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Abstract

Precipitation forecasts, particularly at subseasonal-to-seasonal (S2S) time scale, are essential for informed and proactive water

resources management. Although S2S precipitation forecasts have been evaluated, no systematic decomposition of the skill,

Nash-Sutcliffe Efficiency (NSE) coefficient, has been analyzed towards understanding the forecast accuracy. We decompose the

NSE of S2S precipitation forecast into its three components – correlation, conditional bias, and unconditional bias – by four

seasons, three lead times (1–12-day, 1-22 day, and 1-32 day), and three models (ECMWF, CFS, NCEP) over the Conterminous

United States (CONUS). Application of dry mask is critical as the NSE and correlation are lower across all seasons after

masking areas with low precipitation values. Further, a west-to-east gradient in S2S forecast skill exists and forecast skill was

better during the winter months and for areas closer to the coast. Overall, ECMWF’s model performance was stronger than

both ECCC and NCEP CFS’s performance, mainly for the forecasts issued during fall and winter months. However, ECCC

and NCEP CFS performed better for the forecast issued during the spring months, and also performed better in in-land areas.

Post-processing using simple Model Output Statistics could reduce both unconditional and conditional bias to zero, thereby

offering better skill for regimes with high correlation. Our decomposition results also show efforts should focus on improving

model parametrization and initialization schemes for climate regimes with low correlation values.
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Key Points: 7 

• NSE decomposition of S2S reforecast skill shows the spatio-temporal variations in 8 
correlation, conditional and unconditional bias. 9 

• Longitudinal gradient of forecast skill exists from the West (higher) to East (lower). 10 

• Regression based model-output statistics provide correlation as the lower bound of NSE 11 
as the marginal and conditional bias reduces to zero. 12 
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Abstract 14 

Precipitation forecasts, particularly at subseasonal-to-seasonal (S2S) time scale, are essential for 15 
informed and proactive water resources management.  Although S2S precipitation forecasts have 16 
been evaluated, no systematic decomposition of the skill, Nash-Sutcliffe Efficiency (NSE) 17 
coefficient, has been analyzed towards understanding the forecast accuracy.  We decompose the 18 
NSE of S2S precipitation forecast into its three components – correlation, conditional bias, and 19 
unconditional bias – by four seasons, three lead times (1–12-day, 1-22 day, and 1-32 day), and 20 
three models (ECMWF, CFS, NCEP) over the Conterminous United States (CONUS). 21 
Application of dry mask is critical as the NSE and correlation are lower across all seasons after 22 
masking areas with low precipitation values.  Further, a west-to-east gradient in S2S forecast 23 
skill exists and forecast skill was better during the winter months and for areas closer to the 24 
coast. Overall, ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s 25 
performance, mainly for the forecasts issued during fall and winter months.  However, ECCC 26 
and NCEP CFS performed better for the forecast issued during the spring months, and also 27 
performed better in in-land areas.  Post-processing using simple Model Output Statistics could 28 
reduce both unconditional and conditional bias to zero, thereby offering better skill for regimes 29 
with high correlation. Our decomposition results also show efforts should focus on improving 30 
model parametrization and initialization schemes for climate regimes with low correlation 31 
values. 32 

1.0 Introduction 33 

Global climate change and regional anthropogenic disturbances, including urbanization 34 
and deforestation, are driving shifts in the hydrologic cycle, and impacting water resources 35 
(Konapala et al, 2020; Milly et al., 2008). Consequently, extreme precipitation events, including 36 
prolonged droughts or flooding, are expected to be more frequent, further threatening water 37 
supply and variability (Milly et al., 2008). In conjunction with hydroclimatic changes, population 38 
changes also stress surface and groundwater resource withdrawals in many regions across the 39 
Conterminous US (CONUS) (Sankarasubramanian et al., 2017). Reservoir releases, during both 40 
floods and droughts, are modified for human needs, downstream ecological health, and for 41 
ensuring watershed resilience (Chalise et al., 2021). Mismanagement of water resources, both 42 
surface water and groundwater, may pose threats to agriculture, supply chains, human and 43 
environmental health, and regional economies. Hence, reliable and accurate subseasonal-to-44 
seasonal (S2S) precipitation forecasts are essential in an age of a changing climate for improving 45 
water management strategies and preparing for near-future hydroclimatic extremes. 46 

Compared to the skill of short-range weather forecasts (less than 15 days) and long-range 47 
seasonal forecasts, which are reasonably good, the skill of S2S forecasts, ranging between 15 to 48 
60 days, is low and is often referred to as the ‘predictability desert’ (Vitart et al., 2012). 49 
Understanding the current S2S precipitation forecasts skill, as well as highlighting the potential 50 
avenues – initialization, parametrization, and post-processing schemes – for improvement are 51 
critical for accurate S2S precipitation forecasts for operational use (White et al., 2017). Known 52 
contributing factors that influence S2S model forecasting performance include the 53 
parametrization and initialization schemes, large-scale atmospheric circulation modes, and 54 
coupled models (Vitart et al., 2018). The model initialization scheme, including land surface and 55 
soil moisture representation, are also crucial for accurately representation of geophysical fluxes. 56 
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Climate oscillations, such as El Nino Southern Oscillations (ENSO) and Madden-Julian 57 
Oscillations (MJO) also influence seasonal forecast prediction skill (Zhang, 2013).  ENSO’s 58 
influence on United States’ winter hydroclimatology is well-known, particularly over the 59 
Southeast and west coast, accounting for roughly a third of US winter forecasting skill (Quan et 60 
al., 2006).  61 

Previous studies have attributed S2S skill between ENSO and MJO (Sun et al., 2022; 62 
Wang et al., 2019) and have compared S2S skill across models, lead times and seasons (Zhang et 63 
al 2021; de Andrade et al, 2019). However, these studies that examined S2S models’ forecasting 64 
performance did not apply a threshold on dry mask prior to calculating the model’s skill. Zhang 65 
et al (2021) have evaluated S2S forecast skill by filtering extreme precipitation events, but did 66 
not apply a dry mask threshold for evaluating the overall skill. Without a dry mask threshold, the 67 
S2S skill will be inflated, especially in regions with a pronounced dry season, as zero rainfall 68 
days is included in these skill calculations (Wilks, 2006). The ability to predict days without 69 
precipitation is important for drought prediction and planning, but the skill will be inflated for 70 
wetter and normal conditions; therefore, the dry mask application was used to filter out areas of 71 
inflated skill based on the climatological means.  Several studies focused on extreme 72 
precipitation forecasts have applied percentile filters (Zhang et al., 2021), which reduces the 73 
sample size particularly while evaluating monthly/seasonal skill.  Given the pronounced 74 
seasonality in precipitation over the CONUS (Petersen et al., 2012), we systematically evaluate 75 
the S2S forecasting skill across CONUS by applying a dry mask before considering the skill for 76 
each lead time, season and region.  Evaluating the forecast skill after applying the dry mask 77 
could potentially affect the source of model skill, and the associated biases that could be obtained 78 
from decomposition. 79 

S2S precipitation forecast skill has been compared considering both probabilistic and 80 
deterministic metrics to evaluate the forecast skill (Zhang et al., 2021; de Andrade et al., 2019).  81 
S2S models’ skill have been evaluated using Mean Square Error (MSE), mean square skill score 82 
(MSSS), root mean square error (RMSE), anomaly correlation coefficient (ACC), Pearson’s 83 
correlation coefficient, and ranked probability skill score (RPSS) (Zhang et al., 2021; de Andrade 84 
et al., 2019). de Andrade, et al., (2019) evaluated hindcast skill using linear correlation 85 
coefficient and analyzed the sources of bias and variability; however, this study was a large-scale 86 
global analysis of forecast skill and did not consider the seasonal skills and the associated errors. 87 
Decomposing the MSSS three components – correlation coefficient, condition bias and marginal 88 
bias – would provide information on the regions and seasons over which the selected models 89 
have the ability to capture the variability in observed precipitation but have significant biases in 90 
estimation.  Further, the hindcast assessment of (de Andrade et al., 2019) was performed without 91 
the dry mask application, which may inflate forecast skill particularly for regions with 92 
pronounced dry season.   93 

The Nash-Sutcliffe Efficiency (NSE), also known as the coefficient of determination, is a 94 
metric that measures the skill of hydrologic models (Nash & Sutcliffe, 1970). Li et al., (2022) 95 
used to evaluate S2S forecast skill performance based on Kling-Gupta Efficiency (KGE) metric, 96 
which provides a different decomposition of NSE, without applying the dry mask across the 97 
CONUS or considering seasonality. However, decomposing the Nash-Sutcliffe Efficiency (NSE) 98 
for precipitation hindcasts after applying the dry mask provides critical information without 99 
inflating the skill of the model. Furthermore, implementing new parametrizations and 100 
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initialization schemes could be costly and take additional time to develop reforecasts. One 101 
effective way to improve the forecasting skill is to consider post-processing schemes (Carter et 102 
al., 1998; Glahn et al., 2003).  Further, post-processing could also be implemented over 103 
reforecasts from multiple models to develop multi-model ensembles which have been shown to 104 
improve the forecast skill compared to the best individual model (Weigel et al., 2008).  Past 105 
work on statistical post-processing has considered both parametric and non-parametric 106 
approaches (Hamill et al., 1997; Schefzik et al., 2013; Scheuerer et al., 2015).  Although many 107 
studies have used post-processing schemes on S2S precipitation forecasts, understanding the 108 
components of S2S forecast skill could provide additional insights on how post-processing 109 
schemes can be used and could also indicate potential regions where improvements in models 110 
will be needed to further improve the forecast skill.  111 

Several S2S models that contribute multi-model ensembles have been run for reforecasts. 112 
Historically, some S2S multi-model datasets have only been running for a period of short time, 113 
limiting the ability to capture the interannual variability in precipitation. Other multi-model 114 
ensembles have primarily focused on generating monthly forecasts for seasonal prediction with 115 
infrequent model initialization. This study uses three individual models hindcasts from the World 116 
Weather Research Programme (WWRP) and World Climate Research Programme (WCRP) S2S 117 
prediction project (Vitart et al., 2012).  The S2S project, originating in 2013, has a long record of 118 
forecasts and reforecasts that are initialized multiple times a week (Vitart et al., 2017).  The 119 
longer range of data allows for larger sample sizes for robust estimation of NSE and 120 
decomposition metrics.  Comparing model performance is important because forecast skill varies 121 
between S2S models as each model has different parameterization schemes, number of 122 
ensembles, and resolution.  This study will consider decomposition of NSE of S2S reforecasts 123 
over the CONUS for three models – European Centre of Medium-Range Weather Forecast’s 124 
(ECWMF) National Centre for Environmental Prediction Climate Forecast System (NCEP CFS) 125 
and Environment and Climate Change Canada (ECCC) – after applying the dry mask. Previous 126 
studies have shown ECMWF S2S hindcast models have outperformed both CFS and ECCC 127 
models on a global basis (de Andrade et al, 2019), but the performance of these three models 128 
have not been compared after the dry mask threshold has been applied.  The North American 129 
Multi-Model Ensemble (NMME) forecasts have proved to perform better than individual models 130 
by pooling the ensemble members from several models (Krakauer, 2019).  However, for this 131 
study, the NMME was not considered because the number of ensemble members varies between 132 
individual models, giving more weight to some models.  Additionally, to improve multi-model 133 
performance, understanding individual models’ type of errors and potential for correcting the 134 
biases before pooling the ensembles, which could further improve the multi-model forecast 135 
performance. Hence, this study will compare the decomposed NSE and associated errors of S2S 136 
precipitation forecasts of three individual models by season and lead time under three Koppen 137 
climate regimes across the CONUS.  138 

The main intent of this study is to decompose the S2S forecasting skill as a function of 139 
lead time over the CONUS after applying the dry mask. To our knowledge, limited/no work has 140 
been performed on systematically decomposing the NSE over various seasons after applying the 141 
dry mask.  In addition to applying the dry mask, evaluating model skill regionally is also critical 142 
as the precipitation has pronounced seasonality over the CONUS (Petersen et al., 2012).  143 
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Analyzing forecasting skills regionally can also provide insights on how land surface conditions, 144 
low-frequency oscillations, and regional hydroclimate influence the model performance.  145 

The manuscript is organized into the following sections: S2S precipitation hindcast and 146 
observed databases from three different models are provided in the next section.  Then, the dry 147 
mask threshold application procedure is presented along with the NSE decomposition.  The 148 
following section provides the results from the full decomposition of ECMWF and the results 149 
from different regimes along with the skill comparison from three S2S reforecasts.  150 

2.0 Data  151 

This section provides the S2S hindcast database and observed data along with the details 152 
to calculate and decompose the NSE for S2S forecasts over various lead times and seasons. 153 
 154 
Observed Precipitation 155 

For calculating the S2S reforecasts skill, we used the CPC Global Unified Precipitation 156 
dataset provided by the NOAA Physical Science Laboratory (PSL), with a resolution of 157 
(0.5°x0.5°) (Chen, et al., 2008).  Upon comparing the accuracy of various precipitation datasets, 158 
the CPC Unified dataset performed particularly well in areas that have dense areas of rain gauges 159 
(Beck et al., 2017). This study focused on the CONUS, which has a dense system of rain gauges, 160 
and has been used in other forecast verification studies (Becker et al, 2020).  161 
 162 
S2S Hindcast Database 163 

For S2S model skill evaluation, three hindcast models were assessed: 1.) European 164 
Centre of Medium-Range Weather Forecasts (ECMWF), 2.) National Center for Environmental 165 
Prediction’s (NCEP) Climate Forecast System (CFS) model, and 3.) Environment and Climate 166 
Change Canada (ECCC). For full decomposition of ECMWF, the S2S hindcasts were evaluated 167 
for the full 20-year hindcast period (Table 1) and up to the longest available lead time of 45 days. 168 
The ensemble means were averaged over three different lead times: 1) 1-15 days, 2) 1-30 days, 169 
and 3) 1-45 days, and compared with the observed average precipitation corresponding to the 170 
three lead times. Additionally, the average forecasts and corresponding observed average daily 171 
precipitation values were pooled by the date of hindcast initialization into the following seasons: 172 
a) January, February, March (JFM), b) April, May, June (AMJ), c) July, August, September 173 
(JAS), d) October, November, December (OND). Thus, the evaluation for each season provides 174 
the skill of forecasts issued during the months within the considered four seasons.  175 
 176 

For the model comparison section, the three models were assessed for lead times of 1-12 177 
days, 1-22 days, and 1-32 days for four different seasons between January 1st 2000 and 178 
December 30th 2010, the longest available overlapping date ranges and lead times for all three 179 
models.  Additionally, ECMWF and NCEP were compared for lead times of 1-42 days.  The 180 
ECMWF hindcasts are initialized twice a week and range from 2000-2019, NCEP CFS hindcasts 181 
are initialized daily and are available from 1999-2010, and ECCC are initialized weekly, and 182 
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reforecasts range from 1995-2012 (Vitart et al., 2017).  The S2S precipitation hindcast model’s 183 
information and specification are shown in Table 1 (Vitart et al., 2017). 184 

Model LEAD 
TIME 

RESOLUTION HINDCAST 
PERIOD 

HINDCAST 
ENSEMBLE 

SIZE 

FORECAST 
ENSEMBLE 

SIZE 

HINDCAST 
FREQUENCY 

OCEAN 
COUPLING

SEA ICE 
COUPLING

ECMWF 0-46 
Days 

0.25°x0.25°, days 0-
10, 

0.5°x0.5°, after day 
10 L91 

Past 20 
Years 

11 51 Twice a 
Week 

Yes No 

NCEP 
CFS 

0-44 
Days 

~1°x1°, L64 1999-2010 4 16 Daily Yes Yes 

ECCC 0-32 
Days 

0.45°x0.45°, L40 1995-2012 4 21 Weekly Yes No 

Table 1. Subseasonal-to-Seasonal Hindcast Models and Forecast model information 185 

2.1 Dry Mask application and Skill Assessment and Decomposition  186 

a. Seasonality of Rainfall and Dry Mask Application 187 
Prior to calculating the NSE for each hindcast-initialized season, a dry mask was applied 188 

based on the observed precipitation dataset to filter out the areas that receive small amounts of 189 
rainfall, which may result in an inflated forecast skill because the forecasted and observed 190 
rainfall have no rainfall.  Antolilk (2000) and Charba et al., (2011) considered daily precipitation 191 
less than 0.01 inches as no event for evaluating the skill.  Based on that work, the dry mask was 192 
set at a threshold value for each individual grid cell, if the observed daily precipitation over the 193 
20 years is less than 0.15 inches, 0.30 inches and 0.45 inches for 15-day, 30-day and 45-day lead 194 
times from the time of issued forecast, respectively. The NSE and the three components were 195 
evaluated for all the three models for each lead time over the CONUS. We also evaluate the 196 
forecast skill – NSE and its components – based on the climate regime. For this purpose, we 197 
considered three main regimes – desert (regime B), temperate (regime C) and continental 198 
(regime D) – over the CONUS based on Koppen climate classification. A small area in southern 199 
Florida fell into the tropical (regime A) Koppen climate group; however, since this regime 200 
corresponds to only one grid cell from the hindcast model, we combined this tropical area with 201 
the temperate regime (Supplemental Information (SI) - Figure SI-1).  Using the aggregated 202 
Koppen Climate Regime (Beck, et. al, 2017) into three climate regimes, a regional analysis was 203 
performed for each of the S2S hindcast models (Supplemental Information (SI) - Figure SI-1).  204 

 205 
b. Skill Assessment Metrics 206 
Skill assessment metrics measure the performance of the model's forecast ability compared to 207 

the observed variable. Frequently used performance metrics include anomaly correlation, NSE 208 
and Kling Gupta Efficiency (Clark et al., 2021). The NSE measures the magnitude of error 209 
variance from the model prediction compared to the observed variance in the data and  has an 210 
upper bound of 1 but has a lower bound of -∞ and is used to determine the ‘goodness-of-fit’ of a 211 
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model. NSE is related to MSE but is normalized by the standard deviation of the observed 212 
precipitation or data values (Gupta et al., 2009).  213 

                                             𝑁𝑆𝐸௜(𝑜௜௧, 𝑥௜௧) = 1 − ∑ (௢೔೟ି௫೔೟)మ೙೟సభ∑ (௢೔೟ି௢೔೟)మ೙೟సభ                                  (1) 214 

Where oit is the observed precipitation value, xit is the corresponding S2S precipitation, where t = 215 
1, 2…n is the time index with ‘n’ forecasts and i is the lead time of the forecast.  The mean 216 
observed precipitation is 𝑜௜௧.  For a given i, NSE will be decomposed into three parts (Murphy 217 
1988; Weglarczyk 1998): A) Pearson’s correlation coefficient (equation 3), B) conditional bias 218 
(equation 4), and C) unconditional bias (equation 5) (Gupta et al., 2009).   219 𝑁𝑆𝐸 =  𝐴 − 𝐵 − 𝐶 220 

                       𝑁𝑆𝐸 =  𝜌௫௢ ଶ  −  (𝜌௫௢  −  ( ఙೣ ఙ೚  ))ଶ − ( ௫ ି௢ ఙ೚  ))ଶ               (2) 221 

A=𝜌௫௢ ଶ   𝑤ℎ𝑒𝑟𝑒     𝜌௫௢ = ௖௢௩(௫ , ௢ ) ఙೣ  ∗ ఙ೚                                  (3) 222 

B=[𝜌௫௢ − ఙೣ ఙೣ   ]ଶ                                                   (4) 223 

     C=[ ௫ ି௢ ఙ೚  ]ଶ                                                      (5) 224 

Where 𝜎௫  and 𝜎௢  represent the standard deviation of x and o, and  𝑜 and 𝑥  represent the 225 

mean of x and o once xit and oit were summed from 1 to n for lead time i in equation 1.  The 226 
pearson correlation coefficient between x and o is 𝜌௫௢  (equation 3). The first component of the 227 

decomposition, Pearson’s correlation coefficient, shows the linear association between the 228 
forecast and the observation. The conditional bias is the difference in the slope of the regression 229 
line fitted between forecast and observation with a slope of 1 that indicates a perfect forecast.  230 
The unconditional bias, indicating a systematic bias, denotes the ratio of difference between the 231 
mean of the observation and the mean of the forecast to the observed standard deviation. 232 

3.0 Results 233 

Full Decomposition of ECMWF 234 
A full NSE decomposition was performed on the ECMWF S2S hindcast model because 235 

the ECMWF model has the longest available reforecast time range and has the largest number of 236 
ensemble members. Prior to decomposing NSE, a dry-mask threshold was applied based on the 237 
lead time for the climatological means of each grid cell, to mask out areas with low precipitation 238 
values to avoid inflated skill values.  Both NSE and correlation are lower across all seasons after 239 
the dry mask threshold was applied. Figure 1a illustrates the difference in Normalized Nash-240 
Sutcliffe Efficiency (NNSE) of 30-day ahead S2S precipitation forecast skill with and without 241 
the dry mask threshold). For instance, a forecast issued on March 30, 2000 with a lead time of 45 242 
days corresponds to the skill of the forecast in predicting precipitation from March 30, 2000 to 243 
May 15, 2000. Thus, the skill of the forecast issued in JFM can cover the observed precipitation 244 
in April and May. To reiterate, all the figures with seasonal S2S performance metrics denote the 245 
skill summary of the forecast issued during that season as opposed to the ability to forecast the 246 
observed precipitation during that season. 247 
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To understand the importance of dry masking, we first show the 1-30 day ahead S2S 248 
precipitation forecast skill with and without dry mask (Figure 1) based on Normalized NSE 249 
(NNSE). Lower NNSE (equation 6) values, the inverse of NSE, indicate better predictive 250 
performance.  251 

                   NNSE= ଵଶିேௌா  (6)     252 

For the forecast issued in the four seasons, the mean NNSE values are lower for the grid 253 
cells below the dry mask threshold than for the grid cells that exceeded the threshold (Figure 1). 254 
Even though including “no-precipitation event” is expected to inflate the skill, dry masking by 255 
filtering out regimes rather than simply removing values below a given threshold, allows us to 256 
maintain the same sample size across all grid cells, thereby changing the masked areas based on 257 
both forecast-initialized seasons (Figure 1) and lead time.  258 

Figure 1. Normalized Nash Sutcliffe Efficiency (NNSE) of 1-30 days ahead ECMWF hindcast for the CONUS before 259 
dry mask is applied (left column) and after (middle column) dry mask threshold is applied for four seasons of 260 

initialized forecasts: JFM, AMJ, JAS and OND for 1-30-day lead time.   The scatter plot comparison of grid cell’s 1-261 
30-day climatological precipitation means and the corresponding Normalized NSE values (right column).  The 262 

scatter plot shows the NNSE values that fall below the dry mask threshold (red region) and above (gray region). The 263 
average NNSE of the grid cells below the dry mask threshold (green) and above the dry mask threshold (blue).  264 

Since the NNSE is the inverse of the NSE, the lower NNSE values indicate better predictive performance. 265 
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The overestimation of S2S forecast skill occurs if no dry mask is applied, particularly for 266 
pronounced dry seasons (JFM and JAS). Studies that evaluated S2S precipitation forecasts skill 267 
did not consider dry mask application, which ignores the seasonality in precipitation, thereby 268 
indicating potential difference in forecast skill between regions (e.g., Li et al., 2022). However, 269 
after the dry mask application (Figure 1), we find that the skill was fairly similar between 270 
regimes. Thus, it is important to apply a dry mask which inherently considers the seasonality in 271 
precipitation for skill evaluation.  Quantifying the forecast skill for critical events (e.g., peak 272 
rainfall seasons) is important particularly if the interest is to identify regions with limited skill.  273 

 274 
a) NSE Spatial Patterns 275 

We present results for the NSE and its decomposition (Figures 2-7) for the ECMWF 276 
model and then compare its performance with NCEP and ECCC later (Figures 8-10). Before 277 
assessing the components of the NSE, we first investigate the NSE over the CONUS, which 278 
shows the S2S forecasting skill of ECMWF for various lead times over the season (Figure 2).  279 
NSE is better in the winter and fall seasons (JFM and OND) in comparison to spring and summer 280 
seasons (AMJ and JAS) (Figure 2), which is partially due to El Nino Southern Oscillation 281 
(ENSO) being active during winter and fall months and ENSO dying or being at an incipient 282 
stage during AMJ and JAS (Ham et al., 2019). The NSE also tends to be better closer to the 283 
coasts indicating the local sea surface temperatures (SSTs) in influencing S2S forecasts.  284 
Additionally, the NSE shows a slight gradient from West Coast to East Coast (Figure 2). The 285 
NSE tends to be weaker around the Great Lakes.  Further, the areas surrounding the dry mask 286 
regions tend to have a lower NSE. 287 

Figure 2. Nash Sutcliffe Efficiency (NSE) of ECMWF hindcast for CONUS after dry mask threshold is applied for 288 
four season of initialized forecasts: JFM, AMJ, JAS, and OND, and for three lead times: 1-15 days, 1-30 days, and 289 

1-45 days. 290 
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b) Decomposition Plots 291 
 We decompose the NSE of ECMWF in Figure 2 into correlation (Figures 3), conditional 292 
bias (Figure 5) and unconditional bias (Figure 6) for each lead time for the four seasons. 293 

i) Correlation and its longitudinal distribution 294 
The first component of decomposition, Pearson’s correlation coefficient, shows the innate 295 

model skill and the lower bound for explained variance in the model. The analysis of correlation 296 
shows that the skill decreases as lead time increases for all seasons (Figure 3.).  Similar to the 297 
NSE, the correlation is also lower in the summer seasons and higher in the winter seasons.  The 298 
correlation between S2S precipitation hindcasts and observed precipitation was averaged by 299 
longitude, for each season and lead time, after the dry mask threshold was applied. This 300 
longitudinal distribution more clearly illustrates the West to East coast gradient, where the 301 
correlation is higher in the West Coast and decreases towards the East Coast (Figure 3-4).  302 

Figure 3. Correlation, the first component of NSE decomposition, from the ECMWF hindcast data for CONUS after 303 
dry mask threshold is applied for four seasons of initialized forecasts: JFM, AMJ, JAS, and OND, and for three 304 

different lead times: 1-15 days, 1-30 days, and 1-45 days. 305 
 306 

On the West Coast, correlation coefficients are higher than on the East Coast, which is 307 
partially due to the pronounced seasonality in precipitation over the West Coast that results in 308 
reduced number of grid cells being considered for evaluation after applying the dry mask.  309 
Additionally, correlation coefficients are higher towards the coasts and weaker further inland due 310 
to potential influence of local SSTs (Sankarasubramanian et al., 2017).  Correlation coefficients 311 
are also lower towards the area surrounding the masked out regions. 312 
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Figure 4. Longitudinal distribution of correlation by the average by latitude of the ECMWF hindcast data for 313 
CONUS after dry mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and 314 

for three lead times: 1-15 days, 1-30 days, and 1-45 days 315 
ii.) Conditional Bias 316 

The second and third components, conditional bias, and unconditional bias, are expected 317 
to be zero for ideal forecasts.  The conditional bias for the ECMWF decomposition increases as 318 
lead time increases and tends to be higher towards the coasts. Further, the conditional bias is 319 
higher during the summer season in comparison to the winter season (Figure 5).  The Great 320 
Lakes Region and the central part of the US has a high conditional bias that increases with 321 
increasing lead times, whereas the Sunbelt has a low conditional bias during the winter and 322 
spring seasons.  Conditional bias is also higher towards the areas that were masked out from the 323 
dry mask.  Conditional bias is highest during JAS, specifically in the desert areas that were 324 
masked out during the other seasons and is lowest during OND. 325 

Figure 5. The second component, conditional bias, of NSE decomposition, from the ECMWF hindcast data for 326 
CONUS after dry mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and 327 

for three lead times: 1-15 days, 1-30 days, and 1-45 days.  328 
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iii.) Unconditional Bias 329 
The third component, unconditional bias, represents the systematic bias in reproducing 330 

the long-term mean of the observed precipitation. Unconditional bias is high in the Great Lakes 331 
Region and in the central part of the US (Figure 6).  Additionally, unconditional bias is high in 332 
the desert regions for JAS, which was masked during the other seasons, for JAS. Conditional 333 
bias and unconditional bias are generally correlated and have higher values in the same regions.  334 

Figure 6. Unconditional bias, the third component of NSE decomposition, from the ECMWF hindcast data 335 
for CONUS after dry mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, 336 

and for three lead times: 1-15 days, 1-30 days, and 1-45 days. 337 
 338 

c. Skill comparison across Koppen Climate Regimes 339 
The skill of ECMWF S2S hindcast model was compared under three Koppen climate regimes: a) 340 
desert b.) temperate and c.) continental (Figure SI-1). For all lead times and climate regimes, the 341 
correlation varies by season and is lower in the summer months and is the highest in the winter 342 
months (Figure 7).  Since the dry mask threshold was applied before the climate regime 343 
classification was considered, the correlation does not vary much between regimes within a 344 
given season. Conversely, if a dry mask had not been applied, the desert regimes may expect to 345 
have much better skill, because of inflated skill due to no-precipitation days. 346 
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 347 
Figure 7. The box and whisker plot of correlation from the ECMWF hindcast model for three Koppen climate 348 

regimes: desert (red), temperate (blue) and continental (green) for lead times 1-12, 1-22, 1-32, and 1-42 days for all 349 
four seasons that the forecasts were initialized: JFM, AMJ, JAS, OND. 350 

 351 
d. Model Comparison of NSE and Correlation 352 

Comparing S2S hindcast models is important to understand the relative performance of the 353 
individual models. In this analysis, ECMWF’s NSE was compared to NCEP CFS’s NSE and 354 
next ECMWF’s correlation was compared to all three models.  The dry mask threshold may 355 
affect the model performance; therefore, forecast skill was not considered in areas where the 356 
historically observed precipitation did not exceed this threshold.  357 

 358 
The blue regions in Figure SI-2 show where ECMWF’s NSE outperforms the NSE of 359 

NCEP CFS for most lead times, regimes, and seasons, especially at shorter lead times, except for 360 
a few inland areas.  Although ECMWF’s NSE is higher than NCEP’s in most regimes, seasons, 361 
and lead times, the ECMWF and NCEP CFS’s correlation is closer in value (Figure 8). NCEP 362 
CFS has a higher NSE and correlation than ECMWF during AMJ. In comparison to ECMWF, 363 
NCEP’s correlation improves with longer lead times during AMJ and is also higher in areas 364 
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further inland. Conversely, ECMWF has better performance around the coast (Figure 8) except 365 
for OND, which may be due to the two different ocean models used in the initializations. 366 

Figure 8. Difference in Correlation values between ECMWF S2S hindcast and NCEP CFS for CONUS after dry 367 
mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and for three lead 368 

times: 1-12 days, 1-22 days, and 1-42 days. 369 
 370 

ECMWF and ECCC models’ correlation differ by season but Figure 9 does not show a 371 
clear inland-coastal differential in skill (Figure 9), which could be potentially due to ECMWF 372 
and ECCC having the same ocean models. ECCC has a higher correlation than ECMWF during 373 
the forecasts initiated in the summer months (JAS).  However, since ECCC’s lead time ranges 374 
from 1-32 days, 1-42 day lead time between ECMWF and ECCC could not be compared.  375 
 376 

Across seasons and lead times, NCEP CFS’s correlation is higher than ECCC’s 377 
correlation for NCEP (Figure SI-3).  NCEP CFS’ model performance improves noticeably at 378 
longer lead times and was not compared to 1-42 days lead time because of ECCC’s shorter lead 379 
time forecast availability.  However, when comparing the first component, correlation, by 380 
regime, season, and lead time, ECCC has higher correlation in AMJ, when compared to both 381 
NCEP CFS as well as ECMWF. However, ECCC’s performance tends to be worse in the 382 
remaining three seasons. 383 

 384 
 385 
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Figure 9.  Difference in Correlation values between ECMWF S2S hindcast and ECCC for CONUS after dry mask 386 
threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and for three lead times: 1-387 

12 days, 1-22 days, and 1-32 days. 388 
 389 

Overall, ECMWF’s correlation for the forecast issued in seasons, JFM and OND, is 390 
higher than the other two models, but ECMWF’s correlation is lower than the other models for 391 
the forecasts issued in AMJ (Figure 8-9).  ECMWF has the highest NSE and correlation when 392 
solely considering the skill within the CONUS boundaries; however, NCEP CFS and ECCC 393 
hindcast models have much better forecast skill in the Great Lakes regime on and the Canadian 394 
regime just north of the Great Lakes, which although may not fall within the US boundaries, is 395 
still critical for the Midwest’s water resources. ECMWF performs better towards the coasts and 396 
the skill may be higher in the winter seasons due to the areas that were masked out by the dry 397 
mask threshold.  NCEP CFS and ECCC perform better in areas further inland, which is why the 398 
skill may be noticeably better in the spring and summer months (AMJ and JAS) where the inland 399 
regimes are not masked by the dry mask threshold since the regime receives higher precipitation 400 
during the summer.  The differences in model skill could be due to the different ocean models 401 
and different initialization schemes, however this attribution has to be systematically analyzed 402 
further.  403 

 404 
e. Model Skill comparison across Koppen Climate Regimes 405 

The performance metrics for the three hindcast models were analyzed across the three 406 
Koppen climate regimes over the CONUS.  Each model’s NSE and the decomposed components 407 
were divided into climate regimes by season and lead times. At longer lead times, the differences 408 
in NSE reduces across seasons and climate regimes with NCEP CFS beginning to outperform 409 
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ECCC (Figure SI-4).  ECMWF’s NSE was higher than the NSE of ECCC and NCEP CFS across 410 
climate regime, season, and lead times (Figure SI-4), because NCEP and ECCC had high 411 
unconditional and conditional biases (Figure SI-4).  Since these biases can be reduced to zero 412 
with simple post-processing techniques such as Model Output Statistics (Appendix A), we 413 
focused on comparing correlation (Figure 10).   414 

 415 
The Pearson correlation coefficient is generally higher for ECMWF in comparison to 416 

ECCC and NCEP CFS models for all lead times, regimes, and seasons (Figure 10). There does 417 
not seem to be a consistent trend on how models perform for each climate regime across seasons 418 
and lead times even though both NCEP and ECCC perform better with forecasts issued in AMJ 419 
(Figure SI-4).  For ECMWF and ECCC, the correlation is higher at shorter lead times, but 420 
NCEP’s correlation remains relatively consistent across lead times (Figure 10).  Across all 421 
models, lead times, and regimes the seasonal patterns illustrate that correlation is the highest 422 
during JFM and OND and lowest during AMJ and JAS.  423 

Figure 10. The average correlation for each regime: Regime B (desert), Regime C (temperate), and Regime D 424 
(continental) for each model: ECMWF (black), ECCC (blue), and NCEP CFS (red).  The average correlation was 425 

calculated by lead time a) 1-12 days b.) 1-22 days and c.) 1-32 days for seasons JFM, AMJ, JAS, and OND. 426 
 427 
The conditional bias is the lowest for ECMWF and highest for NCEP CFS particularly 428 

for AMJ and at shorter lead times (Figure SI-4).  NCEP’s median marginal bias was lower than 429 
ECMWF and ECCC, but one grid cell on the West Coast had a very high conditional bias 430 
causing the mean bias of all of the grid cells to be higher than the other two models.. ECCC has 431 
the highest conditional bias at the shorter lead times and ECMWF and NCEP CFS were 432 
comparable at 1-12 days for JFM, JAS, and OND.  Conditional bias has the highest spread 433 
during spring months (AMJ).  With longer lead times (e.g., 1-32 days), the unconditional bias 434 
across the selected models is similar, with ECCC being slightly higher than the other two 435 
models. No clear regional pattern of unconditional bias across all models and seasons was 436 
evident (Figure SI-4 g-i).  The seasonality of unconditional bias seems to change based on lead 437 
times. We discuss in the next section how the conditional bias and unconditional bias could be 438 
potentially improved using post-processing techniques that focus on developing statistical 439 
relationships between model forecasts and the observed precipitation. 440 
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4.0 Discussion  441 
Understanding the S2S precipitation forecasts skill across the CONUS over different 442 

seasons, as well as highlighting potential avenues for model improvement is critical for better 443 
forecast application.  This study a) investigated and compared the spatial distribution of NSE for 444 
three S2S precipitation hindcast models across the CONUS, b) decomposed Nash-Sutcliffe 445 
Efficiency into correlation, conditional bias and unconditional bias based on the lead time and 446 
forecast issued in a season for each model and c) analyzed model skill across three (tropical, 447 
desert and temperate) Koppen Climate regimes. Our analysis shows that NSE of ECMWF was 448 
higher closer to the coast, most likely due to the influence of MJO and ENSO, and was also 449 
higher for the forecast issued during winter months and with shorter lead times.  Decomposition 450 
of NSE shows that the first component, correlation, illustrates there is a gradient in skill from 451 
west coast (higher) to east coast (lower).  Both the conditional and unconditional biases were 452 
also smaller during the winter months and in areas closer to the coast. The model comparison 453 
showed that ECMWF performs well in the winter seasons and towards the coasts, whereas 454 
NCEP CFS’s performance is the best for forecasts issued during AMJ and in inland areas.  The 455 
conditional and unconditional bias were high over the Midwest Great Lakes region.  The 456 
conditional bias was higher for NCEP CFS, particularly for forecasts issued in AMJ and the 457 
unconditional bias was high for forecasts issued in JAS.  ECCC’s skill is high during AMJ and at 458 
short lead times, but decreases significantly with longer lead times. No clear trends were 459 
observed across the climate regimes across the three hindcast models’ performances, but NSE 460 
and correlation was higher for the winter seasons than the summer seasons consistently for all 461 
the lead times, regimes and three models.    462 
 463 
Potential for improving S2S forecasts 464 

Even though our analysis, after application of dry mask, showed that conditional bias and 465 
unconditional bias are the primary reasons for low and negative NSE values for the S2S 466 
hindcasts, this could be overcome by selecting a proper post-processing scheme where the 467 
correlation is high across the CONUS. One of the commonly used post-processing scheme for 468 
correcting weather/climate forecasts is Model Output Statistics (MOS), which is a linear 469 
regression model that uses the forecast or a transformation of it (e.g., principal components) as a 470 
predictor and the observed precipitation as a predictand (Antolik et al., 2000; 471 
Sankarasubramanian et al., 2008). One advantage with a linear regression model is that it reduces 472 
the marginal bias to zero (Appendix A). Further, we also show analytically in Appendix A, a 473 
linear regression model reduces the conditional bias to zero which turns the NSE of the corrected 474 
forecasts from a MOS being equal to the square of the correlation coefficient (i.e., component 475 
A).  Thus, a linear regression based MOS provides a lower bound on the NSE of the forecast to 476 
be decomposed component A, thereby providing a guidance on where post-processing schemes 477 
will be useful for a given location/regime. An example of where post-processing can be effective 478 
for correcting bias is NCEP CFS’s 1-42 day forecasts.  ECMWF did not have any grid cells 479 
where NSE was below zero, because the conditional and unconditional bias were low, so we 480 
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show NCEP, which has large sources of unconditional and conditional bias across all regimes, 481 
but relatively high correlation (SI-4).   482 
 483 

Figure 11 shows locations where a) NCEP’s NSE is less than zero and correlation is 484 
significant (p<0.05), b) NCEP’s NSE is greater than zero and correlation is significant (p<0.05), 485 
and c) NCEP’s NSE is less than zero, but correlation is not significant (p>0.05) for 1-42 day lead 486 
times. For the first case, where NSE is low and correlation is high, post-processing such as MOS 487 
can be effectively used to reduce conditional and unconditional biases to improve forecast skill, 488 
and a large portion of CONUS, mostly inland area and particularly for forecasts issued in seasons 489 
JFM and AMJ (Figure 11).  For the second category, a large portion of the coastal region, 490 
particularly in forecast-initialized seasons AMJ and OND, have significant (p<0.05) correlation 491 
and high NSE, which means post-processing will not be effective as the model does not capture 492 
the observed variability.  Similarly, post-processing will not be effective in areas with low NSE 493 
and correlation that is not significant (p>0.05), which includes a few grid points in AMJ and JAS 494 
(Figure 11). Even though linear-regression based MOS may not result in improved skill in areas 495 
where both NSE and correlation are low, other MOS post-processing schemes can be considered 496 
such as a semi-parametric model or machine learning models (Glahn et al., 1972; Taillardat et 497 
al., 2019), NSE of S2S forecasts could be potentially improved as such models are more flexible 498 
in reducing the mean square error in the forecast. 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 

Figure 11.  Post-processing will be effective in the locations where NSE<0 and correlation is significant (purple), 516 
but will not be necessary in places where NSE<0 but correlation is not significant (red) or in places where 517 

correlation is significant (yellow). 518 
Even though the selected models had ensemble forecast, we considered only ensemble 519 

mean for forecast decomposition. We did not consider probabilistic forecasts such as Brier Skill 520 
score for skill evaluation and decomposition since the differences in ensemble members could 521 
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significantly affect the forecast evaluation.  Similar decomposition on Brier score could reveal 522 
the forecast reliability and resolution of each model’s performance in below-normal and above-523 
normal conditions (Brier, 1950). Further, our analysis focused on decomposition without 524 
evaluating the model’s performance during extreme conditions, which could be pursued further 525 
to understand the sources of bias. Our analysis also did not consider NMME because the number 526 
of ensemble members varies between models, giving more weight to some models. Additionally, 527 
the models within NMME have varying forecast issued frequencies, lead times, and issued dates.  528 
These varying model features within the multi-model need to be addressed before valid model 529 
comparisons can occur.  Since the intent of this study was to show a systematic process of 530 
evaluating model skill and comparing across the models, we did not consider NMME for our 531 
study.   532 
 533 
5.0 Conclusions 534 

S2S precipitation forecasts are critical for operational and proactive water resource 535 
management and planning. Systematic S2S forecast skill assessment is essential for 536 
understanding existing model skill and how different errors contribute to it. Our evaluation of 537 
three S2S reforecasts – ECMWF, ECCC and NCEP – based on NSE decomposition primarily 538 
looked at the skill of forecasts issued during four seasons and under three different lead times.  539 
Our analysis shows the importance of applying dry mask as the NSE and correlation are lower 540 
across all seasons after masking areas with low precipitation values.  The full decomposition of 541 
ECMWF revealed a West to East coast longitudinal gradient in NSE and correlation. 542 
Decomposed components, conditional and unconditional bias, did not show any longitudinal 543 
trends. ECMWF’s skill showed that seasonal trends in forecast skill occurred across all lead 544 
times and all seasons, but correlation did not differ by climate regimes.   545 
 546 

The forecast skill and associated errors were also compared across models.  Overall, 547 
ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s performance, 548 
mainly for the forecasts issued during the winter months, (JFM and OND).  ECMWF had the 549 
highest NSE across the three climate regimes – temperate, desert and continental – considered.  550 
However, ECCC and NCEP CFS performed better for the forecast issued during the spring 551 
months, and also performed better in areas further away from the coast.  Our decomposition 552 
efforts show S2S improvements in physical modeling efforts such as parameterization and 553 
initialization should be undertaken for ECMWF particularly for areas further from the coast, for 554 
forecasts issued in the spring months, AMJ, and for NCEP CFS and ECCC for the forecasts 555 
issued in the winter months over coastal areas. 556 
 557 

Our analytical derivation on how MOS could help improve the forecast shows that a 558 
linear regression based MOS could ensure the NSE of the post-processed forecast to be 559 
component A, which is the square of the correlation coefficient between forecasts and the 560 
observation. This shows because simple linear regression based MOS can eliminate conditional 561 
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and marginal biases. This also provides information on regions (Figure 11, NSE <0 and ρ not 562 
significant) where S2S forecasting schemes can focus on improved model parameterizations and 563 
initializations including coupling with land surface models for improving the skill (Entekhabi et 564 
al., 1999).  565 
 566 
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Appendix A. Decomposition of NSE for Linear-Regression Based Model Output Statistics 604 
 605 
For each grid cell, oit is the observed precipitation value, xit is the corresponding S2S 606 
precipitation value and yit is the corrected precipitation value, where t = 1, 2…n is the time index 607 
with ‘n’ forecasts and i is the lead time of the forecast. Linear regression model 2 is used for the 608 
model to get the corrected precipitation value, which is the MOS estimate. 609 

  𝑜𝑖𝑡 =  𝛽0 +  𝛽1 𝑥𝑖𝑡 +  Ɛ௜௧   [1]   610 
 611 

yit = 𝛽0 + β1 xit                 [2] 612 
   613 

For a given i, NSE is originally between 𝑜𝑖𝑡 and xit  (equation 3), but a linear regression is used to 614 
estimate the corrected precipitation, yit.  For a given i , the NSE is calculated between oit and yit 615 
(equation 4) and then decomposed into parts A (equation 8-14), B (equation (15), and C 616 
(equation 16-17).  617      𝑁𝑆𝐸௜(𝑜௜௧, 𝑥௜௧) = 1 − ∑ (௢೔೟ି௫೔೟)మ೙೟సభ∑ (௢೔೟ିō೔೟)మ೙೟సభ =   𝜌௫௢  ଶ  − ( 𝜌௫௢  −  ( ఙೣ ఙ೚  ))ଶ − ( ௫ ି௢ ఙ೚  ))ଶ      [3] 618 

  𝑁𝑆𝐸௜(𝑜௜௧, 𝑦௜௧) = 1 − ∑ (௢೔೟ି௬೔೟)మ೙೟సభ∑ (௢೔೟ିō೔೟)మ೙೟సభ = =  𝜌௬௢  ଶ  −  ( 𝜌௬௢  −  ( ఙ೤ ఙ೚  ))ଶ − ( ௬ ି௢ ఙ೚  ))ଶ     [4] 619 

 𝛽ଵ = ௖௢௩(௢ ି௫ ) ఙೣ  మ  [5]       𝛽଴ = 𝑜 −  𝛽ଵ ∗ 𝑥   [6]    𝛽ଵ =  ఘೣ೚ ∗   ఙೣ   ∗  ఙ೚  ఙೣ మ = ఘೣ ೚ ∗ ఙ೚ ఙೣ                 [7] 620 

Where 𝜎௫  and 𝜎௢  represent the standard deviation of x and o, and  𝑜 and 𝑥  represent the mean of 621 

x and o once xit and oit were summed from 1 to n for lead time i in equation 3.  The pearson 622 
correlation coefficient between x and o is 𝜌௫௢.  For the corrected precipitation, yit, the standard 623 
deviation and mean are 𝜎௬ and y respectively, when yit is summed over time from 1 to n for lead 624 

time i in equation 4.  The correlation coefficient between o and y is 𝜌௬௢ .   625 
 626 
NSE of oit and yit is decomposed into the three corresponding parts a.) correlation, b.) conditional 627 
bias and c.) unconditional bias. It is important to note that correlation, Component A (𝑜 , 𝑦 ), will 628 
be the same as the Component A (𝑜 , 𝑥 ). Where  629                                                 𝜌௬௢ = 𝑐𝑜𝑣(𝑦 , 𝑜 ) 𝜎௬  ∗  𝜎௢  

                               [8]           630                                 𝜌௫௢ = ௖௢௩(௫ ,௢ ) ఙೣ  ∗ ఙ೚  
 
                        [9] 631 𝑐𝑜𝑣(𝑦 , 𝑜 ) = 𝑐𝑜𝑣(𝛽଴ + 𝛽ଵ 𝑥 , 𝑜 ) = 𝛽ଵ  𝑐𝑜𝑣(𝑥 , 𝑜 )         [10] 632 𝑣𝑎𝑟(𝑦 ) =  𝛽ଵଶ ∗ 𝜎௢    [11]                𝜎௬ =  𝛽ଵଶ ∗ 𝜎௫            [12]   633                                              𝜌௬௢ = 𝑐𝑜𝑣(𝑦 , 𝑜 ) 𝜎௬  ∗ 𝜎௢  
                             [13]      634 

      𝜌௬௢ = ఉభ∗௖௢௩(௬ ,௢ )ఉభ∗ఙೣ ∗ ఙ೚  
  = ఉభ∗௖௢௩(௬ ,௢ )ఙ೤  ∗ ఙ೚   =  𝜌௫௢        [14] 635 

Conditional bias B (𝑜 , 𝑦 ) will be reduced to zero MOS estimates. 636 

B (𝑜 , 𝑦 ) = (𝜌௬௢  −  ( ఙ ೤ ఙ೚  ))ଶ = (𝜌௫௢ − ఉభ ∗ ఙೣ   ఙ೚   )ଶ = (𝜌௫௢ −  ఙ೤   ఙ೚   )ଶ     [15] 637 
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𝜌௫௢ = (− (ఘೣ೚  ି ఙ೚ ௫  ) ∙   ఙೣ   ఙ೚  )ଶ = 0 638 

Unconditional bias C (o , y ) will also reduce to zero for MOS estimates. 639 

                       C (𝑜 , 𝑦 ) =  ( ௬ ି௢ ఙ೚  ))ଶ               [16] 640 𝑦 = 𝛽଴ + 𝛽ଵ ∗ 𝑥 = 𝑜  − 𝛽ଵ ∗ 𝑥 ∗ +𝛽ଵ ∗ 𝑥        [17] 641 

C (𝑜 , 𝑦 ) → 0  642 
 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 
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 655 
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 660 
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Abstract 14 

Precipitation forecasts, particularly at subseasonal-to-seasonal (S2S) time scale, are essential for 15 
informed and proactive water resources management.  Although S2S precipitation forecasts have 16 
been evaluated, no systematic decomposition of the skill, Nash-Sutcliffe Efficiency (NSE) 17 
coefficient, has been analyzed towards understanding the forecast accuracy.  We decompose the 18 
NSE of S2S precipitation forecast into its three components – correlation, conditional bias, and 19 
unconditional bias – by four seasons, three lead times (1–12-day, 1-22 day, and 1-32 day), and 20 
three models (ECMWF, CFS, NCEP) over the Conterminous United States (CONUS). 21 
Application of dry mask is critical as the NSE and correlation are lower across all seasons after 22 
masking areas with low precipitation values.  Further, a west-to-east gradient in S2S forecast 23 
skill exists and forecast skill was better during the winter months and for areas closer to the 24 
coast. Overall, ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s 25 
performance, mainly for the forecasts issued during fall and winter months.  However, ECCC 26 
and NCEP CFS performed better for the forecast issued during the spring months, and also 27 
performed better in in-land areas.  Post-processing using simple Model Output Statistics could 28 
reduce both unconditional and conditional bias to zero, thereby offering better skill for regimes 29 
with high correlation. Our decomposition results also show efforts should focus on improving 30 
model parametrization and initialization schemes for climate regimes with low correlation 31 
values. 32 

1.0 Introduction 33 

Global climate change and regional anthropogenic disturbances, including urbanization 34 
and deforestation, are driving shifts in the hydrologic cycle, and impacting water resources 35 
(Konapala et al, 2020; Milly et al., 2008). Consequently, extreme precipitation events, including 36 
prolonged droughts or flooding, are expected to be more frequent, further threatening water 37 
supply and variability (Milly et al., 2008). In conjunction with hydroclimatic changes, population 38 
changes also stress surface and groundwater resource withdrawals in many regions across the 39 
Conterminous US (CONUS) (Sankarasubramanian et al., 2017). Reservoir releases, during both 40 
floods and droughts, are modified for human needs, downstream ecological health, and for 41 
ensuring watershed resilience (Chalise et al., 2021). Mismanagement of water resources, both 42 
surface water and groundwater, may pose threats to agriculture, supply chains, human and 43 
environmental health, and regional economies. Hence, reliable and accurate subseasonal-to-44 
seasonal (S2S) precipitation forecasts are essential in an age of a changing climate for improving 45 
water management strategies and preparing for near-future hydroclimatic extremes. 46 

Compared to the skill of short-range weather forecasts (less than 15 days) and long-range 47 
seasonal forecasts, which are reasonably good, the skill of S2S forecasts, ranging between 15 to 48 
60 days, is low and is often referred to as the ‘predictability desert’ (Vitart et al., 2012). 49 
Understanding the current S2S precipitation forecasts skill, as well as highlighting the potential 50 
avenues – initialization, parametrization, and post-processing schemes – for improvement are 51 
critical for accurate S2S precipitation forecasts for operational use (White et al., 2017). Known 52 
contributing factors that influence S2S model forecasting performance include the 53 
parametrization and initialization schemes, large-scale atmospheric circulation modes, and 54 
coupled models (Vitart et al., 2018). The model initialization scheme, including land surface and 55 
soil moisture representation, are also crucial for accurately representation of geophysical fluxes. 56 
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Climate oscillations, such as El Nino Southern Oscillations (ENSO) and Madden-Julian 57 
Oscillations (MJO) also influence seasonal forecast prediction skill (Zhang, 2013).  ENSO’s 58 
influence on United States’ winter hydroclimatology is well-known, particularly over the 59 
Southeast and west coast, accounting for roughly a third of US winter forecasting skill (Quan et 60 
al., 2006).  61 

Previous studies have attributed S2S skill between ENSO and MJO (Sun et al., 2022; 62 
Wang et al., 2019) and have compared S2S skill across models, lead times and seasons (Zhang et 63 
al 2021; de Andrade et al, 2019). However, these studies that examined S2S models’ forecasting 64 
performance did not apply a threshold on dry mask prior to calculating the model’s skill. Zhang 65 
et al (2021) have evaluated S2S forecast skill by filtering extreme precipitation events, but did 66 
not apply a dry mask threshold for evaluating the overall skill. Without a dry mask threshold, the 67 
S2S skill will be inflated, especially in regions with a pronounced dry season, as zero rainfall 68 
days is included in these skill calculations (Wilks, 2006). The ability to predict days without 69 
precipitation is important for drought prediction and planning, but the skill will be inflated for 70 
wetter and normal conditions; therefore, the dry mask application was used to filter out areas of 71 
inflated skill based on the climatological means.  Several studies focused on extreme 72 
precipitation forecasts have applied percentile filters (Zhang et al., 2021), which reduces the 73 
sample size particularly while evaluating monthly/seasonal skill.  Given the pronounced 74 
seasonality in precipitation over the CONUS (Petersen et al., 2012), we systematically evaluate 75 
the S2S forecasting skill across CONUS by applying a dry mask before considering the skill for 76 
each lead time, season and region.  Evaluating the forecast skill after applying the dry mask 77 
could potentially affect the source of model skill, and the associated biases that could be obtained 78 
from decomposition. 79 

S2S precipitation forecast skill has been compared considering both probabilistic and 80 
deterministic metrics to evaluate the forecast skill (Zhang et al., 2021; de Andrade et al., 2019).  81 
S2S models’ skill have been evaluated using Mean Square Error (MSE), mean square skill score 82 
(MSSS), root mean square error (RMSE), anomaly correlation coefficient (ACC), Pearson’s 83 
correlation coefficient, and ranked probability skill score (RPSS) (Zhang et al., 2021; de Andrade 84 
et al., 2019). de Andrade, et al., (2019) evaluated hindcast skill using linear correlation 85 
coefficient and analyzed the sources of bias and variability; however, this study was a large-scale 86 
global analysis of forecast skill and did not consider the seasonal skills and the associated errors. 87 
Decomposing the MSSS three components – correlation coefficient, condition bias and marginal 88 
bias – would provide information on the regions and seasons over which the selected models 89 
have the ability to capture the variability in observed precipitation but have significant biases in 90 
estimation.  Further, the hindcast assessment of (de Andrade et al., 2019) was performed without 91 
the dry mask application, which may inflate forecast skill particularly for regions with 92 
pronounced dry season.   93 

The Nash-Sutcliffe Efficiency (NSE), also known as the coefficient of determination, is a 94 
metric that measures the skill of hydrologic models (Nash & Sutcliffe, 1970). Li et al., (2022) 95 
used to evaluate S2S forecast skill performance based on Kling-Gupta Efficiency (KGE) metric, 96 
which provides a different decomposition of NSE, without applying the dry mask across the 97 
CONUS or considering seasonality. However, decomposing the Nash-Sutcliffe Efficiency (NSE) 98 
for precipitation hindcasts after applying the dry mask provides critical information without 99 
inflating the skill of the model. Furthermore, implementing new parametrizations and 100 
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initialization schemes could be costly and take additional time to develop reforecasts. One 101 
effective way to improve the forecasting skill is to consider post-processing schemes (Carter et 102 
al., 1998; Glahn et al., 2003).  Further, post-processing could also be implemented over 103 
reforecasts from multiple models to develop multi-model ensembles which have been shown to 104 
improve the forecast skill compared to the best individual model (Weigel et al., 2008).  Past 105 
work on statistical post-processing has considered both parametric and non-parametric 106 
approaches (Hamill et al., 1997; Schefzik et al., 2013; Scheuerer et al., 2015).  Although many 107 
studies have used post-processing schemes on S2S precipitation forecasts, understanding the 108 
components of S2S forecast skill could provide additional insights on how post-processing 109 
schemes can be used and could also indicate potential regions where improvements in models 110 
will be needed to further improve the forecast skill.  111 

Several S2S models that contribute multi-model ensembles have been run for reforecasts. 112 
Historically, some S2S multi-model datasets have only been running for a period of short time, 113 
limiting the ability to capture the interannual variability in precipitation. Other multi-model 114 
ensembles have primarily focused on generating monthly forecasts for seasonal prediction with 115 
infrequent model initialization. This study uses three individual models hindcasts from the World 116 
Weather Research Programme (WWRP) and World Climate Research Programme (WCRP) S2S 117 
prediction project (Vitart et al., 2012).  The S2S project, originating in 2013, has a long record of 118 
forecasts and reforecasts that are initialized multiple times a week (Vitart et al., 2017).  The 119 
longer range of data allows for larger sample sizes for robust estimation of NSE and 120 
decomposition metrics.  Comparing model performance is important because forecast skill varies 121 
between S2S models as each model has different parameterization schemes, number of 122 
ensembles, and resolution.  This study will consider decomposition of NSE of S2S reforecasts 123 
over the CONUS for three models – European Centre of Medium-Range Weather Forecast’s 124 
(ECWMF) National Centre for Environmental Prediction Climate Forecast System (NCEP CFS) 125 
and Environment and Climate Change Canada (ECCC) – after applying the dry mask. Previous 126 
studies have shown ECMWF S2S hindcast models have outperformed both CFS and ECCC 127 
models on a global basis (de Andrade et al, 2019), but the performance of these three models 128 
have not been compared after the dry mask threshold has been applied.  The North American 129 
Multi-Model Ensemble (NMME) forecasts have proved to perform better than individual models 130 
by pooling the ensemble members from several models (Krakauer, 2019).  However, for this 131 
study, the NMME was not considered because the number of ensemble members varies between 132 
individual models, giving more weight to some models.  Additionally, to improve multi-model 133 
performance, understanding individual models’ type of errors and potential for correcting the 134 
biases before pooling the ensembles, which could further improve the multi-model forecast 135 
performance. Hence, this study will compare the decomposed NSE and associated errors of S2S 136 
precipitation forecasts of three individual models by season and lead time under three Koppen 137 
climate regimes across the CONUS.  138 

The main intent of this study is to decompose the S2S forecasting skill as a function of 139 
lead time over the CONUS after applying the dry mask. To our knowledge, limited/no work has 140 
been performed on systematically decomposing the NSE over various seasons after applying the 141 
dry mask.  In addition to applying the dry mask, evaluating model skill regionally is also critical 142 
as the precipitation has pronounced seasonality over the CONUS (Petersen et al., 2012).  143 
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Analyzing forecasting skills regionally can also provide insights on how land surface conditions, 144 
low-frequency oscillations, and regional hydroclimate influence the model performance.  145 

The manuscript is organized into the following sections: S2S precipitation hindcast and 146 
observed databases from three different models are provided in the next section.  Then, the dry 147 
mask threshold application procedure is presented along with the NSE decomposition.  The 148 
following section provides the results from the full decomposition of ECMWF and the results 149 
from different regimes along with the skill comparison from three S2S reforecasts.  150 

2.0 Data  151 

This section provides the S2S hindcast database and observed data along with the details 152 
to calculate and decompose the NSE for S2S forecasts over various lead times and seasons. 153 
 154 
Observed Precipitation 155 

For calculating the S2S reforecasts skill, we used the CPC Global Unified Precipitation 156 
dataset provided by the NOAA Physical Science Laboratory (PSL), with a resolution of 157 
(0.5°x0.5°) (Chen, et al., 2008).  Upon comparing the accuracy of various precipitation datasets, 158 
the CPC Unified dataset performed particularly well in areas that have dense areas of rain gauges 159 
(Beck et al., 2017). This study focused on the CONUS, which has a dense system of rain gauges, 160 
and has been used in other forecast verification studies (Becker et al, 2020).  161 
 162 
S2S Hindcast Database 163 

For S2S model skill evaluation, three hindcast models were assessed: 1.) European 164 
Centre of Medium-Range Weather Forecasts (ECMWF), 2.) National Center for Environmental 165 
Prediction’s (NCEP) Climate Forecast System (CFS) model, and 3.) Environment and Climate 166 
Change Canada (ECCC). For full decomposition of ECMWF, the S2S hindcasts were evaluated 167 
for the full 20-year hindcast period (Table 1) and up to the longest available lead time of 45 days. 168 
The ensemble means were averaged over three different lead times: 1) 1-15 days, 2) 1-30 days, 169 
and 3) 1-45 days, and compared with the observed average precipitation corresponding to the 170 
three lead times. Additionally, the average forecasts and corresponding observed average daily 171 
precipitation values were pooled by the date of hindcast initialization into the following seasons: 172 
a) January, February, March (JFM), b) April, May, June (AMJ), c) July, August, September 173 
(JAS), d) October, November, December (OND). Thus, the evaluation for each season provides 174 
the skill of forecasts issued during the months within the considered four seasons.  175 
 176 

For the model comparison section, the three models were assessed for lead times of 1-12 177 
days, 1-22 days, and 1-32 days for four different seasons between January 1st 2000 and 178 
December 30th 2010, the longest available overlapping date ranges and lead times for all three 179 
models.  Additionally, ECMWF and NCEP were compared for lead times of 1-42 days.  The 180 
ECMWF hindcasts are initialized twice a week and range from 2000-2019, NCEP CFS hindcasts 181 
are initialized daily and are available from 1999-2010, and ECCC are initialized weekly, and 182 
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reforecasts range from 1995-2012 (Vitart et al., 2017).  The S2S precipitation hindcast model’s 183 
information and specification are shown in Table 1 (Vitart et al., 2017). 184 

Model LEAD 
TIME 

RESOLUTION HINDCAST 
PERIOD 

HINDCAST 
ENSEMBLE 

SIZE 

FORECAST 
ENSEMBLE 

SIZE 

HINDCAST 
FREQUENCY 

OCEAN 
COUPLING 

SEA ICE 
COUPLING 

ECMWF 0-46 
Days 

0.25°x0.25°, days 0-
10, 

0.5°x0.5°, after day 
10 L91 

Past 20 
Years 

11 51 Twice a 
Week 

Yes No 

NCEP 
CFS 

0-44 
Days 

~1°x1°, L64 1999-2010 4 16 Daily Yes Yes 

ECCC 0-32 
Days 

0.45°x0.45°, L40 1995-2012 
 

4 21 Weekly Yes No 

Table 1. Subseasonal-to-Seasonal Hindcast Models and Forecast model information 185 

2.1 Dry Mask application and Skill Assessment and Decomposition  186 

a. Seasonality of Rainfall and Dry Mask Application 187 
Prior to calculating the NSE for each hindcast-initialized season, a dry mask was applied 188 

based on the observed precipitation dataset to filter out the areas that receive small amounts of 189 
rainfall, which may result in an inflated forecast skill because the forecasted and observed 190 
rainfall have no rainfall.  Antolilk (2000) and Charba et al., (2011) considered daily precipitation 191 
less than 0.01 inches as no event for evaluating the skill.  Based on that work, the dry mask was 192 
set at a threshold value for each individual grid cell, if the observed daily precipitation over the 193 
20 years is less than 0.15 inches, 0.30 inches and 0.45 inches for 15-day, 30-day and 45-day lead 194 
times from the time of issued forecast, respectively. The NSE and the three components were 195 
evaluated for all the three models for each lead time over the CONUS. We also evaluate the 196 
forecast skill – NSE and its components – based on the climate regime. For this purpose, we 197 
considered three main regimes – desert (regime B), temperate (regime C) and continental 198 
(regime D) – over the CONUS based on Koppen climate classification. A small area in southern 199 
Florida fell into the tropical (regime A) Koppen climate group; however, since this regime 200 
corresponds to only one grid cell from the hindcast model, we combined this tropical area with 201 
the temperate regime (Supplemental Information (SI) - Figure SI-1).  Using the aggregated 202 
Koppen Climate Regime (Beck, et. al, 2017) into three climate regimes, a regional analysis was 203 
performed for each of the S2S hindcast models (Supplemental Information (SI) - Figure SI-1).  204 

 205 
b. Skill Assessment Metrics 206 
Skill assessment metrics measure the performance of the model's forecast ability compared to 207 

the observed variable. Frequently used performance metrics include anomaly correlation, NSE 208 
and Kling Gupta Efficiency (Clark et al., 2021). The NSE measures the magnitude of error 209 
variance from the model prediction compared to the observed variance in the data and  has an 210 
upper bound of 1 but has a lower bound of -∞ and is used to determine the ‘goodness-of-fit’ of a 211 

https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
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model. NSE is related to MSE but is normalized by the standard deviation of the observed 212 
precipitation or data values (Gupta et al., 2009).  213 

                                             𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑜𝑜𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖) = 1 − ∑ (𝑜𝑜𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

∑ (𝑜𝑜𝑖𝑖𝑖𝑖−𝑜𝑜𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

                                 (1) 214 

Where oit is the observed precipitation value, xit is the corresponding S2S precipitation, where t = 215 
1, 2…n is the time index with ‘n’ forecasts and i is the lead time of the forecast.  The mean 216 
observed precipitation is 𝑜𝑜𝑖𝑖𝑖𝑖.  For a given i, NSE will be decomposed into three parts (Murphy 217 
1988; Weglarczyk 1998): A) Pearson’s correlation coefficient (equation 3), B) conditional bias 218 
(equation 4), and C) unconditional bias (equation 5) (Gupta et al., 2009).   219 

𝑁𝑁𝑁𝑁𝑁𝑁 =  𝐴𝐴 − 𝐵𝐵 − 𝐶𝐶 220 

                       𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝑥𝑥𝑥𝑥 
2  −  (𝜌𝜌𝑥𝑥𝑥𝑥  −  ( 𝜎𝜎𝑥𝑥 

𝜎𝜎𝑜𝑜 
 ))2 − ( 𝑥𝑥 −𝑜𝑜 

𝜎𝜎𝑜𝑜 
 ))2               (2) 221 

A=𝜌𝜌𝑥𝑥𝑥𝑥 
2   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒     𝜌𝜌𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 , 𝑜𝑜 )

 𝜎𝜎𝑥𝑥  ∗ 𝜎𝜎𝑜𝑜 
 

 
                               (3) 222 

B=[𝜌𝜌𝑥𝑥𝑥𝑥 −
𝜎𝜎𝑥𝑥 
𝜎𝜎𝑥𝑥 

  ]2                                                   (4) 223 

     C=[ 𝑥𝑥 −𝑜𝑜 
𝜎𝜎𝑜𝑜 

 ]2                                                      (5) 224 

Where 𝜎𝜎𝑥𝑥  and 𝜎𝜎𝑜𝑜  represent the standard deviation of x and o, and  𝑜𝑜 and 𝑥𝑥  represent the 225 

mean of x and o once xit and oit were summed from 1 to n for lead time i in equation 1.  The 226 
pearson correlation coefficient between x and o is 𝜌𝜌𝑥𝑥𝑥𝑥  (equation 3). The first component of the 227 

decomposition, Pearson’s correlation coefficient, shows the linear association between the 228 
forecast and the observation. The conditional bias is the difference in the slope of the regression 229 
line fitted between forecast and observation with a slope of 1 that indicates a perfect forecast.  230 
The unconditional bias, indicating a systematic bias, denotes the ratio of difference between the 231 
mean of the observation and the mean of the forecast to the observed standard deviation. 232 

3.0 Results 233 

Full Decomposition of ECMWF 234 
A full NSE decomposition was performed on the ECMWF S2S hindcast model because 235 

the ECMWF model has the longest available reforecast time range and has the largest number of 236 
ensemble members. Prior to decomposing NSE, a dry-mask threshold was applied based on the 237 
lead time for the climatological means of each grid cell, to mask out areas with low precipitation 238 
values to avoid inflated skill values.  Both NSE and correlation are lower across all seasons after 239 
the dry mask threshold was applied. Figure 1a illustrates the difference in Normalized Nash-240 
Sutcliffe Efficiency (NNSE) of 30-day ahead S2S precipitation forecast skill with and without 241 
the dry mask threshold). For instance, a forecast issued on March 30, 2000 with a lead time of 45 242 
days corresponds to the skill of the forecast in predicting precipitation from March 30, 2000 to 243 
May 15, 2000. Thus, the skill of the forecast issued in JFM can cover the observed precipitation 244 
in April and May. To reiterate, all the figures with seasonal S2S performance metrics denote the 245 
skill summary of the forecast issued during that season as opposed to the ability to forecast the 246 
observed precipitation during that season. 247 
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To understand the importance of dry masking, we first show the 1-30 day ahead S2S 248 
precipitation forecast skill with and without dry mask (Figure 1) based on Normalized NSE 249 
(NNSE). Lower NNSE (equation 6) values, the inverse of NSE, indicate better predictive 250 
performance.  251 

                   NNSE= 1
2−𝑁𝑁𝑁𝑁𝑁𝑁

  (6)     252 

For the forecast issued in the four seasons, the mean NNSE values are lower for the grid 253 
cells below the dry mask threshold than for the grid cells that exceeded the threshold (Figure 1). 254 
Even though including “no-precipitation event” is expected to inflate the skill, dry masking by 255 
filtering out regimes rather than simply removing values below a given threshold, allows us to 256 
maintain the same sample size across all grid cells, thereby changing the masked areas based on 257 
both forecast-initialized seasons (Figure 1) and lead time.  258 

Figure 1. Normalized Nash Sutcliffe Efficiency (NNSE) of 1-30 days ahead ECMWF hindcast for the CONUS before 259 
dry mask is applied (left column) and after (middle column) dry mask threshold is applied for four seasons of 260 

initialized forecasts: JFM, AMJ, JAS and OND for 1-30-day lead time.   The scatter plot comparison of grid cell’s 1-261 
30-day climatological precipitation means and the corresponding Normalized NSE values (right column).  The 262 

scatter plot shows the NNSE values that fall below the dry mask threshold (red region) and above (gray region). The 263 
average NNSE of the grid cells below the dry mask threshold (green) and above the dry mask threshold (blue).  264 

Since the NNSE is the inverse of the NSE, the lower NNSE values indicate better predictive performance. 265 
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The overestimation of S2S forecast skill occurs if no dry mask is applied, particularly for 266 
pronounced dry seasons (JFM and JAS). Studies that evaluated S2S precipitation forecasts skill 267 
did not consider dry mask application, which ignores the seasonality in precipitation, thereby 268 
indicating potential difference in forecast skill between regions (e.g., Li et al., 2022). However, 269 
after the dry mask application (Figure 1), we find that the skill was fairly similar between 270 
regimes. Thus, it is important to apply a dry mask which inherently considers the seasonality in 271 
precipitation for skill evaluation.  Quantifying the forecast skill for critical events (e.g., peak 272 
rainfall seasons) is important particularly if the interest is to identify regions with limited skill.  273 

 274 
a) NSE Spatial Patterns 275 

We present results for the NSE and its decomposition (Figures 2-7) for the ECMWF 276 
model and then compare its performance with NCEP and ECCC later (Figures 8-10). Before 277 
assessing the components of the NSE, we first investigate the NSE over the CONUS, which 278 
shows the S2S forecasting skill of ECMWF for various lead times over the season (Figure 2).  279 
NSE is better in the winter and fall seasons (JFM and OND) in comparison to spring and summer 280 
seasons (AMJ and JAS) (Figure 2), which is partially due to El Nino Southern Oscillation 281 
(ENSO) being active during winter and fall months and ENSO dying or being at an incipient 282 
stage during AMJ and JAS (Ham et al., 2019). The NSE also tends to be better closer to the 283 
coasts indicating the local sea surface temperatures (SSTs) in influencing S2S forecasts.  284 
Additionally, the NSE shows a slight gradient from West Coast to East Coast (Figure 2). The 285 
NSE tends to be weaker around the Great Lakes.  Further, the areas surrounding the dry mask 286 
regions tend to have a lower NSE. 287 

Figure 2. Nash Sutcliffe Efficiency (NSE) of ECMWF hindcast for CONUS after dry mask threshold is applied for 288 
four season of initialized forecasts: JFM, AMJ, JAS, and OND, and for three lead times: 1-15 days, 1-30 days, and 289 

1-45 days. 290 
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b) Decomposition Plots 291 
 We decompose the NSE of ECMWF in Figure 2 into correlation (Figures 3), conditional 292 
bias (Figure 5) and unconditional bias (Figure 6) for each lead time for the four seasons. 293 

i) Correlation and its longitudinal distribution 294 
The first component of decomposition, Pearson’s correlation coefficient, shows the innate 295 

model skill and the lower bound for explained variance in the model. The analysis of correlation 296 
shows that the skill decreases as lead time increases for all seasons (Figure 3.).  Similar to the 297 
NSE, the correlation is also lower in the summer seasons and higher in the winter seasons.  The 298 
correlation between S2S precipitation hindcasts and observed precipitation was averaged by 299 
longitude, for each season and lead time, after the dry mask threshold was applied. This 300 
longitudinal distribution more clearly illustrates the West to East coast gradient, where the 301 
correlation is higher in the West Coast and decreases towards the East Coast (Figure 3-4).  302 

Figure 3. Correlation, the first component of NSE decomposition, from the ECMWF hindcast data for CONUS after 303 
dry mask threshold is applied for four seasons of initialized forecasts: JFM, AMJ, JAS, and OND, and for three 304 

different lead times: 1-15 days, 1-30 days, and 1-45 days. 305 
 306 

On the West Coast, correlation coefficients are higher than on the East Coast, which is 307 
partially due to the pronounced seasonality in precipitation over the West Coast that results in 308 
reduced number of grid cells being considered for evaluation after applying the dry mask.  309 
Additionally, correlation coefficients are higher towards the coasts and weaker further inland due 310 
to potential influence of local SSTs (Sankarasubramanian et al., 2017).  Correlation coefficients 311 
are also lower towards the area surrounding the masked out regions. 312 



manuscript submitted to JGR-Atmospheres 
 

 

Figure 4. Longitudinal distribution of correlation by the average by latitude of the ECMWF hindcast data for 313 
CONUS after dry mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and 314 

for three lead times: 1-15 days, 1-30 days, and 1-45 days 315 
ii.) Conditional Bias 316 

The second and third components, conditional bias, and unconditional bias, are expected 317 
to be zero for ideal forecasts.  The conditional bias for the ECMWF decomposition increases as 318 
lead time increases and tends to be higher towards the coasts. Further, the conditional bias is 319 
higher during the summer season in comparison to the winter season (Figure 5).  The Great 320 
Lakes Region and the central part of the US has a high conditional bias that increases with 321 
increasing lead times, whereas the Sunbelt has a low conditional bias during the winter and 322 
spring seasons.  Conditional bias is also higher towards the areas that were masked out from the 323 
dry mask.  Conditional bias is highest during JAS, specifically in the desert areas that were 324 
masked out during the other seasons and is lowest during OND. 325 

Figure 5. The second component, conditional bias, of NSE decomposition, from the ECMWF hindcast data for 326 
CONUS after dry mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and 327 

for three lead times: 1-15 days, 1-30 days, and 1-45 days.  328 
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iii.) Unconditional Bias 329 
The third component, unconditional bias, represents the systematic bias in reproducing 330 

the long-term mean of the observed precipitation. Unconditional bias is high in the Great Lakes 331 
Region and in the central part of the US (Figure 6).  Additionally, unconditional bias is high in 332 
the desert regions for JAS, which was masked during the other seasons, for JAS. Conditional 333 
bias and unconditional bias are generally correlated and have higher values in the same regions.  334 

Figure 6. Unconditional bias, the third component of NSE decomposition, from the ECMWF hindcast data 335 
for CONUS after dry mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, 336 

and for three lead times: 1-15 days, 1-30 days, and 1-45 days. 337 
 338 

c. Skill comparison across Koppen Climate Regimes 339 
The skill of ECMWF S2S hindcast model was compared under three Koppen climate regimes: a) 340 
desert b.) temperate and c.) continental (Figure SI-1). For all lead times and climate regimes, the 341 
correlation varies by season and is lower in the summer months and is the highest in the winter 342 
months (Figure 7).  Since the dry mask threshold was applied before the climate regime 343 
classification was considered, the correlation does not vary much between regimes within a 344 
given season. Conversely, if a dry mask had not been applied, the desert regimes may expect to 345 
have much better skill, because of inflated skill due to no-precipitation days. 346 
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 347 
Figure 7. The box and whisker plot of correlation from the ECMWF hindcast model for three Koppen climate 348 

regimes: desert (red), temperate (blue) and continental (green) for lead times 1-12, 1-22, 1-32, and 1-42 days for all 349 
four seasons that the forecasts were initialized: JFM, AMJ, JAS, OND. 350 

 351 
d. Model Comparison of NSE and Correlation 352 

Comparing S2S hindcast models is important to understand the relative performance of the 353 
individual models. In this analysis, ECMWF’s NSE was compared to NCEP CFS’s NSE and 354 
next ECMWF’s correlation was compared to all three models.  The dry mask threshold may 355 
affect the model performance; therefore, forecast skill was not considered in areas where the 356 
historically observed precipitation did not exceed this threshold.  357 

 358 
The blue regions in Figure SI-2 show where ECMWF’s NSE outperforms the NSE of 359 

NCEP CFS for most lead times, regimes, and seasons, especially at shorter lead times, except for 360 
a few inland areas.  Although ECMWF’s NSE is higher than NCEP’s in most regimes, seasons, 361 
and lead times, the ECMWF and NCEP CFS’s correlation is closer in value (Figure 8). NCEP 362 
CFS has a higher NSE and correlation than ECMWF during AMJ. In comparison to ECMWF, 363 
NCEP’s correlation improves with longer lead times during AMJ and is also higher in areas 364 
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further inland. Conversely, ECMWF has better performance around the coast (Figure 8) except 365 
for OND, which may be due to the two different ocean models used in the initializations. 366 

Figure 8. Difference in Correlation values between ECMWF S2S hindcast and NCEP CFS for CONUS after dry 367 
mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and for three lead 368 

times: 1-12 days, 1-22 days, and 1-42 days. 369 
 370 

ECMWF and ECCC models’ correlation differ by season but Figure 9 does not show a 371 
clear inland-coastal differential in skill (Figure 9), which could be potentially due to ECMWF 372 
and ECCC having the same ocean models. ECCC has a higher correlation than ECMWF during 373 
the forecasts initiated in the summer months (JAS).  However, since ECCC’s lead time ranges 374 
from 1-32 days, 1-42 day lead time between ECMWF and ECCC could not be compared.  375 
 376 

Across seasons and lead times, NCEP CFS’s correlation is higher than ECCC’s 377 
correlation for NCEP (Figure SI-3).  NCEP CFS’ model performance improves noticeably at 378 
longer lead times and was not compared to 1-42 days lead time because of ECCC’s shorter lead 379 
time forecast availability.  However, when comparing the first component, correlation, by 380 
regime, season, and lead time, ECCC has higher correlation in AMJ, when compared to both 381 
NCEP CFS as well as ECMWF. However, ECCC’s performance tends to be worse in the 382 
remaining three seasons. 383 

 384 
 385 
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Figure 9.  Difference in Correlation values between ECMWF S2S hindcast and ECCC for CONUS after dry mask 386 
threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and for three lead times: 1-387 

12 days, 1-22 days, and 1-32 days. 388 
 389 

Overall, ECMWF’s correlation for the forecast issued in seasons, JFM and OND, is 390 
higher than the other two models, but ECMWF’s correlation is lower than the other models for 391 
the forecasts issued in AMJ (Figure 8-9).  ECMWF has the highest NSE and correlation when 392 
solely considering the skill within the CONUS boundaries; however, NCEP CFS and ECCC 393 
hindcast models have much better forecast skill in the Great Lakes regime on and the Canadian 394 
regime just north of the Great Lakes, which although may not fall within the US boundaries, is 395 
still critical for the Midwest’s water resources. ECMWF performs better towards the coasts and 396 
the skill may be higher in the winter seasons due to the areas that were masked out by the dry 397 
mask threshold.  NCEP CFS and ECCC perform better in areas further inland, which is why the 398 
skill may be noticeably better in the spring and summer months (AMJ and JAS) where the inland 399 
regimes are not masked by the dry mask threshold since the regime receives higher precipitation 400 
during the summer.  The differences in model skill could be due to the different ocean models 401 
and different initialization schemes, however this attribution has to be systematically analyzed 402 
further.  403 

 404 
e. Model Skill comparison across Koppen Climate Regimes 405 

The performance metrics for the three hindcast models were analyzed across the three 406 
Koppen climate regimes over the CONUS.  Each model’s NSE and the decomposed components 407 
were divided into climate regimes by season and lead times. At longer lead times, the differences 408 
in NSE reduces across seasons and climate regimes with NCEP CFS beginning to outperform 409 
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ECCC (Figure SI-4).  ECMWF’s NSE was higher than the NSE of ECCC and NCEP CFS across 410 
climate regime, season, and lead times (Figure SI-4), because NCEP and ECCC had high 411 
unconditional and conditional biases (Figure SI-4).  Since these biases can be reduced to zero 412 
with simple post-processing techniques such as Model Output Statistics (Appendix A), we 413 
focused on comparing correlation (Figure 10).   414 

 415 
The Pearson correlation coefficient is generally higher for ECMWF in comparison to 416 

ECCC and NCEP CFS models for all lead times, regimes, and seasons (Figure 10). There does 417 
not seem to be a consistent trend on how models perform for each climate regime across seasons 418 
and lead times even though both NCEP and ECCC perform better with forecasts issued in AMJ 419 
(Figure SI-4).  For ECMWF and ECCC, the correlation is higher at shorter lead times, but 420 
NCEP’s correlation remains relatively consistent across lead times (Figure 10).  Across all 421 
models, lead times, and regimes the seasonal patterns illustrate that correlation is the highest 422 
during JFM and OND and lowest during AMJ and JAS.  423 

Figure 10. The average correlation for each regime: Regime B (desert), Regime C (temperate), and Regime D 424 
(continental) for each model: ECMWF (black), ECCC (blue), and NCEP CFS (red).  The average correlation was 425 

calculated by lead time a) 1-12 days b.) 1-22 days and c.) 1-32 days for seasons JFM, AMJ, JAS, and OND. 426 
 427 
The conditional bias is the lowest for ECMWF and highest for NCEP CFS particularly 428 

for AMJ and at shorter lead times (Figure SI-4).  NCEP’s median marginal bias was lower than 429 
ECMWF and ECCC, but one grid cell on the West Coast had a very high conditional bias 430 
causing the mean bias of all of the grid cells to be higher than the other two models.. ECCC has 431 
the highest conditional bias at the shorter lead times and ECMWF and NCEP CFS were 432 
comparable at 1-12 days for JFM, JAS, and OND.  Conditional bias has the highest spread 433 
during spring months (AMJ).  With longer lead times (e.g., 1-32 days), the unconditional bias 434 
across the selected models is similar, with ECCC being slightly higher than the other two 435 
models. No clear regional pattern of unconditional bias across all models and seasons was 436 
evident (Figure SI-4 g-i).  The seasonality of unconditional bias seems to change based on lead 437 
times. We discuss in the next section how the conditional bias and unconditional bias could be 438 
potentially improved using post-processing techniques that focus on developing statistical 439 
relationships between model forecasts and the observed precipitation. 440 
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4.0 Discussion  441 
Understanding the S2S precipitation forecasts skill across the CONUS over different 442 

seasons, as well as highlighting potential avenues for model improvement is critical for better 443 
forecast application.  This study a) investigated and compared the spatial distribution of NSE for 444 
three S2S precipitation hindcast models across the CONUS, b) decomposed Nash-Sutcliffe 445 
Efficiency into correlation, conditional bias and unconditional bias based on the lead time and 446 
forecast issued in a season for each model and c) analyzed model skill across three (tropical, 447 
desert and temperate) Koppen Climate regimes. Our analysis shows that NSE of ECMWF was 448 
higher closer to the coast, most likely due to the influence of MJO and ENSO, and was also 449 
higher for the forecast issued during winter months and with shorter lead times.  Decomposition 450 
of NSE shows that the first component, correlation, illustrates there is a gradient in skill from 451 
west coast (higher) to east coast (lower).  Both the conditional and unconditional biases were 452 
also smaller during the winter months and in areas closer to the coast. The model comparison 453 
showed that ECMWF performs well in the winter seasons and towards the coasts, whereas 454 
NCEP CFS’s performance is the best for forecasts issued during AMJ and in inland areas.  The 455 
conditional and unconditional bias were high over the Midwest Great Lakes region.  The 456 
conditional bias was higher for NCEP CFS, particularly for forecasts issued in AMJ and the 457 
unconditional bias was high for forecasts issued in JAS.  ECCC’s skill is high during AMJ and at 458 
short lead times, but decreases significantly with longer lead times. No clear trends were 459 
observed across the climate regimes across the three hindcast models’ performances, but NSE 460 
and correlation was higher for the winter seasons than the summer seasons consistently for all 461 
the lead times, regimes and three models.    462 
 463 
Potential for improving S2S forecasts 464 

Even though our analysis, after application of dry mask, showed that conditional bias and 465 
unconditional bias are the primary reasons for low and negative NSE values for the S2S 466 
hindcasts, this could be overcome by selecting a proper post-processing scheme where the 467 
correlation is high across the CONUS. One of the commonly used post-processing scheme for 468 
correcting weather/climate forecasts is Model Output Statistics (MOS), which is a linear 469 
regression model that uses the forecast or a transformation of it (e.g., principal components) as a 470 
predictor and the observed precipitation as a predictand (Antolik et al., 2000; 471 
Sankarasubramanian et al., 2008). One advantage with a linear regression model is that it reduces 472 
the marginal bias to zero (Appendix A). Further, we also show analytically in Appendix A, a 473 
linear regression model reduces the conditional bias to zero which turns the NSE of the corrected 474 
forecasts from a MOS being equal to the square of the correlation coefficient (i.e., component 475 
A).  Thus, a linear regression based MOS provides a lower bound on the NSE of the forecast to 476 
be decomposed component A, thereby providing a guidance on where post-processing schemes 477 
will be useful for a given location/regime. An example of where post-processing can be effective 478 
for correcting bias is NCEP CFS’s 1-42 day forecasts.  ECMWF did not have any grid cells 479 
where NSE was below zero, because the conditional and unconditional bias were low, so we 480 
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show NCEP, which has large sources of unconditional and conditional bias across all regimes, 481 
but relatively high correlation (SI-4).   482 
 483 

Figure 11 shows locations where a) NCEP’s NSE is less than zero and correlation is 484 
significant (p<0.05), b) NCEP’s NSE is greater than zero and correlation is significant (p<0.05), 485 
and c) NCEP’s NSE is less than zero, but correlation is not significant (p>0.05) for 1-42 day lead 486 
times. For the first case, where NSE is low and correlation is high, post-processing such as MOS 487 
can be effectively used to reduce conditional and unconditional biases to improve forecast skill, 488 
and a large portion of CONUS, mostly inland area and particularly for forecasts issued in seasons 489 
JFM and AMJ (Figure 11).  For the second category, a large portion of the coastal region, 490 
particularly in forecast-initialized seasons AMJ and OND, have significant (p<0.05) correlation 491 
and high NSE, which means post-processing will not be effective as the model does not capture 492 
the observed variability.  Similarly, post-processing will not be effective in areas with low NSE 493 
and correlation that is not significant (p>0.05), which includes a few grid points in AMJ and JAS 494 
(Figure 11). Even though linear-regression based MOS may not result in improved skill in areas 495 
where both NSE and correlation are low, other MOS post-processing schemes can be considered 496 
such as a semi-parametric model or machine learning models (Glahn et al., 1972; Taillardat et 497 
al., 2019), NSE of S2S forecasts could be potentially improved as such models are more flexible 498 
in reducing the mean square error in the forecast. 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 

Figure 11.  Post-processing will be effective in the locations where NSE<0 and correlation is significant (purple), 516 
but will not be necessary in places where NSE<0 but correlation is not significant (red) or in places where 517 

correlation is significant (yellow). 518 
Even though the selected models had ensemble forecast, we considered only ensemble 519 

mean for forecast decomposition. We did not consider probabilistic forecasts such as Brier Skill 520 
score for skill evaluation and decomposition since the differences in ensemble members could 521 
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significantly affect the forecast evaluation.  Similar decomposition on Brier score could reveal 522 
the forecast reliability and resolution of each model’s performance in below-normal and above-523 
normal conditions (Brier, 1950). Further, our analysis focused on decomposition without 524 
evaluating the model’s performance during extreme conditions, which could be pursued further 525 
to understand the sources of bias. Our analysis also did not consider NMME because the number 526 
of ensemble members varies between models, giving more weight to some models. Additionally, 527 
the models within NMME have varying forecast issued frequencies, lead times, and issued dates.  528 
These varying model features within the multi-model need to be addressed before valid model 529 
comparisons can occur.  Since the intent of this study was to show a systematic process of 530 
evaluating model skill and comparing across the models, we did not consider NMME for our 531 
study.   532 
 533 
5.0 Conclusions 534 

S2S precipitation forecasts are critical for operational and proactive water resource 535 
management and planning. Systematic S2S forecast skill assessment is essential for 536 
understanding existing model skill and how different errors contribute to it. Our evaluation of 537 
three S2S reforecasts – ECMWF, ECCC and NCEP – based on NSE decomposition primarily 538 
looked at the skill of forecasts issued during four seasons and under three different lead times.  539 
Our analysis shows the importance of applying dry mask as the NSE and correlation are lower 540 
across all seasons after masking areas with low precipitation values.  The full decomposition of 541 
ECMWF revealed a West to East coast longitudinal gradient in NSE and correlation. 542 
Decomposed components, conditional and unconditional bias, did not show any longitudinal 543 
trends. ECMWF’s skill showed that seasonal trends in forecast skill occurred across all lead 544 
times and all seasons, but correlation did not differ by climate regimes.   545 
 546 

The forecast skill and associated errors were also compared across models.  Overall, 547 
ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s performance, 548 
mainly for the forecasts issued during the winter months, (JFM and OND).  ECMWF had the 549 
highest NSE across the three climate regimes – temperate, desert and continental – considered.  550 
However, ECCC and NCEP CFS performed better for the forecast issued during the spring 551 
months, and also performed better in areas further away from the coast.  Our decomposition 552 
efforts show S2S improvements in physical modeling efforts such as parameterization and 553 
initialization should be undertaken for ECMWF particularly for areas further from the coast, for 554 
forecasts issued in the spring months, AMJ, and for NCEP CFS and ECCC for the forecasts 555 
issued in the winter months over coastal areas. 556 
 557 

Our analytical derivation on how MOS could help improve the forecast shows that a 558 
linear regression based MOS could ensure the NSE of the post-processed forecast to be 559 
component A, which is the square of the correlation coefficient between forecasts and the 560 
observation. This shows because simple linear regression based MOS can eliminate conditional 561 
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and marginal biases. This also provides information on regions (Figure 11, NSE <0 and ρ not 562 
significant) where S2S forecasting schemes can focus on improved model parameterizations and 563 
initializations including coupling with land surface models for improving the skill (Entekhabi et 564 
al., 1999).  565 
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Appendix A. Decomposition of NSE for Linear-Regression Based Model Output Statistics 604 
 605 
For each grid cell, oit is the observed precipitation value, xit is the corresponding S2S 606 
precipitation value and yit is the corrected precipitation value, where t = 1, 2…n is the time index 607 
with ‘n’ forecasts and i is the lead time of the forecast. Linear regression model 2 is used for the 608 
model to get the corrected precipitation value, which is the MOS estimate. 609 

  𝑜𝑜𝑖𝑖𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1 𝑥𝑥𝑖𝑖𝑖𝑖 +  Ɛ𝑖𝑖𝑖𝑖    [1]   610 
 611 

yit = 𝛽𝛽0 + β1 xit                 [2] 612 
   613 

For a given i, NSE is originally between 𝑜𝑜𝑖𝑖𝑖𝑖 and xit  (equation 3), but a linear regression is used to 614 
estimate the corrected precipitation, yit.  For a given i , the NSE is calculated between oit and yit 615 
(equation 4) and then decomposed into parts A (equation 8-14), B (equation (15), and C 616 
(equation 16-17).  617 

     𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑜𝑜𝑖𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖) = 1 − ∑ (𝑜𝑜𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

∑ (𝑜𝑜𝑖𝑖𝑖𝑖−ō𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

=   𝜌𝜌𝑥𝑥𝑥𝑥  
2  −  ( 𝜌𝜌𝑥𝑥𝑥𝑥  −  ( 𝜎𝜎𝑥𝑥 

𝜎𝜎𝑜𝑜 
 ))2 − ( 𝑥𝑥 −𝑜𝑜 

𝜎𝜎𝑜𝑜 
 ))2      [3] 618 

  𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑜𝑜𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖) = 1 − ∑ (𝑜𝑜𝑖𝑖𝑖𝑖−𝑦𝑦𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

∑ (𝑜𝑜𝑖𝑖𝑖𝑖−ō𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

= =  𝜌𝜌𝑦𝑦𝑦𝑦  
2  −  ( 𝜌𝜌𝑦𝑦𝑦𝑦  −  ( 𝜎𝜎𝑦𝑦 

𝜎𝜎𝑜𝑜 
 ))2 − ( 𝑦𝑦 −𝑜𝑜 

𝜎𝜎𝑜𝑜 
 ))2     [4] 619 

 𝛽𝛽1 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜 −𝑥𝑥 )
 𝜎𝜎𝑥𝑥  2

 [5]       𝛽𝛽0 = 𝑜𝑜 −  𝛽𝛽1 ∗ 𝑥𝑥   [6]    𝛽𝛽1 =  𝜌𝜌𝑥𝑥𝑥𝑥 ∗   𝜎𝜎𝑥𝑥   ∗  𝜎𝜎𝑜𝑜 
 𝜎𝜎𝑥𝑥 2

= 𝜌𝜌𝑥𝑥 𝑜𝑜 ∗ 𝜎𝜎𝑜𝑜 
𝜎𝜎𝑥𝑥  

               [7] 620 

Where 𝜎𝜎𝑥𝑥  and 𝜎𝜎𝑜𝑜  represent the standard deviation of x and o, and  𝑜𝑜 and 𝑥𝑥  represent the mean of 621 

x and o once xit and oit were summed from 1 to n for lead time i in equation 3.  The pearson 622 
correlation coefficient between x and o is 𝜌𝜌𝑥𝑥𝑥𝑥.  For the corrected precipitation, yit, the standard 623 
deviation and mean are 𝜎𝜎𝑦𝑦 and y respectively, when yit is summed over time from 1 to n for lead 624 

time i in equation 4.  The correlation coefficient between o and y is 𝜌𝜌𝑦𝑦𝑜𝑜 .   625 
 626 
NSE of oit and yit is decomposed into the three corresponding parts a.) correlation, b.) conditional 627 
bias and c.) unconditional bias. It is important to note that correlation, Component A (𝑜𝑜 ,𝑦𝑦 ), will 628 
be the same as the Component A (𝑜𝑜 , 𝑥𝑥 ). Where  629 

                                                𝜌𝜌𝑦𝑦𝑦𝑦 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 , 𝑜𝑜 )
 𝜎𝜎𝑦𝑦  ∗  𝜎𝜎𝑜𝑜 

 

 

                              [8]           630 

                                𝜌𝜌𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 ,𝑜𝑜 )
 𝜎𝜎𝑥𝑥  ∗ 𝜎𝜎𝑜𝑜 

 

 
                        [9] 631 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑜𝑜 ) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽0 + 𝛽𝛽1 𝑥𝑥 , 𝑜𝑜 ) = 𝛽𝛽1  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 ,𝑜𝑜 )         [10] 632 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦 ) =  𝛽𝛽1
2 ∗ 𝜎𝜎𝑜𝑜 

 
  [11]                𝜎𝜎𝑦𝑦 =  𝛽𝛽1

2 ∗ 𝜎𝜎𝑥𝑥 

 
          [12]   633 

                                             𝜌𝜌𝑦𝑦𝑦𝑦 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 , 𝑜𝑜 )
 𝜎𝜎𝑦𝑦  ∗ 𝜎𝜎𝑜𝑜 

 

 

                            [13]      634 

      𝜌𝜌𝑦𝑦𝑦𝑦 = 𝛽𝛽1∗𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑜𝑜 )
𝛽𝛽1∗𝜎𝜎𝑥𝑥 ∗ 𝜎𝜎𝑜𝑜 

 

 
 = 𝛽𝛽1∗𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑜𝑜 )

𝜎𝜎𝑦𝑦  ∗ 𝜎𝜎𝑜𝑜 
  =  𝜌𝜌𝑥𝑥𝑥𝑥        [14] 635 

Conditional bias B (𝑜𝑜 ,𝑦𝑦 ) will be reduced to zero MOS estimates. 636 

B (𝑜𝑜 ,𝑦𝑦 ) = (𝜌𝜌𝑦𝑦𝑦𝑦 
 −  ( 𝜎𝜎 𝑦𝑦 

𝜎𝜎𝑜𝑜 
 ))2 = (𝜌𝜌𝑥𝑥𝑥𝑥 −

𝛽𝛽1 ∗ 𝜎𝜎𝑥𝑥 
  𝜎𝜎𝑜𝑜 

  )2 = (𝜌𝜌𝑥𝑥𝑥𝑥 −
 𝜎𝜎𝑦𝑦 
  𝜎𝜎𝑜𝑜 

  )2     [15] 637 
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𝜌𝜌𝑥𝑥𝑥𝑥 = (− (𝜌𝜌𝑥𝑥𝑥𝑥  − 𝜎𝜎𝑜𝑜 
𝑥𝑥 

 ) ∙   𝜎𝜎𝑥𝑥 
  𝜎𝜎𝑜𝑜 

 )2 = 0 638 

Unconditional bias C (o , y ) will also reduce to zero for MOS estimates. 639 

                       C (𝑜𝑜 ,𝑦𝑦 ) =  ( 𝑦𝑦 −𝑜𝑜 

𝜎𝜎𝑜𝑜 
 ))2               [16] 640 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑥𝑥 = 𝑜𝑜  − 𝛽𝛽1 ∗ 𝑥𝑥 ∗ +𝛽𝛽1 ∗ 𝑥𝑥        [17] 641 

C (𝑜𝑜 ,𝑦𝑦 ) → 0  642 
 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 
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Key Points: 7 

• NSE decomposition of S2S reforecast skill shows the spatio-temporal variations in 8 
correlation, conditional and unconditional bias. 9 

• Longitudinal gradient of forecast skill exists from the West (higher) to East (lower). 10 

• Regression based model-output statistics provide correlation as the lower bound of NSE 11 
as the marginal and conditional bias reduces to zero. 12 
  13 
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Abstract 14 

Precipitation forecasts, particularly at subseasonal-to-seasonal (S2S) time scale, are essential for 15 
informed and proactive water resources management.  Although S2S precipitation forecasts have 16 
been evaluated, no systematic decomposition of the skill, Nash-Sutcliffe Efficiency (NSE) 17 
coefficient, has been analyzed towards understanding the forecast accuracy.  We decompose the 18 
NSE of S2S precipitation forecast into its three components – correlation, conditional bias, and 19 
unconditional bias – by four seasons, three lead times (1–12-day, 1-22 day, and 1-32 day), and 20 
three models (ECMWF, CFS, NCEP) over the Conterminous United States (CONUS). 21 
Application of dry mask is critical as the NSE and correlation are lower across all seasons after 22 
masking areas with low precipitation values.  Further, a west-to-east gradient in S2S forecast 23 
skill exists and forecast skill was better during the winter months and for areas closer to the 24 
coast. Overall, ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s 25 
performance, mainly for the forecasts issued during fall and winter months.  However, ECCC 26 
and NCEP CFS performed better for the forecast issued during the spring months, and also 27 
performed better in in-land areas.  Post-processing using simple Model Output Statistics could 28 
reduce both unconditional and conditional bias to zero, thereby offering better skill for regimes 29 
with high correlation. Our decomposition results also show efforts should focus on improving 30 
model parametrization and initialization schemes for climate regimes with low correlation 31 
values. 32 

1.0 Introduction 33 

Global climate change and regional anthropogenic disturbances, including urbanization 34 
and deforestation, are driving shifts in the hydrologic cycle, and impacting water resources 35 
(Konapala et al, 2020; Milly et al., 2008). Consequently, extreme precipitation events, including 36 
prolonged droughts or flooding, are expected to be more frequent, further threatening water 37 
supply and variability (Milly et al., 2008). In conjunction with hydroclimatic changes, population 38 
changes also stress surface and groundwater resource withdrawals in many regions across the 39 
Conterminous US (CONUS) (Sankarasubramanian et al., 2017). Reservoir releases, during both 40 
floods and droughts, are modified for human needs, downstream ecological health, and for 41 
ensuring watershed resilience (Chalise et al., 2021). Mismanagement of water resources, both 42 
surface water and groundwater, may pose threats to agriculture, supply chains, human and 43 
environmental health, and regional economies. Hence, reliable and accurate subseasonal-to-44 
seasonal (S2S) precipitation forecasts are essential in an age of a changing climate for improving 45 
water management strategies and preparing for near-future hydroclimatic extremes. 46 

Compared to the skill of short-range weather forecasts (less than 15 days) and long-range 47 
seasonal forecasts, which are reasonably good, the skill of S2S forecasts, ranging between 15 to 48 
60 days, is low and is often referred to as the ‘predictability desert’ (Vitart et al., 2012). 49 
Understanding the current S2S precipitation forecasts skill, as well as highlighting the potential 50 
avenues – initialization, parametrization, and post-processing schemes – for improvement are 51 
critical for accurate S2S precipitation forecasts for operational use (White et al., 2017). Known 52 
contributing factors that influence S2S model forecasting performance include the 53 
parametrization and initialization schemes, large-scale atmospheric circulation modes, and 54 
coupled models (Vitart et al., 2018). The model initialization scheme, including land surface and 55 
soil moisture representation, are also crucial for accurately representation of geophysical fluxes. 56 
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Climate oscillations, such as El Nino Southern Oscillations (ENSO) and Madden-Julian 57 
Oscillations (MJO) also influence seasonal forecast prediction skill (Zhang, 2013).  ENSO’s 58 
influence on United States’ winter hydroclimatology is well-known, particularly over the 59 
Southeast and west coast, accounting for roughly a third of US winter forecasting skill (Quan et 60 
al., 2006).  61 

Previous studies have attributed S2S skill between ENSO and MJO (Sun et al., 2022; 62 
Wang et al., 2019) and have compared S2S skill across models, lead times and seasons (Zhang et 63 
al 2021; de Andrade et al, 2019). However, these studies that examined S2S models’ forecasting 64 
performance did not apply a threshold on dry mask prior to calculating the model’s skill. Zhang 65 
et al (2021) have evaluated S2S forecast skill by filtering extreme precipitation events, but did 66 
not apply a dry mask threshold for evaluating the overall skill. Without a dry mask threshold, the 67 
S2S skill will be inflated, especially in regions with a pronounced dry season, as zero rainfall 68 
days is included in these skill calculations (Wilks, 2006). The ability to predict days without 69 
precipitation is important for drought prediction and planning, but the skill will be inflated for 70 
wetter and normal conditions; therefore, the dry mask application was used to filter out areas of 71 
inflated skill based on the climatological means.  Several studies focused on extreme 72 
precipitation forecasts have applied percentile filters (Zhang et al., 2021), which reduces the 73 
sample size particularly while evaluating monthly/seasonal skill.  Given the pronounced 74 
seasonality in precipitation over the CONUS (Petersen et al., 2012), we systematically evaluate 75 
the S2S forecasting skill across CONUS by applying a dry mask before considering the skill for 76 
each lead time, season and region.  Evaluating the forecast skill after applying the dry mask 77 
could potentially affect the source of model skill, and the associated biases that could be obtained 78 
from decomposition. 79 

S2S precipitation forecast skill has been compared considering both probabilistic and 80 
deterministic metrics to evaluate the forecast skill (Zhang et al., 2021; de Andrade et al., 2019).  81 
S2S models’ skill have been evaluated using Mean Square Error (MSE), mean square skill score 82 
(MSSS), root mean square error (RMSE), anomaly correlation coefficient (ACC), Pearson’s 83 
correlation coefficient, and ranked probability skill score (RPSS) (Zhang et al., 2021; de Andrade 84 
et al., 2019). de Andrade, et al., (2019) evaluated hindcast skill using linear correlation 85 
coefficient and analyzed the sources of bias and variability; however, this study was a large-scale 86 
global analysis of forecast skill and did not consider the seasonal skills and the associated errors. 87 
Decomposing the MSSS three components – correlation coefficient, condition bias and marginal 88 
bias – would provide information on the regions and seasons over which the selected models 89 
have the ability to capture the variability in observed precipitation but have significant biases in 90 
estimation.  Further, the hindcast assessment of (de Andrade et al., 2019) was performed without 91 
the dry mask application, which may inflate forecast skill particularly for regions with 92 
pronounced dry season.   93 

The Nash-Sutcliffe Efficiency (NSE), also known as the coefficient of determination, is a 94 
metric that measures the skill of hydrologic models (Nash & Sutcliffe, 1970). Li et al., (2022) 95 
used to evaluate S2S forecast skill performance based on Kling-Gupta Efficiency (KGE) metric, 96 
which provides a different decomposition of NSE, without applying the dry mask across the 97 
CONUS or considering seasonality. However, decomposing the Nash-Sutcliffe Efficiency (NSE) 98 
for precipitation hindcasts after applying the dry mask provides critical information without 99 
inflating the skill of the model. Furthermore, implementing new parametrizations and 100 
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initialization schemes could be costly and take additional time to develop reforecasts. One 101 
effective way to improve the forecasting skill is to consider post-processing schemes (Carter et 102 
al., 1998; Glahn et al., 2003).  Further, post-processing could also be implemented over 103 
reforecasts from multiple models to develop multi-model ensembles which have been shown to 104 
improve the forecast skill compared to the best individual model (Weigel et al., 2008).  Past 105 
work on statistical post-processing has considered both parametric and non-parametric 106 
approaches (Hamill et al., 1997; Schefzik et al., 2013; Scheuerer et al., 2015).  Although many 107 
studies have used post-processing schemes on S2S precipitation forecasts, understanding the 108 
components of S2S forecast skill could provide additional insights on how post-processing 109 
schemes can be used and could also indicate potential regions where improvements in models 110 
will be needed to further improve the forecast skill.  111 

Several S2S models that contribute multi-model ensembles have been run for reforecasts. 112 
Historically, some S2S multi-model datasets have only been running for a period of short time, 113 
limiting the ability to capture the interannual variability in precipitation. Other multi-model 114 
ensembles have primarily focused on generating monthly forecasts for seasonal prediction with 115 
infrequent model initialization. This study uses three individual models hindcasts from the World 116 
Weather Research Programme (WWRP) and World Climate Research Programme (WCRP) S2S 117 
prediction project (Vitart et al., 2012).  The S2S project, originating in 2013, has a long record of 118 
forecasts and reforecasts that are initialized multiple times a week (Vitart et al., 2017).  The 119 
longer range of data allows for larger sample sizes for robust estimation of NSE and 120 
decomposition metrics.  Comparing model performance is important because forecast skill varies 121 
between S2S models as each model has different parameterization schemes, number of 122 
ensembles, and resolution.  This study will consider decomposition of NSE of S2S reforecasts 123 
over the CONUS for three models – European Centre of Medium-Range Weather Forecast’s 124 
(ECWMF) National Centre for Environmental Prediction Climate Forecast System (NCEP CFS) 125 
and Environment and Climate Change Canada (ECCC) – after applying the dry mask. Previous 126 
studies have shown ECMWF S2S hindcast models have outperformed both CFS and ECCC 127 
models on a global basis (de Andrade et al, 2019), but the performance of these three models 128 
have not been compared after the dry mask threshold has been applied.  The North American 129 
Multi-Model Ensemble (NMME) forecasts have proved to perform better than individual models 130 
by pooling the ensemble members from several models (Krakauer, 2019).  However, for this 131 
study, the NMME was not considered because the number of ensemble members varies between 132 
individual models, giving more weight to some models.  Additionally, to improve multi-model 133 
performance, understanding individual models’ type of errors and potential for correcting the 134 
biases before pooling the ensembles, which could further improve the multi-model forecast 135 
performance. Hence, this study will compare the decomposed NSE and associated errors of S2S 136 
precipitation forecasts of three individual models by season and lead time under three Koppen 137 
climate regimes across the CONUS.  138 

The main intent of this study is to decompose the S2S forecasting skill as a function of 139 
lead time over the CONUS after applying the dry mask. To our knowledge, limited/no work has 140 
been performed on systematically decomposing the NSE over various seasons after applying the 141 
dry mask.  In addition to applying the dry mask, evaluating model skill regionally is also critical 142 
as the precipitation has pronounced seasonality over the CONUS (Petersen et al., 2012).  143 
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Analyzing forecasting skills regionally can also provide insights on how land surface conditions, 144 
low-frequency oscillations, and regional hydroclimate influence the model performance.  145 

The manuscript is organized into the following sections: S2S precipitation hindcast and 146 
observed databases from three different models are provided in the next section.  Then, the dry 147 
mask threshold application procedure is presented along with the NSE decomposition.  The 148 
following section provides the results from the full decomposition of ECMWF and the results 149 
from different regimes along with the skill comparison from three S2S reforecasts.  150 

2.0 Data  151 

This section provides the S2S hindcast database and observed data along with the details 152 
to calculate and decompose the NSE for S2S forecasts over various lead times and seasons. 153 
 154 
Observed Precipitation 155 

For calculating the S2S reforecasts skill, we used the CPC Global Unified Precipitation 156 
dataset provided by the NOAA Physical Science Laboratory (PSL), with a resolution of 157 
(0.5°x0.5°) (Chen, et al., 2008).  Upon comparing the accuracy of various precipitation datasets, 158 
the CPC Unified dataset performed particularly well in areas that have dense areas of rain gauges 159 
(Beck et al., 2017). This study focused on the CONUS, which has a dense system of rain gauges, 160 
and has been used in other forecast verification studies (Becker et al, 2020).  161 
 162 
S2S Hindcast Database 163 

For S2S model skill evaluation, three hindcast models were assessed: 1.) European 164 
Centre of Medium-Range Weather Forecasts (ECMWF), 2.) National Center for Environmental 165 
Prediction’s (NCEP) Climate Forecast System (CFS) model, and 3.) Environment and Climate 166 
Change Canada (ECCC). For full decomposition of ECMWF, the S2S hindcasts were evaluated 167 
for the full 20-year hindcast period (Table 1) and up to the longest available lead time of 45 days. 168 
The ensemble means were averaged over three different lead times: 1) 1-15 days, 2) 1-30 days, 169 
and 3) 1-45 days, and compared with the observed average precipitation corresponding to the 170 
three lead times. Additionally, the average forecasts and corresponding observed average daily 171 
precipitation values were pooled by the date of hindcast initialization into the following seasons: 172 
a) January, February, March (JFM), b) April, May, June (AMJ), c) July, August, September 173 
(JAS), d) October, November, December (OND). Thus, the evaluation for each season provides 174 
the skill of forecasts issued during the months within the considered four seasons.  175 
 176 

For the model comparison section, the three models were assessed for lead times of 1-12 177 
days, 1-22 days, and 1-32 days for four different seasons between January 1st 2000 and 178 
December 30th 2010, the longest available overlapping date ranges and lead times for all three 179 
models.  Additionally, ECMWF and NCEP were compared for lead times of 1-42 days.  The 180 
ECMWF hindcasts are initialized twice a week and range from 2000-2019, NCEP CFS hindcasts 181 
are initialized daily and are available from 1999-2010, and ECCC are initialized weekly, and 182 
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reforecasts range from 1995-2012 (Vitart et al., 2017).  The S2S precipitation hindcast model’s 183 
information and specification are shown in Table 1 (Vitart et al., 2017). 184 

Model LEAD 
TIME 

RESOLUTION HINDCAST 
PERIOD 

HINDCAST 
ENSEMBLE 

SIZE 

FORECAST 
ENSEMBLE 

SIZE 

HINDCAST 
FREQUENCY 

OCEAN 
COUPLING 

SEA ICE 
COUPLING 

ECMWF 0-46 
Days 

0.25°x0.25°, days 0-
10, 

0.5°x0.5°, after day 
10 L91 

Past 20 
Years 

11 51 Twice a 
Week 

Yes No 

NCEP 
CFS 

0-44 
Days 

~1°x1°, L64 1999-2010 4 16 Daily Yes Yes 

ECCC 0-32 
Days 

0.45°x0.45°, L40 1995-2012 
 

4 21 Weekly Yes No 

Table 1. Subseasonal-to-Seasonal Hindcast Models and Forecast model information 185 

2.1 Dry Mask application and Skill Assessment and Decomposition  186 

a. Seasonality of Rainfall and Dry Mask Application 187 
Prior to calculating the NSE for each hindcast-initialized season, a dry mask was applied 188 

based on the observed precipitation dataset to filter out the areas that receive small amounts of 189 
rainfall, which may result in an inflated forecast skill because the forecasted and observed 190 
rainfall have no rainfall.  Antolilk (2000) and Charba et al., (2011) considered daily precipitation 191 
less than 0.01 inches as no event for evaluating the skill.  Based on that work, the dry mask was 192 
set at a threshold value for each individual grid cell, if the observed daily precipitation over the 193 
20 years is less than 0.15 inches, 0.30 inches and 0.45 inches for 15-day, 30-day and 45-day lead 194 
times from the time of issued forecast, respectively. The NSE and the three components were 195 
evaluated for all the three models for each lead time over the CONUS. We also evaluate the 196 
forecast skill – NSE and its components – based on the climate regime. For this purpose, we 197 
considered three main regimes – desert (regime B), temperate (regime C) and continental 198 
(regime D) – over the CONUS based on Koppen climate classification. A small area in southern 199 
Florida fell into the tropical (regime A) Koppen climate group; however, since this regime 200 
corresponds to only one grid cell from the hindcast model, we combined this tropical area with 201 
the temperate regime (Supplemental Information (SI) - Figure SI-1).  Using the aggregated 202 
Koppen Climate Regime (Beck, et. al, 2017) into three climate regimes, a regional analysis was 203 
performed for each of the S2S hindcast models (Supplemental Information (SI) - Figure SI-1).  204 

 205 
b. Skill Assessment Metrics 206 
Skill assessment metrics measure the performance of the model's forecast ability compared to 207 

the observed variable. Frequently used performance metrics include anomaly correlation, NSE 208 
and Kling Gupta Efficiency (Clark et al., 2021). The NSE measures the magnitude of error 209 
variance from the model prediction compared to the observed variance in the data and  has an 210 
upper bound of 1 but has a lower bound of -∞ and is used to determine the ‘goodness-of-fit’ of a 211 

https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
https://www.degreesymbol.net/#:%7E:text=How%20to%20Type%20Degree%20Symbol,0176%20numbers%20of%20degree%20symbol.
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model. NSE is related to MSE but is normalized by the standard deviation of the observed 212 
precipitation or data values (Gupta et al., 2009).  213 

                                             𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑜𝑜𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖) = 1 − ∑ (𝑜𝑜𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

∑ (𝑜𝑜𝑖𝑖𝑖𝑖−𝑜𝑜𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

                                 (1) 214 

Where oit is the observed precipitation value, xit is the corresponding S2S precipitation, where t = 215 
1, 2…n is the time index with ‘n’ forecasts and i is the lead time of the forecast.  The mean 216 
observed precipitation is 𝑜𝑜𝑖𝑖𝑖𝑖.  For a given i, NSE will be decomposed into three parts (Murphy 217 
1988; Weglarczyk 1998): A) Pearson’s correlation coefficient (equation 3), B) conditional bias 218 
(equation 4), and C) unconditional bias (equation 5) (Gupta et al., 2009).   219 

𝑁𝑁𝑁𝑁𝑁𝑁 =  𝐴𝐴 − 𝐵𝐵 − 𝐶𝐶 220 

                       𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝑥𝑥𝑥𝑥 
2  −  (𝜌𝜌𝑥𝑥𝑥𝑥  −  ( 𝜎𝜎𝑥𝑥 

𝜎𝜎𝑜𝑜 
 ))2 − ( 𝑥𝑥 −𝑜𝑜 

𝜎𝜎𝑜𝑜 
 ))2               (2) 221 

A=𝜌𝜌𝑥𝑥𝑥𝑥 
2   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒     𝜌𝜌𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 , 𝑜𝑜 )

 𝜎𝜎𝑥𝑥  ∗ 𝜎𝜎𝑜𝑜 
 

 
                               (3) 222 

B=[𝜌𝜌𝑥𝑥𝑥𝑥 −
𝜎𝜎𝑥𝑥 
𝜎𝜎𝑥𝑥 

  ]2                                                   (4) 223 

     C=[ 𝑥𝑥 −𝑜𝑜 
𝜎𝜎𝑜𝑜 

 ]2                                                      (5) 224 

Where 𝜎𝜎𝑥𝑥  and 𝜎𝜎𝑜𝑜  represent the standard deviation of x and o, and  𝑜𝑜 and 𝑥𝑥  represent the 225 

mean of x and o once xit and oit were summed from 1 to n for lead time i in equation 1.  The 226 
pearson correlation coefficient between x and o is 𝜌𝜌𝑥𝑥𝑥𝑥  (equation 3). The first component of the 227 

decomposition, Pearson’s correlation coefficient, shows the linear association between the 228 
forecast and the observation. The conditional bias is the difference in the slope of the regression 229 
line fitted between forecast and observation with a slope of 1 that indicates a perfect forecast.  230 
The unconditional bias, indicating a systematic bias, denotes the ratio of difference between the 231 
mean of the observation and the mean of the forecast to the observed standard deviation. 232 

3.0 Results 233 

Full Decomposition of ECMWF 234 
A full NSE decomposition was performed on the ECMWF S2S hindcast model because 235 

the ECMWF model has the longest available reforecast time range and has the largest number of 236 
ensemble members. Prior to decomposing NSE, a dry-mask threshold was applied based on the 237 
lead time for the climatological means of each grid cell, to mask out areas with low precipitation 238 
values to avoid inflated skill values.  Both NSE and correlation are lower across all seasons after 239 
the dry mask threshold was applied. Figure 1a illustrates the difference in Normalized Nash-240 
Sutcliffe Efficiency (NNSE) of 30-day ahead S2S precipitation forecast skill with and without 241 
the dry mask threshold). For instance, a forecast issued on March 30, 2000 with a lead time of 45 242 
days corresponds to the skill of the forecast in predicting precipitation from March 30, 2000 to 243 
May 15, 2000. Thus, the skill of the forecast issued in JFM can cover the observed precipitation 244 
in April and May. To reiterate, all the figures with seasonal S2S performance metrics denote the 245 
skill summary of the forecast issued during that season as opposed to the ability to forecast the 246 
observed precipitation during that season. 247 
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To understand the importance of dry masking, we first show the 1-30 day ahead S2S 248 
precipitation forecast skill with and without dry mask (Figure 1) based on Normalized NSE 249 
(NNSE). Lower NNSE (equation 6) values, the inverse of NSE, indicate better predictive 250 
performance.  251 

                   NNSE= 1
2−𝑁𝑁𝑁𝑁𝑁𝑁

  (6)     252 

For the forecast issued in the four seasons, the mean NNSE values are lower for the grid 253 
cells below the dry mask threshold than for the grid cells that exceeded the threshold (Figure 1). 254 
Even though including “no-precipitation event” is expected to inflate the skill, dry masking by 255 
filtering out regimes rather than simply removing values below a given threshold, allows us to 256 
maintain the same sample size across all grid cells, thereby changing the masked areas based on 257 
both forecast-initialized seasons (Figure 1) and lead time.  258 

Figure 1. Normalized Nash Sutcliffe Efficiency (NNSE) of 1-30 days ahead ECMWF hindcast for the CONUS before 259 
dry mask is applied (left column) and after (middle column) dry mask threshold is applied for four seasons of 260 

initialized forecasts: JFM, AMJ, JAS and OND for 1-30-day lead time.   The scatter plot comparison of grid cell’s 1-261 
30-day climatological precipitation means and the corresponding Normalized NSE values (right column).  The 262 

scatter plot shows the NNSE values that fall below the dry mask threshold (red region) and above (gray region). The 263 
average NNSE of the grid cells below the dry mask threshold (green) and above the dry mask threshold (blue).  264 

Since the NNSE is the inverse of the NSE, the lower NNSE values indicate better predictive performance. 265 
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The overestimation of S2S forecast skill occurs if no dry mask is applied, particularly for 266 
pronounced dry seasons (JFM and JAS). Studies that evaluated S2S precipitation forecasts skill 267 
did not consider dry mask application, which ignores the seasonality in precipitation, thereby 268 
indicating potential difference in forecast skill between regions (e.g., Li et al., 2022). However, 269 
after the dry mask application (Figure 1), we find that the skill was fairly similar between 270 
regimes. Thus, it is important to apply a dry mask which inherently considers the seasonality in 271 
precipitation for skill evaluation.  Quantifying the forecast skill for critical events (e.g., peak 272 
rainfall seasons) is important particularly if the interest is to identify regions with limited skill.  273 

 274 
a) NSE Spatial Patterns 275 

We present results for the NSE and its decomposition (Figures 2-7) for the ECMWF 276 
model and then compare its performance with NCEP and ECCC later (Figures 8-10). Before 277 
assessing the components of the NSE, we first investigate the NSE over the CONUS, which 278 
shows the S2S forecasting skill of ECMWF for various lead times over the season (Figure 2).  279 
NSE is better in the winter and fall seasons (JFM and OND) in comparison to spring and summer 280 
seasons (AMJ and JAS) (Figure 2), which is partially due to El Nino Southern Oscillation 281 
(ENSO) being active during winter and fall months and ENSO dying or being at an incipient 282 
stage during AMJ and JAS (Ham et al., 2019). The NSE also tends to be better closer to the 283 
coasts indicating the local sea surface temperatures (SSTs) in influencing S2S forecasts.  284 
Additionally, the NSE shows a slight gradient from West Coast to East Coast (Figure 2). The 285 
NSE tends to be weaker around the Great Lakes.  Further, the areas surrounding the dry mask 286 
regions tend to have a lower NSE. 287 

Figure 2. Nash Sutcliffe Efficiency (NSE) of ECMWF hindcast for CONUS after dry mask threshold is applied for 288 
four season of initialized forecasts: JFM, AMJ, JAS, and OND, and for three lead times: 1-15 days, 1-30 days, and 289 

1-45 days. 290 
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b) Decomposition Plots 291 
 We decompose the NSE of ECMWF in Figure 2 into correlation (Figures 3), conditional 292 
bias (Figure 5) and unconditional bias (Figure 6) for each lead time for the four seasons. 293 

i) Correlation and its longitudinal distribution 294 
The first component of decomposition, Pearson’s correlation coefficient, shows the innate 295 

model skill and the lower bound for explained variance in the model. The analysis of correlation 296 
shows that the skill decreases as lead time increases for all seasons (Figure 3.).  Similar to the 297 
NSE, the correlation is also lower in the summer seasons and higher in the winter seasons.  The 298 
correlation between S2S precipitation hindcasts and observed precipitation was averaged by 299 
longitude, for each season and lead time, after the dry mask threshold was applied. This 300 
longitudinal distribution more clearly illustrates the West to East coast gradient, where the 301 
correlation is higher in the West Coast and decreases towards the East Coast (Figure 3-4).  302 

Figure 3. Correlation, the first component of NSE decomposition, from the ECMWF hindcast data for CONUS after 303 
dry mask threshold is applied for four seasons of initialized forecasts: JFM, AMJ, JAS, and OND, and for three 304 

different lead times: 1-15 days, 1-30 days, and 1-45 days. 305 
 306 

On the West Coast, correlation coefficients are higher than on the East Coast, which is 307 
partially due to the pronounced seasonality in precipitation over the West Coast that results in 308 
reduced number of grid cells being considered for evaluation after applying the dry mask.  309 
Additionally, correlation coefficients are higher towards the coasts and weaker further inland due 310 
to potential influence of local SSTs (Sankarasubramanian et al., 2017).  Correlation coefficients 311 
are also lower towards the area surrounding the masked out regions. 312 
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Figure 4. Longitudinal distribution of correlation by the average by latitude of the ECMWF hindcast data for 313 
CONUS after dry mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and 314 

for three lead times: 1-15 days, 1-30 days, and 1-45 days 315 
ii.) Conditional Bias 316 

The second and third components, conditional bias, and unconditional bias, are expected 317 
to be zero for ideal forecasts.  The conditional bias for the ECMWF decomposition increases as 318 
lead time increases and tends to be higher towards the coasts. Further, the conditional bias is 319 
higher during the summer season in comparison to the winter season (Figure 5).  The Great 320 
Lakes Region and the central part of the US has a high conditional bias that increases with 321 
increasing lead times, whereas the Sunbelt has a low conditional bias during the winter and 322 
spring seasons.  Conditional bias is also higher towards the areas that were masked out from the 323 
dry mask.  Conditional bias is highest during JAS, specifically in the desert areas that were 324 
masked out during the other seasons and is lowest during OND. 325 

Figure 5. The second component, conditional bias, of NSE decomposition, from the ECMWF hindcast data for 326 
CONUS after dry mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and 327 

for three lead times: 1-15 days, 1-30 days, and 1-45 days.  328 
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iii.) Unconditional Bias 329 
The third component, unconditional bias, represents the systematic bias in reproducing 330 

the long-term mean of the observed precipitation. Unconditional bias is high in the Great Lakes 331 
Region and in the central part of the US (Figure 6).  Additionally, unconditional bias is high in 332 
the desert regions for JAS, which was masked during the other seasons, for JAS. Conditional 333 
bias and unconditional bias are generally correlated and have higher values in the same regions.  334 

Figure 6. Unconditional bias, the third component of NSE decomposition, from the ECMWF hindcast data 335 
for CONUS after dry mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, 336 

and for three lead times: 1-15 days, 1-30 days, and 1-45 days. 337 
 338 

c. Skill comparison across Koppen Climate Regimes 339 
The skill of ECMWF S2S hindcast model was compared under three Koppen climate regimes: a) 340 
desert b.) temperate and c.) continental (Figure SI-1). For all lead times and climate regimes, the 341 
correlation varies by season and is lower in the summer months and is the highest in the winter 342 
months (Figure 7).  Since the dry mask threshold was applied before the climate regime 343 
classification was considered, the correlation does not vary much between regimes within a 344 
given season. Conversely, if a dry mask had not been applied, the desert regimes may expect to 345 
have much better skill, because of inflated skill due to no-precipitation days. 346 
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 347 
Figure 7. The box and whisker plot of correlation from the ECMWF hindcast model for three Koppen climate 348 

regimes: desert (red), temperate (blue) and continental (green) for lead times 1-12, 1-22, 1-32, and 1-42 days for all 349 
four seasons that the forecasts were initialized: JFM, AMJ, JAS, OND. 350 

 351 
d. Model Comparison of NSE and Correlation 352 

Comparing S2S hindcast models is important to understand the relative performance of the 353 
individual models. In this analysis, ECMWF’s NSE was compared to NCEP CFS’s NSE and 354 
next ECMWF’s correlation was compared to all three models.  The dry mask threshold may 355 
affect the model performance; therefore, forecast skill was not considered in areas where the 356 
historically observed precipitation did not exceed this threshold.  357 

 358 
The blue regions in Figure SI-2 show where ECMWF’s NSE outperforms the NSE of 359 

NCEP CFS for most lead times, regimes, and seasons, especially at shorter lead times, except for 360 
a few inland areas.  Although ECMWF’s NSE is higher than NCEP’s in most regimes, seasons, 361 
and lead times, the ECMWF and NCEP CFS’s correlation is closer in value (Figure 8). NCEP 362 
CFS has a higher NSE and correlation than ECMWF during AMJ. In comparison to ECMWF, 363 
NCEP’s correlation improves with longer lead times during AMJ and is also higher in areas 364 
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further inland. Conversely, ECMWF has better performance around the coast (Figure 8) except 365 
for OND, which may be due to the two different ocean models used in the initializations. 366 

Figure 8. Difference in Correlation values between ECMWF S2S hindcast and NCEP CFS for CONUS after dry 367 
mask threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and for three lead 368 

times: 1-12 days, 1-22 days, and 1-42 days. 369 
 370 

ECMWF and ECCC models’ correlation differ by season but Figure 9 does not show a 371 
clear inland-coastal differential in skill (Figure 9), which could be potentially due to ECMWF 372 
and ECCC having the same ocean models. ECCC has a higher correlation than ECMWF during 373 
the forecasts initiated in the summer months (JAS).  However, since ECCC’s lead time ranges 374 
from 1-32 days, 1-42 day lead time between ECMWF and ECCC could not be compared.  375 
 376 

Across seasons and lead times, NCEP CFS’s correlation is higher than ECCC’s 377 
correlation for NCEP (Figure SI-3).  NCEP CFS’ model performance improves noticeably at 378 
longer lead times and was not compared to 1-42 days lead time because of ECCC’s shorter lead 379 
time forecast availability.  However, when comparing the first component, correlation, by 380 
regime, season, and lead time, ECCC has higher correlation in AMJ, when compared to both 381 
NCEP CFS as well as ECMWF. However, ECCC’s performance tends to be worse in the 382 
remaining three seasons. 383 

 384 
 385 
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Figure 9.  Difference in Correlation values between ECMWF S2S hindcast and ECCC for CONUS after dry mask 386 
threshold is applied for four season of initialized forecasts: JFM, AMJ, JAS, and OND, and for three lead times: 1-387 

12 days, 1-22 days, and 1-32 days. 388 
 389 

Overall, ECMWF’s correlation for the forecast issued in seasons, JFM and OND, is 390 
higher than the other two models, but ECMWF’s correlation is lower than the other models for 391 
the forecasts issued in AMJ (Figure 8-9).  ECMWF has the highest NSE and correlation when 392 
solely considering the skill within the CONUS boundaries; however, NCEP CFS and ECCC 393 
hindcast models have much better forecast skill in the Great Lakes regime on and the Canadian 394 
regime just north of the Great Lakes, which although may not fall within the US boundaries, is 395 
still critical for the Midwest’s water resources. ECMWF performs better towards the coasts and 396 
the skill may be higher in the winter seasons due to the areas that were masked out by the dry 397 
mask threshold.  NCEP CFS and ECCC perform better in areas further inland, which is why the 398 
skill may be noticeably better in the spring and summer months (AMJ and JAS) where the inland 399 
regimes are not masked by the dry mask threshold since the regime receives higher precipitation 400 
during the summer.  The differences in model skill could be due to the different ocean models 401 
and different initialization schemes, however this attribution has to be systematically analyzed 402 
further.  403 

 404 
e. Model Skill comparison across Koppen Climate Regimes 405 

The performance metrics for the three hindcast models were analyzed across the three 406 
Koppen climate regimes over the CONUS.  Each model’s NSE and the decomposed components 407 
were divided into climate regimes by season and lead times. At longer lead times, the differences 408 
in NSE reduces across seasons and climate regimes with NCEP CFS beginning to outperform 409 
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ECCC (Figure SI-4).  ECMWF’s NSE was higher than the NSE of ECCC and NCEP CFS across 410 
climate regime, season, and lead times (Figure SI-4), because NCEP and ECCC had high 411 
unconditional and conditional biases (Figure SI-4).  Since these biases can be reduced to zero 412 
with simple post-processing techniques such as Model Output Statistics (Appendix A), we 413 
focused on comparing correlation (Figure 10).   414 

 415 
The Pearson correlation coefficient is generally higher for ECMWF in comparison to 416 

ECCC and NCEP CFS models for all lead times, regimes, and seasons (Figure 10). There does 417 
not seem to be a consistent trend on how models perform for each climate regime across seasons 418 
and lead times even though both NCEP and ECCC perform better with forecasts issued in AMJ 419 
(Figure SI-4).  For ECMWF and ECCC, the correlation is higher at shorter lead times, but 420 
NCEP’s correlation remains relatively consistent across lead times (Figure 10).  Across all 421 
models, lead times, and regimes the seasonal patterns illustrate that correlation is the highest 422 
during JFM and OND and lowest during AMJ and JAS.  423 

Figure 10. The average correlation for each regime: Regime B (desert), Regime C (temperate), and Regime D 424 
(continental) for each model: ECMWF (black), ECCC (blue), and NCEP CFS (red).  The average correlation was 425 

calculated by lead time a) 1-12 days b.) 1-22 days and c.) 1-32 days for seasons JFM, AMJ, JAS, and OND. 426 
 427 
The conditional bias is the lowest for ECMWF and highest for NCEP CFS particularly 428 

for AMJ and at shorter lead times (Figure SI-4).  NCEP’s median marginal bias was lower than 429 
ECMWF and ECCC, but one grid cell on the West Coast had a very high conditional bias 430 
causing the mean bias of all of the grid cells to be higher than the other two models.. ECCC has 431 
the highest conditional bias at the shorter lead times and ECMWF and NCEP CFS were 432 
comparable at 1-12 days for JFM, JAS, and OND.  Conditional bias has the highest spread 433 
during spring months (AMJ).  With longer lead times (e.g., 1-32 days), the unconditional bias 434 
across the selected models is similar, with ECCC being slightly higher than the other two 435 
models. No clear regional pattern of unconditional bias across all models and seasons was 436 
evident (Figure SI-4 g-i).  The seasonality of unconditional bias seems to change based on lead 437 
times. We discuss in the next section how the conditional bias and unconditional bias could be 438 
potentially improved using post-processing techniques that focus on developing statistical 439 
relationships between model forecasts and the observed precipitation. 440 
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4.0 Discussion  441 
Understanding the S2S precipitation forecasts skill across the CONUS over different 442 

seasons, as well as highlighting potential avenues for model improvement is critical for better 443 
forecast application.  This study a) investigated and compared the spatial distribution of NSE for 444 
three S2S precipitation hindcast models across the CONUS, b) decomposed Nash-Sutcliffe 445 
Efficiency into correlation, conditional bias and unconditional bias based on the lead time and 446 
forecast issued in a season for each model and c) analyzed model skill across three (tropical, 447 
desert and temperate) Koppen Climate regimes. Our analysis shows that NSE of ECMWF was 448 
higher closer to the coast, most likely due to the influence of MJO and ENSO, and was also 449 
higher for the forecast issued during winter months and with shorter lead times.  Decomposition 450 
of NSE shows that the first component, correlation, illustrates there is a gradient in skill from 451 
west coast (higher) to east coast (lower).  Both the conditional and unconditional biases were 452 
also smaller during the winter months and in areas closer to the coast. The model comparison 453 
showed that ECMWF performs well in the winter seasons and towards the coasts, whereas 454 
NCEP CFS’s performance is the best for forecasts issued during AMJ and in inland areas.  The 455 
conditional and unconditional bias were high over the Midwest Great Lakes region.  The 456 
conditional bias was higher for NCEP CFS, particularly for forecasts issued in AMJ and the 457 
unconditional bias was high for forecasts issued in JAS.  ECCC’s skill is high during AMJ and at 458 
short lead times, but decreases significantly with longer lead times. No clear trends were 459 
observed across the climate regimes across the three hindcast models’ performances, but NSE 460 
and correlation was higher for the winter seasons than the summer seasons consistently for all 461 
the lead times, regimes and three models.    462 
 463 
Potential for improving S2S forecasts 464 

Even though our analysis, after application of dry mask, showed that conditional bias and 465 
unconditional bias are the primary reasons for low and negative NSE values for the S2S 466 
hindcasts, this could be overcome by selecting a proper post-processing scheme where the 467 
correlation is high across the CONUS. One of the commonly used post-processing scheme for 468 
correcting weather/climate forecasts is Model Output Statistics (MOS), which is a linear 469 
regression model that uses the forecast or a transformation of it (e.g., principal components) as a 470 
predictor and the observed precipitation as a predictand (Antolik et al., 2000; 471 
Sankarasubramanian et al., 2008). One advantage with a linear regression model is that it reduces 472 
the marginal bias to zero (Appendix A). Further, we also show analytically in Appendix A, a 473 
linear regression model reduces the conditional bias to zero which turns the NSE of the corrected 474 
forecasts from a MOS being equal to the square of the correlation coefficient (i.e., component 475 
A).  Thus, a linear regression based MOS provides a lower bound on the NSE of the forecast to 476 
be decomposed component A, thereby providing a guidance on where post-processing schemes 477 
will be useful for a given location/regime. An example of where post-processing can be effective 478 
for correcting bias is NCEP CFS’s 1-42 day forecasts.  ECMWF did not have any grid cells 479 
where NSE was below zero, because the conditional and unconditional bias were low, so we 480 
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show NCEP, which has large sources of unconditional and conditional bias across all regimes, 481 
but relatively high correlation (SI-4).   482 
 483 

Figure 11 shows locations where a) NCEP’s NSE is less than zero and correlation is 484 
significant (p<0.05), b) NCEP’s NSE is greater than zero and correlation is significant (p<0.05), 485 
and c) NCEP’s NSE is less than zero, but correlation is not significant (p>0.05) for 1-42 day lead 486 
times. For the first case, where NSE is low and correlation is high, post-processing such as MOS 487 
can be effectively used to reduce conditional and unconditional biases to improve forecast skill, 488 
and a large portion of CONUS, mostly inland area and particularly for forecasts issued in seasons 489 
JFM and AMJ (Figure 11).  For the second category, a large portion of the coastal region, 490 
particularly in forecast-initialized seasons AMJ and OND, have significant (p<0.05) correlation 491 
and high NSE, which means post-processing will not be effective as the model does not capture 492 
the observed variability.  Similarly, post-processing will not be effective in areas with low NSE 493 
and correlation that is not significant (p>0.05), which includes a few grid points in AMJ and JAS 494 
(Figure 11). Even though linear-regression based MOS may not result in improved skill in areas 495 
where both NSE and correlation are low, other MOS post-processing schemes can be considered 496 
such as a semi-parametric model or machine learning models (Glahn et al., 1972; Taillardat et 497 
al., 2019), NSE of S2S forecasts could be potentially improved as such models are more flexible 498 
in reducing the mean square error in the forecast. 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 

Figure 11.  Post-processing will be effective in the locations where NSE<0 and correlation is significant (purple), 516 
but will not be necessary in places where NSE<0 but correlation is not significant (red) or in places where 517 

correlation is significant (yellow). 518 
Even though the selected models had ensemble forecast, we considered only ensemble 519 

mean for forecast decomposition. We did not consider probabilistic forecasts such as Brier Skill 520 
score for skill evaluation and decomposition since the differences in ensemble members could 521 
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significantly affect the forecast evaluation.  Similar decomposition on Brier score could reveal 522 
the forecast reliability and resolution of each model’s performance in below-normal and above-523 
normal conditions (Brier, 1950). Further, our analysis focused on decomposition without 524 
evaluating the model’s performance during extreme conditions, which could be pursued further 525 
to understand the sources of bias. Our analysis also did not consider NMME because the number 526 
of ensemble members varies between models, giving more weight to some models. Additionally, 527 
the models within NMME have varying forecast issued frequencies, lead times, and issued dates.  528 
These varying model features within the multi-model need to be addressed before valid model 529 
comparisons can occur.  Since the intent of this study was to show a systematic process of 530 
evaluating model skill and comparing across the models, we did not consider NMME for our 531 
study.   532 
 533 
5.0 Conclusions 534 

S2S precipitation forecasts are critical for operational and proactive water resource 535 
management and planning. Systematic S2S forecast skill assessment is essential for 536 
understanding existing model skill and how different errors contribute to it. Our evaluation of 537 
three S2S reforecasts – ECMWF, ECCC and NCEP – based on NSE decomposition primarily 538 
looked at the skill of forecasts issued during four seasons and under three different lead times.  539 
Our analysis shows the importance of applying dry mask as the NSE and correlation are lower 540 
across all seasons after masking areas with low precipitation values.  The full decomposition of 541 
ECMWF revealed a West to East coast longitudinal gradient in NSE and correlation. 542 
Decomposed components, conditional and unconditional bias, did not show any longitudinal 543 
trends. ECMWF’s skill showed that seasonal trends in forecast skill occurred across all lead 544 
times and all seasons, but correlation did not differ by climate regimes.   545 
 546 

The forecast skill and associated errors were also compared across models.  Overall, 547 
ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s performance, 548 
mainly for the forecasts issued during the winter months, (JFM and OND).  ECMWF had the 549 
highest NSE across the three climate regimes – temperate, desert and continental – considered.  550 
However, ECCC and NCEP CFS performed better for the forecast issued during the spring 551 
months, and also performed better in areas further away from the coast.  Our decomposition 552 
efforts show S2S improvements in physical modeling efforts such as parameterization and 553 
initialization should be undertaken for ECMWF particularly for areas further from the coast, for 554 
forecasts issued in the spring months, AMJ, and for NCEP CFS and ECCC for the forecasts 555 
issued in the winter months over coastal areas. 556 
 557 

Our analytical derivation on how MOS could help improve the forecast shows that a 558 
linear regression based MOS could ensure the NSE of the post-processed forecast to be 559 
component A, which is the square of the correlation coefficient between forecasts and the 560 
observation. This shows because simple linear regression based MOS can eliminate conditional 561 
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and marginal biases. This also provides information on regions (Figure 11, NSE <0 and ρ not 562 
significant) where S2S forecasting schemes can focus on improved model parameterizations and 563 
initializations including coupling with land surface models for improving the skill (Entekhabi et 564 
al., 1999).  565 
 566 

Acknowledgments 567 

The first author was supported by the National Science Foundation Fellowship (NSF) for the 568 
Graduate Research Fellowship Program (GRFP) support (award # DGE-2137100). Apart from 569 
that, this research was also supported by two NSF grants (award # CBET - 1805293 and IIE-570 
2033607).  571 
 572 
 Open Research 573 

The hindcast model data was accessed on the ECMWF S2S reforecast portal 574 
(https://apps.ecmwf.int/datasets/data/s2s/). The CPC Unified Gauged-Based observed 575 
precipitation dataset are available at 576 
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html, and the Koppen climate 577 
classification data are available at www.gloh2o.org/koppen/. 578 

 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 

 603 

https://apps.ecmwf.int/datasets/data/s2s/
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
http://www.gloh2o.org/koppen/


manuscript submitted to JGR-Atmospheres 
 

 

Appendix A. Decomposition of NSE for Linear-Regression Based Model Output Statistics 604 
 605 
For each grid cell, oit is the observed precipitation value, xit is the corresponding S2S 606 
precipitation value and yit is the corrected precipitation value, where t = 1, 2…n is the time index 607 
with ‘n’ forecasts and i is the lead time of the forecast. Linear regression model 2 is used for the 608 
model to get the corrected precipitation value, which is the MOS estimate. 609 

  𝑜𝑜𝑖𝑖𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1 𝑥𝑥𝑖𝑖𝑖𝑖 +  Ɛ𝑖𝑖𝑖𝑖    [1]   610 
 611 

yit = 𝛽𝛽0 + β1 xit                 [2] 612 
   613 

For a given i, NSE is originally between 𝑜𝑜𝑖𝑖𝑖𝑖 and xit  (equation 3), but a linear regression is used to 614 
estimate the corrected precipitation, yit.  For a given i , the NSE is calculated between oit and yit 615 
(equation 4) and then decomposed into parts A (equation 8-14), B (equation (15), and C 616 
(equation 16-17).  617 

     𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑜𝑜𝑖𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖) = 1 − ∑ (𝑜𝑜𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

∑ (𝑜𝑜𝑖𝑖𝑖𝑖−ō𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

=   𝜌𝜌𝑥𝑥𝑥𝑥  
2  −  ( 𝜌𝜌𝑥𝑥𝑥𝑥  −  ( 𝜎𝜎𝑥𝑥 

𝜎𝜎𝑜𝑜 
 ))2 − ( 𝑥𝑥 −𝑜𝑜 

𝜎𝜎𝑜𝑜 
 ))2      [3] 618 

  𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑜𝑜𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖) = 1 − ∑ (𝑜𝑜𝑖𝑖𝑖𝑖−𝑦𝑦𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

∑ (𝑜𝑜𝑖𝑖𝑖𝑖−ō𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑡𝑡=1

= =  𝜌𝜌𝑦𝑦𝑦𝑦  
2  −  ( 𝜌𝜌𝑦𝑦𝑦𝑦  −  ( 𝜎𝜎𝑦𝑦 

𝜎𝜎𝑜𝑜 
 ))2 − ( 𝑦𝑦 −𝑜𝑜 

𝜎𝜎𝑜𝑜 
 ))2     [4] 619 

 𝛽𝛽1 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜 −𝑥𝑥 )
 𝜎𝜎𝑥𝑥  2

 [5]       𝛽𝛽0 = 𝑜𝑜 −  𝛽𝛽1 ∗ 𝑥𝑥   [6]    𝛽𝛽1 =  𝜌𝜌𝑥𝑥𝑥𝑥 ∗   𝜎𝜎𝑥𝑥   ∗  𝜎𝜎𝑜𝑜 
 𝜎𝜎𝑥𝑥 2

= 𝜌𝜌𝑥𝑥 𝑜𝑜 ∗ 𝜎𝜎𝑜𝑜 
𝜎𝜎𝑥𝑥  

               [7] 620 

Where 𝜎𝜎𝑥𝑥  and 𝜎𝜎𝑜𝑜  represent the standard deviation of x and o, and  𝑜𝑜 and 𝑥𝑥  represent the mean of 621 

x and o once xit and oit were summed from 1 to n for lead time i in equation 3.  The pearson 622 
correlation coefficient between x and o is 𝜌𝜌𝑥𝑥𝑥𝑥.  For the corrected precipitation, yit, the standard 623 
deviation and mean are 𝜎𝜎𝑦𝑦 and y respectively, when yit is summed over time from 1 to n for lead 624 

time i in equation 4.  The correlation coefficient between o and y is 𝜌𝜌𝑦𝑦𝑜𝑜 .   625 
 626 
NSE of oit and yit is decomposed into the three corresponding parts a.) correlation, b.) conditional 627 
bias and c.) unconditional bias. It is important to note that correlation, Component A (𝑜𝑜 ,𝑦𝑦 ), will 628 
be the same as the Component A (𝑜𝑜 , 𝑥𝑥 ). Where  629 

                                                𝜌𝜌𝑦𝑦𝑦𝑦 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 , 𝑜𝑜 )
 𝜎𝜎𝑦𝑦  ∗  𝜎𝜎𝑜𝑜 

 

 

                              [8]           630 

                                𝜌𝜌𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 ,𝑜𝑜 )
 𝜎𝜎𝑥𝑥  ∗ 𝜎𝜎𝑜𝑜 

 

 
                        [9] 631 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑜𝑜 ) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽0 + 𝛽𝛽1 𝑥𝑥 , 𝑜𝑜 ) = 𝛽𝛽1  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 ,𝑜𝑜 )         [10] 632 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦 ) =  𝛽𝛽1
2 ∗ 𝜎𝜎𝑜𝑜 

 
  [11]                𝜎𝜎𝑦𝑦 =  𝛽𝛽1

2 ∗ 𝜎𝜎𝑥𝑥 

 
          [12]   633 

                                             𝜌𝜌𝑦𝑦𝑦𝑦 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 , 𝑜𝑜 )
 𝜎𝜎𝑦𝑦  ∗ 𝜎𝜎𝑜𝑜 

 

 

                            [13]      634 

      𝜌𝜌𝑦𝑦𝑦𝑦 = 𝛽𝛽1∗𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑜𝑜 )
𝛽𝛽1∗𝜎𝜎𝑥𝑥 ∗ 𝜎𝜎𝑜𝑜 

 

 
 = 𝛽𝛽1∗𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 ,𝑜𝑜 )

𝜎𝜎𝑦𝑦  ∗ 𝜎𝜎𝑜𝑜 
  =  𝜌𝜌𝑥𝑥𝑥𝑥        [14] 635 

Conditional bias B (𝑜𝑜 ,𝑦𝑦 ) will be reduced to zero MOS estimates. 636 

B (𝑜𝑜 ,𝑦𝑦 ) = (𝜌𝜌𝑦𝑦𝑦𝑦 
 −  ( 𝜎𝜎 𝑦𝑦 

𝜎𝜎𝑜𝑜 
 ))2 = (𝜌𝜌𝑥𝑥𝑥𝑥 −

𝛽𝛽1 ∗ 𝜎𝜎𝑥𝑥 
  𝜎𝜎𝑜𝑜 

  )2 = (𝜌𝜌𝑥𝑥𝑥𝑥 −
 𝜎𝜎𝑦𝑦 
  𝜎𝜎𝑜𝑜 

  )2     [15] 637 
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𝜌𝜌𝑥𝑥𝑥𝑥 = (− (𝜌𝜌𝑥𝑥𝑥𝑥  − 𝜎𝜎𝑜𝑜 
𝑥𝑥 

 ) ∙   𝜎𝜎𝑥𝑥 
  𝜎𝜎𝑜𝑜 

 )2 = 0 638 

Unconditional bias C (o , y ) will also reduce to zero for MOS estimates. 639 

                       C (𝑜𝑜 ,𝑦𝑦 ) =  ( 𝑦𝑦 −𝑜𝑜 

𝜎𝜎𝑜𝑜 
 ))2               [16] 640 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑥𝑥 = 𝑜𝑜  − 𝛽𝛽1 ∗ 𝑥𝑥 ∗ +𝛽𝛽1 ∗ 𝑥𝑥        [17] 641 

C (𝑜𝑜 ,𝑦𝑦 ) → 0  642 
 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 
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