and high Cλ. Note that the seismic radiation considered here is a lower bound as549

we neglected the wave-mediated stresses and the seismic radiation at the finite crack tip.550

However, our theoretical development still offers a valuable insight into the partition of551

damping in crack waves.552

Finally, we obtain one possible crack shape, a “dumbbell”, that successfully explains553

the ratio of frequencies of the first two modes in the VLP seismic data during the 2018554

Fani Maoré, Mayotte submarine volcanic eruption. This shape is one possibility and may555

be updated when additional higher modes and geophysical constraints are integrated into556

the analysis. In addition, the method developed here can be directly applied to other557

scenarios, such as unconventional oil and gas fields and glacier hydraulics. Future work558

requires a rigorous treatment of fluid viscosity, elastodynamics, and coupling to other559

geometries such as conduits and equidimensional chambers.560
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Appendix A Matrices D and T for a simple crack intersection798

In this section, we show step by step how to construct matrices D and T for a sim-799

ple crack intersection shown in Figure A1. The element number and positive flux direc-800
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tion of each active connection as labeled. The boundary edges have zero flux and they801

do not contribute to D and T. Thus, we have five elements and five active connections802

numbered as {2 → 1, 3 → 2, 4 → 2, 5 → 2, 5 → 4}, where i → j defines the positive flux803

direction. The size of both D and T are 5 by 5.

Figure A1. Geometry of a simple crack intersection. The element number and the positive

flow direction of each active connection (non-zero flux) are indicated by the circled number and

arrow, respectively. The scalar transmisibilities are labled near each connection.

804

Let’s first consider the matrix D, which sums the flux from active connections to805

obtain the net out-flux from each element. We consider the first row of D as an exam-806

ple, relevant for element 1. The only connection that contributes to the net out-flux of807

element 1 is connection 1 with the positive direction of 2 → 1, the opposite to the out-808

flux direction. Thus, D(1, 1) = −1 and other entries of the first row are zeros. How-809

ever, for element 2, the positive flux of connection 1 aligns with the outflux direction,810

which leads to D(2, 1) = 1. Similarly, other entries of matrix D can be determined and811

the matrix D is:812

D =



−1 0 0 0 0

1 −1 −1 −1 0

0 1 0 0 0

0 0 1 0 −1

0 0 0 1 1


. (A1)
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We now proceed to construct the matrix T, which computes the flux on each active con-813

nection from the pressure on each cell. Note that we only store the flux in the positive814

direction. For instance, the flux on the first connection is Q2→1 = T21 (p2 − p1), which815

means T (1, 2) = −T (1, 1) = T21. Similarly, other entries of the matrix T can be com-816

puted and the full expression of T is:817

T =



−T21 T21 0 0 0

0 −T32 T32 0 0

0 −T42 0 T42 0

0 −T52 0 0 T52

0 0 0 −T54 T54


. (A2)

Appendix B Resonant frequencies from time domain results by GFEM818

In this section, we explain the procedure to obtain selective resonant frequencies819

from the time domain simulation results using the GFEM code developed by Shauer et820

al. (2021). As shown in Figure B1, we apply injection sources with a gaussian source time821

function on the certain position on the crack (red stars), obtain the pressure time series822

(duration of 50 s) on three receiving points (blue triangles), and then extract the res-823

onant frequencies at spectral peaks. For the rectangular crack, we place one source at824

the upperleft corner, which manages to excite all the first eight modes, and three receivers825

(R1, R2, and R3) at (-0.5, 0), (-0.20, 0.25), and (0, 0.25), respectively. Different receivers826

sample different eigenmodes. For instance, receiver R1 samples modes 1, 2, 5, and 8 as827

shown in Figure B1-c. The modes sampled by R2 and R3 are shown in Table 2. We make828

this choice to selectively sample closely-spaced modes, for instance mode 2 and 3, at dif-829

ferent receivers to avoid ambiguity.830

For the elliptical crack, we place two sources at the leftmost and uppermost ends,831

and three receivers at (-0.5, 0), (0, 0.25), (0, 0) respectively. Due to the excitation and832

monitoring geometry, we focus only sampling the longitudinal and transverse modes, which833

are clearly seperated peaks in the spectrum. The eigenmodes sampled by different re-834

ceivers are shown in Figure B1-f and Table 3.835
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Figure B1. (a, d) The source and receiver positions. (b, e) Pressure time series at three

receivers. (c, f) The normalized spectral amplitude of data at receiver R1. The vertial black

dashed lines are the resonant frequencies (with mode number labelled) computed by BEM+FVM

method.
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