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Abstract

The Sudan-Sahel region has long been vulnerable to environmental change. However, the intensification of global warming has

led to unprecedented challenges that require a detailed understanding of climate change for this region. This study analyzes the

impacts of climate change for Burkina Faso using eleven climate indices that are highly relevant to Sudan-Sahelian societies.

The full ensemble of statistically downscaled NEX-GDDP-CMIP6 models (25 km) is used to determine the projected changes

for the near (2031-2060) and far future (2071-2100) compared to the reference period (1985-2014) for different SSPs. Validation

of the climate models against state-of-the-art reference data (CHIRPS and ERA5) shows reasonable performance for the main

climate variables with some biases. Under the SSP5-8.5, Burkina Faso is projected to experience a substantial temperature

increase of more than 4.3°C by the end of the century. Rainfall amount is projected to increase by 30% under the SSP5-8.5, with

the rainy season starting earlier and lasting longer. This could increase water availability for rainfed agriculture but is offset

by a 20% increase in evapotranspiration. The country could be at increased risk of flooding and heavy rainfall in all SSPs and

future periods. Due to the pronounced temperature increase, heat stress, discomfort, and cooling degree days are expected to

strongly increase under the SSP8.5 scenarios, especially in the western and northern parts. Under the SSP1-2.6 and SSP5-8.5,

the projected changes are much lower for the country. Thus, timely implementation of climate change mitigation measures can

significantly reduce climate change impacts for this vulnerable region.
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Abstract 18 

 19 
The Sudan-Sahel region has long been vulnerable to environmental change. However, the 20 

intensification of global warming has led to unprecedented challenges that require a detailed 21 

understanding of climate change for this region. This study analyzes the impacts of climate 22 

change for Burkina Faso using eleven climate indices that are highly relevant to Sudan-23 

Sahelian societies. The full ensemble of statistically downscaled NEX-GDDP-CMIP6 models 24 

(25 km) is used to determine the projected changes for the near (2031-2060) and far future 25 

(2071-2100) compared to the reference period (1985-2014) for different SSPs. Validation of 26 

the climate models against state-of-the-art reference data (CHIRPS and ERA5) shows 27 

reasonable performance for the main climate variables with some biases. Under the SSP5-8.5, 28 

Burkina Faso is projected to experience a substantial temperature increase of more than 4.3°C 29 

by the end of the century. Rainfall amount is projected to increase by 30% under the SSP5-30 

8.5, with the rainy season starting earlier and lasting longer. This could increase water 31 

availability for rainfed agriculture but is offset by a 20% increase in evapotranspiration. The 32 

country could be at increased risk of flooding and heavy rainfall in all SSPs and future 33 

periods. Due to the pronounced temperature increase, heat stress, discomfort, and cooling 34 

degree days are expected to strongly increase under the SSP8.5 scenarios, especially in the 35 

western and northern parts. Under the SSP1-2.6 and SSP5-8.5, the projected changes are 36 



much lower for the country. Thus, timely implementation of climate change mitigation 37 

measures can significantly reduce climate change impacts for this vulnerable region. 38 

Keywords: CMIP6; climate change; NEX-GDDP; West Africa; Burkina Faso 39 

Plain Language Summary 40 

The Sahel region, where Burkina Faso is located, is more vulnerable to the effects of climate 41 

change compared to other regions. To improve the resilience of the population living in 42 

Burkina Faso, we need to know what the future climate will be like. To fill this gap, we used 43 

the most current global climate models, called CMIP6 models, statistically downscaled to 25 44 

km. This downscaling method refines the predictions for the country. The information on 45 

future climate change was produced under the new climate change scenarios called “Shared 46 

Socio-economic Pathways (SSP): SSP1-2.6 (sustainability), SSP2-4.5 (middle of the road), 47 

and SSP5-8.5 (fossil-fueled development). Burkina Faso could become much hotter by the 48 

end of this century, by more than 4.3°C in the SSP5-8.5 scenario, and it will also become 49 

uncomfortably hot in some areas, which could be risky for people's health. Precipitation 50 

amounts could increase by 30%, making more water available, but at the same time 20% 51 

more water could potentially evaporate into the air. There could also be more flooding and 52 

heavy rainfall, making the country more vulnerable to disasters. Policymakers and 53 

stakeholders need to know this information so they can make plans to protect the country and 54 

its people. 55 

1. Introduction 56 

Human-induced climate change is causing global warming (Trenberth, 2018). For instance, 57 

the burning of fossil fuels and intensive agricultural practices contribute significantly to the 58 

increase in greenhouse gas (GHG) concentrations in the atmosphere. These anthropogenic 59 

sources of GHGs amplify the physical process of the greenhouse effect and lead to an 60 

increase in global average temperature (Wang et al., 2021). Carbon dioxide (CO2) has been 61 

considered as one the major sources of GHG emissions from human activities since the last 62 

decades. From 1950 to 2021, annual global CO2 emissions have increased by 618.67% 63 

(Ritchie et al., 2020). This rapid increase, coupled with the impact of climate change on 64 

human well-being, has led scientists, governments, and policymakers to make considerable 65 

commitments to reduce the CO2 emissions at the COP21. The Paris Agreement provides a 66 

benchmark for reducing the global carbon footprint and limiting global average temperature 67 

to 2°C, and more ambitiously to 1.5°C. Despite this historic agreement, signed by all parties, 68 



the impacts of climate change have become increasingly severe in recent years. The region of 69 

West Africa, considered one of the world's hotspots, is not spared from these effects. 70 

 71 

West Africa region is expected to experience greater climate change impacts than other 72 

regions in Africa (Ezeife, 2014). However, the region is already experiencing the impacts of 73 

climate change through changing rainfall patterns, frequent extreme events and rising 74 

temperatures (Ngoungue Langue et al., 2023; Nkrumah et al., 2019; Salack et al., 2016; Kasei 75 

et al., 2010; Lebel  and Ali, 2009). These changes have significant impacts on the 76 

socioeconomic activities of the population as well as on the environment. Since rainfed 77 

agriculture is practiced in the region, any significant change in rainfall patterns could lead to 78 

potential crop production uncertainties and subsequent famine. Therefore, the timing, 79 

frequency, and intensity of rainfall during the rainy season are important for good crop 80 

production. The study by Guan et al. (2015) showed that a delay in onset of rainfall 81 

negatively impacts crop yields in West Africa. Moreover, the onset and cessation of rainfall 82 

are expected to be sensitive to ongoing climate change (Lorenz et al., 2022; Dieng et al., 83 

2018; Kumi and Abiodun, 2018). The changes in future rainfall characteristics could decrease 84 

the cereal crop yield in the region (Ahmed et al., 2015). On the other hand,  the increase in 85 

temperature and extreme events may contribute to crop failure or decrease in crop yields 86 

(Sultan et al., 2019; Roudier et al., 2011; Verdin et al., 2005). In addition, climate change is 87 

likely to affect water resources in the region. A study by Sylla et al. (2018) found that most 88 

West African basins could suffer severe water shortages under 1.5°C warming level, with 89 

more pronounced changes under 2°C warming level. Peak flows in these basins could 90 

decrease under climate change (Rameshwaran et al., 2021).  91 

 92 

These changes in rainfall patterns, temperature increases, frequent extreme events, and water 93 

scarcity pose serious concerns for agriculture, food security and water resources in West 94 

Africa, that may affect the socioeconomic growth of the region. The Sudan-Sahel region, 95 

which includes Burkina Faso, is more vulnerable to the impacts of climate change compared 96 

to many other areas around the world as many people live in extreme poverty and significant 97 

multi-decadal changes have been observed during the 20th century (Semde et al., 2021). The 98 

area is known to have experienced frequent severe droughts since the 1960s (Nicholson et al., 99 

2018). For example, drought affected 96,000 people in Burkina Faso in the 1990s (Crawford 100 

et al., 2016).  101 



In recent years, heavy rains and floods have also been frequent and have affected people's 102 

live (Tazen et al., 2019). This was the case with the major flood on  September 1, 2009, when 103 

261.3 mm of rain was measured in 24 h (e.g., Engel et al., 2017) and 150,000 people were 104 

affected in the city of Ouagadougou (Reliefweb, 2009). Previous studies in Burkina Faso 105 

have also highlighted an increase in surface temperature and changes in rainfall patterns ( De 106 

Longueville et al., 2016; Ibrahim et al., 2014 ). The observed shifts in temperature and 107 

precipitation have been exacerbated in the production of annual crops such as millet and 108 

sorghum, where an average of 15% of yields were lost between 2000 and 2009 (Sultan et al., 109 

2019). This poses a serious risk to the population as about 70% of them rely on agriculture 110 

(Sorgho et al., 2021). According to the National Adaptation Plan (NAP) of Burkina Faso, the 111 

agricultural sector is the most vulnerable sector to climate change (UNFCCC, 2015). 112 

 113 

The future impacts of climate change in the Sahel have been studied in the literature. By the 114 

end of the century, the entire region is expected to experience a temperature increase higher 115 

than the global average under the Representative Concentration Pathway (RCP) 8.5 (Sylla, et 116 

al., 2016a). With  a 2.5 °C warming, Burkina Faso could experience a 2 °C increase in 2040 117 

compared to 1960 (Theokritoff and D’haen, 2022). A temperature increase is also expected in 118 

some major river basins in Burkina Faso such as the Dano and Volta rivers (Dembélé et al., 119 

2022; Okafor et al., 2021 de Hipt, 2018). In addition, climate models project an increase in 120 

dry spells in the country, which will further weaken agricultural systems already vulnerable 121 

to climate change (Ibrahim et al., 2014). The country is likely to transition to more arid 122 

conditions, which could disrupt agricultural activities and trigger changes in biological 123 

communities and ecosystems overall (Sylla et al., 2016b). However, the above studies are 124 

generally based on climate scenarios from  the Coupled Model Intercomparison Project Phase 125 

5 (CMIP5;  Taylor et al., 2012) models and corresponding downscaling initiatives such as 126 

CORDEX with their respective RCP scenarios. Nowadays, a new set of climate change 127 

scenarios is provided by CMIP6 (Coupled Model Intercomparison Project Phase 6) under the 128 

so-called "Shared Socioeconomic Pathways (SSPs)" climate scenarios. These new climate 129 

scenarios provide improved climate information that facilitates the integration of climate 130 

policy, mitigation, and adaptation (O’Neill et al., 2016). Updating climate change information 131 

for the West Africa region, particularly Burkina Faso, will provide useful information for the 132 

government, policymakers, and stakeholders to identify vulnerable sectors and develop 133 

targeted interventions to build resilience and minimize the negative impacts of climate 134 

change. Nonetheless, the global climate change scenarios of CMIP6 climate models are 135 



characterized by coarse spatial resolution, which are not suitable for reliable and future 136 

climate projections at local scales. Therefore, these climate models need to be refined to 137 

better represent local conditions and provide robust climate change information. 138 

Taking advantage of the availability of CMIP6 data statistically downscaled to 25 km from 139 

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), this study aims 140 

to investigate the projected changes for several climate indices that are highly relevant for 141 

Sudan-Sahel region like Burkina Faso, such as the onset and cessation of rainfall, heat stress, 142 

discomfort index, and cooling degree days. The downscaled climate projections are based 143 

under three SSPs: SSP1-2.6, SSP2-4.5, and SSP5-8.5 for the near (2031-2060) and far (2071-144 

2100) future relative to the 1985-2014 baseline period. 145 

The paper is organized as follows. Section 2 presents the study area, the reference data used 146 

for model validation, the NEX-GDDP-CMIP6 data, and the methodology. The results and 147 

discussions of the model evaluation and the projection of the different climate factors are 148 

presented in Section 3. Finally, the conclusion of the study is presented in Section 4. 149 

 150 

2. Materials and methodology 151 

2.1. Study area 152 

The study focuses on Burkina Faso (Fig.1). Burkina Faso is a landlocked country in the West 153 

Africa region with an area of 274,200 km2 and subdivided into 13 administrative and 154 

territorial regions. Its population is estimated at about 22,752,315 (INSD, 2023). The terrain 155 

is almost flat, with some plateaus in the western part. According to the updated Köppen-156 

Geiger climate classification, the country has a tropical savannah climate (western and 157 

southern parts) and a hot semi-arid climate (northern part). However, some areas at the 158 

extreme north depict a hot desert climate (Kottek et al., 2006). Annual rainfall is about 500-159 

800 mm in the semi-arid climate, while it is about 900-1200 mm in the tropical savannah 160 

climate (Bliefernicht et al., 2021; De Longueville et al., 2016). The rainy season lasts from 161 

early May to late September in the southern part and peaks in August, while the rest of the 162 

year is a dry season (Bliefernicht et al., 2018; Stalled, 2012). The rainy season is determined 163 

by the West African monsoon (WAM), following the northward movement of the 164 

intertropical discontinuity (ITD) (Talib et al., 2022). The dry season, on the other hand, is 165 

characterized by the Harmattan period (December-January-February), a northeasterly wind 166 

from the Sahara Desert that brings dry and dusty air. In addition, the dry season is also 167 



characterized by a very hot period from March to May just before the onset of the monsoon, 168 

when the average daily maximum temperature can reach 42°C (Arisco et al., 2023). 169 

 170 
Figure.1: Study area showing the topography, the regions, and the neighbor countries of Burkina 171 

Faso. The grey labels indicate the name of the thirteen regions in Burkina Faso. 172 

 173 

2.2. Datasets 174 

2.2.1. Reference data  175 

We used two different datasets to assess the NEX-GDDP-CMIP6 datasets in Burkina Faso for 176 

daily precipitation amount (Pr), mean temperature (tas), minimum temperature (tasmin), 177 

maximum temperature (tasmax) and relative humidity (hurs). The Pr variable was taken from 178 

the Climate Hazards Group InfraRed Precipitation with Station data (Funk et al., 2015, 179 

CHIRPS), which is a global dataset that provides valuable information on rainfall pattern and 180 

trend. The CHIRPS data was developed by the Climate Hazards Group at the University of 181 

California, Santa Barbara, and to support the United States Agency for International 182 

Development Famine Early Warning Systems Network (FEWS NET) for drought monitoring.  183 

CHIRPS combines satellite imagery with ground station data to produce high-resolution 184 

precipitation estimates with smart interpolation technic (Funk et al., 2015). We retrieved the 185 

latest version of CHIRPS in a spatial resolution of 0.25°x0.25° from 1985 to 2014. The 186 

CHIRPS data has been widely used in previous studies for model evaluation of precipitation 187 



in the West Africa region (Romanovska et al., 2023; Quenum et al., 2021; Kumi and 188 

Abiodun, 2018).  189 

 190 

On the other hand, we used the European Centre for Medium-Range Weather Forecasts 191 

(ECMWF) ERA5 reanalysis data (Hersbach et al., 2019) for the variables tas, tasmin, tasmax 192 

and hurs. The ERA5 reanalysis data is the fifth generation of ECMWF reanalysis data 193 

covering the globe with a period from 1940 to the present. It has a horizontal grid spacing of 194 

31 km and 37 pressure levels from 1000 (surface) to 1 hPa. ERA5 data has demonstrated 195 

good performance in reproducing temperature in West Africa (Gbode et al., 2023). From the 196 

ECWMF platform, we retrieved hourly tas, dewpoint temperature and surface pressure for the 197 

1985-2014 period. Using the hourly tas, we computed the daily tas, tasmin and tasmax. The 198 

hurs is calculated using the saturated water vapor approximation proposed by Alduchov and 199 

Eskridge (1996).  200 

 201 

2.2.2. NEX-GDDP-CMIP6 datasets 202 

Climate data used in this study are from NEX-GDDP-CMIP6 (Thrasher et al., 2022). The 203 

data is the latest version of NEX-GDDP, downscaled state-of- the-art CMIP6 climate models. 204 

The downscaled data include thirty-five CMIP6 models with different variants and 205 

experiments. The historical period ranges from 1960 to 2014, while the future period ranges 206 

from 2015 to 2100 and includes climate change scenarios for SSP1-2.6, SSP2-4.5, SSP3-7.0 207 

and SSP5-8.5. The Global Meteorological Forcing Dataset (GMFD) for Land Surface 208 

Modeling with a spatial resolution of 0.25° was used to statistically downscale the CMIP6 209 

data using the bias correction and spatial disaggregation approach proposed by Wood et al. 210 

(2004). In the end, the NEX-GDDP-CMIP6 has a spatial resolution of 0.25° (~25 km). After 211 

the downscaling process, quality control was performed to ensure that the downscaled results 212 

were within the realistic range of the different variables. More detailed information can be 213 

found in Thrasher et al. (2022). From the NASA Center for Climate Simulation platform, we 214 

retrieved daily Pr, tasmax, tasmin, tas, shortwave radiation (rsds), and hurs for four 215 

experiments (historical, SSP1-2.6, SSP2-4.5, and SSP-5.85). Table.1 summarizes the different 216 

NEX-GDDP-CMIP6 used in this study with the above variables. 217 

 218 

 219 

 220 

 221 



Table.1: Different NEX-GDDP-CMIP6 and associated variables used in this study. 222 

Acronym Full name 

Models used for different variables 

pr tasmax tasmin tas hurs rsds 

ACCESS-CM2 Australian Community Climate and Earth System Simulator Climate 
Model Version 2 x x x x x x  

ACCESS-ESM1-5 Australian Community Climate and Earth System Simulator Earth 
System Model version 5 x x x x x x  

BCC-CSM2-MR Beijing Climate Center- Climate System Model version 2- Medium 
Resolution x x x x x x  

CanESM5 The Canadian Earth System Model version 5 x x x x x x

CMCC-CM2-SR5 Euro-Mediterranean Centre on Climate Change climate model version 
2 x     x      

CMCC-ESM2 Euro-Mediterranean Centre on Climate Change coupled climate model-
Earth System Model Version 2 x x x x x x  

GISS-E2-1-G Goddard Institute for Space Studies x x x x x x

HadGEM3-GC31-LL Hadley Centre Global Environment Model in the Global Coupled 
configuration 3.1 x x x x x x  

MIROC6 Model for Interdisciplinary Research on Climate, Earth System version 
6 x x x x x x  

MIROC-ES2L Model for Interdisciplinary Research on Climate, Earth System version 
2 for Long-term simulations x x x x x x  

MPI-ESM1-2-HR Max Planck Institute Earth System Model- high resolution x x x x x x 
MPI-ESM1-2-LR Max Planck Institute Earth System Model- low resolution x x x x x x
MRI-ESM2-0 The Meteorological Research Institute Earth System Model Version 2.0 x x x x x x

NorESM2-LM The Norwegian Earth System Model version 2- Low atmosphere-Low 
ocean resolution x x x x x x  

NorESM2-MM The Norwegian Earth System Model version 2- Medium atmosphere-
Medium ocean resolution x x x x x x  

TaiESM1 Taiwan Earth System Model version 1 x   x   

NESM3 Nanjing University of Information Science and Technology Earth 
System Model version 3 x     x      

 223 

 224 

2.3. Methodology 225 

2.3.1. Climate change scenarios 226 

Climate change scenarios are important for understanding long and/or short-term impacts and 227 

taking informed mitigation and adaptation actions to build resilience. In this study, we used 228 

the SSP scenarios. The SSPs were developed based on future socioeconomic trends and 229 

provide five different narrative pathways (SSP1, SSP2, SSP3, SSP4 and SSP5; O’Neill et al., 230 

2017). These scenarios were used in the latest Intergovernmental Panel on Climate Change 231 

(IPCC) report, the Sixth Assessment Report (AR6), and many studies used the SSP scenarios 232 

to assess climate change impacts (IPCC, 2021). We used three SSPs: SSP1-2.6; SSP2-4.5 and 233 

SSP5-8.5 to ensure continuity with the RCPs. SSP1-2.6 corresponds to sustainability, is very 234 

close to 2°C target of the Paris Agreement and is one of the highest priority scenarios in AR6 235 

(Meinshausen et al., 2020). SSP2-4.5 belongs to the "intermediate" socioeconomic family 236 

with a similar level of aggregate radiative forcing of 4.5 W m-2 by 2100, which corresponds 237 

to the RCP4.5 scenario. Finally, the SSP5-8.5 scenario indicates a world with high fossil fuel 238 



consumption in the 21st century with a radiative forcing of 8.5 W m-2, like the RCP8.5 239 

scenario. 240 

 241 

2.3.2 Climate indices 242 

For projected of climate change impacts in Burkina Faso, we examined eleven climate 243 

indices: onset of rainfall (ORS), cessation of rainfall (CRS) and length of rainy season (LRS), 244 

highest five-day precipitation amount (RX5day), number of days with daily precipitation of 245 

at least 20 mm (RR20mm), reference evapotranspiration (ET0), precipitation (Pr), air 246 

temperature (tas), heat stress index (HI), discomfort index (DI) and cooling degree days 247 

(CDD).  248 

 249 

For the ORS, we used the approach of Stern et al. (1981) to calculate the onset of rainfall. 250 

This approach considers the accumulation of a minimum of 25 mm of precipitation over a 251 

period of 5 days, with at least two days with rain (at least 0.1mm) within the 5 days. 252 

Subsequently, it considers the occurrence of a non-dry period lasting seven or more 253 

consecutive days within the following 30 days. We employed the approach of Omotosho et 254 

al. (2000) to determine the CRS that states any rain from 1st September onwards with 21 255 

consecutive days less than 50% of the crop's water requirements. The LRS is defined as the 256 

difference between ORS and CRS. 257 

 258 

We used the definition proposed by the Expert Team on Climate Change Detection and 259 

Indices (ETCCDI). This index indicates the maximum of five-day precipitation amount. 260 

Let 𝑃𝑟௞௝ be the precipitation amount for the 5-day interval ending k, period j. 𝑅𝑋5𝑑𝑎𝑦௝ =261 𝑚𝑎𝑥൫𝑃𝑟௞௝൯. The index is also used to determine periods with high risks of heavy rainfall and 262 

flood events (Xu et al., 2022). We also used the definition provided by the ETCCDI. RR20 263 

mm is defined as a number of days with daily precipitation of at least 20 mm. 𝑃𝑟 ≥ 20. The 264 

index is also used as indicator for extreme rainfall. For the ET0, we estimated it from Jones 265 

annd Ritchie (1990), which uses solar radiation, maximum and minimum temperature. It 266 

helps to understand the balance of the ecosystem, the irrigation scheduling, and the water 267 

resources management. 268 

 269 

To assess projected changes in human comfort and health in Burkina Faso, we used HI, 270 

which combines temperature and relative humidity. Each HI category was assigned a range of 271 



values. In this study, we considered 41°C ≤ HI < 54°C, which is classified as dangerous. The 272 

calculation of the index can be found in (Rothfusz and Headquarters, 1990).  We also used 273 

the DI provides insights into the potential impact of weather conditions on human comfort, 274 

well-being, and productivity. We followed the method of Thom (1959) to calculate DI. In this 275 

study, we consider DI ≥ 32°C which corresponds severe stress, leading to state of emergency 276 

indicating that the population is at risk. To estimate the energy required to cool a building, we 277 

employed the CDD. it represents the number of degrees that the average temperature 278 

exceeded the base temperature at a given day. The methodology employed here is based on 279 

the base temperature (Tb). 18°C is commonly used as the Tb to compute CDD (Ukey and 280 

Rai, 2021; Wang and Chen, 2014; Semmler et al., 2009). However, this Tb also depends on 281 

the local climate of the study area. For instance, Andrade et al. (2021) used 25°C as the Tb to 282 

examine the impacts of climate change on CDD in Portugal, while Odou et al. (2023) used 283 

24°C as Tb in West Africa. In this study, we used 30°C as Tb in Burkina Faso to compute 284 

CDD and it is expressed as the number of days per year. 285 

These climate indices allowed us to gain insight into the multi-layered impacts of climate 286 

change in Burkina Faso. 287 

 288 

2.3.3. Analyses  289 

In this study, we used the ensemble mean of the NEX-GDDP-CMIP6 (hereafter EnsMean) 290 

simulations for model evaluation and future projections. The EnsMean improves the 291 

reliability of future projections and enhanced signal-to-noise ratio of individual models 292 

(Hardiman et al., 2022; Tebaldi and Knutti, 2007). In addition, the EnsMean helps reduce 293 

biases and uncertainties inherent in individual models and provides policymakers and 294 

stakeholders with a unified view of climate change impacts for decision making (Hagedorn et 295 

al., 2005).  296 

The analysis first involves of assessing the EnsMean with the reference data. This step is 297 

important to ensure that the EnsMean of the models can reproduce the pattern of the 298 

reference data. To achieve this, we plotted the spatial distribution of the different variables 299 

used in this study and computed the spatial correlation (r), root-mean-square error (RMSE) 300 

and mean absolute error (MAE) between the EnsMean and the reference data for Pr, tas, 301 

tasmin, tasmax and hurs. In a second step, the climate change is analyzed for Burkina Faso 302 

using eleven climate indices. This analysis is done for two time periods: near future (2031-303 

2060) and far future (2071-2100) under SSP1-2.6, SSP2-4.5 and SSP5-8.5. The changes in 304 

Pr, RX5day and CDD are given as relative values, while the changes for the other variables 305 



are given in absolute values. For this study, we consider that the climate change signal is 306 

robust across the country when 80% of the models converge in the same direction (Fischer et 307 

al., 2014). We also used a t-test with a 95% confidence interval to assess the significant 308 

change. Significant changes are shown as a dot for each grid point. The projected changes in 309 

the various climate indices are shown as mean annual values. 310 

3. Results and discussions 311 

3.1. Model evaluation 312 

Figure.2 displays the annual patterns of key variables Pr, tas, tasmax, tasmin, and hurs, for 313 

both the reference data and the EnsMean in the historical climate. The EnsMean accurately 314 

reproduces the observed spatial patterns of Pr, tas, tasmax, tasmin, and hurs indicated by high 315 

spatial correlation ranging from 0.71 to 0.99. Pr exhibits the highest correlation between the 316 

reference and EnsMean data, while tasmin shows the lowest correlation. Consistent with 317 

observations, the EnsMean exhibits high Pr values in the southwestern region and low values 318 

in the northern region of Burkina Faso. This pattern is associated with hurs high in the 319 

southwestern part and low values in the northern part. The EnsMean effectively captures this 320 

pattern with a correlation coefficient of 0.97, an RMSE of 6.91%, and an MAE of 6.64%. 321 

Both the reference data and the EnsMean indicate that tas varies between 26°C and 31°C. 322 

Moreover, there is strong agreement between the two datasets regarding the spatial 323 

distribution of tas, with high values found in the northern part and low values in the western 324 

part. Similar patterns are observed for tasmax and tasmin between the reference data and the 325 

EnsMean. 326 

 327 

Despite the good spatial agreement in terms of correlation and other measures, the analysis 328 

shows biases for the different variables. For instance, the EnsMean overestimates Pr by about 329 

0.2 mm/day, especially in the northern and central parts of the country. Similar results were 330 

reported by Ajibola et al. (2020), who showed an overestimation of CMIP6 data compared to 331 

GPCC ( Global Precipitation Climatology Center) data in West Africa. The study of  Faye and 332 

Akinsanola (2022) also showed that CMIP6 data tend to overestimate precipitation amounts 333 

in West Africa. Additionally, the EnsMean tends to overestimate for tas, tasmax and hurs. 334 

Conversely, the EnsMean underestimates the tasmin by about 1°C mostly in the western and 335 

eastern parts of the country. This suggests that biases still exist in the NEX-GDDP -CMIP6 336 

for Burkina Faso compared to ERA5 and CHIRPS. The bias in the NEX-GDDP -CMIP6 data 337 

could be related to the reference datasets (GMFD) used for the bias correction or the inherent 338 
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3.2. Climate projections 353 

3.2.1. Onset, cessation of rainfall and length of the rainy season 354 

Figs. 3 & 4 show the projected changes of the ORS, CRS, and LRS for the near and far 355 

future, respectively. In general, the EnsMean projections indicate an early ORS date across 356 

the country. Some areas in the north show significantly earlier ORS up to 5 days under the 357 

SSP2-4.5 scenario, while some areas in the southwestern part of Burkina Faso exhibit a slight 358 

increase in the ORS date in the near future under SSP5-8.5. In the far future, these areas 359 

could experience a significant late ORS up to 10 days. In addition, some areas in the southern 360 

and northern parts could also experience a slight delay in the ORS date. However, there is a 361 

strong discrepancy in the projections of the ORS date over the country in all scenarios and 362 

periods. For instance, 41% of the models indicate a late onset, while 59% show an early ORS 363 

under SSP1-2.6. This discrepancy may be attributed to the inability of some climate models 364 

to accurately represent the WAM jump, as the onset of rainfall and the WAM jump are 365 

interconnected (Mounkaila et al., 2015; Sylla et al., 2013). Moreover, this disagreement could 366 

be also related to the discrepancy among climate models to the strength of the future 367 

weakening of the Meridional Overturning Circulation (AMOC) (Bellomo et al., 2021; Weijer 368 

et al., 2020; Cheng et al., 2013) as this climate process modulates the response of WAM to 369 

climate change (Schmidt et al., 2017).  370 

In contrast, projected changes of the CRS are more robust with 80% of the models showing a 371 

significant increase across the country under all scenarios and time periods, except for SSP1-372 

2.6 in far future. The increases are more pronounced under SSP5-8.5 and toward the end of 373 

the century. This is consistent with the results of Wainwright et al. (2021) using  CMIP6 374 

datasets. This suggests that the LRS may increase in some areas of Burkina Faso. This is 375 

supported by the projected change in the LRS. The northern and eastern parts show a 376 

significant increase in the LRS season up to 10 days, while the western part shows a decrease 377 

under SSP5-8.5 and for the far future (5 days). This is in line with the findings of Kumi and 378 

Abiodun (2018) using 8 RCMs of CORDEX-CMIP5 under the RCPs 4.5 and 8.5 scenario. 379 

Though, there are some discrepancies in the sign of the change, especially for the period 380 

2070-2100.  381 

In general, climate change may impact the ORS, CRS and LRS in Burkina Faso. Therefore, 382 

farmers need to adapt their cropping practices to the expected changes in the onset and 383 

duration of the rainy season to reduce crop loss or failure.  384 



 385 

 386 
Figure.3: Projected changes of the onset, cessaƟon, and length of the rainy season over Burkina Faso 387 
under different SSPs for the near future (2031-2060) based on the ensemble mean of staƟsƟcally 388 
downscaled CMIP6 scenarios. Dots indicate areas where changes are significant at the 95% 389 
confidence level. The pie chart in each panel shows the model’s agreement on the sign of the change 390 
in the country mean. 391 
 392 
 393 

 394 



 395 
Figure.4: Same as Fig.3, but for the far future (2071-2100). 396 

 397 

3.2.2. Air temperature  398 

The projected temperature change under the different SSPs and time periods are presented in 399 

Fig.5. The EnsMean projects significant warming across the country. In addition, more than 400 

90% of the models agree on the sign of the changes. The warming is much more pronounced 401 

under the SSP5-8.5 scenario in the period 2071-2100 compared to the other scenarios. The 402 

northern part could experience more warming compared to the other regions. In response to 403 

the SSP5-8.5 scenario, 1.5°C of warming is expected in the northern part in the near future, 404 

while projected of more than 4.3°C in the far future. Irrespective of the scenarios and time 405 

periods, certain areas could have a minimum warming of 0.8°C.  406 

On country average, 1.0°C of warming is expected under SSP1-2.6, while a warming of 407 

1.7°C is projected under SSP2-4.5 in the near future and the SSP5-8.5 scenario exhibits the 408 

highest level of warming reaching 2.8°C (Fig.6). However, the warming is more pronounced 409 



towards the end of the century in all SSP scenarios. For example, in the period of 2031-2060, 410 

an increase of 0.9°C is expected, whereas a warming of 1.1°C is projected in the period of 411 

2071-2100 under SSP1-2.6. Under SSP5-8.5, the country could experience an annual increase 412 

of 4.2°C by the end of the century. From November to May, the EnsMean projects an 413 

increase of about 4.5°C under SSP5-8.5, while under SSP1-2.6, 1.3°C is expected. Note that 414 

even during the Harmattan period (December-January-February), the EnsMean projects an 415 

increase in tas in all scenarios and time periods. 416 

 417 

However, warming in Burkina Faso could stabilize at SSP1-2.6 (1.0˚C) and SSP2-4.5 (2.0˚C) 418 

by the end of the century (Fig.7). The future temperature changes show very similar patterns 419 

and only slight differences in magnitude among the three SSP scenarios until 2040. Beyond 420 

2040, these scenarios begin to deviate from each other. This suggests that the pathways and 421 

magnitudes of future temperature changes in the country after 2040 are increasingly different 422 

between the scenarios. Moreover, the SSP5-8.5 scenario projects further warming beyond 423 

2100, with the country warming by about 5°C by the end of the century. The 90th quantile of 424 

the model simulations even project the country to warm by as much as 7°C. Similar results 425 

have been also reported by Fan et al. (2020) for the Africa region using CMIP6 models. The 426 

overall  results are also align with previous studies using SSP and RCP scenarios over the 427 

West Africa region (Almazroui et al., 2020; Sylla et al., 2016; Daron, 2014). The expected 428 

strong temperature increase could negatively impact important socio-economic sectors in 429 

Burkina Faso such as agriculture and solar energy (Sawadogo et al., 2019; Diarra et al., 430 

2017).  431 
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analyzed for the entire African continent. Nevertheless, it is important to note that this 466 

increase may exhibit considerable variability, as shown in Fig.9. Moreover, this variability 467 

becomes more pronounced as we move from low to high GHG emission scenarios, 468 

suggesting that the future rainfall variability in Burkina Faso depends on the SSP scenarios. 469 

GHG emissions are one of the main factors that contribute to the variability of the monsoon 470 

in the West Africa region (Monerie et al., 2022). Under the SSP5-8.5 scenario, the mean 471 

temporal change in the precipitation amount shows an increase of about 15% by 2100. 90% 472 

of the models even project an increase in rainfall amount of more than 60%, while 10% 473 

exhibit a decrease of about -20%. Similar results were also obtained by Biasutti (2013) where 474 

80% of the CMIP5 models showed an increase in rainfall in the central Sahel.  475 

The increase in precipitation could be attributed to the projected strong warming across the 476 

country. The warming of the atmosphere in the Sahel region leads to an intensification of the 477 

low-level moisture flux and the northward movement of the WAM; which in turn leads to an 478 

increase in precipitation (Gaetani et al., 2017). The EnsMean also projects a significant and 479 

robust increase in ET0 among all SSPs and time periods (Fig.10). The increase is more robust 480 

towards the end of the century. In the near future, the projected change in ET0 has a similar 481 

magnitude (5-10%) in all scenarios. In the far future, however, there are some differences 482 

between the SSPs, with the SSP5-8.5 scenario having the highest increase of 20%. This 483 

suggests that warming would lead to an increase in ET0, which is in line with previous studies 484 

(Abiodun et al., 2021; Abiye et al., 2019). The increase in ET0 in the Sahel may pose a 485 

serious problem for the agricultural sector because more water could evaporate from 486 

vegetated soils (Sissoko et al., 2011). In addition, off-season agriculture (typically in dry 487 

season), which contributes to food security in Burkina Faso (Ouedraogo, 2020), could 488 

become more challenging due to higher ET0 therefore less soil water availability during this 489 

time period. Overall, despite the increase in rainfall, the increase in ET0 could outweigh the 490 

positive rainfall effects for the country.  491 

 492 
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Figure.9: Similar as in Fig.7, but for the annual precipitaƟon amount. The projected precipitaƟon 499 

changes are indicated as relaƟve values. A posiƟve value indicates an increase of the precipitaƟon 500 

amount.  501 

 502 
Figure.10: Similar as in Fig.6, but for the mean annual reference evapotranspiraƟon. The projected 503 

evapotranspiraƟon changes are indicated as relaƟve values. Red areas correspond to an increase of 504 

the potenƟal evapotranspiraƟon over Burkina Faso. 505 

 506 

3.2.3. RX5days and RR20mm 507 

The RX5days is typically used as an indicator of flood risk, while the RR20mm is typically 508 

used for the risk of heavy rain events leading to flooding. Fig.11 & 12 show the annual 509 

projected changes in RX5days and RR20mm in Burkina Faso. Similar to rainfall and ET0, the 510 

EnsMean projects an increase in RX5days in all scenarios (Fig.11). The projected changes 511 

are consistent and significant in all areas. This shows that climate change may increase the 512 

risk of flooding in the country. In the period 2031-2060, the northern part of the country 513 

could be affected by floods up to 15% more frequently, while in the period 2071-2100 most 514 

areas could be at risk. The estimated increase in RX5days could exceed 20% in the SSP5-8.5 515 

scenario in the far future. In the near future, the magnitude could reach 10-15% in all 516 

scenarios. 517 

Additionally, the number of heavy rainfall events in the country is likely to increase (Fig.12). 518 

More than 80% of the models show a significant increase in RR20mm. The SSP5-8.5 519 

scenario shows the highest increase with a value of 2-4 days and 4-6 days per year in the near 520 

and far future, respectively. The EnsMean shows a greater magnitude in the far future period. 521 
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Heat stress has also been identified as one the source of reduced productivity of livestock 625 

(Thornton et al., 2022). The Sahel region has the lowest increase in HI compared to other 626 

regions. However, this relatively small increase could also impact the livestock well-being in 627 

this region. On the other hand, the Haut Bassins region could be more affected by the 628 

increase in HI by the end of the century as the humidity is high there (see Fig.2). From the 629 

near to far future, the number of days in HI is expected to double under SSP5-8.5 scenario. In 630 

the far future period, about 120, 90, and 55 days are expected under SSP5-8.5, SSP2-4.5 and 631 

SSP1-2.6 scenarios, respectively. This region is known to be the vital economic force of the 632 

country. Several studies emphasized that the rise in HI could reduce the capacity of workers 633 

to engage in physical labor (Parsons et al., 2022; Romanello et al., 2021; Kjellstrom et al., 634 

2018). This labor capacity losses may have an impact on the socio-economic activities of the 635 

region. The study by Saeed et al. (2022) revealed that the loss of labor due to heat stress in 636 

agriculture (~18%), mining (~6%), construction (~6%), manufacturing (~4%) and all sector 637 

(~4%) could substantially reduce the GDP by 4% in Burkina Faso. This suggests that climate 638 

change could have significant impact on the socio-economic activities of the country. 639 

Therefore, appropriate measures need to be undertaken to mitigate the potential adverse 640 

effects of rising HI in this region. One of the key areas that require attention is the protection 641 

of vulnerable people, particularly those engaged in outdoor activities and occupations 642 

exposed to extreme heat conditions. Implementing heat safety regulations and guidelines can 643 

help minimize the risk of heat-related illness among vulnerable people. 644 

Figs.17 & 18 in the Appendix also present other climate factors used in this study for the 13 645 

administrative regions.  646 
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4. Summary and conclusion 653 

The study examined the impact of climate change in Burkina Faso. Compared to previous 654 

study done for the West African region, we used statistically downscaled CMIP6 simulations 655 

(~ 25 km) provided by NEX-GDDP to determine the projected changes for eleven climate 656 

indices. The analysis was carried out under SSP1-2.6, SSP2-4.5 and SSP5-8.5 climate change 657 

scenarios for the near future (2031-2060) and far future (2071-2100) relative to a recent 658 

baseline period of 1985-2014. In addition, CHIRPS and ERA5 reanalysis data were used to 659 

evaluate the performance of the ensemble mean of the climate model simulations for some 660 

key variables (e.g., precipitation, minimum and maximum temperature, and relative 661 

humidity) in the historical climate.  The main results of the study based on the ensemble 662 

mean can be summarized as follows: 663 

 The statistically downscaled CMIP6 simulations were able to reproduce the spatial 664 

patterns of selected climate variables with some biases. 665 

 Significant warming is expected across all areas, with the northern part showing the 666 

highest warming level of more than 4.3°C under the SSP5-8.5 scenario. 667 

 An increase of the annual precipitation amounts up to 30% is projected in some areas, 668 

which could potentially increase water availability. However, this increase in water 669 

availability may be offset by a projected 20% increase of evapotranspiration, which 670 

could lead to water stress and therefore additional challenges for rainfed agriculture 671 

and water resource management.  672 

 Moreover, the length of the rainy season in Burkina Faso could potentially increase by 673 

up to 10 days under the SSP5-8.5 scenario, with a slightly early onset, especially in 674 

the Sahel region. 675 

 The risk of flooding is likely to increase due to an increase of heavy rainfall events. 676 

These increases are greater under the SSP5-8.5 scenario and in the far future period. 677 

 Due to strong temperature increase, the number of days of heat stress days, discomfort 678 

days and cooling degree days is expected to increase in a substantial manner in all 679 

scenarios and time period in Burkina Faso. 680 

The strong response to global warming in Burkina Faso could strongly weaken 681 

socioeconomic development, as climate change will affect most development sectors. 682 

However, our analysis also revealed that the projected changes for the different climate 683 

indices are much lower under the socio-economic pathways SSP1-2.6 and SSP2-4.5. 684 

Thus, the timely implementation of mitigation measures could significantly reduce 685 



climate change impacts for this vulnerable region. The results of this study are consistent 686 

with previous studies on the West Africa region, mainly in the Sudan-Sahel, where most 687 

climate hazards are amplified by global warming (Diba et al., 2022; Vogel et al., 2020; 688 

Diasso and Abiodun, 2018). However, our results suggest that the statistically downscaled 689 

CMIP6 simulations show higher warming in Burkina Faso compared to the CMIP5 690 

simulations where 2.5°C is expected under the RCP8.5 scenario for the 2071-2100 period 691 

(Deme et al., 2017; Brown and Crawford, 2008) although a relatively recent baseline 692 

period was selected in our study. This disparity between CMIP5 and CMIP6 temperature 693 

projections has been also shown in previous studies (Cos et al., 2022; Zhu et al., 2021; 694 

Fan et al., 2020) and it has been attributed to the higher climate sensitivity in CMIP6 data 695 

(Zelinka et al., 2020). While various climate indices were considered in this study, it 696 

should be noted that these variables are not intended to be comprehensive. Further studies 697 

could examine the impacts of heatwaves, droughts, and strong winds in Burkina Faso 698 

with corresponding indices. Indeed, heatwaves, droughts, and strong winds occur 699 

frequently and have significant impacts on human health and crops (Sawadogo, 2022; 700 

Sorgho et al., 2021b; Visser et al., 2003). 701 

 In addition, further assessment of climate change impacts in Burkina Faso is needed in 702 

various sectors such as agriculture, water resources and health to gain deeper insights of 703 

the impacts of climate change and to formulate appropriate measures for climate 704 

protection. Many West African countries elaborate their National Adaptation Plans (NAP) 705 

every five years to mitigate the impacts of climate change in their respective countries. 706 

The results of this study provided useful information on climate change impacts in 707 

Burkina Faso based on the latest climate change scenarios. The findings could be 708 

incorporated into Burkina Faso’s NAP to enhance preparedness and resilience in this 709 

country and could serve as an important reference study for NAPs of other Sudan-710 

Sahelian countries. However, the development and implementation of climate protection 711 

measures is still pending in West Africa or failing due to lack of financial resources. 712 

Therefore, a joint global effort is needed for vulnerable countries like Burkina Faso to 713 

secure funding for the development of adaptation strategies and their timely 714 

implementation in order to mitigate the negative impacts of climate change in this region 715 

as efficiently as possible. 716 

 717 

 718 
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