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Abstract

Interactions among atmospheric, root-soil, and vegetation processes drive carbon dioxide fluxes (Fc) from land to atmosphere.

Eddy covariance measurements are commonly used to measure Fc at sub-daily timescales and validate process-based and data-

driven models. However, these validations do not reveal process interactions, thresholds, and key differences in how models

replicate them. We use information theory-based measures to explore multivariate information flow pathways from forcing data

to observed and modeled hourly Fc, using flux tower datasets in the Midwestern U.S. in intensively managed corn-soybean

landscapes. We compare Multiple Linear Regressions (MLR), Long-Short Term Memory (LSTM), and Random Forests (RF)

to evaluate how different model structures use information from combinations of sources to predict Fc. We extend a framework

for model predictive performance and functional performance, which examines the full suite of dependencies from all forcing

variables to the observed or modeled target. Of the three model types, RF exhibited the highest functional and predictive

performance. Regionally trained models demonstrate lower predictive but higher functional performance compared to site-

specific models, suggesting superior reproduction of observed relationships. This study shows that some metrics of predictive

performance encapsulate functional behaviors better than others, highlighting the need for multiple metrics of both types. This

study improves our understanding of carbon fluxes in an intensively managed landscape, and more generally provides insight

into how model structures and forcing variables translate to interactions that are well versus poorly captured in models.
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Key Points:7

• Information theory measures describe individual and joint causal relationships in8
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Abstract14

Interactions among atmospheric, root-soil, and vegetation processes drive carbon15

dioxide fluxes (Fc) from land to atmosphere. Eddy covariance measurements are com-16

monly used to measure Fc at sub-daily timescales and validate process-based and data-17

driven models. However, these validations do not reveal process interactions, thresholds,18

and key differences in how models replicate them. We use information theory-based mea-19

sures to explore multivariate information flow pathways from forcing data to observed20

and modeled hourly Fc, using flux tower datasets in the Midwestern U.S. in intensively21

managed corn-soybean landscapes. We compare Multiple Linear Regressions (MLR), Long-22

Short Term Memory (LSTM), and Random Forests (RF) to evaluate how different model23

structures use information from combinations of sources to predict Fc. We extend a frame-24

work for model predictive performance and functional performance, which examines the25

full suite of dependencies from all forcing variables to the observed or modeled target.26

Of the three model types, RF exhibited the highest functional and predictive performance.27

Regionally trained models demonstrate lower predictive but higher functional performance28

compared to site-specific models, suggesting superior reproduction of observed relation-29

ships. This study shows that some metrics of predictive performance encapsulate func-30

tional behaviors better than others, highlighting the need for multiple metrics of both31

types. This study improves our understanding of carbon fluxes in an intensively man-32

aged landscape, and more generally provides insight into how model structures and forc-33

ing variables translate to interactions that are well versus poorly captured in models.34

Plain Language Summary35

In an agricultural landscape, exchanges of carbon dioxide between the land and at-36

mosphere occur due to photosynthesis and respiration, and depend on weather, soil, and37

vegetation conditions. In modeling, predictive performance focuses on the relationship38

between observed and modeled outputs, while functional performance considers the re-39

lationships between interacting inputs and outputs. We compare several performance40

measures for three different machine learning models that simulate sub-daily carbon fluxes.41

We look at how drivers such as solar radiation, soil moisture, temperature, humidity, and42

rainfall provide information to carbon fluxes, and whether different machine learning mod-43

els also capture these interactions. In other words:44

Air, soil, and plants drive carbon’s upward path,45

Models are detectives, interpreting their math.46

With information theory, we map data’s travel courses,47

To see how models find or miss carbon’s causal sources.48

1 Introduction49

The ecohydrologic system constitutes a complex web of interactions between wa-50

ter, soil, and vegetation. The exchange of carbon dioxide (CO2) between the land and51

atmosphere plays a significant role in the Earth’s surface temperature balance, and is52

one of these key process affected by hydrological and ecological feedback (Liang et al.,53

2020). In terrestrial ecosystems, the carbon exchange rate is mainly controlled by the54

photosynthesis - respiration process. Complex and nonlinear drivers such as meteorol-55

ogy, soils, vegetation, and available energy cause vertical carbon fluxes to be highly vari-56

able in space and time and challenging to measure and model (Huang et al., 2017; He57

et al., 2018; Chen et al., 2020; Dou & Yang, 2018). Several approaches have been devel-58

oped to understand current and future terrestrial carbon flux over the past several decades59

involving field observations (Falge et al., 2002; Xiao et al., 2011), large-scale remote sens-60

ing (Xiao et al., 2019), process-based modeling (D. Wang et al., 2011; Dunkl et al., 2021),61

or a combination of these methods (Vetter et al., 2008; Jung et al., 2011). We take a data-62
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driven approach to explore the predictability of the net CO2 exchange rate, also known63

as Net Ecosystem CO2 exchange (NEE), in agricultural landscapes in the Midwest U.S.64

NEE is the net carbon balance between photosynthetic CO2 gain and respiratory CO265

losses from plants and animals, and we use Fc as the nomenclature for NEE measured66

at an eddy covariance flux tower.67

In this system, causal interactions need to be detected to understand interrelated68

processes at multiple spatial and temporal scales (Runge et al., 2019; Bollt et al., 2018).69

From a modeling perspective, this involves “intervening” in the system and manipulat-70

ing model structures, parameters, or inputs, and observing the resulting model behav-71

ior relative to observations (Goodwell et al., 2020). Specifically, a causal model evalu-72

ation framework should consider dependencies between inputs or source variables and73

the target, or the “functional performance” relative to observed interactions (Goodwell74

& Bassiouni, 2022; Bassiouni & Vico, 2021; Ruddell et al., 2019). This is particularly cru-75

cial for machine learning and deep learning models, where relationships between inputs76

and outputs are not transparent. Understanding how these models learn, or fail to learn,77

the dependencies we observe in nature to predict an output is vital (Goodfellow et al.,78

2016). Meanwhile, predictive performance measures capture features of the relationship79

between the observed and modeled target output variable. In this study, we focus on the80

functional and predictive performance of data-driven models of hourly Fc.81

Information theory (IT) measures, which characterize uncertainty and reductions82

in uncertainty based on probability distributions (Cover & Thomas, 2012; Shannon, 1948),83

have been employed in various geoscience contexts to measure complexity, dependencies,84

and driving or causal mechanisms (Balasis et al., 2013). Previous applications charac-85

terized ecohydrological process networks that reveal ecosystem behaviors (Ruddell & Ku-86

mar, 2009a; Franzen et al., 2020; Goodwell & Kumar, 2017; Ruddell et al., 2019; Sendrowski87

& Passalacqua, 2017). Recent applications of IT-based measures in hypothesis testing88

frameworks (Nearing et al., 2016, 2018) and to evaluate the functional performance of89

models based on a selection of sources (Sendrowski et al., 2018; Ruddell et al., 2019; Ten-90

nant et al., 2020; Moges et al., 2022; Bassiouni & Vico, 2021; Goodwell & Bassiouni, 2022)91

have shown great potential to better understand how models capture causal interactions92

in various Earth systems. However, these studies tend to consider a small subset of sources93

or a single modeled process. In this study, we take a more comprehensive view of com-94

plex ecohydrologic models and analyze information flow through the entire model. This95

allows for identification of potential sources of model error and insights into the relation-96

ships between different components of the model. This can lead to a better understand-97

ing of the model’s behavior and performance, and ultimately, more accurate predictions98

of ecological and hydrological processes.99

ML techniques have shown to be more effective and adaptable relative to mecha-100

nistic or semi-empirical model approaches, providing a complementary strategy to pre-101

dict carbon fluxes at local to global scales (Dou & Yang, 2018; Dou et al., 2018). Ma-102

chine learning (ML) algorithms construct empirical models based on the patterns con-103

tained in data and are very data adaptive because no assumption and functional forms104

need to be prescribed (Jung et al., 2011). ML has been used for interpolation for gap-105

filling carbon flux data and climatic driving factors based on flux tower measurements106

(Moffat et al., 2007; Ooba et al., 2006), decreasing the predictive errors of carbon fluxes107

from the land surface models (T. Wang et al., 2012), and upscaling carbon fluxes of ter-108

restrial ecosystems from site to regional and global scales (Papale et al., 2015). Several109

studies similarly indicate the ability of ML to reproduce complex ecohydrological pat-110

terns, particularly in relation to flux tower measurements (Q. Zhou et al., 2019; Tramon-111

tana et al., 2020; Reichstein et al., 2019). Specifically, Q. Zhou et al. applied a ML ap-112

proach to estimate NEE using variables such as the fraction of photosynthetically active113

radiation (PAR), leaf area index (LAI), soil moisture, downward solar radiation, precip-114

itation, and mean air temperature. Tramontana et al. developed an ANN model to es-115
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timate NEE based on the light-use efficiency concept and used a comprehensive dataset116

of soil and micrometeorological variables as flux drivers.117

While machine learning models tend to make better predictions than traditional118

models, they are often not trusted by the hydrologic community due to their black-box119

nature (Welchowski et al., 2022). By characterizing information flow pathways and com-120

paring models beyond predictive performance, we can gain insights into their process rep-121

resentations (Goodwell & Bassiouni, 2022). This is particularly important when using122

a certain model to extrapolate in an unknown future climate, where a model with bet-123

ter process representations may be more trustworthy to apply to an unseen scenario. In124

this paper, we apply our IT-based model evaluation framework to three ML models, Long125

Short Term Memory (LSTM), Random Forest (RF), and multiple linear regression (MLR)126

to characterize how these models reproduce observed dependencies in terms of individ-127

ual, pairwise and more multivariate interactions to predict sub-daily Fc. Recurrent Neu-128

ral Networks (RNN) with LSTM are deep learning models that can successfully learn129

long-range temporal dependencies between time steps of sequence data (Hochreiter &130

Schmidhuber, 1997a; Sutskever et al., 2014; Kratzert et al., 2018, 2019). Meanwhile, the131

RF is a classical ML method that is known for its capacity to handle large datasets, re-132

sist the negative impacts of noise and overfitting (Breiman, 2001), and rank the signif-133

icance of input variables (Leroux et al., 2017; Meng et al., 2021). RFs have been exten-134

sively applied in ecological classification and regression tasks (Meyer et al., 2019; Reitz135

et al., 2021; Q. Zhou et al., 2019). We use MLR as a simple model with which to com-136

pare the more complex ML models. We develop both locally and regionally trained mod-137

els to compare model responses to larger training datasets that span multiple sites.138

This paper is organized as follows. Section 2 describes the study site, datasets used,139

machine learning model development, and model evaluation. Section 3 presents the re-140

sults of MLR, RF, and LSTM models. Section 4 provides a discussion, and Section 5 is141

a conclusion.142

2 Materials and Methods143

2.1 Site Description and Data144

The data for this study was collected from multiple flux tower sites in maize/soybean145

landscapes in the Upper Midwest Corn Belt. The Goose Creek flux tower in central Illi-146

nois (Figure 1a) is part of the NSF-funded Critical Interface Network (CINet) project147

(https://cinet.ncsa.illinois.edu/), and collects 15-minute fluxes and meteorolog-148

ical variables at a 25m height, along with vegetation and soil properties. The Goose Creek149

site has been extensively studied using Lidar topography and high-resolution modeling150

of nutrient and carbon fluxes (Yan et al., 2019; Dutta et al., 2017; Woo & Kumar, 2017),151

and footprint modeling has been applied to study how landscape heterogeneity influences152

evapotranspiration fluxes (Hernandez Rodriguez et al., 2023). For this study, the 15-minute153

data was resampled to hourly resolution to match with other sites.154

We also use data from 5 maize-soybean rotation sites in the FLUXNET2015 (Pastorello155

et al., 2020) dataset (Table 1), which provides over 1500 site-years of quality-controlled156

datasets for various landscapes. We used the AmeriFlux version of the hourly carbon157

flux data and meteorological variables for sites US-Ne1 (Mead - irrigated continuous maize158

site), US-Ne2 (Mead - irrigated maize-soybean rotation site), and US-Ne3 (Mead - rain-159

fed maize-soybean rotation site). These sites are located within 1.6 km of each other at160

the University of Nebraska Agricultural Research and Development Center near Mead,161

Nebraska. Additionally, we used the hourly measurements of sites US-Br1 and US-Br3,162

located in adjacent maize and soybean fields in central Iowa. The farming systems, as-163

sociated tillage, and nutrient management practices for maize/soybean production at these164

sites are typical of those throughout the Upper Midwest Corn Belt.165
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Figure 1: (a) At a 25m height eddy covariance flux tower in Central Illinois, observed
fluxes originate from up to a 10km surrounding region, dominated by a patchwork of
maize and soybean fields. (b) Three flux tower sites are located in maize/soybean sys-
tems.

Table 1: Characteristics of flux tower sites. MAT, (◦C) is Mean Annual Temperature.
MAP (mm) is Mean Annual Precipitation.

Site ID Name MAT MAP Year Reference

US-Ne1
Mead-irrigated contin-
uous maize

10.07 790.37 2010-2021 (Suyker, 2022a)

US-Ne2
Mead-irrigated maize-
soybean rotation

10.08 788.89 2010-2021 (Suyker, 2022b)

US-Ne3
Mead-rainfed maize-
soybean rotation

10.11 783.68 2010-2021 (Suyker, 2022c)

US-Br1
Brooks Field Site
10-Ames

8.95 842.33 2005-2011 (Prueger & Parkin, 2016a)

US-Br3
Brooks Field Site
11-Ames

8.9 846.6 2005-2011 (Prueger & Parkin, 2016b)

CINet-GC
Goose Creek flux
tower

10 900 2016-2020
(Hernandez Rodriguez et al.,
2023)

The forcing variables selected for this study (Table 2) are expected to influence the166

dynamics of Fc between the land and atmosphere, through direct or indirect influence167

on photosynthesis, respiration, and other biogeochemical processes. Specifically:168

• Ta and TS : Soil and air temperatures influence both photosynthetic rates and mi-169

crobial respiration. For example, it has been found that plant respiration increases170

more than photosynthesis as temperature rises, which indicates that a substan-171

tial temperature increase could turn an ecosystem from a carbon source to a sink172

(X. Zhou et al., 2012). Meanwhile, other studies have determined that this rela-173

tionship is more complex when aspects such as changing rainfall and atmospheric174

CO2 concentrations are considered (Drewry et al., 2010a, 2010b; Le et al., 2011).175
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Figure 2: Diurnal cycle (left panel) and diurnal standard deviation cycle (right panel)
of air temperature (Ta), photosynthetic photon flux density (PPFD), soil water content
(SWC)) and carbon flux (Fc) over the study years corresponded to different sites (Ne1,
Ne2, Ne3, Br1, Br3, GC). Each site is represented by a unique color.

–6–
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Table 2: The full suite of variables used in this study.

Variable Description Symbol Unit

Carbon dioxide (CO2) flux Fc µmolCO2/m
2s

Relative humidity RH %

Air temperature Ta ◦C

Wind speed WS m/s

Atmospheric pressure Pa kPa

Precipitation P mm

Net radiation NETRAD W/m2

Incoming photosynthetic photon
flux density

PPFD ∗ µmolPhotons/m2s

Soil water content (volumetric) SWC %

Soil temperature TS ◦C

∗ PAR: Photosynthetically Active Radiation (µmol/m2s) in the CINet-GC site

• RH : Humidity levels can impact plant transpiration and stomatal conductance,176

thereby influencing carbon uptake during photosynthesis.177

• P and SWC : Water availability affects photosynthesis, and scarcity can lead to178

stress conditions, slowing down carbon sequestration.179

• PPFD and NETRAD : These radiation variables influence the energy balance and180

are related to the amount of light available for photosynthesis, which is a primary181

driver for carbon uptake in plants.182

• WS : While not a direct factor, wind speed can affect plant transpiration rates, hu-183

midity levels, and even the mixing of carbon dioxide in the atmospheric layer.184

• Pa: Changes in atmospheric pressure can impact gas exchange rates, indirectly185

affecting Fc.186

We undertook rigorous data pre-processing (SI section S1) to ensure the reliabil-187

ity of our analysis. This involved applying quality control measures to all datasets, and188

identifying and removing any outliers or erroneous patterns. We encountered missing val-189

ues in some datasets, which we imputed using time series imputation methods. We note190

that imputation is based on certain assumptions and can introduce uncertainty, which191

is discussed along with the results.192

2.2 Model Development and Experimental Design193

In this study, we develop three ML models to predict Fc: Multiple Linear Regres-194

sion (MLR), Long Short Term Memory (LSTM), and Random Forest (RF). Each of these195

models offers unique advantages and capabilities. To ensure efficient learning, all input196

driving variables and the output (Fc) data were normalized by subtracting the mean and197

dividing by the standard deviation (Minns & Hall, 1996). The output of all ML mod-198

els was retransformed using the normalization parameters to obtain the final Fc predic-199

tion.200
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The setup of ML models necessitates the optimization of hyperparameters, a task201

we performed via a combination of grid search and cross-validation techniques. Grid search202

encompasses defining a range of possible parameter values and evaluating the model’s203

performance for each combination. Cross-validation helps to evaluate the model’s gen-204

eralization ability by partitioning the data into training and validation sets. We used a205

5-fold cross-validation approach to search over the hyperparameter grid, where the data206

were split into 5 subsets of equal size, and each subset was used once for validation while207

the remaining 4 subsets were used for training. This process was repeated multiple times208

with different partitions to ensure a robust estimate of the model’s performance.209

The ML architectures (refer to SI, Table S1) used in this study worked well for all210

sites in comparison to observation and were therefore chosen to be applied here without211

further tuning. However, a systematic sensitivity analysis of the effects of different hy-212

perparameters was not performed in our study and could be explored in more detail in213

terms of their effect on predictive and functional performance.214

2.2.1 Multiple Linear Regression Model215

MLR assumes a linear function of the independent variables to predict the depen-216

dent variable. The simplicity, interpretability, and ease of use of MLR make it a popu-217

lar choice for many applications. However, it assumes a linear relationship between the218

dependent and independent variables and is sensitive to outliers and multicollinearity.219

In our study, MLR provides a baseline for comparison with the more complex RF and220

LSTM models. We adopted the Ordinary Least Squares (OLS) method for model fitting,221

which optimizes the model by minimizing the sum of the squared residuals.222

2.2.2 Random Forest Model223

The Random Forest (RF) model is a powerful ensemble learning algorithm that gen-224

erates predictions by combining the outputs of multiple decision trees. Each of these trees225

is constructed using a randomly selected subset of the features and data samples, which226

helps to prevent overfitting. The final prediction is then derived by averaging the out-227

puts from all the trees. In a decision tree, each node represents a feature in our data, each228

branch represents a decision rule, and each leaf represents an outcome. The root node,229

the topmost node in a tree, corresponds to the best predictor. Decisions are made by walk-230

ing down the tree from the root to a leaf node.231

The RF model is highly regarded for its accuracy, resilience to noise and outliers,232

and its ability to handle high-dimensional data with nonlinear relationships and miss-233

ing values (Breiman, 2001), making it a suitable choice for our study to predict Fc. How-234

ever, due to its complexity, interpreting the model can be challenging, and the compu-235

tational cost can increase significantly with the number of trees in the forest. The per-236

formance of the RF model is significantly influenced by the fine-tuning of hyperparam-237

eters. The n-estimators (set to 100 in this study) parameter represents the number of238

trees in the forest and a trade-off between computation time and model performance. The239

max-depth parameter (set to 9, total number of features) controls the complexity of the240

model, playing a crucial role in preventing overfitting. The max-features parameter (set241

to 3), denoting the number of features to consider at each split (the maximum depth of242

each tree), can significantly impact the model’s performance and is typically set to the243

square root of the total number of features. It is also worth noting that the random-state244

(set to 42) parameter ensures the consistency and reproducibility of our results.245

2.2.3 Long Short Term Memory Model246

LSTM is a specialized form of the Artificial Recurrent Neural Network (RNN) ar-247

chitecture, which is designed to remember long-term dependencies in sequential data. This248
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capability is achieved through a unique arrangement of memory cells and three types of249

gates: the input gate, output gate, and forget gate. These components work together to250

selectively retain or discard information over time, making LSTM particularly adept at251

time-series prediction tasks (Hochreiter & Schmidhuber, 1997b). We choose LSTM for252

its capacity to model temporal dependencies in time series data, a vital characteristic253

for accurate carbon flux prediction. We operate the LSTM in sequence-to-sequence mode,254

in which any length of input sequence generates an equally long output sequence. We255

chose a constant sequence length of 12 hourly time steps. This is based on the diurnal256

cycle of environmental patterns, including temperature and light, that significantly af-257

fect Fc (Figure 2).258

The design and training of LSTM models necessitate careful selection of various259

parameters. These include the number of layers in the network, the number of hidden260

units per layer, the learning rate, and the sensitivity of back-propagation to residuals be-261

tween predicted and observed outputs. Additionally, the presence or absence of dropout262

layers, which help prevent overfitting, must be considered. To find an optimal model ar-263

chitecture, we conducted a series of experiments at different sites, manually adjusting264

different architectures (e.g., one or two LSTM layers or 5, 10, 15, or 20 cell/hidden units).265

The chosen architecture consists of a two-layer LSTM network, with each layer having266

a cell/hidden state length of 9, as number of driving source variables (Table 2). Dropout267

layers are added between the LSTM layers to prevent overfitting (Srivastava et al., 2014),268

and a regression layer with a single unit is added for the target variable (Fc).269

During the training of LSTMs, each iteration step typically works with a subset270

(called a batch or mini-batch) of the available training data. In our case, the batch size271

is defined to be 128, and each sample in the batch consists of the Fc value and the driv-272

ing variables of the 12 preceding time steps. The loss function, calculated as the aver-273

age of the Mean Squared Error (MSE) of simulated and observed Fc of these 128 sam-274

ples, is computed in every iteration step. For faster convergence, it is advantageous to275

have random samples in one batch. In traditional ecohydrological model calibration, the276

number of iteration steps defines the total number of model runs performed during cal-277

ibration. The corresponding term for neural networks is called an “epoch”, which is de-278

fined as the period in which each training sample is used once for updating the model279

parameters. For instance, if the dataset consists of 1000 training samples and the batch280

size is 10, one epoch would consist of 100 iteration steps.281

2.2.4 Experimental Setup282

Our experimental design involves two main experiments aimed at evaluating the283

performance of our ML models in predicting Fc.284

Local models for each site: This experiment tests the general ability of our MLMs285

to predict Fc at individual sites. We trained separate models for each site (Table 1) us-286

ing the first 80% of the studied years as training data and the last 20% of studied years287

as the testing period. This resulted in six separately trained networks, one for each site.288

Regional model: We train a regional model on a large dataset with data from all sites,289

to learn general patterns and relationships between input and output data. In this, we290

grouped all sites for the definition of the study region and used the combined data of 80%291

randomly selected for the entire period of all sites. We then test the model on each of292

the sites separately. The regional experiment is motivated by the idea that deep learn-293

ing models perform better when trained with large amounts of data (Hestness et al., 2017;294

Schmidhuber, 2015) and regional models could be a potential solution for prediction in295

sites without flux tower measurements (Hrachowitz et al., 2013; Sivapalan, 2003). Hav-296

ing a large training dataset allows the model to learn more generalized and abstract pat-297

terns and relationships between input and output data. For instance, if two sites behave298

similarly, but one lacks high precipitation events or extended drought periods in the cal-299
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ibration period, while having these events in the validation period, the ML model can300

learn the response behavior to those extremes and use this knowledge in the first site.301

2.3 Model Evaluation Framework302

We gauge model performance both in terms of predictive accuracy and ability to303

encapsulate functional relationships. In this context, we consider two types of performance304

measures: predictive performance, which assesses the model’s ability to accurately pre-305

dict outcomes, and functional performance, which evaluates the model’s ability to cap-306

ture the underlying functional relationships between variables (Nearing et al., 2020; Good-307

well & Bassiouni, 2022; Bassiouni & Vico, 2021). Predictive performance metrics include308

quantitative measures of the discrepancy between the model’s predictions and the actual309

values, while functional performance can be assessed using various methods, including310

sensitivity analysis, partial dependence plots, and information-theoretic measures. We311

use a combination of several predictive and functional performance measures to evalu-312

ate the performance of ML models at different granularities.313

2.3.1 Predictive Performance314

We use Nash–Sutcliffe Efficiency (NSE ) (Nash & Sutcliffe, 1970), Kling-Gupta Ef-315

ficiency (KGE ) (Gupta et al., 2009), and Shannon Entropy (H) (Shannon, 1948), an information316

theory (IT)-based measure to evaluate model predictive performance. Both NSE and317

KGE are widely recognized in hydrology for their effectiveness in assessing the quality318

of modeled predictions in relation to observed data. On the other hand, the entropy met-319

ric quantifies the uncertainty inherent in the model’s predictions relative to observations.320

These metrics provide different perspectives on prediction errors.321

The NSE is a normalized statistic that quantifies the relative magnitude of the resid-322

ual variance, often referred to as “noise”, in comparison to the variance of the measured323

data, or “information” (Nash & Sutcliffe, 1970). It is computed as follows:324

NSE(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2
(1)

where n is the number of observations, ŷ is the mean of modeled values and yi and ŷi325

are the observed and modeled values, respectively. The NSE ranges from −∞ to 1. An326

NSE of 1 signifies a perfect match between modeled and observed data. An NSE of 0327

indicates that the model’s predictions are as accurate as the mean of the observed data.328

A negative NSE occurs when the observed mean is a better predictor than the model.329

The KGE is defined by the following equation:330

KGE(y, ŷ) = 1−
√

(r(y, ŷ)− 1)2 + (α(y, ŷ)− 1)2 + (β(y, ŷ)− 1)2, (2)

where r is the Pearson correlation coefficient between the observed (yi) and modeled val-331

ues (ŷi), defined as:332

r(y, ŷ) =

∑n
i=1(yi − y)(ŷi − ŷ)√∑

i = 1n(yi − y)2(ŷi − ŷ)2
(3)

Here, n is the number of observations, and y and ŷ are the mean of observed and mod-333

eled values, respectively. The variability ratio, α, is the ratio of the standard deviation334

of modeled values (σŷ) to observed values (σy). β, the bias ratio, is the ratio of the mean335
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of modeled values (ŷ) to observed values (y). Similar to NSE, KGE values range between336

−∞ and 1, where 1 represents a perfect fit.337

The NSE and KGE can be more or less suitable depending on the characteristics338

of the data and the objectives of the model (Knoben et al., 2019). NSE is based on the339

mean squared error and is particularly sensitive to the ability of the model to reproduce340

the variance of the data around its mean. Consequently, a model’s consistent over- or341

underestimation can influence the NSE value. If the model consistently over- or under-342

estimates the data, this will strongly affect the NSE. On the other hand, KGE also in-343

cludes the correlation between observed and simulated data in addition to bias and vari-344

ability. This enables KGE to adeptly identify patterns of over- or underestimation. More-345

over, the breakdown of the KGE into its components can provide valuable insights into346

the model’s strengths and weaknesses. A model might have a high KGE, but a low NSE347

if it reproduces the overall dynamics of the data (which KGE assesses) well but fails to348

capture the variance around the mean (which NSE emphasizes) accurately. Conversely,349

a model might have a high NSE, indicating a good reproduction of the observed data’s350

variance, but a low KGE if there are biases or variability issues.351

IT is based on Shannon Entropy (Shannon, 1948), H(X) = −
∑

p(x) log2 p(x),352

where p(x) is a probability distribution function (pdf ). H(X) is a measure of uncertainty353

of the random variable X, or the missing information that would lead to its full predictabil-354

ity. Here we consider the normalized difference in entropy between observed and mod-355

eled Fc as another predictive performance measure:356

AH = 1− H(Fcmod)

H(Fcobs)
(4)

AH indicates how well the model captures the uncertainty that exists in the observed357

Fc and it ranges from −∞ to 1. The values of AH = −∞ never occurs in this case358

as H(Fcobs) ̸= 0. AH = 0 represents the “best” performance where the model ex-359

actly replicates the observed uncertainty. Positive values of AH indicate that the mod-360

eled entropy (H(Fcmod)) is lower than the observed entropy (H(Fcobs)). In other words,361

the model output is less uncertain, or more predictable, than the observed data. Con-362

versely, negative values of AH indicate that the model’s outputs are more uncertain than363

the observed data. To compute pdf s, we discretize observed and modeled variables in364

N = 100 equally sized bins spanning the minimum and maximum values of observed365

output data.366

2.3.2 Functional Performance367

We also use IT to quantify the information shared between forcing variables, model368

outputs, and observations, which can be interpreted as a measure of the model’s func-369

tional performance (Nearing et al., 2020). This perspective shifts the focus from uncer-370

tainty quantification to information quantification. We explore how various model types371

use information from driving variables (Table 2) to predict an output, or “target” vari-372

able, which here is Fc. The functional performance of a model indicates the extent to373

which this information use is similar to or different from observed dependencies. We take374

a multi-level IT-based approach to evaluate the functional performance of our models.375

We will characterize complex process linkages between forcing variables or other avail-376

able information sources and Fc to assess the model’s ability in capturing the relation-377

ships between the driving variables and the target variable. We consider functional per-378

formance at several different levels, specifically for individual source-target relationships,379

pairs of sources, and all combinations of sources, or the whole model level.380
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For an individual source (X, here a forcing variable), and target (Y , here Fc), we381

consider reductions in uncertainty, or gains in information, in the form of mutual information382

as follows:383

I(X;Y ) =
∑

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
= H(X)−H(X|Y ) (5)

where I(X;Y ) measures the reduction in uncertainty Y given the knowledge of X with384

units of bits. I(X;Y ) is symmetric with respect to X and Y , and for independent vari-385

ables, I(X;Y ) = 0, while for fully dependent variables, I(X;Y ) = min[H(X), H(Y )].386

In other words, mutual information is upper bounded by the minimum uncertainty of387

variables involved. We calculate functional performance for individual sources based on388

mutual information as follows:389

In(X;Z) =
I(X;Z)

H(Z)

Af,MI = 1− In(X;Fcmod)

In(X;Fcobs)

(6)

where In(X;Y ) is the normalized MI, H(Z) is the the entropy of the target variable (Fc),390

In(X;Fcobs) and In(X;Fcmod) are normalized MI of observed and modeled target vari-391

able (Fc) respectively. This captures the extent to which modeled mutual information392

matches that of the observed target variable. Af,MI value close to zero represents the393

“best” performance where the model most closely replicates the observed mutual information.394

This can be used to assess how a model may be overestimating (negative Af,MI value)395

or underestimating (positive Af,MI value) the influence of certain drivers, and identify396

the most important drivers to include in a model.397

In a more multivariate context, transfer entropy (TE) and partial information de-398

composition (PID) have been used to characterize interactions at different scales (Goodwell399

et al., 2020). TE (Schreiber, 2000) is a specific instance of conditional mutual information,400

which quantifies the information transferred to a target, Yt, from a sequence of histor-401

ical states of another variable, given the knowledge of its own past states. In hydrologic402

modeling research, TE has been used to validate and diagnose missing process connec-403

tions in a delta model (Sendrowski et al., 2018), evaluate a multi-hypothesis ecohydro-404

logical modeling framework (Bennett et al., 2019), select time aggregations and lags to-405

ward ML applications (Tennant et al., 2020), and characterize the functional performance406

of a multi-layer canopy model (Ruddell et al., 2019). However, a TE-based analysis only407

highlights pairwise causal connections and does not address the feature of joint or simul-408

taneous forcing from multiple drivers. Instead, we use PID to to characterize joint in-409

fluences from multiple source variables to a target (Williams & Beer, 2010; Goodwell et410

al., 2020). For example, previous studies have compared how stomatal optimization mod-411

els respond to soil water supply and atmospheric demand (Bassiouni & Vico, 2021), how412

simple to complex models behave under different source dependencies (Goodwell & Bassiouni,413

2022), and stomatal model representations of physiological limits on transpiration (Hawkins414

et al., 2022). We consider two sources, or model forcing variables, that provide information415

to a target variable, which could be an observation or a model output. In a system where416

two sources share information from X and Y with a target Z, the total information quan-417

tity, I(X,Y ;Z), can be partitioned into synergistic (S ), unique (U ), and redundant (R)418

components. This partitioning is as follows:419

I(X,Y ;Z) = SX,Y +RX,Y + UX|Y + UY |X (7)
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Here, SX,Y is synergistic information or joint information that is provided only when both420

sources are known together. RX,Y is redundant information or overlapping information421

that both sources provide individually. UX|Y and UY |X terms indicate unique information422

that individuals influence when one source provides information that is not provided by423

the other. We use a partitioning method described in Goodwell and Kumar to obtain424

these components of the total information (refer to SI section S2 for more details). We425

normalize components by dividing each by the total mutual information I(X,Y ;Z), such426

that all information components add up to 1, and a given component indicates the frac-427

tion of reduced uncertainty in Z that can be attributed to that information type. These428

IT-based measures R, U, and S characterize different types of causal relationships be-429

tween variables. They are particularly useful to interpret multivariate interactions, such430

as the Fc-related processes of interest here.431

For computing mutual information and information partitioning components, we432

used different number of bins, based on the range of observed and modeled data (i.e., the433

difference between the maximum and minimum values). We calculated the number of434

bins for the model by taking the ratio of the range of the model to the range of the ob-435

servation, multiplied by the number of bins in the observations (N = 100). This method436

effectively scales the number of bins based on the relative range of the model and observed437

data, with the assumption that a wider range would need more bins to capture the data438

distribution effectively. We compute statistical significance of observed or modeled IT439

measures using a shuffled surrogates approach (Ruddell & Kumar, 2009b). Details on440

these methods are provided in SI, Section S3.441

We use PID to calculate the pairwise functional performance in terms of redundancy,442

synergy, and unique information and “overall” information partitioning for a given pair443

of sources. We consider the pairwise functional performance as the relative difference in444

an information flow measure for modeled versus observed data, separated into different445

components related to information partitioning measures S, R, and U , (Equation 7), re-446

spectively as Af,S , Af,R, and Af,U (Goodwell & Bassiouni, 2022). For example:447

Af,Si,j
= S(Xi, Xj ;Zmod)− S(Xi, Xj ;Zobs); for i ̸= j (8)

where Xi and Xj indicate two source variables. The same concept applies for R. For unique448

information, we consider the sum of the two unique components (UX+UY ). A positive449

value indicates that the model overestimates a particular component at the expense of450

a different information type. The partitioning functional performance for a pair of sources451

is defined as the sum of the absolute values of the three pairwise measures as follows:452

Af,Iparti,j = |Af,Si,j |+ |Af,Ri,j |+ |Af,Ui,j | (9)

This measure ranges from 0, for a model that exactly reproduces the observed information453

components, to 2, for a model that entirely substitutes one type of information for an-454

other or a combination of other information types. For instance, if the observed system455

shows that U = 1 (all information is unique), but a model system estimates S = 1 (that456

all information is synergistic), this leads to Af,S = 1, Af,U = −1 and Af,Ipart = 2.457

While the individual source level identifies how the ranking of modeled variable impor-458

tance differs from observations, this pairwise level identifies how the model is interpret-459

ing information provided by combinations of sources.460

At the highest “whole model” level of analysis, we calculate average overall func-461

tional performance across all individual (Af,MI) and pairs of sources (Af,Ipart) as fol-462

lows:463
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Af,MI,tot =

∑n
i=1(1− |Af,MIi |)

n
, (10)

and464

Af,Ipart,tot =

∑n−1
i=1

∑n
j=i+1(2−Af,Iparti,j )

(n2 − n)
, (11)

where n is the number of source variables. Af,MI,tot ranges from −∞ to 1 and Af,Ipart,tot465

ranges from 0 to 2. We note that these measures are the originally defined individual and466

pairwise performance measures subtracted from 1 or 2, in order to align higher values467

with “best” model performance. In other words, a value of 1 (or 2 for Af,Ipart,tot) now468

corresponds to a perfect match of modeled values to the observed data (Table 3). This469

level of functional performance metrics gauges the model’s overall ability to replicate the470

observed interactions. Figure 3 and Table 3 indicate the different levels of functional and471

predictive performance analysis.472

Table 3: Summary of predictive and functional performance metrics.

Metric Range Best Per-
formance

Eq.
No.

Description

NSE -∞ to 1 1 1 Nash-Sutcliffe Efficiency (predictive)

KGE -∞ to 1 1 2 Kling-Gupta Efficiency (predictive)

AH -∞ to 1 0 4 Normalized difference in entropy be-
tween observed and modeled (predic-
tive)

Af,MI -∞ to 1 0 6 MI difference for individual source
(functional)

Af,Si,j
, Af,Ri,j

,
Af,Ui,j

-1 to 1 0 8 Information partitioning components
difference for a pair of sources (func-
tional)

Af,Iparti,j 0 to 2 0 9 Overall information component differ-
ence for a pair of sources (functional)

Af,MI,tot -∞ to 1 1 10 Average functional performance of in-
dividual source level across all driving
sources

Af,Ipart,tot 0 to 2 2 11 Average functional performance
across all pairs of sources for overall
information partitioning

3 Results473

3.1 Predictive Performance474

NSE and KGE values are higher for local relative to regional training across all475

ML models and sites (Figure 4a). This implies that local training allows the models to476
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Figure 3: Illustration of functional and predictive performance. Nodes represent driving
sources and target variables, and arrows represent different levels of functional perfor-
mance. Predictive performance (NSE and KG and AH) measure agreement between
observed and modeled values (Equations 1, 2, and 4). Blue, red, and green links show
relationships that can be captured by functional performance metrics at different levels
(Table 3).

better capture certain characteristics of each site. The regional model performance may477

stem from the limitations of this study, mainly a relatively small number of sites and site-478

years. A more extensive dataset encompassing multiple sites over varied temporal spans479

may provide the model with a broader range of conditions and variability, enabling it480

to generalize more effectively.481

Meanwhile, we find that the AH of local models is higher than that of regional mod-482

els (Figure 4b). A negative AH occurs when Hmod > Hobs. This means that regional483

models actually introduce greater variability or uncertainty in Fc relative to observations.484

It is important to note that a negative AH does not indicate “inferior” performance, since485

values close to zero represent “best” performance where the models reproduce the ob-486

served H(Fc). While regional models over-estimate uncertainty in Fc, locally trained487

models underestimate uncertainty to a similar degree (Figure 4b).488

When comparing performances of the three different models, RF (square markers489

in Figure 4a) consistently exhibits higher NSE and KGE values across all sites and both490

training experiences. This indicates the robustness of the RF model irrespective of the491

scale of the training data. Moreover, RF generally performs well in capturing the uncer-492

tainty in the observed Fc in both local and regional scales (square markers, Figure 4b).493

RF models have the best AH performance for both regional and local models, indicat-494

ing their ability to replicate the observed entropy of Fc.495

MLR (circle markers in Figure 4) performance varies highly between sites. For some496

sites, the NSE values are very low, especially for regional training, suggesting MLR does497

not capture the specific behaviors of those sites effectively. The negative NSE values in-498

dicate that a mean predictor would have been better for most sites. Meanwhile, KGE499

values fall closer to the 1:1 line of Figure 4a, indicating that the KGE metric does not500

distinguish as many differences between regional and local training. Similarly, AH for501
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Figure 4: Predictive performance, (a) NSE (filled markers) and KGE (empty markers),
and (b) the normalized difference in entropy between observed and modeled values (AH)
of three different models (MLR, RF, and LSTM, marker shapes) trained on local and
regional data for six different sites (Table 1). Colors denote sites. The 1:1 line indicates
equal performance for local and regional models.

the MLR model has the most spread between the study sites. For Nebraska sites (Ne1,502

Ne2, and Ne3), MLR has negative AH values, which suggests that MLR model’s outputs503

for these sites are more uncertain compared to the observed data. On the other hand,504

MLR for the other sites show positive AH values.505

LSTM (triangle markers in Figure 4a) results in NSE and KGE values between those506

of RF and MLR. For some sites, performance is close to that of the RF. This suggests507

that LSTMs can model temporal patterns at individual sites to some extent, and is al-508

ways better than a mean predictor, but it never outperforms the RF model given the same509

training data. Given that LSTMs can model temporal sequences, the varied performance510

suggests that while some regional patterns are temporal, others might be non-sequential.511

We also find similar behaviour for LSTM as RF in capturing the entropy of observed Fc,512

except for more variability between sites. When models are trained locally, LSTM mod-513

els tend to produce outputs that are less uncertain, or more predictable, than the observed514

data (AH > 0). When models are trained regionally, LSTM outputs are more uncer-515

tain than observations. This difference between local and regional training for both LSTM516

and RF indicates that the regional training enables the model to produce more variable517

outputs, while local training leads to a more restricted range of Fc.518

3.2 Functional Performance519

At the individual and pairwise level, we focus on a single site, Ne1, as the site with520

the highest predictive performance and few gaps in forcing variables (WS and NETRAD).521

Other sites show similar patterns in mutual information and information decomposition522

measures, and we present full results for these in the Supplementary Information (SI Fig-523

ures S3-S18).524

3.2.1 Individual Source Level525

Each variable is ranked based on the average observed MI across all sites (Figure526

5a, black line). TS and Ta share the most information with Fc, indicating a strong de-527

pendence on fluctuations in both air and soil temperatures. The next variables that share528

information with Fc are radiation variables, NETRAD and PPFD. Meanwhile, precip-529
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itation (P) is a very weak predictor of Fc, which is expected since sub-daily precipita-530

tion contains many zero-values, leading to low entropy. Instead, we see that SWC shares531

more information with Fc, indicating that moisture available to roots and soil is impor-532

tant. Meteorological variables Pa, RH, and WS are relatively weak individual predictors.533

Models either overestimate or underestimate these mutual information values, resulting534

in a different ranking of variables for each model type (Figure 5a).535

We use Af,MI to assess the extent to which mutual information matches with the536

observed target variable at Ne1 site (Figure 5b) and at other sites (SI Figure S3-S6). Higher537

absolute Af,MI values suggest that the modeled value is far from the observed value. If538

Af,MI is negative, the model overestimates the mutual information of observed Fc (an539

overly deterministic model), and if Af,MI is positive, the model underestimates observed540

mutual information (an overly random model).541

The MLR model tends to underestimate mutual information (positive Af,MI) for542

TS, Ta, SWC, Pa, WS, and P while overestimating for NETRAD, and PPFD, particu-543

larly for local training (Figure 5b, blue circles). MLR also shows the largest spread in544

over and underestimates of mutual information. The LSTM model for local training has545

a negative Af,MI for the most relevant drivers, but this is improved under regional train-546

ing (Figure 5b, green triangles). The RF models closely replicate observed mutual information547

for both regional and local training (Figure 5b, red and orange squares). This highlights548

the power of RF in capturing the intricacies and dependencies within Fc regardless of549

the scale of the training data. Here we discuss the model representation of individual forc-550

ing variables.551

• TS, Ta: While local and regional MLR model greatly underestimates the influence552

of temperature variables, the locally trained LSTM model overestimates it to a553

similar degree. In other words, the local LSTM model correctly identifies these554

as top sources of information to Fc, but to a more extreme degree, while the MLR555

models do not consider temperature as a top source.556

• NETRAD and PPFD : For local MLR, Af,MI is large and negative, indicating that557

the model overestimates the influence of radiation variables, and interprets them558

as the most important forcing variables instead of temperatures. However for the559

regional MLR, Af,MI is close to zero, indicating that the regional model mitigates560

this over-estimation. The only model that slightly underestimates mutual information561

from these variables is the regionally trained LSTM.562

• SWC and P : Precipitation is a very weak driver according to both observations563

and models (Figure 5a), but models nearly always underestimate mutual information.564

They also underestimate information from SWC, except for the regionally trained565

LSTM. This indicates that models may lack sensitivity to moisture variability.566

• WS : Across all models, the Af,MI values are fairly consistent, small, and positive,567

indicating all models slightly underestimate the influence of wind speed.568

• Pa and RH : The locally trained MLR model shows the worst performance in terms569

of both over and under-estimating information from these variables.570

These patterns are similar for other sites and under regional training (SI Figures571

S3-S6). This consistency suggests that the observed MI behaviors are not merely site-572

specific but possibly representative of broader environmental interactions. The key take-573

away is that all models overestimate the influence of certain drivers at the expense of574

others, but to different degrees. This understanding can be useful to refine models or test575

the sensitivity of certain drivers. However, this level of analysis may omit drivers that576

provide information jointly rather than individually.577
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Figure 5: (a) Normalized mutual information (In) and (b) functional performance for
individual variables (Af,MI), Equation 6, for Multiple Linear Regression (MLR), Random
Forest (RF), and Long Short-Term Memory (LSTM) models, under local and regional
training at Ne1 site. Each variable is ranked (order on x-axis) based on the average ob-
served MI across all sites (black line).
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3.2.2 Pairwise and Model Level578

In the observed data, most variable pairs provide synergistic (S ) or unique information579

(U ) to Fc (Figure 6a-c). The only pairs that provide a large fraction of redundant information580

(R) are closely related pairs (Ta, TS ) and (PPFD, NETRAD). However, we note that581

their redundancy is still less than 0.5 as a fraction of total information, and the other582

half of the information they provide is U. Precipitation (P) provides the most U when583

paired with other variables (Figure 6c), but as found in the previous analysis of individ-584

ual sources, the actual amount of information it provides is very small due to its low en-585

tropy. Meanwhile, Ta tends to provide the next highest fraction of U when paired with586

other sources, while RH and WS to provide S along with other sources. In general, re-587

gardless of the amount of information that sources provide, here we find that they mainly588

provide unique and synergistic information types.589

All models tend to underestimate S (negative Af,S , Figure 6d,g,j) for most vari-590

able pairs, at the expense of overestimating U (positive Af,U , Figure 6f,i,l). For exam-591

ple, in the MLR model, RH greatly underestimates S and overestimates U when paired592

with other variables (Figure 6d,f). While the underestimation of synergistic relationships593

is widespread, the overestimation of redundancy only tends to occur for the most cor-594

related variable pairs, specifically (Ta, TS ) and (PPFD, NETRAD). This indicates that595

models rely excessively on these correlations, which results in an overemphasis in R. In596

other words, the observed relationship between these variables is not as redundantly in-597

formative for Fc as the model predicts, but they are instead more unique predictors.598

Essentially, depending on the variable pair, the model either uses information uniquely599

where observations show a synergistic type of relationship, or uses information redun-600

dantly where observations show both unique and redundant contributions. The MLR601

model shows the largest trade-off between S and U partitioning performances (Figure602

6d,f), followed by LSTM. Meanwhile, MLR is the only model that does not overestimate603

R provided by (Ta, TS ), and in fact captures all information types accurately for this604

pair. However, we note that this MLR model also greatly underestimates the individual605

information components shared by each of these variables to the target (Figure 5). In606

other words, the MLR model greatly underestimates the importance of these tempera-607

ture variables as predictors of Fc, but does reflect the mechanism by which they jointly608

provide information.609

While broad patterns in information decomposition components are similar between610

models, there are several differences. For example, consider the (SWC, Ta) pair (bottom611

corner in all Figure 6 panels). For MLR, the information components are reproduced fairly612

accurately. For RF, U is overestimated at the expense of S to a minor degree. For LSTM,613

this occurs to a higher degree and R is also slightly overestimated. Meanwhile the MLR614

model greatly overestimates U from the pair (RH, NETRAD) at the expense of S, while615

the other two models have a similar but less extreme pattern.616

When we consider the combined partitioning performance, Af,Ipart for each vari-617

able pair, the RF model has the best model performance, as it shows more Af,Ipart val-618

ues close to zero (Figure 7). The MLR shows the most variability between pairs of sources,619

such that some pairs have very good functional partitioning performance and others have620

values of Af,Ipart greater than 1, indicating that over half of the information decompo-621

sition is misrepresented by the model. RH, NETRAD, and PPFD have particularly poor622

functional performance when combined with other sources for the MLR model. The LSTM623

model also has lower functional partitioning performance relative to RF, but behavior624

is more even between pairs of variables. Precipitation (P) always has the best functional625

performance when paired with other variables, but it is the weakest source and provides626

very little information regarding Fc for either models or observations.627
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When we consider other sites (SI Figures S7-S12), we find similar patterns in pair-628

wise functional performance, specifically the overestimation of U at the expense of S and629

overestimation of R for correlated source pairs. However, we find that regionally trained630

models diminish some of the issues observed in the localized models. The broader dataset631

that regional training offers seems to provide a more balanced representation, allowing632

models to discern patterns beyond local-specific interactions. The regional model also633

corrects the balance between synergy and unique contributions, leading to a more accu-634

rate representation of how these variables interact. This trend is especially evident in635

the LSTM model, which demonstrates enhanced functional performance under regional636

training (SI Figures S13-S18). In terms of site differences, we find that regional LSTM637

model has the best model performance at Ne1 and Ne3 sites and RF model has the best638

performance among other sites.639

When we calculate average overall functional performance at individual level (Af,MI,tot),640

we find patterns that are similar to the average pairwise functional performance (Af,Ipart,tot)641

(Figure 8). Specifically, local RF models perform slightly better than regional RF mod-642

els on the individual level, while regional MLR and LSTM models generally perform bet-643

ter than the local models (Figure 8a). However, at the pairwise level, regional models644

consistently outperform their local equivalents (Figure 8b). This contrasts with trends645

observed in the predictive performance metrics (Figure 4), where local training led to646

higher NSE values relative to regional training.647

Among all models, the RF model demonstrates the best performance, both at in-648

dividual and pairwise levels (square markers in Figure 8). For individual sources, local649

RF models have better performance than the regional models. But when considering pair-650

wise relationships, the regional RF model shows superior performance. On the other hand,651

the MLR model exhibits the lowest performance values at the individual level but per-652

forms more similarly to LSTM when considering pairwise relationships. The regional LSTM653

model also shows good performance at both the individual and pairwise levels. However,654

the performance of the local LSTM model varies more across different sites at the indi-655

vidual level, while the pairwise performance is more consistent for the regional model.656

This analysis highlights that changes in one aspect of functional performance do not nec-657

essarily translate to similar changes in other aspects.658

3.3 Relationship between Predictive and Functional Performance659

The relationship between predictive performance and functional performance pro-660

vides insights into how a model balances replicating the observed data and its ability to661

capture observed relationships. As an illustration, we first focus on two key metrics: the662

KGE, representing predictive performance, and the Af,Ipart,tot, indicating functional per-663

formance (Figure 9). For the 6 sites, two training types, and 3 model types, we have 36664

total model runs for this comparison. All models show higher functional performance665

under regional training, but differences in KGE are on a site-by-site basis. The Ne1 site666

tends to be the highest performing site for all models in terms of KGE, but varies be-667

tween models for Af,Ipart,tot.668

The functional and predictive performances for RF are both high relative to other669

models, and there is little variability between sites. However, there is an apparent trade-670

off between functional and predictive performance, in that sites with the highest KGE671

tend to have lower Af,Ipart,tot. Meanwhile, there is a slight positive trend for locally trained672

LSTM and MLR models, where higher functional and predictive performances go together673

(Figure 9).674

A correlation analysis shows that while functional and predictive performance mea-675

sures tend to be correlated to each other (Figure 10a,c), there are fewer statistically sig-676

nificant (p < 0.05) correlations between the two types (Figure 10b). This correlation677

analysis is based on all 36 model cases (3 ML models, regional and local, and 6 sites) so678
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Figure 6: Observed pairwise (a) synergistic (Si,j), (b) redundancy (Ri,j), and (c) unique-
ness (Ui,j) information flow at Ne1 site. Pairwise functional performance of three models
under local training experience at Ne1 site. The heat-map represents the relative differ-
ence in information decomposition partitioning measures (Af,Si,j

, Af,Ri,j
, and Af,Ui,j

between modeled and observed data for each pair of forcing variables. Positive values
(green) in (d)-(l) indicate that the model overestimates the information type, while nega-
tive values (red) indicate underestimations.
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Figure 7: Pairwise functional partitioning performance Af,Iparti,j for (a) MLR, (b) RF,
and (c) LSTM models under local training experience at Ne1 site. Values close to zero
indicate optimal partitioning performance for a given pair.

Figure 8: The whole model functional performance for (a) across all individual sources,
Af,MI,tot and (b) across all pairs of sources, Af,Ipart,tot), of three model types under two
training experiences, local and regional, for six sites.
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does not distinguish trends for a single model type or training experience. As illustrated679

in Figure 9, there may be a stronger correlation within a given model type and training.680

We split the KGE into its three constituent components, where high values of each term681

indicate “best” model performance. Similarly, the AH measure of entropy and functional682

performance metrics are scaled so that high values indicate best performance, and pos-683

itive correlations are easy to interpret.684

Predictive performance metrics are positively correlated, except for the α, or vari-685

ability, term of KGE with NSE and AH . We find that the correlation component (r) is686

most correlated to the total KGE. Meanwhile, β and α terms are less correlated to KGE,687

and individual KGE components are less correlated to each other. This indicates that688

the correlation between observed and modeled Fc is the most predictive of KGE for these689

models. Meanwhile, both β and r terms are highly correlated with NSE. This highlights690

that the NSE is sensitive to the bias between model and observations and their corre-691

lation. The two full model functional performance metrics are also positively correlated692

(Figure 10c), indicating that models with high performance in terms of individual sources693

also reproduce pairwise relationships well.694

In terms of correlations between functional and predictive measures (Figure 10b),695

5 of the 12 possible correlations are positive and the other 7 are non-statistically signif-696

icant, indicating that higher predictive performance is generally but not always associ-697

ated with higher functional performance. The KGE α, or variability, component shows698

the highest correlation with functional measures, followed by the total KGE. This leads699

us to interpret that α is the most indicative of functional performance, and is the basis700

for the correlation between KGE and the functional measures. This indicates that mod-701

els that reproduce the standard deviation of observed Fc, upon which α is based, also702

tend to reproduce observed forcing-Fc relationships at both a pairwise and individual703

level. Meanwhile, AH , which is based on the difference in entropies of observed and mod-704

eled Fc, does not have a statistically significant correlation with functional performance.705

This illustrates that a model can reproduce the entropy of the observation, but not re-706

produce the distribution or functional relationships. In other words, the entropy is a sum-707

mary statistic that does not necessarily indicate whether the model correctly replicates708

other features of the distribution of the data. No functional performance measures are709

correlated to the NSE, the β, or bias component of KGE, or AH . This could be related710

to the linearity of these predictive performance measures that may not reflect nonlinear711

and joint interactions detected with mutual information. Additionally, we note that IT-712

based measures consider the distribution of the data but not the actual values, such that713

an IT measure would not capture a constant bias between two variables.714

4 Discussion715

Many machine learning approaches have been applied across major sub-domains716

of Earth system science and are increasingly being integrated into operational schemes717

and used to discover patterns, improve our understanding, and benchmark physically-718

based models. Ideally, ML models generate predictive models devoid of any presumptions719

on the underlying ecological structure or the mathematical representation of processes720

and interactions in an ecosystem. However, this lack of presumptions is correlated to a721

lack of understanding of whether and how these models are capturing functional relation-722

ships that exist in nature. The results of this study emphasize that functional performance—how723

accurately models capture the underlying relationships between variables—can be paired724

with more traditional metrics of model performance. By evaluating both functional and725

predictive aspects and their interrelationship, we can obtain a wider perspective on the726

strengths and limitations of different machine learning models. This multi-tiered approach727

not only can be used to explore the behavioral ranges for both machine learning and process-728

based models but also guides model development by highlighting model deficiencies based729

on information flow pathways that would not be apparent based on existing measures.730
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Figure 9: Predictive performance (KGE ) and the overall model level of functional per-
formance (Af,Ipart,tot) of three model types under two training experiences, local (filled
markers) and regional (empty markers).

Since ML-predicted fluxes can be used as benchmarks for physical land-surface and cli-731

mate model evaluation (Q. Zhou et al., 2019; Anav et al., 2015; Best et al., 2015), it is732

valuable to understand nuances in their behavior.733

While earlier studies on the CO2 balance of vegetated surfaces applied linear re-734

gression for estimating the carbon fluxes (Jensen et al., 1996; Xu & Qi, 2001; Burrows735

et al., 2005), artificial neural network (ANN) and the support vector machine (SVM) meth-736

ods have also been used to estimate terrestrial carbon fluxes and interpret the nonlin-737

ear relationship between ecosystem-based carbon fluxes and environment variables based738

on eddy covariance measurements (Papale & Valentini, 2003; Dou & Yang, 2018). For739

example, an ANN was able to filter out noise, predict the seasonal and diurnal variation740

of carbon fluxes, and extract patterns such as increased respiration in spring during root741

growth, which was formerly not well represented in carbon cycle models (Papale & Valen-742

tini, 2003). In this study, the Random Forest model showed both the highest functional743

and predictive performances, confirming that its better predictions really are associated744

with better process representations. The RF’s non-parametric nature means it makes745

fewer assumptions about the underlying relationships between variables, thus enabling746

it to proficiently model intricate, non-linear interactions. Meanwhile, linear regression747

had a wide spread in performance levels between individual sites, and greatly overesti-748

mated the influence of radiation drivers that are highly linearly correlated to carbon flux.749

The LSTM model performance varied greatly between local and regional training, indi-750

cating that its functional performance benefited from training data from multiple sites.751

Complex and nonlinear drivers such as meteorology, soils, vegetation, and available752

energy cause Fc to be highly variable in space and time and challenging to measure and753

model (Huang et al., 2017; He et al., 2018; Chen et al., 2020; Dou & Yang, 2018). Sev-754

eral approaches have been developed to understand current and future terrestrial car-755

bon flux over the past several decades involving field observations (Falge et al., 2002; Xiao756

et al., 2011), large-scale remote sensing (Xiao et al., 2019), process-based modeling (D. Wang757

et al., 2011; Dunkl et al., 2021), or a combination of these methods (Vetter et al., 2008;758

Jung et al., 2011). Our study sheds further light on how forcing variables provide information759

to observed carbon fluxes. We found that temperature and radiation variables are most760

highly informative of Fc, followed by moisture-related variables such as RH and SWC.761

While many variables have a diurnal pattern, including Fc, we find that forcing variables762

tend to provide synergistic or unique information, rather than redundant information,763
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Figure 10: Correlation (p-value < 0.05) between performance metrics listed in Table 3
(scaled so that larger values always correspond to best performance), for the 36 model
runs performed in this study. (a) and (c) separate correlations within predictive and
functional categories, respectively, while (b) shows correlations between functional and
predictive metrics.

indicating that the overlap in information content is relatively low. Meanwhile, RH is764

relatively weak as an individual source, but we found that it provides synergistic information765

when paired with many other sources. This indicates that the relevance of a variable like766

RH could be underestimated in an analysis that did not consider multivariate interac-767

tions, since it is a weak individual source but enhances the information content of other768

sources. In terms of modeling, we found that MLR, the simplest model, overestimates769

information from radiation variables and underestimates information from temperatures.770

This suggests that MLR captures the strongly linear diurnal pattern between energy avail-771

ability and carbon flux, but misses a stronger but more nonlinear relationship with tem-772

perature due to the limitations in its parameterization. Finally, the tendency of all mod-773

els to underestimate information from SWC indicates that water availability to plants774

is a complex driver of Fc that is difficult to capture in a functional form.775

We note several limitations and assumptions that could be improved in future work.776

Future research could delve deeper into variations between sites, exploring what site-specific777

features influence model performance. One of the uncertainties of using flux tower mea-778

surements to estimate Fc is the impact of shifting land cover on the accuracy of the ob-779
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servations. The land-atmosphere exchange fluxes that generate carbon flux are influenced780

by the dynamic upwind surface area, called the flux footprint, which can exhibit spatial781

heterogeneities (Hernandez Rodriguez et al., 2023; Leclerc & Foken, 2014). As a result,782

fluxes from different sources can mix at the observation point, introducing uncertainty783

into the measurements. Meanwhile, this study assumes that the mix of crop types be-784

tween sites and between observation time points leads to similar causal interactions be-785

tween forcing variables and carbon flux. We also did not specifically focus on the opti-786

mization of hyperparameters within each ML model, which could have an effect on func-787

tional and predictive performance. Moreover, the precision and general quality of the788

forcing variables and Fc are important as they have underlying uncertainties and have789

been gap-filled, and our interpolation methods may have more effect on some model struc-790

tures than others and future research could explore how models use information encoded791

in forcing data (Farahani et al., 2022). We also note that the MLR performance can be792

significantly influenced by multicollinearity among the forcing variables, and we did not793

test for this aspect. In terms of data size, we only considered six locations and approx-794

imately 50-site years, so further studies could more specifically consider the effect of in-795

creasingly large and diverse training datasets on model functional behaviors. Finally, the796

models evaluated represent just a fraction of the available algorithms, and we do not con-797

sider a wider range of ML and process-based models.798

While predictive and functional metrics tend to be positively correlated, there are799

cases where a model change could be made that appears to improve predictions, but sac-800

rifices a functional relationship. For example, the finding that regionally trained mod-801

els tend to have improved functional performance indicates that these models can dis-802

cern patterns beyond local-specific interactions. However, in this study the predictive803

performance of regional models was somewhat lower relative to single-site models, po-804

tentially marking a trade-off between functional and predictive performance. A “perfect”805

model should replicate all functional relationships as they are observed, but it still may806

not have perfect predictive performance due to missing information. In other words, the807

forcing variables simply do not contain all the information necessary to make a perfect808

accurate prediction. In this way, information-based metrics of functional performance809

provide a type of upper bound for predictive performance. This underscores the need810

for a nuanced approach to model selection. For an ungauged site with no validation data,811

a regionally trained model is likely the most applicable since it has a stronger functional812

performance and can reproduce processes as they are observed. The LSTM model was813

the most responsive to changes in training data size, which could relate to its complex-814

ity and need for many datasets to learn time-dependent interactions.815

5 Conclusion816

Predictive accuracy is just one facet of modeling complex ecohydrologic systems.817

Meanwhile, functional performance metrics capture how a model grasps the intricate re-818

lationships among variables. In order to use models for prediction in unseen conditions,819

and compare between machine learning and physically based model structures, we need820

to ensure that models don’t just predict well, but also understand and represent the un-821

derlying processes effectively. In other words, understanding the why and how behind822

predictions can be as vital as the predictions themselves. In this study, the Random For-823

est model emerged as a consistently reliable model in terms of both predicting carbon824

fluxes and reproducing observed functional relationships at multiple levels. Meanwhile,825

a simple linear regression will overestimate the influence of variables with the most lin-826

ear relationships to the target outcome. All models in this study had the common fea-827

ture of underestimating synergistic interactions and overestimating unique ones. This828

indicates that all models are not quite capturing information flows at higher levels, where829

multiple sources provide information to the target jointly, and indicates that even the830

models with the highest predictive performance could be improved. Similarly, while per-831

–26–



manuscript submitted to Water Resources Research

formance measures tend to be correlated, no single performance measure captures the832

effect of all the others. This study advocates for a combined approach to model evalu-833

ation and validation, which considers both predictive performance and how the model834

captures interactions in the ecohydrologic system.835

Acknowledgments836

M.A. Farahani and A.E. Goodwell acknowledge funding from NSF Grant EAR #2012850837

for the Critical Interface Network for Intensively Managed Landscapes (CINet) and the838

NASA New Investigator Grant #80NSSC21K0934. Python codes for analyses presented839

here are available on at https://github.com/allisongoodwell/Farahani CarbonML2023.840

References841

Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., . . . Zhao, M.842

(2015). Spatiotemporal patterns of terrestrial gross primary production: A843

review. Reviews of Geophysics, 53 (3), 785-818. doi: https://doi.org/10.1002/844

2015RG000483845

Balasis, G., Donner, R. V., Potirakis, S. M., Runge, J., Papadimitriou, C., Daglis,846

I. A., . . . Kurths, J. (2013). Statistical mechanics and information-theoretic847

perspectives on complexity in the Earth system (Vol. 15) (No. 11). doi:848

10.3390/e15114844849

Bassiouni, M., & Vico, G. (2021). Parsimony versus predictive and functional perfor-850

mance of three stomatal optimization principles in a big-leaf framework. New851

Phytologist , 0–2. doi: 10.1111/nph.17392852

Bennett, A., Nijssen, B., Ou, G., Clark, M., & Nearing, G. (2019). Quantifying pro-853

cess connectivity with transfer entropy in hydrologic models. Water Resources854

Research, 55 (6), 4613-4629. doi: 10.1029/2018WR024555855

Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G., Boone,856

A., . . . Vuichard, N. (2015). The plumbing of land surface models: Benchmark-857

ing model performance. Journal of Hydrometeorology , 16 (3), 1425 - 1442. doi:858

https://doi.org/10.1175/JHM-D-14-0158.1859

Bollt, E. M., Sun, J., & Runge, J. (2018). Introduction to focus issue: Causation860

inference and information flow in dynamical systems: Theory and applications.861

Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (7), 075201. doi:862

10.1063/1.5046848863

Breiman, L. (2001). Random forests. Machine Learning , 45 (1), 5-32. doi: 10.1023/A:864

1010933404324865

Burrows, E. H., Bubier, J. L., Mosedale, A., Cobb, G. W., & Crill, P. M. (2005). Net866

ecosystem exchange of carbon dioxide in a temperate poor fen: a comparison867

of automated and manual chamber techniques. Biogeochemistry , 76 (1), 21–45.868

Chen, N., Wang, A., An, J., Zhang, Y., Ji, R., Jia, Q., . . . Guan, D. (2020). Modeling869

canopy carbon and water fluxes using a multilayered model over a temperate870

meadow in inner mongolia. International Journal of Plant Production, 14 (1),871

141-154. doi: 10.1007/s42106-019-00074-4872

Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. John Wiley873

& Sons.874

Dou, X., & Yang, Y. (2018). Comprehensive evaluation of machine learning875

techniques for estimating the responses of carbon fluxes to climatic forces in876

different terrestrial ecosystems. Atmosphere, 9 (3). doi: 10.3390/atmos9030083877

Dou, X., Yang, Y., & Luo, J. (2018). Estimating forest carbon fluxes using ma-878

chine learning techniques based on eddy covariance measurements. Sustainabil-879

ity , 10 (1). doi: 10.3390/su10010203880

Drewry, D. T., Kumar, P., Long, S., Bernacchi, C., Liang, X. Z., & Sivapalan, M.881

(2010a). Ecohydrological responses of dense canopies to environmental variabil-882

–27–



manuscript submitted to Water Resources Research

ity: 1. Interplay between vertical structure and photosynthetic pathway. Journal883

of Geophysical Research: Biogeosciences, 115 (4). doi: 10.1029/2010JG001340884

Drewry, D. T., Kumar, P., Long, S., Bernacchi, C., Liang, X. Z., & Sivapalan, M.885

(2010b). Ecohydrological responses of dense canopies to environmental vari-886

ability: 2. Role of acclimation under elevated CO2. Journal of Geophysical887

Research: Biogeosciences, 115 (4), 1–22. doi: 10.1029/2010JG001341888

Dunkl, I., Spring, A., Friedlingstein, P., & Brovkin, V. (2021). Process-based analysis889

of terrestrial carbon flux predictability. Earth System Dynamics, 12 (4), 1413–890

1426. doi: 10.5194/esd-12-1413-2021891

Dutta, D., Wang, K., Lee, E., Goodwell, A., Woo, D., Wagner, D., & Kumar, P.892

(2017). Characterizing vegetation canopy structure using airborne remote893

sensing data. IEEE Transactions on Geoscience and Remote Sensing , 55 (2),894

1160–1178. doi: 10.1109/TGRS.2016.2620478895

Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P.,896

. . . Wofsy, S. (2002). Seasonality of ecosystem respiration and gross897

primary production as derived from fluxnet measurements. Agricultural898

and Forest Meteorology , 113 (1), 53-74. (FLUXNET 2000 Synthesis) doi:899

https://doi.org/10.1016/S0168-1923(02)00102-8900

Farahani, M. A., Vahid, A., & Goodwell, A. (2022). Evaluating ecohydrological model901

sensitivity to input variability with an information-theory-based approach. En-902

tropy , 24 (7). doi: 10.3390/e24070994903

Franzen, S. E., Farahani, M. A., & Goodwell, A. (2020). Information flows: Char-904

acterizing precipitation-streamflow dependencies in the Colorado headwaters905

with an information theory approach. Water Resources Research, 56 (10),906

e2019WR026133. doi: https://doi.org/10.1029/2019WR026133907

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.908

(http://www.deeplearningbook.org)909

Goodwell, A., & Bassiouni, M. (2022). Source relationships and model structures de-910

termine information flow paths in ecohydrologic models. Water Resources Re-911

search, 58 (9). doi: https://doi.org/10.1029/2021WR031164912

Goodwell, A., Jiang, P., Ruddell, B. L., & Kumar, P. (2020). Debates—does913

information theory provide a new paradigm for Earth science? Causal-914

ity, interaction, and feedback. Water Resources Research, 56 (2). doi:915

https://doi.org/10.1029/2019WR024940916

Goodwell, A., & Kumar, P. (2017). Temporal information partitioning: Characterizing917

synergy, uniqueness, and redundancy in interacting environmental variables. Wa-918

ter Resources Research, 5920–5942. doi: 10.1002/2016WR020218919

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposi-920

tion of the mean squared error and nse performance criteria: Implications for921

improving hydrological modelling. Journal of Hydrology , 377 (1), 80-91. doi:922

https://doi.org/10.1016/j.jhydrol.2009.08.003923

Hawkins, L. R., Bassouni, M., Anderegg, W. R. L., Venturas, M. D., Good, S. P.,924

Kwon, H. J., . . . Still, C. J. (2022). Comparing model representations of925

physiological limits on transpiration at a semi-arid ponderosa pine site. Jour-926

nal of Advances in Modeling Earth Systems, 14 (11), e2021MS002927. doi:927

https://doi.org/10.1029/2021MS002927928

He, L., Li, J., Harahap, M., & Yu, Q. (2018). Scale-specific controller of carbon929

and water exchanges over wheat field identified by ensemble empirical mode930

decomposition. International Journal of Plant Production, 12 (1), 43-52. doi:931

10.1007/s42106-017-0005-8932

Hernandez Rodriguez, L., Goodwell, A., & Kumar, P. (2023). Inside the flux footprint:933

The role of organized land cover heterogeneity on the dynamics of observed934

land-atmosphere exchange fluxes. Agricultural and Forest Meteorology . doi:935

http://dx.doi.org/10.2139/ssrn.4034618936

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., . . .937

–28–



manuscript submitted to Water Resources Research

Zhou, Y. (2017). Deep learning scaling is predictable, empirically.938

Hochreiter, S., & Schmidhuber, J. (1997a). Long Short-Term Memory. Neural Compu-939

tation, 9 (8), 1735-1780. doi: 10.1162/neco.1997.9.8.1735940

Hochreiter, S., & Schmidhuber, J. (1997b). Long Short-Term Memory. Neural Compu-941

tation, 9 (8), 1735-1780. doi: 10.1162/neco.1997.9.8.1735942
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Ráduly, B. (2015). Effect of spatial sampling from european flux tow-1019

ers for estimating carbon and water fluxes with artificial neural networks.1020

Journal of Geophysical Research: Biogeosciences, 120 (10), 1941-1957. doi:1021

10.1002/2015JG0029971022

Papale, D., & Valentini, R. (2003). A new assessment of european forests carbon1023

exchanges by eddy fluxes and artificial neural network spatialization. Global1024

Change Biology , 9 (4), 525-535. doi: 10.1046/j.1365-2486.2003.00609.x1025

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W.,1026

. . . Papale, D. (2020). The FLUXNET2015 dataset and the oneflux pro-1027

cessing pipeline for eddy covariance data. Scientific Data, 7 (1), 225. doi:1028

10.1038/s41597-020-0534-31029

Prueger, J., & Parkin, T. (2016a). Ameriflux base us-br1 brooks field site 10- ames.1030

AmeriFlux AMP, (Dataset). doi: https://doi.org/10.17190/AMF/12460381031

Prueger, J., & Parkin, T. (2016b). Ameriflux base us-br3 brooks field site 11- ames.1032

AmeriFlux AMP, (Dataset). doi: https://doi.org/10.17190/AMF/12460391033

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N.,1034

& Prabhat. (2019). Deep learning and process understanding for data-driven1035

Earth system science. Nature, 566 (7743). doi: 10.1038/s41586-019-0912-11036

Reitz, O., Graf, A., Schmidt, M., Ketzler, G., & Leuchner, M. (2021). Upscaling net1037

ecosystem exchange over heterogeneous landscapes with machine learning. Jour-1038

nal of Geophysical Research: Biogeosciences, 126 (2), e2020JG005814.1039

Ruddell, B. L., Drewry, D. T., & Nearing, G. S. (2019). Information Theory for1040

Model Diagnostics: Structural Error is Indicated by Trade-Off Between Func-1041

tional and Predictive Performance. Water Resources Research, 55 (8), 6534–6554.1042

doi: 10.1029/2018WR0236921043

Ruddell, B. L., & Kumar, P. (2009a). Ecohydrologic process networks: 1. Identifica-1044

tion. Water Resources Research, 45 (3), 1–23. doi: 10.1029/2008WR0072791045

Ruddell, B. L., & Kumar, P. (2009b). Ecohydrologic process networks: 1. Identifica-1046

tion. Water Resources Research, 45 (3), 1–22. doi: 10.1029/2008WR0072791047

–30–



manuscript submitted to Water Resources Research

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., . . .1048

Zscheischler, J. (2019). Inferring causation from time series in Earth system sci-1049

ences. Nature Communications, 10 (1), 2553. doi: 10.1038/s41467-019-10105-31050

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Net-1051

works, 61 , 85–117. doi: 10.1016/j.neunet.2014.09.0031052

Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85 (2),1053

461. doi: 10.1103/PhysRevLett.85.4611054

Sendrowski, A., & Passalacqua, P. (2017). Process connectivity in a naturally pro-1055

grading river delta. Water Resources Research, 53 (3), 1841–1863. doi: 10.1002/1056

2016WR0197681057

Sendrowski, A., Sadid, K., Meselhe, E., Wagner, W., Mohrig, D., & Passalacqua, P.1058

(2018). Transfer entropy as a tool for hydrodynamic model validation. Entropy ,1059

20 (1). doi: 10.3390/e200100581060

Shannon, C. (1948). A mathematical theory of communication. The Bell System Tech-1061

nical Journal , 196 (4), 519–520. doi: 10.1016/S0016-0032(23)90506-51062

Sivapalan, M. (2003). Prediction in ungauged basins: A grand challenge for theoreti-1063

cal hydrology. Hydrological Processes, 17 , 3163 - 3170. doi: 10.1002/hyp.51551064

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).1065

Dropout: A simple way to prevent neural networks from overfitting. J. Mach.1066

Learn. Res., 15 (1), 1929–1958.1067

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learn-1068

ing with neural networks (Vol. 27; Z. Ghahramani, M. Welling, C. Cortes,1069

N. Lawrence, & K. Weinberger, Eds.). Curran Associates, Inc. doi:1070

https://doi.org/10.48550/arXiv.1409.32151071

Suyker, A. (2022a). Ameriflux base us-ne1 mead - irrigated continuous maize site.1072

AmeriFlux AMP, (Dataset). doi: https://doi.org/10.17190/AMF/12460841073

Suyker, A. (2022b). Ameriflux base us-ne2 mead - irrigated maize-soybean rotation1074

site. AmeriFlux AMP, (Dataset). doi: https://doi.org/10.17190/AMF/12460851075

Suyker, A. (2022c). Ameriflux base us-ne3 mead - rainfed maize-soybean rotation site.1076

AmeriFlux AMP, (Dataset). doi: https://doi.org/10.17190/AMF/12460861077

Tennant, C., Larsen, L., Bellugi, D., Moges, E., Zhang, L., & Ma, H. (2020). The1078

utility of information flow in formulating discharge forecast models: A case1079

study from an arid snow-dominated catchment. Water Resources Research,1080

56 (8), e2019WR024908. doi: 10.1029/2019WR0249081081

Tramontana, G., Migliavacca, M., Jung, M., Reichstein, M., Keenan, T. F., Camps-1082

Valls, G., . . . Papale, D. (2020). Partitioning net carbon dioxide fluxes into1083

photosynthesis and respiration using neural networks. Global Change Biology ,1084

26 (9), 5235-5253. doi: https://doi.org/10.1111/gcb.152031085

Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., . . .1086

Heimann, M. (2008). Analyzing the causes and spatial pattern of the European1087

2003 carbon flux anomaly using seven models. Biogeosciences, 5 (2), 561–583.1088

doi: 10.5194/bg-5-561-20081089

Wang, D., Ricciuto, D., Post, W., & Berry, M. W. (2011). Terrestrial ecosystem car-1090

bon modeling. In D. Padua (Ed.), Encyclopedia of parallel computing (p. 2034-1091

2039). Boston, MA: Springer US. doi: 10.1007/978-0-387-09766-4 3951092

Wang, T., Brender, P., Ciais, P., Piao, S., Mahecha, M. D., Chevallier, F., . . . Vac-1093

cari, F. P. (2012). State-dependent errors in a land surface model across biomes1094

inferred from eddy covariance observations on multiple timescales. Ecological1095

Modelling , 246 , 11-25.1096

Welchowski, T., Maloney, K. O., Mitchell, R., & Schmid, M. (2022). Techniques to1097

improve ecological interpretability of black-box machine learning models. Jour-1098

nal of Agricultural, Biological and Environmental Statistics, 27 (1), 175-197. doi:1099

10.1007/s13253-021-00479-71100

Williams, P. L., & Beer, R. D. (2010). Nonnegative decomposition of multivariate1101

information. arXiv preprint arXiv:1004.2515 .1102

–31–



manuscript submitted to Water Resources Research

Woo, D. K., & Kumar, P. (2017). Role of micro-topographic variability on the distri-1103

bution of inorganic soil-nitrogen age in intensively managed landscape. Water1104

Resources Research, 53 (10), 8404-8422. doi: 10.1002/2017WR0210531105

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., . . .1106

Zhang, X. (2019). Remote sensing of the terrestrial carbon cycle: A review of1107

advances over 50 years. Remote Sensing of Environment , 233 , 111383. doi:1108

https://doi.org/10.1016/j.rse.2019.1113831109

Xiao, J., Davis, K. J., Urban, N. M., Keller, K., & Saliendra, N. Z. (2011). Upscaling1110

carbon fluxes from towers to the regional scale: Influence of parameter vari-1111

ability and land cover representation on regional flux estimates. Journal of1112

Geophysical Research: Biogeosciences, 116 (G3).1113

Xu, M., & Qi, Y. (2001). Soil-surface CO2 efflux and its spatial and temporal1114

variations in a young ponderosa pine plantation in Northern California. Global1115

Change Biology , 7 (6), 667-677. doi: https://doi.org/10.1046/j.1354-1013.20011116

.00435.x1117

Yan, Q., Le, P. V. V., Woo, D. K., Hou, T., Filley, T., & Kumar, P. (2019). Three-1118

dimensional modeling of the coevolution of landscape and soil organic carbon.1119

Water Resources Research, 55 (2), 1218-1241. doi: 10.1029/2018WR0236341120

Zhou, Q., Fellows, A., Flerchinger, G. N., & Flores, A. N. (2019). Examining inter-1121

actions between and among predictors of net ecosystem exchange: A machine1122

learning approach in a semi-arid landscape. Scientific Reports, 9 (1), 2222. doi:1123

10.1038/s41598-019-38639-y1124

Zhou, X., Wang, X., Tong, L., Zhang, H., Lu, F., Zheng, F., . . . Ouyang, Z. (2012).1125

Soil warming effect on net ecosystem exchange of carbon dioxide during the1126

transition from winter carbon source to spring carbon sink in a temperate1127

urban lawn. Journal of Environmental Sciences, 24 (12), 2104-2112. doi:1128

https://doi.org/10.1016/S1001-0742(11)61057-71129

–32–



WATER RESOURCES RESEARCH

Supporting Information for ”Causal Drivers of

Land-Atmosphere Carbon Fluxes from Machine

Learning Models and Data”

Mozhgan A. Farahani1, Allison E. Goodwell1,2

1University of Colorado Denver, Department of Civil Engineering

2Prairie Research Institute, University of Illinois at Urbana-Champaign

Contents of this file

1. Text S1 to S4

2. Figures S1 to S18

3. Tables S1

S1. Data pre-processing

The data pre-processing stage was a crucial step in our study, ensuring the reliability

and accuracy of our analysis. This process involved several steps:

1.1. Quality Control

Firstly, we applied quality control measures to all datasets. This involved checking for

any inconsistencies, errors, or outliers in the data that could potentially skew our results.

We used a combination of automated checks and manual review to ensure the integrity
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of our data. Automated checks included algorithms to detect statistical anomalies, while

manual review involved visual inspection of the data and cross-checking with source doc-

umentation.

1.2. Handling Missing Values

In some datasets, we encountered missing values. To handle these, we used time series

imputation methods. The choice of imputation method was dependent on the distribution

of the data. For normally distributed data, we used mean imputation. This technique

replaces the missing values with the average of the available data for that variable, thus

capitalizing on the characteristic symmetric nature of the distribution. Specifically, the

variables Fc, SWC, Ta, TS, and Pa were treated using mean imputation. Conversely,

for those variables presenting skewed distributions or characterized by extreme outliers,

median imputation was employed. The median, being the middle value of a dataset, is less

sensitive to outliers and provides a more robust measure of central tendency for skewed

distributions. The variables WS, P, NETRAD, PPFD and RH were imputed using this

method. Through these imputation strategies, we ensured that the integrity of the data

distribution was upheld, while concurrently addressing the gaps in our dataset.

Moreover, to address significant missing values in the PPFD variable at Br1 and Br3

sites, we employed a linear regression imputation technique using NETRAD values as

predictors. We first used those part of datasets where PPFD and NETRAD were con-

currently present, using them as training data for individual linear regression models.

Once trained, these models were used to predict missing PPFD values based on available

NETRAD values, thus leveraging their linear relationship for accurate imputation.
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1.3. Normalization

To ensure efficient learning and to prevent any one variable from dominating others

due to scale differences, we normalized all input variables and the output (Fc) data.

Specifically, we utilized the “MinMax” scaling technique, where the minimum of feature

is made equal to zero and the maximum of feature equal to one. In this method, every

feature value is transformed to fall within the range [0,1]. It scales the values to the

specific value range without changing the shape of the original distribution. This approach

entails subtracting the minimum value of the feature and then dividing by the range of

that feature, resulting in a dataset where the minimum and maximum feature values are

normalized to lie between 0 and 1. This procedure not only enhances the efficiency of

learning algorithms but also aids in preventing potential numerical stability issues.

1.4. Retransformation

The output of all machine learning models was retransformed using the normalization

parameters to obtain the final Fc prediction in the original scale. This step is crucial for

interpreting the results in the context of the original data.

It’s important to note that while these pre-processing steps greatly enhance the quality

and usability of the data, they are based on certain assumptions and can introduce some

level of uncertainty. However, we applied these methods systematically and transparently

to minimize potential biases and ensure the reliability of our results. The full suite of

variables used in this study, along with their descriptions and units, is outlined in Table

?? in the main manuscript.

S2. Information Decomposition We use information decomposition to analyze causal

interactions in which two sources provide information to a target variable, which could be
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an observation or a model output. In a system where two sources share information from

X and Y with a target Z, the total information quantity, I(X, Y ;Z), can be partitioned

into synergistic (S ), unique (U ), and redundant (R) components. Any existing IT-based

measure can also be defined in terms of combinations of R, U, and S (Figure S1). For

example, this partitioning of information implies that the mutual information between

the target and each source is the sum of the redundancy and the unique information

from the source, i.e. I(X;Z) = UX|Y + RX,Y (Figure S1a). Meanwhile, conditional mu-

tual information, which includes transfer entropy as a special case, is the sum of unique

and synergistic components, i.e. I(X;Z|Y ) = UX|Y + SX,Y (Figure S1b). Finally, the

interaction information, which is symmetric between all three variables, is equivalent to

SX,Y − RX,Y (Goodwell & Kumar, 2017, 2015), such that positive or negative interac-

tion information indicates whether synergy or redundancy is dominant (Figure S1c). To

simplify notation hereafter, we omit subscripts such that SX,Y = S and RX,Y = R given

a particular definition of sources and target. We similarly simplify unique information

components to UX|Y = UX and UY |X = UY .

While information decomposition is a useful concept, information theory does not pro-

vide formulas to directly determine these quantities. Several studies (Barrett, 2015;

Williams & Beer, 2010) defined redundancy measures as the mutual information that

the weakest source provides to the target, forcing one unique component to equal zero.

Goodwell and Kumar considered that this is actually a maximum bound for redundancy,

and applied a “rescaled” redundancy measure in which redundancy is scaled between

the minimum and maximum bounds that are defined by information theory. The maxi-

mum bound is the minimum mutual information that either source provides to the target,
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Rmax = min[I(X;Z), I(Y ;Z)]. The minimum bound is zero for cases where the interac-

tion information is positive or SR > 0, i.e. I(X, Y ;Z) > I(X;Z) + I(Y ;Z). otherwise, if

S − R < 0, the minimum bound for redundancy is the negative interaction information,

in order for synergy to be non-negative. This leads to a definition of the minimum R as

Rmin = max[0, I(X;Z)+ I(Y ;Z)− I(X, Y ;Z)]. We then scale redundancy between these

bounds based on the normalized information between the source variables:

Is =
I(X;Y )

min[H(X),H(Y )]
(1)

Rs = Rmin + Is(Rmax −Rmin)

In general, this definition causes highly correlated sources to be maximally redundant

with each other, while independent sources are minimally redundant. A definition for

redundancy enables the computation of the other information decomposition components,

S, UX , and UY .

S3. Statistical Significance

We compute statistical significance of observed or modeled information theoretic mea-

sures using a shuffled surrogates approach. We define a critical value of total information

as follows:

Icrit = Isuff, mean + 3× Isuff, stdev (2)

where Isuff,mean and Isuff,stdev are the mean and standard deviation of 100 informa-

tion measures computed with randomly shuffled source data. For example, if the

I(Ta, Ts;Fc) < Icrit, we set all information components to zero and do not do fur-
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ther information partitioning. Meanwhile, if I(Ta, Ts;Fc) is statistically significant but

I(Ta;Fc|Ts) is not (according to the same shuffled surrogate method), we set the unique

component from Ta and the synergistic component to zero, since I(Ta;Fc|Ts) = UTa+S.

Then, we define R as I(Ta;Fc), since I(Ta;Fc) = UTa + R, and UTs is computed as

UTs = I(Ta;Ts;Fc) − R. For a case where I(Ts;Fc|Ta) is not statistically signifi-

cant, we apply a similar process. Finally, if neither conditional term of I(Ta;Fc|Ts) or

I(Ts;Fc|Ta) is statistically significant would indicate that the only information compo-

nent is redundancy. However, we defined that this case never occurs based on our study

year period.

S4. Functional Performance

We calculated the individual level (Figures S3, S4, S5, S6, S7) and pairwise level (Fig-

ures S8, S9, S10, S11, S12, S14, S15, S16, S17, S18) of functional performance at Ne2,

Ne3, Br1, Br3 and GC sites. These sites show similar patterns in mutual information

as site Ne1 which presented in the main manuscript. We also find similar patterns in

pairwise functional performance, specifically the overestimation of U at the expense of

S and overestimation of R for correlated source pairs. However, we find that regionally

trained models (Figures S13-S18) diminish some of the issues observed in the localized

models (Figures S8-S12). The regional model also corrects the balance between synergy

and unique contributions, leading to a more accurate representation of how these vari-

ables interact. This trend is especially evident in the LSTM model, which demonstrates

enhanced functional performance under regional training .

References

Barrett, A. B. (2015). Exploration of synergistic and redundant information sharing in

September 6, 2023, 8:01pm



FARAHANI ET AL.: CAUSAL DRIVERS OF LAND-ATMOSPHERE CARBON FLUX MODELS X - 7

static and dynamical Gaussian systems. Physical Review E , 91 (5). doi: 10.1103/

PhysRevE.91.052802

Goodwell, A., & Kumar, P. (2015). Information theoretic measures to infer feedback

dynamics in coupled logistic networks. Entropy , 17 (11), 7468–7492. doi: 10.3390/

e17117468

Goodwell, A., & Kumar, P. (2017). Temporal information partitioning: Characterizing

synergy, uniqueness, and redundancy in interacting environmental variables. Water

Resources Research, 5920–5942. doi: 10.1002/2016WR020218

Williams, P. L., & Beer, R. D. (2010). Nonnegative decomposition of multivariate

information. arXiv preprint arXiv:1004.2515 .

September 6, 2023, 8:01pm



X - 8 FARAHANI ET AL.: CAUSAL DRIVERS OF LAND-ATMOSPHERE CARBON FLUX MODELS

Figure S1. Illustration of information theory metrics. (a) Mutual information I(X;Z) is the

reduction in uncertainty about Z given knowledge of X. (b) Conditional mutual information

I(X;Z|Y ) is the reduction in uncertainty about Z given knowledge of X, beyond information

already provided by Y . (c) Multi-variate mutual information I(X, Y ;Z) is the total reduction in

uncertainty about Z given knowledge of X and Y together, and is composed of four non-negative

components of R, UX , UY , and S.

Table S1. Summary of Machine Learning Model Architecture

Attribute Description/Value

Model Type Multiple Linear Regression (MLR)
Method Ordinary Least Squares (OLS)
Implementation “statsmodels” package in Python

Model Type Random Forest (RF)
Trees in the Forest 100 (n-estimators)
Max Features Square root of total features
Structure Ensemble of Decision Trees
Implementation “scikit-learn” package in Python

Model Type Long Short Term Memory Model (LSTM)
Number of LSTM Layers 2
Number of Hidden Units per Layer 9
Dropout Layers Between LSTM layers
Final Layer Type Regression (1 unit for Fc)
Sequence Length 12 time steps (half a diurnal cycle)
Batch Size 128
Loss Function Mean Squared Error (MSE)
Implementation “torch” package in Python
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Figure S2. Averaged monthly values of driving variables (air temperature (Ta), relative

humidity (RH ), precipitation (P), soil temperature (TS ), photosynthetic photon flux density

(PPFD), net radiation (NETRAD), wind speed (WS ), atmospheric pressure (Pa), soil water

content (SWC)) and target variable (Fc) over the study years corresponded to different sites

(Ne1, Ne2, Ne3, Br1, Br3, GC). Each site is represented by a unique color.
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Figure S3. (a) Normalized mutual information (In) and (b) Individual source level of functional

performance (Af,MI) of three different models - Multiple Linear Regression (MLR), Random

Forest (RF), and Long Short-Term Memory (LSTM) - under two training experiences, local and

regional, at Ne2 site. Each variable is ranked based on the average observed MI across all sites.

Observation values are represented with a black dot linked by a dashed line.
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Figure S4. (a) Normalized mutual information (In) and (b) Individual source level of functional

performance (Af,MI) of three different models - Multiple Linear Regression (MLR), Random

Forest (RF), and Long Short-Term Memory (LSTM) - under two training experiences, local and

regional, at Ne3 site. Each variable is ranked based on the average observed MI across all sites.

Observation values are represented with a black dot linked by a dashed line.
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Figure S5. (a) Normalized mutual information (In) and (b) Individual source level of functional

performance (Af,MI) of three different models - Multiple Linear Regression (MLR), Random

Forest (RF), and Long Short-Term Memory (LSTM) - under two training experiences, local and

regional, at Br1 site. Each variable is ranked based on the average observed MI across all sites.

Observation values are represented with a black dot linked by a dashed line.
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Figure S6. (a) Normalized mutual information (In) and (b) Individual source level of functional

performance (Af,MI) of three different models - Multiple Linear Regression (MLR), Random

Forest (RF), and Long Short-Term Memory (LSTM) - under two training experiences, local and

regional, at Br3 site. Each variable is ranked based on the average observed MI across all sites.

Observation values are represented with a black dot linked by a dashed line.
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Figure S7. (a) Normalized mutual information (In) and (b) Individual source level of functional

performance (Af,MI) of three different models - Multiple Linear Regression (MLR), Random

Forest (RF), and Long Short-Term Memory (LSTM) - under two training experiences, local and

regional, at GC site. Each variable is ranked based on the average observed MI across all sites.

Observation values are represented with a black dot linked by a dashed line.
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Figure S8. Observed pairwise (a) synergistic (Si,j), (b) redundancy (Ri,j), and (c) uniqueness

(Ui,j) information flow at Ne2 site. Pairwise functional performance of three models under local

training experience at Ne2 site. The heat-map represents the relative difference in information

decomposition partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed

data for each pair of forcing variables. Positive values (green) in (d)-(l) indicate that the model

overestimates the information type, while negative values (red) indicate underestimations.
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Figure S9. Observed pairwise (a) synergistic (Si,j), (b) redundancy (Ri,j), and (c) uniqueness

(Ui,j) information flow at Ne3 site. Pairwise functional performance of three models under local

training experience at Ne3 site. The heat-map represents the relative difference in information

decomposition partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed

data for each pair of forcing variables. Positive values (green) in (d)-(l) indicate that the model

overestimates the information type, while negative values (red) indicate underestimations.
September 6, 2023, 8:01pm
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Figure S10. Observed pairwise (a) synergistic (Si,j), (b) redundancy (Ri,j), and (c) uniqueness

(Ui,j) information flow at Br1 site. Pairwise functional performance of three models under local

training experience at Br1 site. The heat-map represents the relative difference in information

decomposition partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed

data for each pair of forcing variables. Positive values (green) in (d)-(l) indicate that the model

overestimates the information type, while negative values (red) indicate underestimations.

September 6, 2023, 8:01pm
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Figure S11. Observed pairwise (a) synergistic (Si,j), (b) redundancy (Ri,j), and (c) uniqueness

(Ui,j) information flow at Br3 site. Pairwise functional performance of three models under local

training experience at Br3 site. The heat-map represents the relative difference in information

decomposition partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed

data for each pair of forcing variables. Positive values (green) in (d)-(l) indicate that the model

overestimates the information type, while negative values (red) indicate underestimations.
September 6, 2023, 8:01pm
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Figure S12. Observed pairwise (a) synergistic (Si,j), (b) redundancy (Ri,j), and (c) uniqueness

(Ui,j) information flow at GC site. Pairwise functional performance of three models under local

training experience at GC site. The heat-map represents the relative difference in information

decomposition partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed

data for each pair of forcing variables. Positive values (green) in (d)-(l) indicate that the model

overestimates the information type, while negative values (red) indicate underestimations.
September 6, 2023, 8:01pm
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Figure S13. Pairwise functional performance of three models under regional training experi-

ence at Ne1 site. The heat-map represents the relative difference in information decomposition

partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed data for each

pair of forcing variables. Positive values (green) indicate that the model overestimates the infor-

mation type, while negative values (red) indicate underestimations.

September 6, 2023, 8:01pm
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Figure S14. Pairwise functional performance of three models under regional training experi-

ence at Ne2 site. The heat-map represents the relative difference in information decomposition

partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed data for each

pair of forcing variables. Positive values (green) indicate that the model overestimates the infor-

mation type, while negative values (red) indicate underestimations.

September 6, 2023, 8:01pm
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Figure S15. Pairwise functional performance of three models under regional training experi-

ence at Ne3 site. The heat-map represents the relative difference in information decomposition

partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed data for each

pair of forcing variables. Positive values (green) indicate that the model overestimates the infor-

mation type, while negative values (red) indicate underestimations.

September 6, 2023, 8:01pm
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Figure S16. Pairwise functional performance of three models under regional training experi-

ence at Br1 site. The heat-map represents the relative difference in information decomposition

partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed data for each

pair of forcing variables. Positive values (green) indicate that the model overestimates the infor-

mation type, while negative values (red) indicate underestimations.

September 6, 2023, 8:01pm
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Figure S17. Pairwise functional performance of three models under regional training experi-

ence at Br3 site. The heat-map represents the relative difference in information decomposition

partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed data for each

pair of forcing variables. Positive values (green) indicate that the model overestimates the infor-

mation type, while negative values (red) indicate underestimations.
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Figure S18. Pairwise functional performance of three models under regional training experi-

ence at GC site. The heat-map represents the relative difference in information decomposition

partitioning measures (Af,Si,j
, Af,Ri,j

, and Af,Ui,j
between modeled and observed data for each

pair of forcing variables. Positive values (green) indicate that the model overestimates the infor-

mation type, while negative values (red) indicate underestimations.
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