Free infragravity waves on the inner shelf: Observations and Parameterizations at two Southern California beaches

Athina MZ Lange¹, Julia W Fiedler², Mark A. Merrifield³, and R.T. Guza³

¹Scripps Institution of Oceanography, UC San Diego ²UCSD ³Scripps Institution of Oceanography

September 11, 2023

Abstract

Co-located pressure and velocity observations in 10-15m depth are used to estimate the relative contribution of bound and free infragravity (IG) wave energy to the IG wave field. Shoreward and seaward going IG waves are analyzed separately. At the Southern California sites, shoreward propagating IG waves are dominated by free waves, with the bound wave energy fraction <30% for moderate energy incident sea-swell and <10% for low energy incident sea-swell. Only the 5% of records with energetic long swell show primarily bound waves. Consistent with bound IG wave theory, the energy scales as the square (frequency integrated) sea-swell energy, with a higher correlation with swell than sea energy. Seaward and shoreward free IG energy is strongly tidally modulated. The ratio of free seaward to shoreward propagating IG energy suggests between 50-100% of the energy radiated offshore is trapped on the shelf seaward of 10-15m and redirected shoreward. Remote sources of IG energy are small. The observed linear dependency of free seaward and shoreward IG energy on local sea-swell wave energy and tide are parameterized with good skill (R2 \sim 0.90). Free (random phase) and bound (phase-coupled) IG waves are included in numerically simulated timeseries for shoreward IG waves that are used to initialize (\sim 10m depth) the numerical nonlinear wave transformation SWASH. On the low slope study beach, wave runup is only weakly influenced by free shoreward propagating waves observed at the offshore boundary (foreshore slope = 0.02).

Free infragravity waves on the inner shelf: Observations and Parameterizations at two Southern California beaches

A.M.Z. Lange¹, J.W. Fiedler¹, M.A. Merrifield ¹, and R.T. Guza¹

¹Scripps Institution of Oceanography, La Jolla, CA, USA

Key Points:

4

5

6

7	•	Infragravity (IG) waves on the inner shelf (10-15m depth) in San Diego, USA are
8		usually dominated by refractively trapped free waves.
9	•	Seaward and shoreward propagating free IG energies are parameterized as a func-
10		tion of tide level and local sea-swell conditions.
11	•	On a low slope (0.02) beach, numerical modeled wave runup is weakly influenced
12		by the shoreward IG waves observed at the offshore boundary.

Corresponding author: Athina M.Z. Lange, alange@ucsd.edu

13 Abstract

Co-located pressure and velocity observations in 10-15m depth are used to estimate the 14 relative contribution of bound and free infragravity (IG) wave energy to the IG wave field. 15 Shoreward and seaward going IG waves are analyzed separately. At the Southern Cal-16 ifornia sites, shoreward propagating IG waves are dominated by free waves, with the bound 17 wave energy fraction < 30% for moderate energy incident sea-swell and < 10% for low 18 energy incident sea-swell. Only the 5% of records with energetic long swell show primar-19 ily bound waves. Consistent with bound IG wave theory, the energy scales as the square 20 (frequency integrated) sea-swell energy, with a higher correlation with swell than sea en-21 ergy. Seaward and shoreward free IG energy is strongly tidally modulated. The ratio of 22 free seaward to shoreward propagating IG energy suggests between 50-100% of the en-23 ergy radiated offshore is trapped on the shelf seaward of 10-15m and redirected shore-24 ward. Remote sources of IG energy are small. The observed linear dependency of free 25 seaward and shoreward IG energy on local sea-swell wave energy and tide are param-26 eterized with good skill ($R^2 \sim 0.90$). Free (random phase) and bound (phase-coupled) 27 IG waves are included in numerically simulated timeseries for shoreward IG waves that 28 are used to initialize ($\sim 10m$ depth) the numerical nonlinear wave transformation SWASH. 29 On the low slope study beach, wave runup is only weakly influenced by free shoreward 30 propagating waves observed at the offshore boundary (foreshore slope = 0.02). 31

32 Plain Language Summary

Infragravity (IG) waves are long-period (every 25 sec to 2.5 min) waves that con-33 tribute to coastal flooding and beach erosion. IG waves, generated near the shoreline by 34 short-period sea-swell (SS) wave groups (known by surfers as "sets"), have long wave-35 lengths (100s of m) and do not curl and break like ordinary sea and swell waves. Instead, 36 they can bounce off the beach face and propagate seaward. Our study concerns IG waves 37 on the inner shelf (10 - 15m depth), ~ 500 - 700m offshore), seaward of the region of 38 IG generation. Similar to previous observations in Hawai'i and North Carolina, we find 39 most of the bounced, seaward going IG energy cannot reach deep water and is trapped 40 on the continental shelf. We develop an observation-based estimate IG wave energy on 41 the inner shelf as a function of SS wave energy and tide level. Finally, we show with a 42 numerical model that IG wave runup at the shoreline is influenced only weakly by IG 43 waves on the inner shelf. 44

45 1 Introduction

Infragravity (IG) waves are low-frequency surface-gravity ocean waves with peri-46 ods typically between 25-200s, longer period than the sea-swell waves that generate them. 47 IG waves were first observed (Munk, 1949; Tucker, 1950) seaward of the surfzone, trav-48 eling shoreward with the group velocity of short-period wind-generated waves and $\sim 10\%$ 49 of their amplitude. IG waves can contribute significantly to runup (Huntley, 1976; Guza 50 & Thornton, 1982; Ruggiero, 2004; Stockdon et al., 2006, and many others), sediment 51 transport (Aagaard & Greenwood, 1994, 2008; Baldock et al., 2010; De Bakker et al., 52 2016), harbor seiches (Okihiro et al., 1993; Ardhuin et al., 2010) and earth hum (Rhie 53 & Romanowicz, 2006; Webb, 2007). 54

Shoaling, shoreward propagating sea-swell (SS) frequencies interact and transfer 55 energy to their sum (higher-order harmonics) and difference (infragravity) frequencies 56 through nonlinear triad interactions (Hasselmann et al., 1963; Elgar & Guza, 1985; van 57 Dongeren et al., 2007). 'Bound waves' are shoreward propagating IG waves that are 180° 58 out of phase with the envelope of higher-frequency sea-swell waves (Longuet-Higgins & 59 Stewart, 1962). As shoaling SS waves become increasingly nondispersive, the bound wave 60 approaches resonance, lags behind the wave group, and is eventually a 'free' wave (on 61 the dispersion curve) that propagates to shore (List, 1986; Battjes, 2004; A. T. M. de 62

Bakker et al., 2015). Throughout the short wave (e.g. sea-swell) surf zone, free shoaling IG waves can acquire and lose energy from SS waves and can potentially break. At
the shoreline, free IG waves can reflect and propagate seaward (Battjes, 2004; Thomson
et al., 2006; S. M. Henderson et al., 2006; van Dongeren et al., 2007; Ruju et al., 2012;
A. de Bakker et al., 2014).

In many locations, incident SS waves are relatively well characterized with buoys 68 (Behrens et al., 2019), satellites (Ribal & Young, 2019; Qin & Li, 2021), and regional or 69 global (e.g. WAVEWATCH III) wave models. While these SS waves can be used in off-70 71 shore boundary conditions (BC) for surf zone models, typically in $\sim 10-20$ m depth, the contribution of IG waves is not accurately observed or predicted by these systems. 72 IG waves, typically observed with bottom-mounted pressure and/or current sensors, are 73 less widely observed and characterized (Okihiro et al., 1992; Ardhuin et al., 2014; A. J. Re-74 niers et al., 2021). The practical limitations of direct observations of infragravity waves 75 motivates the present efforts to parameterize IG energy for use in nearshore models. Bound 76 wave theory has been implemented as an offshore IG boundary condition in laboratory 77 studies where the wavemaker is carefully controlled to create only a shoreward propa-78 gating bound IG wave and (ideally) to absorb seaward propagating IG waves (van Noor-79 loos, 2003; Van Thiel De Vries et al., 2008; G. Ruessink et al., 2013; Altomare et al., 2020, 80 and resulting papers). The offshore boundary condition in field settings have included 81 theoretical bound waves and also observed timeseries (Roelvink et al., 2009; Zijlema, 2012; 82 A. de Bakker et al., 2014; A. T. M. de Bakker et al., 2015; Dusseljee et al., 2014; Rijns-83 dorp et al., 2014, 2015; Fiedler et al., 2019; Zhang et al., 2020; Li et al., 2020; C. S. Hen-84 derson et al., 2022). The effect of free shoreward propagating IG waves in the model off-85 shore boundary has received little attention, and no existing parameterization includes 86 both 2D bound and free IG waves. Here, 3 years of pressure and current (PUV) data 87 in 10-15m depth are used to determine (and parameterize) the variation of incident IG 88 waves with a range of SS waves. A parametric offshore IG boundary condition is devel-89 oped. 90

1.1 Bound Waves

⁹² Bound infragravity spectral energy $E_{IG}^{bound} = \int_{IG} \mathbf{E}^{bound}(f) df$ is estimated from ⁹³ second-order nonlinear wave theory (Hasselmann, 1962; Sand, 1982; Herbers, Elgar, & ⁹⁴ Guza, 1995, and many others).

95

91

$$\mathbf{E}_{IG}^{bound}(\Delta f, \Delta \theta) = 2 \int_{\Delta f} D^2 S(f, \theta_1) S(f + \Delta f, \theta_2) df, \tag{1}$$

$$D = \frac{-gk_1k_2\cos(\Delta\theta)}{2\omega_1\omega_2} + \frac{1}{2g}(\omega_1^2 + \omega_2^2 + \omega_1\omega_2) + C\frac{g(\omega_1 + \omega_2)}{(gk_3\tanh(k_3h) - (\omega_1 + \omega_2)^2)*\omega_1\omega_2},$$

$$C = (\omega_1 + \omega_2) * \left(\frac{\omega_1\omega_2}{g}\right)^2 - k_1k_2\cos(\Delta\theta) - \frac{1}{2}\left(\frac{\omega_1k_2^2}{\cosh^2(k_2h)} + \frac{\omega_2k_1^2}{\cosh^2(k_1h)}\right),$$

with wavenumber k, angular frequency $\omega (= 2\pi f)$ and where the sea-swell frequency-96 direction spectra $S(f, \theta)$ can be estimated from a PUV, a pitch-roll buoy (Kuik, 1988), 97 or a regional wave model. The interaction coefficient D is computed for the difference 98 frequency (Δf) of every frequency pair (f_1, f_2) and if assuming directionally spread waves 99 (2D), every difference direction ($\Delta \theta = \theta_2 - \theta_1 + 180^\circ$). D varies strongly as a function 100 of $\Delta \theta$, depth, and SS frequency f. In shallow water, D is maximum (D_{max}) for co-linear 101 $(\Delta \theta = 0)$ waves, and 1D theory $(\Delta \theta = 0)$ is the upper limit on bound wave energy. 102 D decreases quickly with increasing $\Delta \theta$; $\Delta \theta = 30^{\circ}$ results in $D \sim 25\% D_{max}$ (Herbers 103 & Guza, 1994). The theoretical sensitivity of 2D bound wave energy to $S(f, \theta)$ and the 104 fundamentally low resolution of a single PUV directional estimator limits the accuracy 105 of the present 2D bound wave estimates. The coupling coefficient is frequency depen-106 dent and swell (8-25s) produces larger bound waves than sea (4-8s) (Okihiro et al., 107 1992).108

Bound IG waves can alternatively be estimated with the third-order spectrum (bispectrum, Hasselmann et al., 1963; Kim et al., 1980; Elgar & Guza, 1985) that depends on nonlinear phase coupling between wave triads with angular frequencies $\omega_1, \omega_2, \omega_{1+2}$. The bispectrum is the expected value of the triple product of complex Fourier coefficients, $B(k,l) = \tilde{E}[X_k X_l X_{k+l}].$

With random phases and no nonlinear coupling of the three frequencies, the bispectrum vanishes. The normalized magnitude of the bispectra (**b**, bicoherence),

$$\mathbf{b}(f_1, f_2) = \frac{B(f_1, f_2)}{\sqrt{\mathbf{E}(f_1)\mathbf{E}(f_2)\mathbf{E}(f_1 + f_2)}},\tag{2}$$

measures the strength of the phase coupling between the three waves. The bispectrum phase (biphase) corresponds to the phase lag between the IG wave and the SS wave
group (Elgar & Guza, 1985). The forced wave spectral density is the bispectrum integrated over all frequency pairs for a given difference frequency (Herbers & Guza, 1994),

$$\mathbf{E}_{IG}^{forced}(\Delta f) = \alpha(\Delta f)|b_i(\Delta f)|^2 \mathbf{E}(\Delta f), \tag{3}$$

$$\mathbf{b}_{i}(\Delta f) = 2 \int_{\Delta f}^{\inf} df B(f, \Delta f) / \sqrt{2 \int_{\Delta f}^{\inf} df \mathbf{E}(f + \Delta f) \mathbf{E}(f) \mathbf{E}(\Delta_{f})}, \tag{4}$$

and the bias term α can be computed from the bound wave theory.

121 **1.2 Free Waves**

Free waves contribute significantly to IG waves (Gallagher, 1971; Huntley et al., 122 1981; Oltman-Shay & Guza, 1987; Okihiro et al., 1992; Zijlema, 2012; Smit et al., 2018). 123 'Edge' waves are free waves trapped on a sloping beach by shoreline reflection and back-124 refraction by the increasing water depth (Eckart, 1951). Edge waves are sensitive to ge-125 ography, with the amount of trapping depending on the continental shelf and beach to-126 pography (Herbers, Elgar, Guza, & O'Reilly, 1995). Seaward propagating IG waves that 127 propagate freely from the shoreline across the shelf to deep water are known as 'leaky' 128 waves (Webb et al., 1991; Ardhuin et al., 2014; Rijnsdorp et al., 2021). Ardhuin et al. 129 (2014) and Rawat et al. (2014) parameterize seaward-going free wave energy (radiated 130 from the surfzone) for use as an incident boundary condition for global model WAVE-131 WATCH III, but the free IG wave climate on the inner shelf is poorly understood. 132

Previous work in Duck, NC, Southern California, and Hawai'i, USA and the North 133 Sea have investigated the fraction of IG energy contained in the bound component, giv-134 ing an indication of the amount of free shoreward wave energy. Numerous studies at Duck, 135 NC (~ 8–13m depth) (Elgar et al., 1992; Herbers & Guza, 1994; B. G. Ruessink, 1998; 136 A. J. H. M. Reniers, 2002) found that the bound wave fraction was typically between 137 10-20%, with higher values above 30% (and up to 100%) only during the most ener-138 getic SS conditions. In the North Sea (~ 30 m depth), IG wave conditions are always 139 free wave dominant and only during the peak of storms is the fraction bound $\geq 50\%$ 140 (A. J. Reniers et al., 2021). At beaches in Southern California and Hawai'i ($\sim 8-13$ m 141 and 183m depth) (Okihiro et al., 1992), up to 50% of the IG energy is at times attributed 142 to bound wave energy. The bound fraction is dependent on water depth; Elgar et al. (1992) 143 observed twice the bound fraction in 8m depth compared to 13m depth in Duck, NC. 144 Torrey Pines has long been a study site for refractively trapped waves (Huntley et al., 145 1981; Guza & Thornton, 1985; Oltman-Shay & Guza, 1987; Oltman-Shay & Howd, 1993; 146 Thomson et al., 2006), with significant trapped IG energy detected shoreward of 15m 147 water depth. This refracted energy then propagates onshore as free waves. These trapped 148 waves are not phase-coupled to local (instantaneous) SS wave groups because they are 149 not generated locally in space or time. 150

In this study, we analyze the relative contribution of bound and free IG energy to 151 the total IG energy in 10 - 15 m water depth for beaches in San Diego County, USA, 152 confirm theoretical estimates of the incident bound wave energy, investigate parameter-153 izations for both bound and free IG energy and estimate an IG sea surface elevation time-154 series that can be used as an incident boundary condition for nearshore models. Section 155 2.1 describes the dataset and quality control. Section 2.2 confirms that directional bound 156 wave theory (Hasselmann, 1962) accurately predicts the observed bound wave energy. 157 In Section 2.2 and 2.3, the relative contributions of shoreward propagating bound and 158 free IG waves and their respective dependencies on the SS wave field are presented and 159 compared with previous observations from other sites. The total incident bound and free 160 IG energy and the spectral shape of the free energy are discussed in Section 3. Compar-161 ison to a previously developed seaward IG parameterization (Ardhuin et al., 2014), the 162 tidal dependence and the effect of the IG BC in a phase-resolving nearshore numerical 163 model on IG swash is presented in Section 4. 164

¹⁶⁵ 2 Observations

2.1 Data

166

Bottom-mounted pressure sensors and current meters (PUV) were deployed in 10 167 and 15-m depths at Torrey Pines State Beach and Cardiff State Beach, CA intermittently 168 between Fall 2019 and Spring 2022 (Figure 1 and Table 1). Data were collected contin-169 uously between Fall 2021 and Spring 2022 as part of the Runup and Bathymetry 2D (RuBy2D) 170 experiment at Torrey Pines, a 3km long, alongshore-uniform composite (summer sand, 171 winter cobbles) beach. Cardiff is a 1.8km alongshore-variable beach, with a rocky reef 172 beginning approximately 125m offshore at the southern end (Ludka et al., 2019). The 173 2 Hz PUV data were segmented into 3h records. The three largest tidal constituents are 174 removed from the bottom pressure and velocity records, and the records are surface-corrected 175 using linear finite-depth theory over the frequency band 0.004-0.25 Hz. Computed spec-176 tra are segmented in 7200s demeaned ensembles, with an applied 50% overlapping Han-177 ning window, with 0.0003 Hz frequency resolution and 13 degrees of freedom. The IG 178 band is defined between 0.004 - 0.04 Hz, the swell band between 0.04 - 0.12 Hz and 179 the sea band between 0.12 - 0.25 Hz. As quality control, 3-hour pressure and velocity 180 spectra passed a Z-test (Eq. 1 in Elgar et al., 2005), 181

$$Z^{2} = \frac{P^{2}}{\left(\frac{\omega}{gk}\right)^{2} \frac{\cosh^{2} kh_{P}}{\cosh^{2} kh_{U}} (U^{2} + V^{2})},$$
(5)

with cutoffs of $0.8 < Z_{IG} < 1.2$ and $0.95 < Z_{SS} < 1.05$. This confirms the use of lin-182 ear theory in the sea surface correction. Additionally, only records with reflection coef-183 ficients (Eq. 4 in Sheremet et al., 2002) of $\mathscr{R}_{SS}^2 < 0.25$ and $\mathscr{R}_{IG}^2 < 2.5$ are used further. Only 5 values are removed with $\mathscr{R}_{IG}^2 > 2.5$ with max $\mathscr{R}_{IG}^2 = 2.9$. Details of the 184 185 resulting 2494 quality controlled 3h records and SS bulk wave statistics are in Table 1. 186 Spectral wave model (MOPS, O'Reilly et al., 2016) hindcast data from the observation 187 periods show similar distributions of bulk parameters as a 23-year hindcast (Figure 2). 188 The present observations are representative of the San Diego wave climate. Sea-surface 189 elevation and velocity are combined to estimate shoreward and seaward propagating wave 190 components, following Sheremet et al. (2002). Unless explicitly stated, the shoreward 191 sea-surface elevation timeseries is used below to characterize the offshore boundary con-192 dition for wave propagation models. 193

2.2 Bound Waves

194

The 1D and 2D ($\pm 90^{\circ}$ from shorenormal directionally-integrated) bound wave energies (Hasselmann, 1962) show the effects of directional spreading on the interaction

Figure 1. Co-located near-bottom pressure and biaxial acoustic current meter (PUV) in 10m and 15m depth at Torrey Pines and 10m depth at Cardiff. The Scripps Institution of Oceanography's wave MOnitoring and Prediction (MOP) (O'Reilly et al., 2016) transect numbers are given along with the 10 and 15m depth contours (NAVD88m).

¹⁹⁷ coefficient D (Eq. 1 and Figure 3). The 1D estimates are about $\sim 3x$ larger than the ¹⁹⁸ directionally-integrated 2D estimates.

Bispectral analysis confirms 2D nonlinear theory (Hasselmann, 1962)(Figure 4). However, bispectral E_{IG}^{forced} estimates can be inaccurate when nonlinear coupling is weak, bound wave energy is low and free waves dominate. At individual frequencies, the bispectral and the bound wave estimates can differ by as much as a factor of 50 (Figure 3 and Herbers and Guza (1994)). Integrated over IG frequencies, the 2D bound wave and the forced wave energy (for fraction bound > 15%) agree well ($R^2 = XX$, Figure 4). The cases of fraction bound > 15% are typically larger SS events (back-refracted deep water wave height H_0 and wavelength L_0 give median $\sqrt{H_0L_0} = 13.1$ m, compared to

Figure 2. Histograms of (a) Offshore wave height H_0 and offshore wavelength L_0 in $\sqrt{H_0L_0}$, (b) H_0 , (c) frequency spread f_{spread} , and (d) peak frequency f_{peak} at Torrey Pines in 10m at MOP582. Histograms are similar for 2000 - 2022 hindcast (blue, 201,600 1h values) and present observations (orange, 12,602 1h records). Mean \pm 1 standard deviation of the full 23 year hindcast and over the present observation time period (MOPS) are given.

MOP	Date	Depth (m)	Distance from backbeach (m)	# of records	H_{SS} (m)	$\begin{vmatrix} T_p \\ (s) \end{vmatrix}$	$\begin{array}{c} D_p \\ (\text{degrees}) \end{array}$	$\begin{vmatrix} D_{spread} \\ (degrees) \end{vmatrix}$
582	11/19 - 04/20	10	580	316	03-24	5 - 21	0 - 23	7 - 21
582	10/20 - 03/21	10	580	315	0.3 - 2.4 0.3 - 4.1	5 - 21	0 - 25	9 - 22
$582 \\ 669$	07/21 - 09/21 07/21 - 09/21	10	$\frac{580}{600}$	$223 \\ 285$	0.4 - 1 0 4 - 1 1	5 - 19 5 - 20	0 - 29 1 - 32	14 - 24 6 - 25
573	10/21 - 03/22	10	600	281	0.4 - 2.5	5 - 19	0 - 28	8 - 22
$578 \\ 582$	10/21 - 11/21 10/21 - 02/22	$\begin{vmatrix} 10\\10 \end{vmatrix}$	630 630	$\frac{55}{323}$	0.4 - 1.7 0.3 - 2.3	9 - 20 5 - 20	$1 - 10 \\ 0 - 19$	10 - 22 9 - 21
582	10/21 - 02/22	15	1020	401	0.5 - 2.7	5 - 20	0 - 25	8 - 25
589	10/21 - 02/22	10	660	289	0.3 - 2.3	6 - 20	0 - 32	9 - 22

Table 1. PUV Bulk Statistics. MOP location (580s are Torrey Pines and 669 is Cardiff in O'Reilly et al. (2016); Ludka et al. (2019)), date range, depth, distance from backbeach to PUV, the number of records for each PUV, significant wave height H_{SS} , peak period T_p , peak direction D_p and spread D_{spread} .

Figure 3. Observed (blue) sea surface elevation frequency spectra $\mathbf{E}(f)$ (d.o.f. = 30) in 10m for varying sea-swell wave heights H_{SS} (a) $H_{SS} = 3.7$ m, $D_{spread,SS} = 18^{\circ}$, fraction bound = 74% (b) $H_{SS} = 1.4$ m, $D_{spread,SS} = 13^{\circ}$, fraction bound = 100%, (c) $H_{SS} = 1.0$ m, $D_{spread,SS} = 17^{\circ}$, fraction bound = 10%, and (d) $H_{SS} = 0.4$ m, spread $D_{spread,SS} = 24^{\circ}$, fraction bound = 1%. In the IG band (f < 0.04 Hz, dashed vertical line), theoretical results are shown for 1D bound wave and 2 D bound wave, and for a bispectral approach (Herbers & Guza, 1994). Fraction bound (based on 2D bound waves) ranges from about 100% (a, largest H_{SS}) to 1% (d, smallest H_{SS}).

the median of the dataset = 10.7m). Analysis below uses 2D bound wave theory that 207 (unlike bispectral estimates) does not rely on insitu IG observations and can be estimated 208 from SS spectral waves from a buoy or wave model. Only 5% of the cases (120/2488)209 have a fraction bound greater than 50% (Figure 5 d). Similar to previous observations 210 (Herbers, Elgar, & Guza, 1995; B. G. Ruessink, 1998) the fraction bound increases with 211 increasing E_{IG} and E_{SS} and decreasing depth (or tide stage) (Figure 5 a). The frequency 212 dependence of the bound wave coupling coefficient is seen with E_{IG}^{bound} being more highly 213 correlated with E_{swell} ($R^2 = 0.84$) than E_{sea} ($R^2 = 0.59$) (Okihiro et al., 1992; Elgar 214 et al., 1992). 215

Figure 4. Bound IG energy from nonlinear 2D theory (Hasselmann, 1962) versus an estimate E_{IG}^{forced} based on bispectral analysis (Herbers & Guza, 1994). Colors are fraction bound based on 2D bound wave theory. When fraction bound < 15% bispectral results are widely scattered, and not shown or included in R^2 . The 1-1 line, and mean and standard deviation for binned data (green curve and shading) are shown.

Figure 5. Observed shoreward propagating IG energy (a) E_{IG}^{bound} , (b) E_{IG}^{free} , (c) E_{IG}^{total} , and (d) fraction bound versus E_{SS} . Most observed fraction bound are < 50% (dashed horizontal line) and many are < 10%. \triangle is 15m PUV data. Correlations R^2 are given. E_{IG}^{bound} scales as E_{SS}^2 whereas both total and free IG energy scale as E_{SS} . In panels (a - c), the solid line shows a linear dependence on E_{SS} (slope = 1), and dashed line shows a quadratic dependence on E_{SS} (slope = 2).

2.3 Free Waves 216

The shoreward free IG energy spectra are estimated by subtracting the bound wave 217 estimate $(\mathbf{E}_{IG}^{bound}(f))$ from the total shoreward IG energy spectra. These shoreward-directed 218 free waves are a combination of refractively trapped (and typically locally generated) waves 219 and leaky waves from remote sources. The free (and due to the dominance of free wave 220 IG energy, the total) wave energy is approximately linearly proportional to E_{SS} (Figure 221 5 b, c, and consistent with Herbers, Elgar, Guza, & O'Reilly, 1995; Okihiro & Guza, 1995). 222 This linear dependence on E_{SS} , as opposed to a quadratic dependence for the bound wave, 223 has been attributed to dissipation (Herbers, Elgar, Guza, & O'Reilly, 1995). Free waves 224 have a weaker depth dependence (h^{-1}) than bound waves (h^{-5}) , consistent with Herbers, 225 Elgar, Guza, and O'Reilly (1995). 226

Okihiro et al. (1992) estimated that in Southern California for typical SS energy, 227 25% of the IG energy was bound in 8-13m depth, 70% was trapped shoreward of a sen-228 sor in 183m depth, and only 5% was leaky. Leaky, free IG waves can propagate across 229 ocean basins and in deep water appear uncoupled from and uncorrelated with local SS 230 wave conditions (Webb et al., 1991; Ardhuin et al., 2014). However, on the inner shelf, 231 remotely generated IG waves only dominate local IG waves when E_{SS} is very low (Herbers, 232 Elgar, Guza, & O'Reilly, 1995; Sheremet et al., 2002). Remotely generated IG waves (i.e., 233 unrelated to local SS wave energy) are not considered in the following analysis and con-234 tribute to parameterization noise. 235

3 Parameterizing the IG wave field 236

3.1 Bound Waves

237

Although 2D bound wave energy can be determined from the incident sea-swell spec-238 trum, parameterizations of the total bound wave energy from bulk sea-swell wave statis-239 tics are convenient. Linear regression between $_{pred}E_{IG}^{bound}$ and $E_{SS}^2h^{-5}$ (with exponents 240 predicted in Herbers, Elgar, and Guza (1995) and similar to B. G. Ruessink (1998)), yields 241 correlation coefficients R^2 between 0.58-0.91, for 10m Torrey Pines, 15m Torrey Pines 242 and 10m Cardiff PUVs. A frequency-weighted sea-swell energy integral $\left(\int_{SS} \mathbf{E}(f) f^{-1} df\right)$ 243 (similar to the approach of Fiedler et al. (2020)) has higher correlations in all cases (Eq. 244 6 with $R^2 = 0.84 - 0.97$, 95% CI [14.98, 15.37], Figure 6 a), 245

$$_{p}E_{IG}^{bound} = 15.2 \left(\int_{SS} \mathbf{E}(f) f^{-1} df \right)^{2} h^{-5}.$$
 (6)

The units of the dimensional constant on the right-hand side are selected to yield m^2 . 246

247

3.2 Shoreward Free Waves

Linear regression between $_{obs}E_{IG}^{free}$ and E_{SS} gives correlation $R^2 = 0.79$ (Figure 5). However, similar to the bound wave parameterization, a frequency-weighted SS en-248 249 ergy integral increases the correlation $(R^2 = 0.84)$. The observed tidal dependence of 250 free IG energy is accounted for with the normalized tide 251

$$\tilde{\sigma} = \frac{\text{tide}_{obs} - \text{tide}_{low}}{\text{tide}_{high} - \text{tide}_{low}},\tag{7}$$

where 2.5m is the total tidal range observed across all deployments), with $\tilde{\sigma} = 0$ at 252 the lowest observed tide (-0.5 NAVD88m), and $\tilde{\sigma} = 1$ at the highest tide (2 NAVD88m). 253 Tide data is the 3h average obtained from a NOAA tide gauge (Station 9410230, La Jolla). 254 Including a linear $\tilde{\sigma}$ dependence in the regression improves the correlation between ob-255 served and predicted total E_{IG}^{free} energy to $R^2 = 0.9$ (95% CI [0.00066, 0.00068], Eq. 256 8, Figure 6 b) at all but the lowest tides and E_{SS} , 257

Figure 6. Parameterizations of incident IG wave field. (a) 2D bound wave parameterization (Eq. 6), (b) Free wave parameterization (Eq. 8), (c) 2D bound wave theory + free wave parameterization, colored by total incident SS energy (see color bar in (b)) and (d) significant wave height of estimated IG timeseries, colored by SS significant wave height.

	$\left\ \ \int_{SS} \mathbf{E}(f) df \right\ $	$\int_{SS} \mathbf{E}(f) f^{-1} df$	$ \tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df$
10m Torrey Pines	0.82	0.88	0.92
15m Torrey Pines	0.63	0.74	0.84
10m Cardiff	0.5	0.69	0.87
Total	0.79	0.84	0.9

Table 2. R^2 between total (frequency-band integrated) free shoreward IG energy observed and three parameterizations using the observed sea-swell wave energy spectrum $\mathbf{E}_{SS}(f)$. PUV sensors were deployed in 10m and 15m at Torrey Pines and 10m at Cardiff (see Table 1 for details). In all cases, $\tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df$ has the highest R^2 , where $\tilde{\sigma}$ is the relative tide level (Eq. 7).

$${}_{p}E_{IG}^{free} = 0.00067\tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df.$$

$$\tag{8}$$

²⁵⁸ Correlations in different depths and beaches are given in Table 3.2.

The total shoreward IG energy, with contributions from both bound and free waves can be estimated with local SS parameters. The parameterization performs well ($R^2 =$ 0.96) for all but the smallest E_{SS} and/or tides using either the bound wave parameterization (Eq. 6) or the integrated 2D Hasselmann bound wave energy (Figure 6 c). With the smallest E_{SS} and lowest tides, the parameterization underpredicts E_{IG} perhaps owing to free waves from remote sources (Webb et al., 1991; Ardhuin et al., 2014) and the inaccuracy of Eq. 6) when $\tilde{\sigma} = 0$. Functional forms of the frequency distribution of the free IG energy were compared with the observed free IG spectra (normalized by the frequency-weighted SS energy). Forms investigated include linear and cubic fits to the median spectral shape, the spectral shape of Ardhuin et al. (2014) and an altered form (referred to as *nouvelleArdhuin*, Eq. 9),

$$A(f) = \begin{cases} \beta \frac{1}{\Delta f} * [f/0.012 \text{Hz}] & \text{when } f < 0.012 \text{Hz} \\ \beta \frac{1}{\Delta f} * [0.012 \text{Hz}/f] & \text{when } f > 0.012 \text{Hz} \end{cases},$$
(9)

with $\beta = 0.0146$ (median spectral energy density at f = 0.012Hz).

NouvelleArdhuin has the smallest (~ 0.35) median root-mean-square logarithmic error (RMSLE) between $_{obs}E_{IG}^{free} * A(f)$ and $_{obs}\mathbf{E}_{IG}^{free}(f)$. Over all 2494 records, RM-SLE are linear ~ 0.45, cubic ~ 0.40 and using Ardhuin et al. (2014) ~ 0.42. The free wave frequency distribution varies over a wide range and leads to relatively large RM-SLE errors in all tested forms. NouvelleArdhuin (Eq. 9) is relatively simple, has the smallest errors, and is used below.

Timeseries realizations of the shoreward free IG are estimated from an inverse FFT of $p_{red} \mathbf{E}_{IG}^{free}(f)$,

$${}_{p}\mathbf{E}_{IG}^{free}(f) = {}_{p}E_{IG}^{free} * A(f), \qquad (10)$$
$${}_{p}E_{IG}^{free} = 0.00067\tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df,$$

with random phases and A(f) (Eq. 9).

Linearly combining the computed bound wave timeseries with the estimated shoreward propagating free wave timeseries (with random phase), yields an estimated total shoreward IG timeseries that can be used as a boundary condition for numerical models. The parameterizations approximately reproduce a range of infragravity heights (Figure 6 c, RMSE ~ 0.01m, Model skill = 0.82, $R^2 = 0.95$, Bias = 0.006m).

285 4 Discussion

Ardhuin et al. (2014) parameterized seaward free IG energy as a function of local sea-swell conditions, and used that parameterization as a shoreline boundary condition in a global ocean wave model. The assumptions that seaward IG energy is free, directionally broad, and mainly radiated from the surfzone underlie the parameterization ${}_{p}\mathbf{E}_{IG}^{sea}(f)$

$${}_{p}\mathbf{E}_{IG}^{sea}(f) = \left[1.2\alpha^{2}\frac{kg^{2}}{c_{g}2\pi f}\left(\frac{H_{s}T_{m,0}^{2}}{4}\right)^{2}\right] * \frac{1}{\Delta f}\left[\min\left(1,\frac{0.015\text{Hz}}{f}\right)\right]^{1.5},$$
 (11)

with the first part determining the frequency-band integrated ${}_{P}E_{IG}^{sea}$ energy, and the second, the frequency distribution of the seaward IG spectrum. Zheng et al. (2021) compared output from the Ardhuin et al. (2014) model and observations of H_{IG} and found $R^{2} = 0.6$. This approach, for seaward IG energy, yields similar parameters for α (= 6.6 x 10⁻⁴s⁻¹) with $R^{2} = 0.71$ between estimated and observed E_{IG}^{free} (Figure 7 a). A parameterization, similar to Eq. 8, for the seaward energy,

$${}_{p}E_{IG}^{seaward} = 0.001\tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df.$$
(12)

shows similar tidal dependence of seaward and shoreward energy, and similar high skill $R^2 = 0.91$ (Figure 7 b). The ratio of seaward/shoreward = 0.001/0.00067 = 1.5, is constant and independent of tide. Although the dependencies on $\tilde{\sigma}$ and the constant are not well constrained, the implication that \mathscr{R}_{IG}^2 is not a function of tide level is supported by the low correlation ($R^2 = 0.22$) between tide and \mathscr{R}_{IG}^2 (Figure 8).

Figure 7. Parameterization of seaward IG energy from local SS conditions. (left) Ardhuin et al. (2014) ($R^2 = 0.71$) and (right) new parameterization ($R^2 = 0.91$), including tidal dependence (Eq. 12).

The observed total and free shoreward IG energy is tidally modulated (Figure 5 b, 301 c), consistent with previous observations of total (seaward plus shoreward) IG energy 302 in Southern California (Okihiro & Guza, 1995). This modulation, lower E_{IG} at low tide, 303 has been attributed to IG energy loss within the surfzone being stronger on flat and shal-304 low low-tide beaches than on steeper high-tide beaches (given a concave beach profile, 305 Figure 8) (Thomson et al., 2006). Note that refractive trapping of seaward IG energy 306 creates shoreward IG waves. That is, seaward and shoreward IG waves both increase at 307 high tide, when the surfzone more efficiently radiates IG energy. 308

Observed values of \mathscr{R}_{IG}^2 vary between 0.5 - 2.5, whereas $\mathscr{R}_{IG}^2 = 1.5$ follows from 309 the present crude parameterizations. While \mathscr{R}_{IG}^2 at the shoreline is constrained to < 1, 310 $\mathscr{R}^2_{IG} > 1$ in 10-15m depth can indicate IG surf zone generation and radiation, and shelf 311 trapping. The ratio of free seaward to shoreward propagating IG energy in 10-15m depths 312 is usually between 1 and 2. Along with the high correlation between E_{SS} and $_{obs}E_{IG}^{free}$, 313 this suggests that between half and all of the energy radiated seaward is trapped on the 314 shelf seaward of 10-15m and redirected shoreward (similar results seen in Gallagher, 1971; 315 Elgar & Guza, 1985; Oltman-Shay & Guza, 1987; Okihiro et al., 1992; Elgar et al., 1992, 316 1994; Herbers & Guza, 1994; Herbers, Elgar, & Guza, 1995; Herbers, Elgar, Guza, & O'Reilly, 317 1995; Okihiro & Guza, 1995; Sheremet et al., 2002; Battjes, 2004; Thomson et al., 2006; 318 S. M. Henderson et al., 2006; Rijnsdorp et al., 2015). 319

320

4.1 Numerical modelling of wave runup

The open-source, phase-resolving SWASH model (Zijlema et al., 2011) is used widely 321 to simulate wave transformations and runup. SWASH successfully reproduces SS and 322 IG evolution in laboratory channels with simple h(x), and carefully controlled normally 323 incident waves (A. de Bakker et al., 2014; Ruju et al., 2014; Suzuki et al., 2017). Field 324 observations and model predictions of IG wave evolution and runup are also in good agree-325 ment, although limited by the relatively small range of conditions for which offshore bound-326 ary conditions (e.g. incident SS and IG waves), sandy beach bathymetry, and runup are 327 all accurately known (Nicolae Lerma et al., 2017; Fiedler et al., 2018, 2019; Valentini et 328 al., 2019; C. S. Henderson et al., 2022). For the current model runs, for computational 329 reasons SWASH is run in nonstationary 2D mode in a narrow channel, with a curvilin-330

Figure 8. (a) Mean depth profiles at Torrey Pines (MOP 578 - 589), colored by season of survey. 85% of the 2209 surveys were collected in September/October/November (n = 747) and December/January/February (n = 1125). Insert shows subaerial beach. (b) Beach slope versus mean tide (relative to NAVD88m) of 3h record) at Torrey Pines. Beach slope is the linear fit $\pm 0.5m$ around the tide level. The concave subaerial beach is steeper at high tide than low tide.

ear grid with a 2-m alongshore mesh for two identical parallel transects with 2 vertical
layers. Waves are 1D. The normally incident wave field is prescribed with a Fourier series at the offshore boundary in 14m depth, about 600m from the shoreline. Parameter
settings are as in Lange et al. (2022).

Significant IG growth and decay occurs during SS shoaling and breaking. Compar-335 isons of runup with model run with $E_{IG} = 0$ and nouvelleArdhuin at the offshore bound-336 ary provide a measure of the effect of additional energy incident at the boundary. To test 337 the relationship between incident IG energy in 10m and IG runup, we ran 23 wave cases 338 of incident wave height ranging from $0.3 < H_{SS} < 4.1$ m and $0.01 < H_{IG} < 0.44$ m, 339 with the IG boundary condition given by either $E_{IG} = 0$ or nouvelleArdhuin, and with 340 the bathymetry profile either a 2-slope linear profile or an observed profile, for a total 341 of 92 runs. 342

On the 2-slope profile, differences in runup with $E_{IG} = 0$ and nouvelleArdhuin 343 are very small. On the observed bathymetry (derived from Figure 8 a), differences are 344 detectable and best fit line slopes differ by about 15%. Consistent with linear intuition, 345 runup is increased (modestly) by including incident IG waves at the offshore boundary. 346 However, the cross-shore evolution of the shoreward IG waves is nonlinear and much more 347 complicated than suggested by this simple example (Ruju et al., 2012; Fiedler et al., 2019; 348 Mendes et al., 2018; Rijnsdorp et al., 2022). With steep test bathymetries and energetic 349 wave conditions (not shown and not realistic in Southern California) $E_{IG} = 0$ can gen-350 erate higher runup than nouvelleArduin, and effects of the offshore boundary condition 351 on IG swash and runup can be significant (up to 20% different in the current cases and 352 greater in cases run in Lange et al. (2022)). 353

We note that SWASH-modelled runup results were insensitive to different realizations of random phase in the simulations of free waves (not shown). Finally, SWASHmodelled seaward going IG energy in 10-15m was, for unknown reasons, significantly higher than the corresponding PUV observation (not shown), similar to C. S. Henderson et al.

Figure 9. SWASH-modelled IG runup swash height versus nouvelleArdhuin offshore boundary condition IG height (\circ , solid line is best fit). Runup is relatively insensitive to setting offshore $E_{IG} = 0$ (\bullet , dashed). Best fit line slopes differ by 15% indicating a slight reduction in runup using $E_{IG} = 0$.

(2022). Possibly, errors arise because the SWASH 1D simulations assume normal wave
 incidence and do not support trapped waves. Simulations in 2D are beyond the present
 scope.

The applicability of the present results to other sites is unknown. Bound wave the-361 ory is general, not site-specific, and has no tunable parameters. However, the values of 362 "free wave" parameters (Eqs. 6 and 10) are expected to vary with beach and shelf ge-363 ometry. For example, the average depth of the North Sea is only 90m and slopes are low, 364 potentially limiting the importance of refractive trapping relative to steeply sloped is-365 lands with deep water relatively close to shore (Rijnsdorp et al., 2021). The present sites 366 are not between headlands or bounded by (fixed) offshore reefs. Selective amplification 367 at particular IG frequencies has not been observed either in runup or on the inner shelf. 368 Remotely generated IG waves from transoceanic sources are usually of relatively little 369 importance. IG energy levels on the inner shelf depend on local waves and tide level. The 370 numerical model result that IG wave runup at the shoreline is influenced only weakly 371 by free IG waves on the inner shelf could significantly simplify overtopping forecasts by 372 reducing the need for regional forecast models of IG waves. 373

5 Conclusion

The relative contribution of bound and free infragravity waves to the IG wave field 375 on the inner shelf (depth $\sim 10-15$ m) in San Diego County, USA was examined using 376 PUV observations and nonlinear wave theory. In general, free waves dominate the IG 377 wave field with only 5% of the records showing a bound wave fraction > 50%, consis-378 tent with previous observations in Southern California and Duck, USA and the North 379 Sea. The bound wave energy scaled with the local SS energy squared (with higher cor-380 relation to swell energy than sea) and depth dependence is consistent with h^{-5} scaling. 381 Free IG energy scaled linearly with the local SS energy and with the tide level. 382

These dependencies were included in parameterization of the total (bound and free IG) shoreward propagating energy that depen on tide level and wave models or buoy observations of SS waves. Parameterization of the seaward propagating IG waves showed
 a similar tidal dependence, differing from Ardhuin et al. (2014). Using an observation based frequency distribution for free IG energy, bound and free wave are included in syn thetic IG timeseries used to initialize the nonlinear, phase-resolving, numerical wave model
 SWASH. SWASH results suggest that wave runup is weakly influenced by free shoreward
 propagating IG waves observed at the offshore boundary.

Further observations and modeling are needed to extent the present results to other coastal locations.

³⁹³ Open Research Section

The 2494 timeseries of pressure, cross-shore and alongshore velocity is available on Zenodo at https://doi.org/10.5281/zenodo.8254388.

396 Acknowledgments

This study was funded by the U.S. Army Corps of Engineers (W912HZ1920020) and the California Department of Parks and Recreation (C19E0026). Data were collected and processed by the Coastal Processes Group field team members Lucian Parry, Rob Grenzeback, Kent Smith, Brian Woodward, Greg Boyd, Shane Finnerty, Carson Black, and Mele Johnson. Michele Okihiro organized logistics.

402 **References**

403	Aagaard, T., & Greenwood, B. (1994, April). Suspended sediment transport and
404	the role of infragravity waves in a barred surf zone. Marine Geology, 118(1-
405	2), 23-48. Retrieved 2023-04-27, from https://linkinghub.elsevier.com/
406	retrieve/pii/0025322794901112 doi: 10.1016/0025-3227(94)90111-2
407	Aagaard, T., & Greenwood, B. (2008, May). Infragravity wave contribution to surf
408	zone sediment transport — The role of advection. Marine Geology, 251(1-
409	2), 1-14. Retrieved 2023-04-27, from https://linkinghub.elsevier.com/
410	retrieve/pii/S0025322708000297 doi: 10.1016/j.margeo.2008.01.017
411	Altomare, C., Bolle, A., Brand, E., Chen, M., Dan, S., De Sloover, L., Zhange,
412	Q. (2020). CREST Final Scientific Report: Take Home Messages & Project
413	<i>Results.</i> VLIZ Special Publication 85.
414	Ardhuin, F., Devaux, E., & Pineau-Guillou, L. (2010). Observation et prévision
415	des seiches sur la côte Atlantique française. In XIèmes Journées, Les
416	Sables d'Olonne (pp. 1–8). Editions Paralia. Retrieved 2023-04-27, from
417	http://www.paralia.fr/jngcgc/11_01_ardhuin.pdf doi: 10.5150/
418	jngcgc.2010.001-A
419	Ardhuin, F., Rawat, A., & Aucan, J. (2014, May). A numerical model for
420	free infragravity waves: Definition and validation at regional and global
421	scales. Ocean Modelling, 77, 20-32. Retrieved 2021-03-15, from https://
422	linkinghub.elsevier.com/retrieve/pii/S1463500314000274 doi:
423	10.1016/j.ocemod.2014.02.006
424	Baldock, T., Manoonvoravong, P., & Pham, K. S. (2010, October). Sediment
425	transport and beach morphodynamics induced by free long waves, bound
426	long waves and wave groups. Coastal Engineering, $57(10)$, $898-916$. Re-
427	trieved 2023-04-27, from https://linkinghub.elsevier.com/retrieve/pii/
428	0.101000000000000000000000000000000000
429	Battjes, J. A. (2004). Shoaling of subharmonic gravity waves. Journal of Geophysi-
430	cal Research, 109(C2), C02009. Retrieved 2019-05-13, from http://doi.wiley
431	.com/10.1029/2003JC001863 doi: 10.1029/2003JC001863
432	Behrens, J., Thomas, J., Terrill, E., & Jensen, R. (2019, March). CDIP:
433	Maintaining a Robust and Reliable Ocean Observing Buoy Network. In

434	2019 IEEE/OES Twelfth Current, Waves and Turbulence Measurement
435	(CWTM) (pp. 1–5). San Diego, CA, USA: IEEE. Retrieved 2023-04-
436	06, from https://ieeexplore.ieee.org/document/8955166/ doi:
437	10.1109/CWTM43797.2019.8955166
438	de Bakker, A., Tissier, M., & Ruessink, B. (2014, January). Shoreline dissipa-
439	tion of infragravity waves. Continental Shelf Research, 72, 73–82. Re-
440	trieved 2021-04-03, from https://linkinghub.elsevier.com/retrieve/
441	nii/S0278434313003786 doi: 10.1016/j.csr.2013.11.013
441	De Bakker A T M Brinkkemper I A Van Der Steen F Tissier M F S k
442	Buossink B.C. (2016 October). Cross shore sand transport by infragravity.
443	wayes as a function of baseh stoopness: SAND TRANSPORT BY INFRA
444	CDAVITY WAVES Lowmal of Coophysical Possamh, Earth Surface 101(10)
445	1786 1700 Detriored 2022 04 27 from http://dei.wiley.com/10.1002/
446	2016 IE002878 doi: 10.1002/2016 IE002878
447	2010 JF 003676 (10): $10.1002/2010 JF 003676$
448	de Bakker, A. I. M., Herbers, I. H. C., Smit, P. B., Hissier, M. F. S., & Ruessink,
449	B. G. (2015, February). Nonlinear infragravity–wave interactions on a Gently
450	Sloping Laboratory Beach. Journal of Physical Oceanography, 45(2), 589–605.
451	Retrieved 2021-04-03, from https://journals.ametsoc.org/view/journals/
452	phoc/45/2/jpo-d-14-0186.1.xml doi: 10.1175/JPO-D-14-0186.1
453	Dusseljee, D., Klopman, G., Van Vledder, G., & Riezebos, H. J. (2014, December).
454	IMPACT OF HARBOR NAVIGATION CHANNELS ON WAVES: A NU-
455	MERICAL MODELLING GUIDELINE. Coastal Engineering Proceedings,
456	1(34), 58. Retrieved 2023-05-02, from https://journals.tdl.org/icce/
457	index.php/icce/article/view/7710 doi: 10.9753/icce.v34.waves.58
458	Eckart, C. (1951). SURFACE WAVES ON WATER OF VARIABLE DEPTH.
459	Elgar, S., & Guza, R. T. (1985). Observations of bispectra of shoaling surface grav-
460	ity waves. Journal of Fluid Mechanics.
461	Elgar, S., Herbers, T. H. C., & Guza, R. T. (1994, July). Reflection of Ocean Sur-
462	face Gravity Waves from a Natural Beach. Journal of Physical Oceanography,
463	24(7), 1503-1511. Retrieved 2023-04-30, from http://journals.ametsoc
464	.org/doi/10.1175/1520-0485(1994)024<1503:ROOSGW>2.0.CO;2 doi:
465	$10.1175/1520\text{-}0485(1994)024\langle 1503\text{:}\text{ROOSGW}\rangle 2.0.\text{CO}\text{;}2$
466	Elgar, S., Herbers, T. H. C., Okihiro, M., Oltman-Shay, J., & Guza, R. T. (1992).
467	Observations of infragravity waves., 5.
468	Elgar, S., Raubenheimer, B., & Guza, R. T. (2005, October). Quality con-
469	trol of acoustic Doppler velocimeter data in the surfzone. Measurement
470	Science and Technology, $16(10)$, 1889–1893. Retrieved 2023-04-11, from
471	https://iopscience.iop.org/article/10.1088/0957-0233/16/10/002
472	doi: 10.1088/0957-0233/16/10/002
473	Fiedler, J. W., Smit, P. B., Brodie, K. L., McNinch, J., & Guza, R. (2018, Jan-
474	uary). Numerical modeling of wave runup on steep and mildly sloping natural
475	beaches. Coastal Engineering, 131, 106–113. Retrieved 2020-10-20, from
476	https://linkinghub.elsevier.com/retrieve/pii/S037838391730193X
477	doi: 10.1016/j.coastaleng.2017.09.004
478	Fiedler, J. W., Smit, P. B., Brodie, K. L., McNinch, J., & Guza, R. (2019, January).
479	The offshore boundary condition in surf zone modeling. Coastal Engineering,
480	143, 12-20. Retrieved 2019-08-14, from https://linkinghub.elsevier.com/
481	retrieve/pii/S0378383918301984 doi: 10.1016/j.coastaleng.2018.10.014
482	Fiedler, J. W., Young, A. P., Ludka, B. C., O'Reilly, W. C., Henderson, C., Merri-
483	field, M. A., & Guza, R. T. (2020, October). Predicting site-specific storm
484	wave run-up. Natural Hazards, 104(1), 493–517. Retrieved 2020-10-08.
485	from http://link.springer.com/10.1007/s11069-020-04178-3 doi:
486	10.1007/s11069-020-04178-3
487	Gallagher, B. (1971, September). Generation of surf beat by non-linear
488	wave interactions. Journal of Fluid Mechanics, 49(1), 1–20. Re-

489	trieved 2021-03-01, from https://www.cambridge.org/core/product/
490	identifier/S0022112071001897/type/journal_article doi: $10.1017/$
491	S0022112071001897
492	Guza, R. T., & Thornton, E. B. (1982). Swash oscillations on a natural beach. Jour-
493	nal of Geophysical Research, 87(C1), 483. Retrieved 2020-06-08, from http://
494	doi.wiley.com/10.1029/JC087iC01p00483
495	Guza, R. T., & Thornton, E. B. (1985). Observations of surf beat. Journal of
496	Geophysical Research, 90(C2), 3161. Retrieved 2021-04-03, from http://doi
497	.wiley.com/10.1029/JC090iC02p03161 doi: 10.1029/JC090iC02p03161
498	Hasselmann, K. (1962, April). On the non-linear energy transfer in a gravity-
499	wave spectrum Part 1. General theory. Journal of Fluid Mechanics, 12(04),
500	481. Retrieved 2020-10-08, from http://www.journals.cambridge.org/
501	abstract_S0022112062000373 doi: 10.1017/S0022112062000373
502	Hasselmann, K., Munk, W. H., & MacDonald, G. (1963). Bispectra of Ocean Waves.
503	Proc. of Time Series Analysis.
504	Henderson, C. S., Fiedler, J. W., Merrifield, M. A., Guza, R., & Young, A. P.
505	(2022, August). Phase resolving runup and overtopping field validation of
506	SWASH. Coastal Engineering, 175, 104128. Retrieved 2023-04-06, from
507	https://linkinghub.elsevier.com/retrieve/pii/S0378383922000436
508	doi: 10.1016/j.coastaleng.2022.104128
509	Henderson, S. M., Guza, R. T., Elgar, S., Herbers, T. H. C., & Bowen, A. J.
510	(2006, December). Nonlinear generation and loss of infragravity wave en-
511	ergy. Journal of Geophysical Research, 111(C12), C12007. Retrieved
512	2019-05-13, from http://doi.wiley.com/10.1029/2006JC003539 doi:
513	10.1029/2006JC003539
514	Herbers, T. H. C., Elgar, S., & Guza, R. T. (1995). Generation and propagation of
515	infragravity waves. Journal of Geophysical Research, 100(C12), 24863. Re-
516	trieved 2019-05-13, from http://doi.wiley.com/10.1029/95JC02680 doi: 10
517	.1029/95JC02680
518	Herbers, T. H. C., Elgar, S., Guza, R. T., & O'Reilly, W. C. (1995). Infragravity-
519	Frequency (0.005–0.05 Hz) Motions on the Shelf. Part II Free Waves. Journal
520	of Physical Oceanography, 1063–1079.
521	Herbers, T. H. C., & Guza, R. T. (1994). Infragravity-Frequency (0.005–0.05 Hz)
522	Motions on the Shelf. Part I Forced Waves. Journal of Physical Oceanography.
523	Huntley, D. A. (1976, December). Long-period waves on a natural beach. Journal of
524	Geophysical Research, 81(36), 6441-6449. Retrieved 2020-10-20, from http://
525	doi.wiley.com/10.1029/JC081i036p06441 doi: 10.1029/JC081i036p06441
526	Huntley, D. A., Guza, R. T., & Thornton, E. B. (1981). Field observations of
527	surf beat: 1. Progressive edge waves. <i>Journal of Geophysical Research</i> ,
528	86(C7), 6451. Retrieved 2021-03-02, from http://doi.wiley.com/10.1029/
529	JC086iC07p06451 doi: 10.1029/JC086iC07p06451
530	Kim, Y. C., Beall, J. M., Powers, E. J., & Miksad, R. W. (1980). Bispectrum and
531	nonlinear wave coupling. <i>Physics of Fluids</i> , 23(2), 258. Retrieved 2019-06-
532	01, from https://aip.scitation.org/doi/10.1063/1.862966 doi: 10.1063/
533	1.862966
534	Kuik, A. (1988). A Method for the Routine Analysis of Pitch-and-Roll Buoy Wave
535	Data. Journal of Physical Oceanography.
536	Lange, A. M., Fiedler, J. W., Becker, J. M., Merrifield, M. A., & Guza, R. (2022).
537	March). Estimating runup with limited bathymetry. Coastal Engineering. 172.
538	104055. Retrieved 2023-04-06. from https://linkinghub.elsevier.com/
539	retrieve/pii/S0378383921001940 doi: 10.1016/i.coastaleng.2021.104055
540	Li, S., Liao, Z., Liu, Y., & Zou, O. (2020, August). Evolution of Infragravity Waves
541	Over a Shoal Under Nonbreaking Conditions. Journal of Geophysical Research:
542	Oceans, 125(8). Retrieved 2023-05-02. from https://onlinelibrarv.wilev
543	.com/doi/10.1029/2019JC015864 doi: 10.1029/2019JC015864

544 545	List, J. H. (1986). Wave Groupiness as a Source of Nearshore Long Waves. COASTAL ENGINEERING, 15.
546	Longuet-Higgins M S & Stewart R W (1962 August) Radiation stress and
547	mass transport in gravity waves with application to 'surf beats'
548	of Fluid Mechanics, 13(4), 481–504. Retrieved 2019-05-13. from https://
549	www.cambridge.org/core/product/identifier/S0022112062000877/type/
550	journal_article doi: 10.1017/S0022112062000877
551	Ludka, B. C., Guza, R. T., O'Reilly, W. C., Merrifield, M. A., Flick, R. E., Bak,
552	A. S., Boyd, G. (2019, December). Sixteen years of bathymetry and
553	waves at San Diego beaches. Scientific Data, $6(1)$, 161. Retrieved 2020-
554	07-27, from http://www.nature.com/articles/s41597-019-0167-6 doi:
555	10.1038/s41597-019-0167-6
556	Mendes, D., Pinto, J. P., Pires-Silva, A. A., & Fortunato, A. B. (2018, October).
557	Infragravity wave energy changes on a dissipative barred beach: A numeri-
558	cal study. Coastal Engineering, 140, 136–146. Retrieved 2023-07-25, from
559	https://linkinghub.elsevier.com/retrieve/pii/S0378383918300322
560	doi: 10.1016/j.coastaleng.2018.07.005
561	Munk, W. H. (1949). Surf beats. Transactions, American Geophysical Union,
562	<i>30</i> (6), 849. Retrieved 2019-05-28, from http://doi.wiley.com/10.1029/
563	TR030i006p00849 doi: 10.1029/TR030i006p00849
564	Nicolae Lerma, A., Pedreros, R., Robinet, A., & Sénéchal, N. (2017, May). Sim-
565	ulating wave setup and runup during storm conditions on a complex barred
566	beach. Coastal Engineering, 123, 29–41. Retrieved 2023-04-06, from
567	https://linkinghub.elsevier.com/retrieve/pii/S0378383916301284
568	doi: $10.1016/J.coastaleng.2017.01.011$
569	Okihiro, M., & Guza, R. T. (1995). Infragravity energy modulation by tides. <i>Journal</i>
570	of Geophysical Research, 100(08), 10143. Retrieved 2021-05-12, from http://
571	Obicitize M Cure D T is Source D I (1002) Bound Infragmentity Waves
572	I_{11110} , M., Guza, R. 1., & Seymour, R. J. (1992). Dound initiagravity waves. I_{11110} Dound initiagravity waves.
573	from http://doi wiley.com/10/1029/92 $IC00270$ doi: 10/1029/92 $IC00270$
574	Okibiro M Guza B T & Seymour B J (1993) Excitation of seiche observed in
576	a small harbor. Journal of Geophysical Research, 98 (C10), 18201. Retrieved
577	2023-04-30, from http://doi.wiley.com/10.1029/93JC01760 doi: 10.1029/
578	93JC01760
579	Oltman-Shay, J., & Guza, R. T. (1987). Infragravity Edge Wave Observations on
580	Two California Beaches.pdf. Journal of Physical Oceanography.
581	Oltman-Shay, J., & Howd, P. A. (1993, February). Edge waves on nonplanar
582	bathymetry and alongshore currents: A model and data comparison. Journal
583	of Geophysical Research: Oceans, 98(C2), 2495–2507. Retrieved 2023-04-27,
584	from http://doi.wiley.com/10.1029/92JC02609 doi: 10.1029/92JC02609
585	O'Reilly, W., Olfe, C. B., Thomas, J., Seymour, R., & Guza, R. (2016, Oc-
586	tober). The California coastal wave monitoring and prediction sys-
587	tem. Coastal Engineering, 116, 118–132. Retrieved 2019-08-14, from
588	https://linkinghub.elsevier.com/retrieve/pii/S0378383916301120
589	doi: 10.1016/j.coastaleng.2016.06.005
590	Qin, L., & Li, Y. (2021, November). Significant Wave Height Estimation Using
591	Multi-Satellite Observations from GNSS-R. Remote Sensing, 13(23), 4806. Re-
592	trieved 2023-04-27, from https://www.mdpi.com/2072-4292/13/23/4806 doi:
593	10.3590/IS13234800 Denote A Andhuin E Dellu V. Constant W. Con I. C. C. A. J. (2014)
594	November) Infragravity waves acress the accord. Colleming Infra Consistent
595	Wave Bursts Coophysical Research Letters (1(92) 7057 7062 Detwieved
590	2021-04-02 from http://doi wiley.com/10/1002/2014GL061604 doi:
598	10.1002/2014GL061604
550	

	Remers, A. J., Naporowski, R., Tissier, M. F. S., de Schipper, M. A., Akrish, G.,
600	& Rijnsdorp, D. P. (2021, January). North Sea Infragravity Wave Ob-
601	servations. Journal of Marine Science and Engineering, $9(2)$, 141. Re-
602	trieved 2021-04-02, from https://www.mdpi.com/2077-1312/9/2/141 doi:
603	10.3390/jmse9020141
604	Reniers, A. J. H. M. (2002). Linear modeling of infragravity waves during
605	Delilah. Journal of Geophysical Research, 107(C10), 3137. Betrieved
606	2021-04-02 from http://doi.wiley.com/10.1029/2001.IC001083 doi:
607	10 1029/2001 JC001083
007	Phie I & Permanentian P (2006 October) A study of the relation between
608	A study of the Forth's hum: OCEAN STORMS AND EAPTH'S
609	Ocean storms and the Earth's numeric Ocean STORMS AND EARTH S $M_{\rm exp}$ and $M_{\rm exp}$ an
610	HUM. Geochemistry, Geophysics, Geosystems, 7(10), 1/a–1/a. Retrieved
611	2023-04-27, from http://doi.wiley.com/10.1029/2006GC001274 doi:
612	10.1029/2006GC001274
613	Ribal, A., & Young, I. R. (2019, May). 33 years of globally calibrated wave
614	height and wind speed data based on altimeter observations. Scientific Data,
615	6(1), 77. Retrieved 2023-04-27, from https://www.nature.com/articles/
616	s41597-019-0083-9 doi: 10.1038/s41597-019-0083-9
617	Rijnsdorp, D. P., Reniers, A. J. H. M., & Zijlema, M. (2021, August). Free In-
618	fragravity Waves in the North Sea. Journal of Geophysical Research: Oceans,
619	126(8). Retrieved 2023-04-06, from https://onlinelibrary.wiley.com/doi/
620	10.1029/2021JC017368 doi: 10.1029/2021JC017368
621	Rijnsdorp, D. P., Ruessink, G., & Zijlema, M. (2015, June). Infragravity-wave dy-
622	namics in a barred coastal region, a numerical study. <i>Journal of Geophysical</i>
623	Research: Oceans, 120(6), 4068-4089. Retrieved 2021-04-02, from https://
624	onlinelibrary.wiley.com/doi/abs/10.1002/2014JC010450 doi: 10.1002/
625	2014JC010450
625	Bijnsdorn D P Smit P B & Cuza B (2022 August) A nonlinear non-
620	disporsive operate balance for surfzone waves: infragravity wave dynamics on
627	a sloping booch Lowroad of Fluid Machanian 0// A45 Retrioved 2023
628	a subdue the substitution of provide viewers a_{AA} and the line vert a_{AA}
6/10	07.25 from https://www.combridge.org/org/product/idoptifior/
029	07-25, from https://www.cambridge.org/core/product/identifier/
630	07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512
630 631	07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod-
630 631 632	07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i> ,
629 630 631 632 633	 a bipling beach. <i>Journal of Future Interfactors</i>, <i>544</i>, 1110. Interfactor 2020 07-25, from https://www.cambridge.org/core/product/identifier/S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/
630 631 632 633 634	 a bipling beach. <i>Journal of Future Interfactors</i>, <i>544</i>, 1110. Therford 2020 07-25, from https://www.cambridge.org/core/product/identifier/S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011
630 631 632 633 634 635	 a bipling betahi. "Journal of Future incentances, 544, 116." Heriteted 2020 07-25, from https://www.cambridge.org/core/product/identifier/S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R.,
630 631 632 633 634 635 636	 a bipping betahi. "Journal of Future incentances, 544, 1115." Heriteked 2026 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches,
629 630 631 632 633 634 635 636 636	 a bipling beam. "Journal of Future interfactors, 544, 116." Heritered 2026 07-25, from https://www.cambridge.org/core/product/identifier/S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56 (11-12), 1133-1152. Re-
630 631 632 633 634 635 636 636 637 638	 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. <i>Coastal Engineering</i>, 56(11-12), 1133-1152. Re- trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/
630 631 632 633 634 635 636 637 638 639	 a biping beam. "Journal of Future meetiantes, 544, 116." Herricide 2026 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. <i>Coastal Engineering</i>, 56 (11-12), 1133-1152. Re- trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/ S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006
630 631 632 633 634 635 636 637 638 639 640	 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. <i>Coastal Engineering</i>, 56 (11-12), 1133-1152. Re- trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/ S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore
630 631 632 633 634 635 636 637 638 639 640 641	 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56 (11-12), 1133-1152. Re- trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/ S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. Journal of Geophysical Re-
630 631 632 633 634 635 636 637 638 639 640 641 642	 a biping beach. <i>Journal of Future Incentations</i>, <i>544</i>, 1116. Therford 2026 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, <i>85</i>, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. <i>Coastal Engineering</i>, <i>56</i> (11-12), 1133-1152. Re- trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/ S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. <i>Journal of Geophysical Re- search: Oceans</i>, <i>103</i> (C6), 12795-12805. Retrieved 2019-05-13, from http://
630 631 632 633 634 635 636 637 638 639 640 641 642 643	 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. <i>Coastal Engineering</i>, 56 (11-12), 1133-1152. Re- trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/ S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. <i>Journal of Geophysical Re- search: Oceans</i>, 103(C6), 12795-12805. Retrieved 2019-05-13, from http:// doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644	 a bipling beach. <i>Journal of Future Incentances</i>, <i>544</i>, 1116. Therforder 2026 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, <i>85</i>, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. <i>Coastal Engineering</i>, <i>56</i> (11-12), 1133-1152. Re- trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/ S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. <i>Journal of Geophysical Re- search: Oceans</i>, <i>103</i> (C6), 12795-12805. Retrieved 2019-05-13, from http:// doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., &
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645	 a boarnar of rate of rate incentives, 544, 116. Treatives 2026 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. <i>Coastal Engineering</i>, 56(11-12), 1133-1152. Re- trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/ S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. <i>Journal of Geophysical Re- search: Oceans</i>, 103(C6), 12795-12805. Retrieved 2019-05-13, from http:// doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING
630 631 632 633 634 635 635 636 637 638 639 640 641 642 643 644 645 646	 a dioping beam. boundato for tida interface, 544, 116. Treative 2025 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic mod- elling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56 (11-12), 1133-1152. Re- trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/ S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. Journal of Geophysical Re- search: Oceans, 103 (C6), 12795-12805. Retrieved 2019-05-13, from http:// doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. Coastal Dynamics, 12.
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647	 a dioping black. <i>Journal of Pathe Incomment, 944</i>, 1115. Therited 2025 07-25, from https://www.cambridge.org/core/product/identifier/S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. <i>Coastal Engineering</i>, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. <i>Coastal Engineering</i>, 56 (11-12), 1133-1152. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S037838390901252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. <i>Journal of Geophysical Research: Oceans</i>, 103(C6), 12795-12805. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. <i>Coastal Dynamics</i>, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. <i>Journal of</i>
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 644 645 646 647 648	 a diaping boarmar of ratio interactions, 544, 113. a treatment 2015 07-25, from https://www.cambridge.org/core/product/identifier/S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56 (11-12), 1133-1152. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. Journal of Geophysical Research: Oceans, 103 (C6), 12795-12805. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. Coastal Dynamics, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. Journal of Geophysical Research. 109(C6). C06025 Retrieved 2021-03-12 from http://
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 644 645 646 647 648 640	 a doping beach. Downam Contract international and State 1994, 110. Televiered 2005 07-25, from https://www.cambridge.org/core/product/identifier/S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56 (11-12), 1133-1152. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. Journal of Geophysical Research: Oceans, 103 (C6), 12795-12805. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. Coastal Dynamics, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. Journal of Geophysical Research, 109 (C6), C06025. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2003JC002160
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 644 645 646 647 648 649	 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56 (11-12), 1133-1152. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. Journal of Geophysical Research: Oceans, 103 (C6), 12795-12805. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. Coastal Dynamics, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. Journal of Geophysical Research 109 (C6), C06025. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2003JC002160 doi: 10.1029/2003JC002160 Rui A. Lara, I. L. & Losada L. J. (2012 October) Rediction strees
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 644 645 646 647 648 649 650	 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56 (11-12), 1133-1152. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.06 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. Journal of Geophysical Research: Oceans, 103 (C6), 12795-12805. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. Coastal Dynamics, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. Journal of Geophysical Research, 109 (C6), C06025. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2003JC002160 doi: 10.1029/2003JC002160 Ruju, A., Lara, J. L., & Losada, I. J. (2012, October). Radiation stress and low frequency energy balance within the curf zone: A numerical apprenticed ap
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651	 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal_article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56 (11-12), 1133-1152. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. Journal of Geophysical Research: Oceans, 103 (C6), 12795-12805. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/98JC00893 doi: 10.1029/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. Coastal Dynamics, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. Journal of Geophysical Research, 109(C6), C06025. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2003JC002160 Ruju, A., Lara, J. L., & Losada, I. J. (2012, October). Radiation stress and low-frequency energy balance within the surf zone: A numerical approxed.
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652	 07-25, from https://www.cambridge.org/core/product/identifier/ S0022112022005122/type/journal.article doi: 10.1017/jfm.2022.512 Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2014, March). Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/ retrieve/pii/S0378383913001944 doi: 10.1016/j.coastaleng.2013.11.011 Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R., & Lescinski, J. (2009, November). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56 (11-12), 1133-1152. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/ S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006 Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. Journal of Geophysical Research: Oceans, 103 (C6), 12795-12805. Retrieved 2019-05-13, from http:// doi.wiley.com/10.1029/98JC00893 doi: 10.10129/98JC00893 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. Coastal Dynamics, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. Journal of Geophysical Research, 109(C6), C06025. Retrieved 2021-03-12, from http:// doi.wiley.com/10.1029/2003JC002160 doi: 10.1029/2003JC002160 Ruju, A., Lara, J. L., & Losada, I. J. (2012, October). Radiation stress and low-frequency energy balance within the surf zone: A numerical approach. Coastal Engineering, 68, 44-55. Retrieved 2023-04-30, from https:// doi.wiley.com/10.1029/2003JC002160

 Ruju, A., Lara, J. L., & Losda, I. J. (2014, April). Numerical analysis of run-up oscillations under dissipative conditions. Coastal Engineering, 86, 45-56. Retrived 2020-10-08, from https://linkinghub.elsevier.com/retrieve/pil/S0378383914000192 doi: 10.1016/j.coastaleng.2014.01.010 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. Ocean Engineering, 9(6), 567-50. Retriveed 201-03-01, from https://linkinghub.elsevier.com/retrieve/pil/029801882900038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research. 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000976 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Sheff Break. Journal of Geophysical Research: locans, 123(7), 4483-4490. Retrieved 2021-03-17, from https:// on thtps:// alianeitbrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 55(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T. Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.10.009 Thomson,		l.:. 10 1016 /:
 Kiju, A., Lara, J. L., & Losada, I. J. (2014, April). Numerical analysis of run-up coscillations under dissipative conditions. <i>Cossial Engineering</i>, <i>48</i>, 65–66. Kertieved 2020-10-08, from https://linkinghub.elsevier.com/retrieve/pii// S0378383914000192 doi: 10.1016/j.cosstaleng.2014.01.010 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. <i>Ocean Engineering</i>, <i>9</i>(6), 567–580. Retrieved 2021-03-01, from http://linkinghub.elsevier.com/retrieve/pii/0029801882900038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearbore infragravity waves: Seaward and shoreward propagating components. <i>Journal of Geophysical Research</i>, <i>107</i>(C8), 3095. Retrieved 2021-03-12, from http://oi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/201JC000970 doi: 10.1029/201JC013966 doi: 10.1029/201JC013986 doi: 10.1029/201JS013986 doi: 10.1029/201S013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runp. <i>Coastal Engineering</i>, <i>55</i>(7), 573–588. Retrieved 2020-03-17, from https:/// linkinghub.elsevier.com/retrieve/pii/S037838391630044 doi: 10.1016/j.coastaleng.2015.12.005 Suzuki, T., Altomare, C., Veale, W., Verwasst, T., Trow, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave covertopping estimation for impermeable coastal structures in shallow foreshores using SWASII. <i>Coastal Engineering</i>	654	doi: $10.1016/J.coastaleng.2012.05.003$
 oscillations under disspative conditions. Constal Engineering, 80, 49-50. Ketrived 2021-10-08, from https://linkinghub.elsevier.com/retrives/pii/ Sand, S. E. (1982, Jannary). Wave grouping described by bounded long waves. Ocean Engineering, 9(6), 567-580. Retrieved 2021-03-01, from https://linkinghub.elsevier.com/retrives/pii/0029801882900038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research. 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shell Break. Journal of Geophysical Research: 024(-03.12, 67-04). Retrieved 2021-03.01, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://1 linkinghub.elsevier.com/retrieve/pii/S037838390600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2021-02.0, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy bases in the surface. Geophysical Research Log21-02.20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.003514. Gro	655	Ruju, A., Lara, J. L., & Losada, I. J. (2014, April). Numerical analysis of run-up
 theved 2024-10-08, from https://linkinghub.elsevier.com/retrieve/pi1/ softs383834000192 doi: 10.1016/j.coastaleng.2014.01.010 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. Ocean Engineering, 9(6), 567-580. Retrieved 2021-03-01, from https://linkinghub.elsevier.com/retrieve/pi1/0029801882900038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001J000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://olineilbrary.wiley.com/doi/10.1029/2013I0013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retriev/pii/S037838396000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383963024255 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surface. Geophysical Research Letters, 33(6), L05001. Retrieved 2019-05-16, from https://irso378383916302425514 Tueker, M. (1950, August). Surf beats: sea waves of 1 to 5 min.period. Proceedin	656	oscillations under dissipative conditions. Coastal Engineering, 86, 45–56. Re-
 S0378383914000192 doi: 10.1016/j.coastaleng.2014.01.010 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. Ocean Engineering, 9(6), 567-580. Retrieved 2021-03-01, from https://linkinghub.elsevire.com/retrieve/pii/002980182900038 doi: 10.1016/0029-8018(82)90003-8 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4400. Retrieved 2023-01-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and rump. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://inkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2015.12.005 Suzuki, T., Altomare, C., Veela, W., Verwaest, T., Trouw, K., Troch, P., & Zijlema, M. (2017, April). Efficient and robust wave overotopping estimation for impermeable coastal structures in shallw foreshores using SWASH. Coastal Engineering, 32(1), 1073-23(5).105601. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thoomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surface. Geophysical Research Letters, 35(5), 105501. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.10169/2005GL025514 Tucker, M. (1950, August). Surf beats: sca waves of	657	trieved 2020-10-08, from https://linkinghub.elsevier.com/retrieve/pii/
 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. Occan Engineering, 9(6), 567–580. Retrieved 2021-03-01, from https://linkinghub.elsevier.com/retrieve/pii/0029801882900038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research, 107(CS), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 0.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Occans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://ollinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S037838396000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-102.0; from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity wave via nonlinear energy losses in the surface. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1016/j.coastaleng.2017.01.009 Thocker, M. (1950, August). Surf beats: sca waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and P	658	S0378383914000192 doi: 10.1016/j.coastaleng.2014.01.010
 waves. Ocean Engineering, 9(6), 567–580. Retrieved 2021-03-01, from https://linkinghub.elsevier.com/retrieve/pii/0029801882900038 doi: 10.1016/0029-8018(82)90003-8 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observa- tions of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Cophysical Research, 107(CS), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Coophysical Research: Occans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2013IC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https:// 11nkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tddal modulation of infragravity waves via nonlinear energy losse in the surfizone. Geophysical Research Letters, 35(5), LD5601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tddal modulation of infragravity waves via nonlinear energy losse in the	659	Sand, S. E. (1982, January). Wave grouping described by bounded long
 https://linkinghub.elsevier.com/retrieve/pii/002901882900038 doi: 10.1016/0029-0018(29)0003-8 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research, 107(CS), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Com/doi/10.1029/2013C013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S037838396600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://lidai.scoastaleng.2017.01.009 Thouson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.viley.com/10.1029/2005L025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical Mehys-ical Sciences, 202(107), 155-573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1029/2005L025514 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponeri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach	660	waves. $Ocean Engineering, 9(6), 567-580.$ Retrieved 2021-03-01, from
 doi: 10.1016/0029-8018(82)90003-8 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Coophysical Research, 107(C8), 3095. Retrieved 2021-03:14, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://olinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijlema, M. (2017, April). Efficient and robust wave overopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-01-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surface. Geophysical Research Letters, 33(5), Lö5601. Retrieved 2019-05.16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1029/2005GL025514 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damia	661	https://linkinghub.elsevier.com/retrieve/pii/0029801882900038
 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.viley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research. 2027.143(7), 4435-4400. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://11.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overotopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2015.12.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infagravity waves via nonlinear energy losses in the surface. Ceophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical	662	doi: 10.1016/0029-8018(82)90003-8
 tions of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Gcophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Gcophysical Research: Occans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://olinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and rump. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevir.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Gcophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://<ir> royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N.</ir>	663	Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observa-
 components. Journal of Geophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and rumup. Coastal Engineering, 55(7), 573-588. Retrieved 2020-03-17, from https:// 11.nkinghub.elsevier.com/retrieve/pii/S0378383966000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2055L025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(107), 556-573. Retrieved 2021-02-26, from https:// royal.societypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://1inkin	664	tions of nearshore infragravity waves: Seaward and shoreward propagating
 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S037838390600044 Stockdon, H. F., Alomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overlopping cstimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 Goi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surface. Coephysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2032-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Bat	665	components. Journal of Geophysical Research, $107(C8)$, 3095. Retrieved
 10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 55(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Society publishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.0106/j.cos2.019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhau	666	2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi:
 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483–4490. Retrieved 2023-04-30, from https://ollinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S037838390600044 Stozkdi, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overlopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-20, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Sponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Sheej Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Noorloos, J., Keneines, A. (2007, February). Shoaling an	667	10.1029/2001 JC000970
 (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and rumup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Sponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a rumup model framework. Estuarine, Coastal and Sheel Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer,	668	Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A.
 of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tildal modulation of infragravity waves via nonlinear energy losses in the surface. Geophysical Research Letters, 39(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Jansen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers,	669	(2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal
 from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S037838390600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(670	of Geophysical Research: Oceans, 123(7), 4483–4490. Retrieved 2023-04-30,
 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S037838390600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1	671	from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi:
 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. <i>Geophysical Research Letters</i>, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701	672	10.1029/2018JC013986
 May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer be	673	Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006,
 Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https:// 1inkinghub.elsevier.com/retrieve/pii/S037838390600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope.	674	May). Empirical parameterization of setup, swash, and runup. Coastal
 linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of du	675	Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https://
 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. <i>Coastal Engineering</i>, <i>122</i>, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. <i>Geophysical Research Letters</i>, <i>33</i>(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. <i>Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences</i>, <i>202</i>(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. <i>Estuarine, Coastal and Shelf Science, 225</i>, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research</i>, <i>112</i>(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion proc	676	linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi:
 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dume erosion processes in large-scale flume experi- me	677	10.1016/j.coastaleng.2005.12.005
 jlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https://<ri> royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12)</ri>	678	Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-
 mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S02727771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from 	679	jlema, M. (2017, April). Efficient and robust wave overtopping esti-
 SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	680	mation for impermeable coastal structures in shallow foreshores using
 https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://<ri> royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Batijes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from </ri>	681	SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from
 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a rumup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from 	682	https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435
 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from 	683	doi: 10.1016/j.coastaleng.2017.01.009
 (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	684	Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T.
 in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	685	(2006). Tidal modulation of infragravity waves via nonlinear energy losses
 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	686	in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved
 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	687	2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi:
 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	688	10.1029/2005 GL 025514
 ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	689	Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro-
 <i>ical Sciences</i>, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. <i>Estuarine, Coastal and Shelf Science, 225</i>, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research, 112</i>(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering, 55</i>(12), 1028–1040. Retrieved 2023-05-02, from 	690	ceedings of the Royal Society of London. Series A. Mathematical and Phys-
 royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. <i>Estuarine, Coastal and Shelf Science, 225</i>, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research, 112</i>(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering, 55</i>(12), 1028–1040. Retrieved 2023-05-02, from 	691	<i>ical Sciences</i> , 202(1071), 565–573. Retrieved 2021-02-26, from https://
 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. <i>Estuarine, Coastal and Shelf Science, 225</i>, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research, 112</i>(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering, 55</i>(12), 1028-1040. Retrieved 2023-05-02, from 	692	royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi:
 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. <i>Estuarine, Coastal and Shelf Science, 225</i>, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research, 112</i> (C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering, 55</i>(12), 1028–1040. Retrieved 2023-05-02, from 	693	10.1098/rspa.1950.0120
 ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from 	694	Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem-
 of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	695	ber). Exploiting remote imagery in an embayed sandy beach for the validation
 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	696	of a runup model framework. Estuarine, Coastal and Shelf Science, 225,
 retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research</i>, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering</i>, 55(12), 1028–1040. Retrieved 2023-05-02, from 	697	106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/
 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	698	retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244
 bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from 	699	van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen-
 of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	700	bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation
 Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	701	of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011.
 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. <i>Coastal Engineering</i>, 55(12), 1028–1040. Retrieved 2023-05-02, from 	702	Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701
 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. <i>Coastal Engineering</i>, 55(12), 1028–1040. Retrieved 2023-05-02, from 	703	doi: 10.1029/2006JC003701
 long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering</i>, 55(12), 1028–1040. Retrieved 2023-05-02, from 	704	van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound
706Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A.(2008, De-707cember).Analysis of dune erosion processes in large-scale flume experi-708ments.Coastal Engineering, 55(12), 1028–1040.	705	long waves on a plane slope.
 cember). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	706	Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008. De-
⁷⁰⁸ ments. <i>Coastal Engineering</i> , 55(12), 1028–1040. Retrieved 2023-05-02, from	707	cember). Analysis of dune erosion processes in large-scale flume experi-
	708	ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from

709	https://linkinghub.elsevier.com/retrieve/pii/S0378383908000860
710	doi: 10.1016/j.coastaleng.2008.04.004
711	Webb, S. C. (2007, February). The Earth's 'hum' is driven by ocean waves over the
712	continental shelves. <i>Nature</i> , 445 (7129), 754–756. Retrieved 2023-04-30, from
713	http://www.nature.com/articles/nature05536 doi: 10.1038/nature05536
714	Webb, S. C., Zhang, X., & Crawford, W. (1991). Infragravity waves in the deep
715	ocean., 14.
716	Zhang, Q., Toorman, E. A., & Monbaliu, J. (2020, June). Shoaling of
717	bound infragravity waves on plane slopes for bichromatic wave condi-
718	tions. Coastal Engineering, 158, 103684. Retrieved 2023-05-02, from
719	https://linkinghub.elsevier.com/retrieve/pii/S037838391930198X
720	doi: 10.1016/j.coastaleng.2020.103684
721	Zheng, Z., Ma, X., Ma, Y., Huang, X., & Dong, G. (2021, December). Modeling
722	of coastal infragravity waves using the spectral model WAVEWATCH . ${\it Coastal}$
723	Engineering, 170, 104016. Retrieved 2023-04-20, from https://linkinghub
724	.elsevier.com/retrieve/pii/S0378383921001654 doi: 10.1016/j.coastaleng
725	.2021.104016
726	Zijlema, M. (2012, October). MODELLING WAVE TRANSFORMATION ACROSS
727	A FRINGING REEF USING SWASH. Coastal Engineering Proceedings,
728	1(33), 26. Retrieved 2020-07-14, from https://icce-ojs-tamu.tdl.org/
729	icce/index.php/icce/article/view/6479 doi: 10.9753/icce.v33.currents
730	.26
731	Zijlema, M., Stelling, G., & Smit, P. (2011, October). SWASH: An operational pub-
732	lic domain code for simulating wave fields and rapidly varied flows in coastal
733	waters. Coastal Engineering, $58(10)$, $992-1012$. Retrieved 2020-10-08, from
734	https://linkinghub.elsevier.com/retrieve/pii/S0378383911000974

⁷³⁵ doi: 10.1016/j.coastaleng.2011.05.015

Free infragravity waves on the inner shelf: Observations and Parameterizations at two Southern California beaches

A.M.Z. Lange¹, J.W. Fiedler¹, M.A. Merrifield ¹, and R.T. Guza¹

¹Scripps Institution of Oceanography, La Jolla, CA, USA

Key Points:

4

5

6

7	•	Infragravity (IG) waves on the inner shelf (10-15m depth) in San Diego, USA are
8		usually dominated by refractively trapped free waves.
9	•	Seaward and shoreward propagating free IG energies are parameterized as a func-
10		tion of tide level and local sea-swell conditions.
11	•	On a low slope (0.02) beach, numerical modeled wave runup is weakly influenced
12		by the shoreward IG waves observed at the offshore boundary.

Corresponding author: Athina M.Z. Lange, alange@ucsd.edu

13 Abstract

Co-located pressure and velocity observations in 10-15m depth are used to estimate the 14 relative contribution of bound and free infragravity (IG) wave energy to the IG wave field. 15 Shoreward and seaward going IG waves are analyzed separately. At the Southern Cal-16 ifornia sites, shoreward propagating IG waves are dominated by free waves, with the bound 17 wave energy fraction < 30% for moderate energy incident sea-swell and < 10% for low 18 energy incident sea-swell. Only the 5% of records with energetic long swell show primar-19 ily bound waves. Consistent with bound IG wave theory, the energy scales as the square 20 (frequency integrated) sea-swell energy, with a higher correlation with swell than sea en-21 ergy. Seaward and shoreward free IG energy is strongly tidally modulated. The ratio of 22 free seaward to shoreward propagating IG energy suggests between 50-100% of the en-23 ergy radiated offshore is trapped on the shelf seaward of 10-15m and redirected shore-24 ward. Remote sources of IG energy are small. The observed linear dependency of free 25 seaward and shoreward IG energy on local sea-swell wave energy and tide are param-26 eterized with good skill $(R^2 \sim 0.90)$. Free (random phase) and bound (phase-coupled) 27 IG waves are included in numerically simulated timeseries for shoreward IG waves that 28 are used to initialize ($\sim 10m$ depth) the numerical nonlinear wave transformation SWASH. 29 On the low slope study beach, wave runup is only weakly influenced by free shoreward 30 propagating waves observed at the offshore boundary (foreshore slope = 0.02). 31

32 Plain Language Summary

Infragravity (IG) waves are long-period (every 25 sec to 2.5 min) waves that con-33 tribute to coastal flooding and beach erosion. IG waves, generated near the shoreline by 34 short-period sea-swell (SS) wave groups (known by surfers as "sets"), have long wave-35 lengths (100s of m) and do not curl and break like ordinary sea and swell waves. Instead, 36 they can bounce off the beach face and propagate seaward. Our study concerns IG waves 37 on the inner shelf (10 - 15m depth), ~ 500 - 700m offshore), seaward of the region of 38 IG generation. Similar to previous observations in Hawai'i and North Carolina, we find 39 most of the bounced, seaward going IG energy cannot reach deep water and is trapped 40 on the continental shelf. We develop an observation-based estimate IG wave energy on 41 the inner shelf as a function of SS wave energy and tide level. Finally, we show with a 42 numerical model that IG wave runup at the shoreline is influenced only weakly by IG 43 waves on the inner shelf. 44

45 1 Introduction

Infragravity (IG) waves are low-frequency surface-gravity ocean waves with peri-46 ods typically between 25-200s, longer period than the sea-swell waves that generate them. 47 IG waves were first observed (Munk, 1949; Tucker, 1950) seaward of the surfzone, trav-48 eling shoreward with the group velocity of short-period wind-generated waves and $\sim 10\%$ 49 of their amplitude. IG waves can contribute significantly to runup (Huntley, 1976; Guza 50 & Thornton, 1982; Ruggiero, 2004; Stockdon et al., 2006, and many others), sediment 51 transport (Aagaard & Greenwood, 1994, 2008; Baldock et al., 2010; De Bakker et al., 52 2016), harbor seiches (Okihiro et al., 1993; Ardhuin et al., 2010) and earth hum (Rhie 53 & Romanowicz, 2006; Webb, 2007). 54

Shoaling, shoreward propagating sea-swell (SS) frequencies interact and transfer 55 energy to their sum (higher-order harmonics) and difference (infragravity) frequencies 56 through nonlinear triad interactions (Hasselmann et al., 1963; Elgar & Guza, 1985; van 57 Dongeren et al., 2007). 'Bound waves' are shoreward propagating IG waves that are 180° 58 out of phase with the envelope of higher-frequency sea-swell waves (Longuet-Higgins & 59 Stewart, 1962). As shoaling SS waves become increasingly nondispersive, the bound wave 60 approaches resonance, lags behind the wave group, and is eventually a 'free' wave (on 61 the dispersion curve) that propagates to shore (List, 1986; Battjes, 2004; A. T. M. de 62

Bakker et al., 2015). Throughout the short wave (e.g. sea-swell) surf zone, free shoaling IG waves can acquire and lose energy from SS waves and can potentially break. At
the shoreline, free IG waves can reflect and propagate seaward (Battjes, 2004; Thomson
et al., 2006; S. M. Henderson et al., 2006; van Dongeren et al., 2007; Ruju et al., 2012;
A. de Bakker et al., 2014).

In many locations, incident SS waves are relatively well characterized with buoys 68 (Behrens et al., 2019), satellites (Ribal & Young, 2019; Qin & Li, 2021), and regional or 69 global (e.g. WAVEWATCH III) wave models. While these SS waves can be used in off-70 71 shore boundary conditions (BC) for surf zone models, typically in $\sim 10-20$ m depth, the contribution of IG waves is not accurately observed or predicted by these systems. 72 IG waves, typically observed with bottom-mounted pressure and/or current sensors, are 73 less widely observed and characterized (Okihiro et al., 1992; Ardhuin et al., 2014; A. J. Re-74 niers et al., 2021). The practical limitations of direct observations of infragravity waves 75 motivates the present efforts to parameterize IG energy for use in nearshore models. Bound 76 wave theory has been implemented as an offshore IG boundary condition in laboratory 77 studies where the wavemaker is carefully controlled to create only a shoreward propa-78 gating bound IG wave and (ideally) to absorb seaward propagating IG waves (van Noor-79 loos, 2003; Van Thiel De Vries et al., 2008; G. Ruessink et al., 2013; Altomare et al., 2020, 80 and resulting papers). The offshore boundary condition in field settings have included 81 theoretical bound waves and also observed timeseries (Roelvink et al., 2009; Zijlema, 2012; 82 A. de Bakker et al., 2014; A. T. M. de Bakker et al., 2015; Dusseljee et al., 2014; Rijns-83 dorp et al., 2014, 2015; Fiedler et al., 2019; Zhang et al., 2020; Li et al., 2020; C. S. Hen-84 derson et al., 2022). The effect of free shoreward propagating IG waves in the model off-85 shore boundary has received little attention, and no existing parameterization includes 86 both 2D bound and free IG waves. Here, 3 years of pressure and current (PUV) data 87 in 10-15m depth are used to determine (and parameterize) the variation of incident IG 88 waves with a range of SS waves. A parametric offshore IG boundary condition is devel-89 oped. 90

1.1 Bound Waves

⁹² Bound infragravity spectral energy $E_{IG}^{bound} = \int_{IG} \mathbf{E}^{bound}(f) df$ is estimated from ⁹³ second-order nonlinear wave theory (Hasselmann, 1962; Sand, 1982; Herbers, Elgar, & ⁹⁴ Guza, 1995, and many others).

95

91

$$\mathbf{E}_{IG}^{bound}(\Delta f, \Delta \theta) = 2 \int_{\Delta f} D^2 S(f, \theta_1) S(f + \Delta f, \theta_2) df, \tag{1}$$

$$D = \frac{-gk_1k_2\cos(\Delta\theta)}{2\omega_1\omega_2} + \frac{1}{2g}(\omega_1^2 + \omega_2^2 + \omega_1\omega_2) + C\frac{g(\omega_1 + \omega_2)}{(gk_3\tanh(k_3h) - (\omega_1 + \omega_2)^2)*\omega_1\omega_2},$$

$$C = (\omega_1 + \omega_2) * \left(\frac{\omega_1\omega_2}{g}\right)^2 - k_1k_2\cos(\Delta\theta) - \frac{1}{2}\left(\frac{\omega_1k_2^2}{\cosh^2(k_2h)} + \frac{\omega_2k_1^2}{\cosh^2(k_1h)}\right),$$

with wavenumber k, angular frequency $\omega (= 2\pi f)$ and where the sea-swell frequency-96 direction spectra $S(f, \theta)$ can be estimated from a PUV, a pitch-roll buoy (Kuik, 1988), 97 or a regional wave model. The interaction coefficient D is computed for the difference 98 frequency (Δf) of every frequency pair (f_1, f_2) and if assuming directionally spread waves 99 (2D), every difference direction ($\Delta \theta = \theta_2 - \theta_1 + 180^\circ$). D varies strongly as a function 100 of $\Delta \theta$, depth, and SS frequency f. In shallow water, D is maximum (D_{max}) for co-linear 101 $(\Delta \theta = 0)$ waves, and 1D theory $(\Delta \theta = 0)$ is the upper limit on bound wave energy. 102 D decreases quickly with increasing $\Delta \theta$; $\Delta \theta = 30^{\circ}$ results in $D \sim 25\% D_{max}$ (Herbers 103 & Guza, 1994). The theoretical sensitivity of 2D bound wave energy to $S(f, \theta)$ and the 104 fundamentally low resolution of a single PUV directional estimator limits the accuracy 105 of the present 2D bound wave estimates. The coupling coefficient is frequency depen-106 dent and swell (8-25s) produces larger bound waves than sea (4-8s) (Okihiro et al., 107 1992).108

Bound IG waves can alternatively be estimated with the third-order spectrum (bispectrum, Hasselmann et al., 1963; Kim et al., 1980; Elgar & Guza, 1985) that depends on nonlinear phase coupling between wave triads with angular frequencies $\omega_1, \omega_2, \omega_{1+2}$. The bispectrum is the expected value of the triple product of complex Fourier coefficients, $B(k,l) = \tilde{E}[X_k X_l X_{k+l}].$

With random phases and no nonlinear coupling of the three frequencies, the bispectrum vanishes. The normalized magnitude of the bispectra (**b**, bicoherence),

$$\mathbf{b}(f_1, f_2) = \frac{B(f_1, f_2)}{\sqrt{\mathbf{E}(f_1)\mathbf{E}(f_2)\mathbf{E}(f_1 + f_2)}},\tag{2}$$

measures the strength of the phase coupling between the three waves. The bispectrum phase (biphase) corresponds to the phase lag between the IG wave and the SS wave
group (Elgar & Guza, 1985). The forced wave spectral density is the bispectrum integrated over all frequency pairs for a given difference frequency (Herbers & Guza, 1994),

$$\mathbf{E}_{IG}^{forced}(\Delta f) = \alpha(\Delta f)|b_i(\Delta f)|^2 \mathbf{E}(\Delta f), \tag{3}$$

$$\mathbf{b}_{i}(\Delta f) = 2 \int_{\Delta f}^{\inf} df B(f, \Delta f) / \sqrt{2 \int_{\Delta f}^{\inf} df \mathbf{E}(f + \Delta f) \mathbf{E}(f) \mathbf{E}(\Delta_{f})}, \tag{4}$$

and the bias term α can be computed from the bound wave theory.

121 **1.2 Free Waves**

Free waves contribute significantly to IG waves (Gallagher, 1971; Huntley et al., 122 1981; Oltman-Shay & Guza, 1987; Okihiro et al., 1992; Zijlema, 2012; Smit et al., 2018). 123 'Edge' waves are free waves trapped on a sloping beach by shoreline reflection and back-124 refraction by the increasing water depth (Eckart, 1951). Edge waves are sensitive to ge-125 ography, with the amount of trapping depending on the continental shelf and beach to-126 pography (Herbers, Elgar, Guza, & O'Reilly, 1995). Seaward propagating IG waves that 127 propagate freely from the shoreline across the shelf to deep water are known as 'leaky' 128 waves (Webb et al., 1991; Ardhuin et al., 2014; Rijnsdorp et al., 2021). Ardhuin et al. 129 (2014) and Rawat et al. (2014) parameterize seaward-going free wave energy (radiated 130 from the surfzone) for use as an incident boundary condition for global model WAVE-131 WATCH III, but the free IG wave climate on the inner shelf is poorly understood. 132

Previous work in Duck, NC, Southern California, and Hawai'i, USA and the North 133 Sea have investigated the fraction of IG energy contained in the bound component, giv-134 ing an indication of the amount of free shoreward wave energy. Numerous studies at Duck, 135 NC (~ 8–13m depth) (Elgar et al., 1992; Herbers & Guza, 1994; B. G. Ruessink, 1998; 136 A. J. H. M. Reniers, 2002) found that the bound wave fraction was typically between 137 10-20%, with higher values above 30% (and up to 100%) only during the most ener-138 getic SS conditions. In the North Sea (~ 30 m depth), IG wave conditions are always 139 free wave dominant and only during the peak of storms is the fraction bound $\geq 50\%$ 140 (A. J. Reniers et al., 2021). At beaches in Southern California and Hawai'i ($\sim 8-13$ m 141 and 183m depth) (Okihiro et al., 1992), up to 50% of the IG energy is at times attributed 142 to bound wave energy. The bound fraction is dependent on water depth; Elgar et al. (1992) 143 observed twice the bound fraction in 8m depth compared to 13m depth in Duck, NC. 144 Torrey Pines has long been a study site for refractively trapped waves (Huntley et al., 145 1981; Guza & Thornton, 1985; Oltman-Shay & Guza, 1987; Oltman-Shay & Howd, 1993; 146 Thomson et al., 2006), with significant trapped IG energy detected shoreward of 15m 147 water depth. This refracted energy then propagates onshore as free waves. These trapped 148 waves are not phase-coupled to local (instantaneous) SS wave groups because they are 149 not generated locally in space or time. 150

In this study, we analyze the relative contribution of bound and free IG energy to 151 the total IG energy in 10 - 15 m water depth for beaches in San Diego County, USA, 152 confirm theoretical estimates of the incident bound wave energy, investigate parameter-153 izations for both bound and free IG energy and estimate an IG sea surface elevation time-154 series that can be used as an incident boundary condition for nearshore models. Section 155 2.1 describes the dataset and quality control. Section 2.2 confirms that directional bound 156 wave theory (Hasselmann, 1962) accurately predicts the observed bound wave energy. 157 In Section 2.2 and 2.3, the relative contributions of shoreward propagating bound and 158 free IG waves and their respective dependencies on the SS wave field are presented and 159 compared with previous observations from other sites. The total incident bound and free 160 IG energy and the spectral shape of the free energy are discussed in Section 3. Compar-161 ison to a previously developed seaward IG parameterization (Ardhuin et al., 2014), the 162 tidal dependence and the effect of the IG BC in a phase-resolving nearshore numerical 163 model on IG swash is presented in Section 4. 164

¹⁶⁵ 2 Observations

2.1 Data

166

Bottom-mounted pressure sensors and current meters (PUV) were deployed in 10 167 and 15-m depths at Torrey Pines State Beach and Cardiff State Beach, CA intermittently 168 between Fall 2019 and Spring 2022 (Figure 1 and Table 1). Data were collected contin-169 uously between Fall 2021 and Spring 2022 as part of the Runup and Bathymetry 2D (RuBy2D) 170 experiment at Torrey Pines, a 3km long, alongshore-uniform composite (summer sand, 171 winter cobbles) beach. Cardiff is a 1.8km alongshore-variable beach, with a rocky reef 172 beginning approximately 125m offshore at the southern end (Ludka et al., 2019). The 173 2 Hz PUV data were segmented into 3h records. The three largest tidal constituents are 174 removed from the bottom pressure and velocity records, and the records are surface-corrected 175 using linear finite-depth theory over the frequency band 0.004-0.25 Hz. Computed spec-176 tra are segmented in 7200s demeaned ensembles, with an applied 50% overlapping Han-177 ning window, with 0.0003 Hz frequency resolution and 13 degrees of freedom. The IG 178 band is defined between 0.004 - 0.04 Hz, the swell band between 0.04 - 0.12 Hz and 179 the sea band between 0.12 - 0.25 Hz. As quality control, 3-hour pressure and velocity 180 spectra passed a Z-test (Eq. 1 in Elgar et al., 2005), 181

$$Z^{2} = \frac{P^{2}}{\left(\frac{\omega}{gk}\right)^{2} \frac{\cosh^{2} kh_{P}}{\cosh^{2} kh_{U}} (U^{2} + V^{2})},$$
(5)

with cutoffs of $0.8 < Z_{IG} < 1.2$ and $0.95 < Z_{SS} < 1.05$. This confirms the use of lin-182 ear theory in the sea surface correction. Additionally, only records with reflection coef-183 ficients (Eq. 4 in Sheremet et al., 2002) of $\mathscr{R}_{SS}^2 < 0.25$ and $\mathscr{R}_{IG}^2 < 2.5$ are used further. Only 5 values are removed with $\mathscr{R}_{IG}^2 > 2.5$ with max $\mathscr{R}_{IG}^2 = 2.9$. Details of the 184 185 resulting 2494 quality controlled 3h records and SS bulk wave statistics are in Table 1. 186 Spectral wave model (MOPS, O'Reilly et al., 2016) hindcast data from the observation 187 periods show similar distributions of bulk parameters as a 23-year hindcast (Figure 2). 188 The present observations are representative of the San Diego wave climate. Sea-surface 189 elevation and velocity are combined to estimate shoreward and seaward propagating wave 190 components, following Sheremet et al. (2002). Unless explicitly stated, the shoreward 191 sea-surface elevation timeseries is used below to characterize the offshore boundary con-192 dition for wave propagation models. 193

2.2 Bound Waves

194

The 1D and 2D ($\pm 90^{\circ}$ from shorenormal directionally-integrated) bound wave energies (Hasselmann, 1962) show the effects of directional spreading on the interaction

Figure 1. Co-located near-bottom pressure and biaxial acoustic current meter (PUV) in 10m and 15m depth at Torrey Pines and 10m depth at Cardiff. The Scripps Institution of Oceanography's wave MOnitoring and Prediction (MOP) (O'Reilly et al., 2016) transect numbers are given along with the 10 and 15m depth contours (NAVD88m).

¹⁹⁷ coefficient D (Eq. 1 and Figure 3). The 1D estimates are about $\sim 3x$ larger than the ¹⁹⁸ directionally-integrated 2D estimates.

Bispectral analysis confirms 2D nonlinear theory (Hasselmann, 1962)(Figure 4). However, bispectral E_{IG}^{forced} estimates can be inaccurate when nonlinear coupling is weak, bound wave energy is low and free waves dominate. At individual frequencies, the bispectral and the bound wave estimates can differ by as much as a factor of 50 (Figure 3 and Herbers and Guza (1994)). Integrated over IG frequencies, the 2D bound wave and the forced wave energy (for fraction bound > 15%) agree well ($R^2 = XX$, Figure 4). The cases of fraction bound > 15% are typically larger SS events (back-refracted deep water wave height H_0 and wavelength L_0 give median $\sqrt{H_0L_0} = 13.1$ m, compared to

Figure 2. Histograms of (a) Offshore wave height H_0 and offshore wavelength L_0 in $\sqrt{H_0L_0}$, (b) H_0 , (c) frequency spread f_{spread} , and (d) peak frequency f_{peak} at Torrey Pines in 10m at MOP582. Histograms are similar for 2000 - 2022 hindcast (blue, 201,600 1h values) and present observations (orange, 12,602 1h records). Mean \pm 1 standard deviation of the full 23 year hindcast and over the present observation time period (MOPS) are given.

MOP	Date	Depth (m)	Distance from backbeach (m)	# of records	H_{SS} (m)	$\begin{vmatrix} T_p \\ (s) \end{vmatrix}$	$\begin{array}{c} D_p \\ (\text{degrees}) \end{array}$	$\begin{vmatrix} D_{spread} \\ (degrees) \end{vmatrix}$
582	11/19 - 04/20	10	580	316	03-24	5 - 21	0 - 23	7 - 21
582	10/20 - 03/21	10	580	315	0.3 - 2.4 0.3 - 4.1	5 - 21	0 - 25	9 - 22
$582 \\ 669$	07/21 - 09/21 07/21 - 09/21	10	$\frac{580}{600}$	$223 \\ 285$	0.4 - 1 0 4 - 1 1	5 - 19 5 - 20	0 - 29 1 - 32	14 - 24 6 - 25
573	10/21 - 03/22	10	600	281	0.4 - 2.5	5 - 19	0 - 28	8 - 22
$578 \\ 582$	10/21 - 11/21 10/21 - 02/22	$\begin{vmatrix} 10\\10 \end{vmatrix}$	630 630	$\frac{55}{323}$	0.4 - 1.7 0.3 - 2.3	9 - 20 5 - 20	$1 - 10 \\ 0 - 19$	10 - 22 9 - 21
582	10/21 - 02/22	15	1020	401	0.5 - 2.7	5 - 20	0 - 25	8 - 25
589	10/21 - 02/22	10	660	289	0.3 - 2.3	6 - 20	0 - 32	9 - 22

Table 1. PUV Bulk Statistics. MOP location (580s are Torrey Pines and 669 is Cardiff in O'Reilly et al. (2016); Ludka et al. (2019)), date range, depth, distance from backbeach to PUV, the number of records for each PUV, significant wave height H_{SS} , peak period T_p , peak direction D_p and spread D_{spread} .

Figure 3. Observed (blue) sea surface elevation frequency spectra $\mathbf{E}(f)$ (d.o.f. = 30) in 10m for varying sea-swell wave heights H_{SS} (a) $H_{SS} = 3.7$ m, $D_{spread,SS} = 18^{\circ}$, fraction bound = 74% (b) $H_{SS} = 1.4$ m, $D_{spread,SS} = 13^{\circ}$, fraction bound = 100%, (c) $H_{SS} = 1.0$ m, $D_{spread,SS} = 17^{\circ}$, fraction bound = 10%, and (d) $H_{SS} = 0.4$ m, spread $D_{spread,SS} = 24^{\circ}$, fraction bound = 1%. In the IG band (f < 0.04 Hz, dashed vertical line), theoretical results are shown for 1D bound wave and 2 D bound wave, and for a bispectral approach (Herbers & Guza, 1994). Fraction bound (based on 2D bound waves) ranges from about 100% (a, largest H_{SS}) to 1% (d, smallest H_{SS}).

the median of the dataset = 10.7m). Analysis below uses 2D bound wave theory that 207 (unlike bispectral estimates) does not rely on insitu IG observations and can be estimated 208 from SS spectral waves from a buoy or wave model. Only 5% of the cases (120/2488)209 have a fraction bound greater than 50% (Figure 5 d). Similar to previous observations 210 (Herbers, Elgar, & Guza, 1995; B. G. Ruessink, 1998) the fraction bound increases with 211 increasing E_{IG} and E_{SS} and decreasing depth (or tide stage) (Figure 5 a). The frequency 212 dependence of the bound wave coupling coefficient is seen with E_{IG}^{bound} being more highly 213 correlated with E_{swell} ($R^2 = 0.84$) than E_{sea} ($R^2 = 0.59$) (Okihiro et al., 1992; Elgar 214 et al., 1992). 215

Figure 4. Bound IG energy from nonlinear 2D theory (Hasselmann, 1962) versus an estimate E_{IG}^{forced} based on bispectral analysis (Herbers & Guza, 1994). Colors are fraction bound based on 2D bound wave theory. When fraction bound < 15% bispectral results are widely scattered, and not shown or included in R^2 . The 1-1 line, and mean and standard deviation for binned data (green curve and shading) are shown.

Figure 5. Observed shoreward propagating IG energy (a) E_{IG}^{bound} , (b) E_{IG}^{free} , (c) E_{IG}^{total} , and (d) fraction bound versus E_{SS} . Most observed fraction bound are < 50% (dashed horizontal line) and many are < 10%. \triangle is 15m PUV data. Correlations R^2 are given. E_{IG}^{bound} scales as E_{SS}^2 whereas both total and free IG energy scale as E_{SS} . In panels (a - c), the solid line shows a linear dependence on E_{SS} (slope = 1), and dashed line shows a quadratic dependence on E_{SS} (slope = 2).

2.3 Free Waves 216

The shoreward free IG energy spectra are estimated by subtracting the bound wave 217 estimate $(\mathbf{E}_{IG}^{bound}(f))$ from the total shoreward IG energy spectra. These shoreward-directed 218 free waves are a combination of refractively trapped (and typically locally generated) waves 219 and leaky waves from remote sources. The free (and due to the dominance of free wave 220 IG energy, the total) wave energy is approximately linearly proportional to E_{SS} (Figure 221 5 b, c, and consistent with Herbers, Elgar, Guza, & O'Reilly, 1995; Okihiro & Guza, 1995). 222 This linear dependence on E_{SS} , as opposed to a quadratic dependence for the bound wave, 223 has been attributed to dissipation (Herbers, Elgar, Guza, & O'Reilly, 1995). Free waves 224 have a weaker depth dependence (h^{-1}) than bound waves (h^{-5}) , consistent with Herbers, 225 Elgar, Guza, and O'Reilly (1995). 226

Okihiro et al. (1992) estimated that in Southern California for typical SS energy, 227 25% of the IG energy was bound in 8-13m depth, 70% was trapped shoreward of a sen-228 sor in 183m depth, and only 5% was leaky. Leaky, free IG waves can propagate across 229 ocean basins and in deep water appear uncoupled from and uncorrelated with local SS 230 wave conditions (Webb et al., 1991; Ardhuin et al., 2014). However, on the inner shelf, 231 remotely generated IG waves only dominate local IG waves when E_{SS} is very low (Herbers, 232 Elgar, Guza, & O'Reilly, 1995; Sheremet et al., 2002). Remotely generated IG waves (i.e., 233 unrelated to local SS wave energy) are not considered in the following analysis and con-234 tribute to parameterization noise. 235

3 Parameterizing the IG wave field 236

3.1 Bound Waves

237

Although 2D bound wave energy can be determined from the incident sea-swell spec-238 trum, parameterizations of the total bound wave energy from bulk sea-swell wave statis-239 tics are convenient. Linear regression between $_{pred}E_{IG}^{bound}$ and $E_{SS}^2h^{-5}$ (with exponents 240 predicted in Herbers, Elgar, and Guza (1995) and similar to B. G. Ruessink (1998)), yields 241 correlation coefficients R^2 between 0.58-0.91, for 10m Torrey Pines, 15m Torrey Pines 242 and 10m Cardiff PUVs. A frequency-weighted sea-swell energy integral $\left(\int_{SS} \mathbf{E}(f) f^{-1} df\right)$ 243 (similar to the approach of Fiedler et al. (2020)) has higher correlations in all cases (Eq. 244 6 with $R^2 = 0.84 - 0.97$, 95% CI [14.98, 15.37], Figure 6 a), 245

$$_{p}E_{IG}^{bound} = 15.2 \left(\int_{SS} \mathbf{E}(f) f^{-1} df \right)^{2} h^{-5}.$$
 (6)

The units of the dimensional constant on the right-hand side are selected to yield m^2 . 246

247

3.2 Shoreward Free Waves

Linear regression between $_{obs}E_{IG}^{free}$ and E_{SS} gives correlation $R^2 = 0.79$ (Figure 5). However, similar to the bound wave parameterization, a frequency-weighted SS en-248 249 ergy integral increases the correlation $(R^2 = 0.84)$. The observed tidal dependence of 250 free IG energy is accounted for with the normalized tide 251

$$\tilde{\sigma} = \frac{\text{tide}_{obs} - \text{tide}_{low}}{\text{tide}_{high} - \text{tide}_{low}},\tag{7}$$

where 2.5m is the total tidal range observed across all deployments), with $\tilde{\sigma} = 0$ at 252 the lowest observed tide (-0.5 NAVD88m), and $\tilde{\sigma} = 1$ at the highest tide (2 NAVD88m). 253 Tide data is the 3h average obtained from a NOAA tide gauge (Station 9410230, La Jolla). 254 Including a linear $\tilde{\sigma}$ dependence in the regression improves the correlation between ob-255 served and predicted total E_{IG}^{free} energy to $R^2 = 0.9$ (95% CI [0.00066, 0.00068], Eq. 256 8, Figure 6 b) at all but the lowest tides and E_{SS} , 257

Figure 6. Parameterizations of incident IG wave field. (a) 2D bound wave parameterization (Eq. 6), (b) Free wave parameterization (Eq. 8), (c) 2D bound wave theory + free wave parameterization, colored by total incident SS energy (see color bar in (b)) and (d) significant wave height of estimated IG timeseries, colored by SS significant wave height.

	$\left\ \ \int_{SS} \mathbf{E}(f) df \right\ $	$\int_{SS} \mathbf{E}(f) f^{-1} df$	$ \tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df$
10m Torrey Pines	0.82	0.88	0.92
15m Torrey Pines	0.63	0.74	0.84
10m Cardiff	0.5	0.69	0.87
Total	0.79	0.84	0.9

Table 2. R^2 between total (frequency-band integrated) free shoreward IG energy observed and three parameterizations using the observed sea-swell wave energy spectrum $\mathbf{E}_{SS}(f)$. PUV sensors were deployed in 10m and 15m at Torrey Pines and 10m at Cardiff (see Table 1 for details). In all cases, $\tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df$ has the highest R^2 , where $\tilde{\sigma}$ is the relative tide level (Eq. 7).

$${}_{p}E_{IG}^{free} = 0.00067\tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df.$$

$$\tag{8}$$

²⁵⁸ Correlations in different depths and beaches are given in Table 3.2.

The total shoreward IG energy, with contributions from both bound and free waves can be estimated with local SS parameters. The parameterization performs well ($R^2 =$ 0.96) for all but the smallest E_{SS} and/or tides using either the bound wave parameterization (Eq. 6) or the integrated 2D Hasselmann bound wave energy (Figure 6 c). With the smallest E_{SS} and lowest tides, the parameterization underpredicts E_{IG} perhaps owing to free waves from remote sources (Webb et al., 1991; Ardhuin et al., 2014) and the inaccuracy of Eq. 6) when $\tilde{\sigma} = 0$. Functional forms of the frequency distribution of the free IG energy were compared with the observed free IG spectra (normalized by the frequency-weighted SS energy). Forms investigated include linear and cubic fits to the median spectral shape, the spectral shape of Ardhuin et al. (2014) and an altered form (referred to as *nouvelleArdhuin*, Eq. 9),

$$A(f) = \begin{cases} \beta \frac{1}{\Delta f} * [f/0.012 \text{Hz}] & \text{when } f < 0.012 \text{Hz} \\ \beta \frac{1}{\Delta f} * [0.012 \text{Hz}/f] & \text{when } f > 0.012 \text{Hz} \end{cases},$$
(9)

with $\beta = 0.0146$ (median spectral energy density at f = 0.012Hz).

NouvelleArdhuin has the smallest (~ 0.35) median root-mean-square logarithmic error (RMSLE) between $_{obs}E_{IG}^{free} * A(f)$ and $_{obs}\mathbf{E}_{IG}^{free}(f)$. Over all 2494 records, RM-SLE are linear ~ 0.45, cubic ~ 0.40 and using Ardhuin et al. (2014) ~ 0.42. The free wave frequency distribution varies over a wide range and leads to relatively large RM-SLE errors in all tested forms. NouvelleArdhuin (Eq. 9) is relatively simple, has the smallest errors, and is used below.

Timeseries realizations of the shoreward free IG are estimated from an inverse FFT of $p_{red} \mathbf{E}_{IG}^{free}(f)$,

$${}_{p}\mathbf{E}_{IG}^{free}(f) = {}_{p}E_{IG}^{free} * A(f), \qquad (10)$$
$${}_{p}E_{IG}^{free} = 0.00067\tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df,$$

with random phases and A(f) (Eq. 9).

Linearly combining the computed bound wave timeseries with the estimated shoreward propagating free wave timeseries (with random phase), yields an estimated total shoreward IG timeseries that can be used as a boundary condition for numerical models. The parameterizations approximately reproduce a range of infragravity heights (Figure 6 c, RMSE ~ 0.01m, Model skill = 0.82, $R^2 = 0.95$, Bias = 0.006m).

285 4 Discussion

Ardhuin et al. (2014) parameterized seaward free IG energy as a function of local sea-swell conditions, and used that parameterization as a shoreline boundary condition in a global ocean wave model. The assumptions that seaward IG energy is free, directionally broad, and mainly radiated from the surfzone underlie the parameterization ${}_{p}\mathbf{E}_{IG}^{sea}(f)$

$${}_{p}\mathbf{E}_{IG}^{sea}(f) = \left[1.2\alpha^{2}\frac{kg^{2}}{c_{g}2\pi f}\left(\frac{H_{s}T_{m,0}^{2}}{4}\right)^{2}\right] * \frac{1}{\Delta f}\left[\min\left(1,\frac{0.015\text{Hz}}{f}\right)\right]^{1.5},$$
 (11)

with the first part determining the frequency-band integrated ${}_{P}E_{IG}^{sea}$ energy, and the second, the frequency distribution of the seaward IG spectrum. Zheng et al. (2021) compared output from the Ardhuin et al. (2014) model and observations of H_{IG} and found $R^{2} = 0.6$. This approach, for seaward IG energy, yields similar parameters for α (= 6.6 x 10⁻⁴s⁻¹) with $R^{2} = 0.71$ between estimated and observed E_{IG}^{free} (Figure 7 a). A parameterization, similar to Eq. 8, for the seaward energy,

$${}_{p}E_{IG}^{seaward} = 0.001\tilde{\sigma} \int_{SS} \mathbf{E}(f) f^{-1} df.$$
(12)

shows similar tidal dependence of seaward and shoreward energy, and similar high skill $R^2 = 0.91$ (Figure 7 b). The ratio of seaward/shoreward = 0.001/0.00067 = 1.5, is constant and independent of tide. Although the dependencies on $\tilde{\sigma}$ and the constant are not well constrained, the implication that \mathscr{R}_{IG}^2 is not a function of tide level is supported by the low correlation ($R^2 = 0.22$) between tide and \mathscr{R}_{IG}^2 (Figure 8).

Figure 7. Parameterization of seaward IG energy from local SS conditions. (left) Ardhuin et al. (2014) ($R^2 = 0.71$) and (right) new parameterization ($R^2 = 0.91$), including tidal dependence (Eq. 12).

The observed total and free shoreward IG energy is tidally modulated (Figure 5 b, 301 c), consistent with previous observations of total (seaward plus shoreward) IG energy 302 in Southern California (Okihiro & Guza, 1995). This modulation, lower E_{IG} at low tide, 303 has been attributed to IG energy loss within the surfzone being stronger on flat and shal-304 low low-tide beaches than on steeper high-tide beaches (given a concave beach profile, 305 Figure 8) (Thomson et al., 2006). Note that refractive trapping of seaward IG energy 306 creates shoreward IG waves. That is, seaward and shoreward IG waves both increase at 307 high tide, when the surfzone more efficiently radiates IG energy. 308

Observed values of \mathscr{R}_{IG}^2 vary between 0.5 - 2.5, whereas $\mathscr{R}_{IG}^2 = 1.5$ follows from 309 the present crude parameterizations. While \mathscr{R}_{IG}^2 at the shoreline is constrained to < 1, 310 $\mathscr{R}^2_{IG} > 1$ in 10-15m depth can indicate IG surf zone generation and radiation, and shelf 311 trapping. The ratio of free seaward to shoreward propagating IG energy in 10-15m depths 312 is usually between 1 and 2. Along with the high correlation between E_{SS} and $_{obs}E_{IG}^{free}$, 313 this suggests that between half and all of the energy radiated seaward is trapped on the 314 shelf seaward of 10-15m and redirected shoreward (similar results seen in Gallagher, 1971; 315 Elgar & Guza, 1985; Oltman-Shay & Guza, 1987; Okihiro et al., 1992; Elgar et al., 1992, 316 1994; Herbers & Guza, 1994; Herbers, Elgar, & Guza, 1995; Herbers, Elgar, Guza, & O'Reilly, 317 1995; Okihiro & Guza, 1995; Sheremet et al., 2002; Battjes, 2004; Thomson et al., 2006; 318 S. M. Henderson et al., 2006; Rijnsdorp et al., 2015). 319

320

4.1 Numerical modelling of wave runup

The open-source, phase-resolving SWASH model (Zijlema et al., 2011) is used widely 321 to simulate wave transformations and runup. SWASH successfully reproduces SS and 322 IG evolution in laboratory channels with simple h(x), and carefully controlled normally 323 incident waves (A. de Bakker et al., 2014; Ruju et al., 2014; Suzuki et al., 2017). Field 324 observations and model predictions of IG wave evolution and runup are also in good agree-325 ment, although limited by the relatively small range of conditions for which offshore bound-326 ary conditions (e.g. incident SS and IG waves), sandy beach bathymetry, and runup are 327 all accurately known (Nicolae Lerma et al., 2017; Fiedler et al., 2018, 2019; Valentini et 328 al., 2019; C. S. Henderson et al., 2022). For the current model runs, for computational 329 reasons SWASH is run in nonstationary 2D mode in a narrow channel, with a curvilin-330

Figure 8. (a) Mean depth profiles at Torrey Pines (MOP 578 - 589), colored by season of survey. 85% of the 2209 surveys were collected in September/October/November (n = 747) and December/January/February (n = 1125). Insert shows subaerial beach. (b) Beach slope versus mean tide (relative to NAVD88m) of 3h record) at Torrey Pines. Beach slope is the linear fit $\pm 0.5m$ around the tide level. The concave subaerial beach is steeper at high tide than low tide.

ear grid with a 2-m alongshore mesh for two identical parallel transects with 2 vertical
layers. Waves are 1D. The normally incident wave field is prescribed with a Fourier series at the offshore boundary in 14m depth, about 600m from the shoreline. Parameter
settings are as in Lange et al. (2022).

Significant IG growth and decay occurs during SS shoaling and breaking. Compar-335 isons of runup with model run with $E_{IG} = 0$ and nouvelleArdhuin at the offshore bound-336 ary provide a measure of the effect of additional energy incident at the boundary. To test 337 the relationship between incident IG energy in 10m and IG runup, we ran 23 wave cases 338 of incident wave height ranging from $0.3 < H_{SS} < 4.1$ m and $0.01 < H_{IG} < 0.44$ m, 339 with the IG boundary condition given by either $E_{IG} = 0$ or nouvelleArdhuin, and with 340 the bathymetry profile either a 2-slope linear profile or an observed profile, for a total 341 of 92 runs. 342

On the 2-slope profile, differences in runup with $E_{IG} = 0$ and nouvelleArdhuin 343 are very small. On the observed bathymetry (derived from Figure 8 a), differences are 344 detectable and best fit line slopes differ by about 15%. Consistent with linear intuition, 345 runup is increased (modestly) by including incident IG waves at the offshore boundary. 346 However, the cross-shore evolution of the shoreward IG waves is nonlinear and much more 347 complicated than suggested by this simple example (Ruju et al., 2012; Fiedler et al., 2019; 348 Mendes et al., 2018; Rijnsdorp et al., 2022). With steep test bathymetries and energetic 349 wave conditions (not shown and not realistic in Southern California) $E_{IG} = 0$ can gen-350 erate higher runup than nouvelleArduin, and effects of the offshore boundary condition 351 on IG swash and runup can be significant (up to 20% different in the current cases and 352 greater in cases run in Lange et al. (2022)). 353

We note that SWASH-modelled runup results were insensitive to different realizations of random phase in the simulations of free waves (not shown). Finally, SWASHmodelled seaward going IG energy in 10-15m was, for unknown reasons, significantly higher than the corresponding PUV observation (not shown), similar to C. S. Henderson et al.

Figure 9. SWASH-modelled IG runup swash height versus nouvelleArdhuin offshore boundary condition IG height (\circ , solid line is best fit). Runup is relatively insensitive to setting offshore $E_{IG} = 0$ (\bullet , dashed). Best fit line slopes differ by 15% indicating a slight reduction in runup using $E_{IG} = 0$.

(2022). Possibly, errors arise because the SWASH 1D simulations assume normal wave
 incidence and do not support trapped waves. Simulations in 2D are beyond the present
 scope.

The applicability of the present results to other sites is unknown. Bound wave the-361 ory is general, not site-specific, and has no tunable parameters. However, the values of 362 "free wave" parameters (Eqs. 6 and 10) are expected to vary with beach and shelf ge-363 ometry. For example, the average depth of the North Sea is only 90m and slopes are low, 364 potentially limiting the importance of refractive trapping relative to steeply sloped is-365 lands with deep water relatively close to shore (Rijnsdorp et al., 2021). The present sites 366 are not between headlands or bounded by (fixed) offshore reefs. Selective amplification 367 at particular IG frequencies has not been observed either in runup or on the inner shelf. 368 Remotely generated IG waves from transoceanic sources are usually of relatively little 369 importance. IG energy levels on the inner shelf depend on local waves and tide level. The 370 numerical model result that IG wave runup at the shoreline is influenced only weakly 371 by free IG waves on the inner shelf could significantly simplify overtopping forecasts by 372 reducing the need for regional forecast models of IG waves. 373

5 Conclusion

The relative contribution of bound and free infragravity waves to the IG wave field 375 on the inner shelf (depth $\sim 10-15$ m) in San Diego County, USA was examined using 376 PUV observations and nonlinear wave theory. In general, free waves dominate the IG 377 wave field with only 5% of the records showing a bound wave fraction > 50%, consis-378 tent with previous observations in Southern California and Duck, USA and the North 379 Sea. The bound wave energy scaled with the local SS energy squared (with higher cor-380 relation to swell energy than sea) and depth dependence is consistent with h^{-5} scaling. 381 Free IG energy scaled linearly with the local SS energy and with the tide level. 382

These dependencies were included in parameterization of the total (bound and free IG) shoreward propagating energy that depen on tide level and wave models or buoy observations of SS waves. Parameterization of the seaward propagating IG waves showed
 a similar tidal dependence, differing from Ardhuin et al. (2014). Using an observation based frequency distribution for free IG energy, bound and free wave are included in syn thetic IG timeseries used to initialize the nonlinear, phase-resolving, numerical wave model
 SWASH. SWASH results suggest that wave runup is weakly influenced by free shoreward
 propagating IG waves observed at the offshore boundary.

Further observations and modeling are needed to extent the present results to other coastal locations.

³⁹³ Open Research Section

The 2494 timeseries of pressure, cross-shore and alongshore velocity is available on Zenodo at https://doi.org/10.5281/zenodo.8254388.

396 Acknowledgments

This study was funded by the U.S. Army Corps of Engineers (W912HZ1920020) and the California Department of Parks and Recreation (C19E0026). Data were collected and processed by the Coastal Processes Group field team members Lucian Parry, Rob Grenzeback, Kent Smith, Brian Woodward, Greg Boyd, Shane Finnerty, Carson Black, and Mele Johnson. Michele Okihiro organized logistics.

402 **References**

403	Aagaard, T., & Greenwood, B. (1994, April). Suspended sediment transport and
404	the role of infragravity waves in a barred surf zone. Marine Geology, 118(1-
405	2), 23-48. Retrieved 2023-04-27, from https://linkinghub.elsevier.com/
406	retrieve/pii/0025322794901112 doi: 10.1016/0025-3227(94)90111-2
407	Aagaard, T., & Greenwood, B. (2008, May). Infragravity wave contribution to surf
408	zone sediment transport — The role of advection. Marine Geology, 251(1-
409	2), 1-14. Retrieved 2023-04-27, from https://linkinghub.elsevier.com/
410	retrieve/pii/S0025322708000297 doi: 10.1016/j.margeo.2008.01.017
411	Altomare, C., Bolle, A., Brand, E., Chen, M., Dan, S., De Sloover, L., Zhange,
412	Q. (2020). CREST Final Scientific Report: Take Home Messages & Project
413	Results. VLIZ Special Publication 85.
414	Ardhuin, F., Devaux, E., & Pineau-Guillou, L. (2010). Observation et prévision
415	des seiches sur la côte Atlantique française. In XIèmes Journées, Les
416	Sables d'Olonne (pp. 1–8). Editions Paralia. Retrieved 2023-04-27, from
417	http://www.paralia.fr/jngcgc/11_01_ardhuin.pdf doi: 10.5150/
418	jngcgc.2010.001-A
419	Ardhuin, F., Rawat, A., & Aucan, J. (2014, May). A numerical model for
420	free infragravity waves: Definition and validation at regional and global
421	scales. Ocean Modelling, 77, 20-32. Retrieved 2021-03-15, from https://
422	linkinghub.elsevier.com/retrieve/pii/S1463500314000274 doi:
423	10.1016/j.ocemod.2014.02.006
424	Baldock, T., Manoonvoravong, P., & Pham, K. S. (2010, October). Sediment
425	transport and beach morphodynamics induced by free long waves, bound
426	long waves and wave groups. Coastal Engineering, 57(10), 898–916. Re-
427	trieved 2023-04-27, from https://linkinghub.elsevier.com/retrieve/pii/
428	S0378383910000694 doi: 10.1016/j.coastaleng.2010.05.006
429	Battjes, J. A. (2004). Shoaling of subharmonic gravity waves. Journal of Geophysi-
430	cal Research, 109(C2), C02009. Retrieved 2019-05-13. from http://doi.wiley
431	.com/10.1029/2003JC001863 doi: 10.1029/2003JC001863
432	Behrens, J., Thomas, J., Terrill, E., & Jensen, R. (2019, March). CDIP:
133	
433	Maintaining a Robust and Reliable Ocean Observing Buov Network.

434	2019 IEEE/OES Twelfth Current, Waves and Turbulence Measurement
435	(CWTM) (pp. 1–5). San Diego, CA, USA: IEEE. Retrieved 2023-04-
436	06, from https://ieeexplore.ieee.org/document/8955166/ doi:
437	10.1109/CWTM43797.2019.8955166
438	de Bakker, A., Tissier, M., & Ruessink, B. (2014, January). Shoreline dissipa-
439	tion of infragravity waves. Continental Shelf Research, 72, 73–82. Re-
440	trieved 2021-04-03, from https://linkinghub.elsevier.com/retrieve/
441	nii/S0278434313003786 doi: 10.1016/j.csr.2013.11.013
441	De Bakker A T M Brinkkemper I A Van Der Steen F Tissier M F S k
442	Buossink B. C. (2016 October) Cross shore sand transport by infragravity
443	waves as a function of baseh stooppass: SAND TRANSPORT BY INTERA
444	CDAVITY WAVES Lowmal of Coophysical Possarch, Earth Surface 101(10)
445	1786 1700 Detriored 2022 04 27 from http://doi.wiley.com/10.1002/
446	2016 IE002978 doi: 10.1002/2016 IE002878
447	2010JF003070 doi: $10.1002/2010JF003070$
448	de Bakker, A. I. M., Herbers, I. H. C., Smit, P. B., Hissier, M. F. S., & Ruessink,
449	B. G. (2015, February). Nonlinear Infragravity–wave Interactions on a Gently
450	Sloping Laboratory Beach. Journal of Physical Oceanography, 45(2), 589–605.
451	Retrieved 2021-04-03, from https://journals.ametsoc.org/view/journals/
452	phoc/45/2/jpo-d-14-0186.1.xml doi: 10.1175/JPO-D-14-0186.1
453	Dusseljee, D., Klopman, G., Van Vledder, G., & Riezebos, H. J. (2014, December).
454	IMPACT OF HARBOR NAVIGATION CHANNELS ON WAVES: A NU-
455	MERICAL MODELLING GUIDELINE. Coastal Engineering Proceedings,
456	1(34), 58. Retrieved 2023-05-02, from https://journals.tdl.org/icce/
457	index.php/icce/article/view/7710 doi: 10.9753/icce.v34.waves.58
458	Eckart, C. (1951). SURFACE WAVES ON WATER OF VARIABLE DEPTH.
459	Elgar, S., & Guza, R. T. (1985). Observations of bispectra of shoaling surface grav-
460	ity waves. Journal of Fluid Mechanics.
461	Elgar, S., Herbers, T. H. C., & Guza, R. T. (1994, July). Reflection of Ocean Sur-
462	face Gravity Waves from a Natural Beach. Journal of Physical Oceanography,
463	24(7), 1503-1511. Retrieved 2023-04-30, from http://journals.ametsoc
464	.org/doi/10.1175/1520-0485(1994)024<1503:RODSGW>2.0.CO;2 doi:
465	$10.1175/1520\text{-}0485(1994)024\langle 1503\text{:}\text{ROOSGW}\rangle 2.0.\text{CO}; 2$
466	Elgar, S., Herbers, T. H. C., Okihiro, M., Oltman-Shay, J., & Guza, R. T. (1992).
467	Observations of infragravity waves., 5.
468	Elgar, S., Raubenheimer, B., & Guza, R. T. (2005, October). Quality con-
469	trol of acoustic Doppler velocimeter data in the surfzone. Measurement
470	Science and Technology, 16(10), 1889–1893. Retrieved 2023-04-11, from
471	https://iopscience.iop.org/article/10.1088/0957-0233/16/10/002
472	doi: 10.1088/0957-0233/16/10/002
473	Fiedler, J. W., Smit, P. B., Brodie, K. L., McNinch, J., & Guza, R. (2018, Jan-
474	uary). Numerical modeling of wave runup on steep and mildly sloping natural
475	beaches. Coastal Engineering, 131, 106–113. Retrieved 2020-10-20, from
476	https://linkinghub.elsevier.com/retrieve/pii/S037838391730193X
477	doi: 10.1016/j.coastaleng.2017.09.004
478	Fiedler, J. W., Smit, P. B., Brodie, K. L., McNinch, J., & Guza, R. (2019, January).
479	The offshore boundary condition in surf zone modeling. Coastal Engineering.
480	143, 12-20. Retrieved 2019-08-14, from https://linkinghub.elsevier.com/
481	retrieve/pii/S0378383918301984 doi: 10.1016/j.coastaleng.2018.10.014
482	Fiedler, J. W., Young, A. P., Ludka, B. C., O'Reilly, W. C., Henderson, C., Merri-
483	field, M. A., & Guza, R. T. (2020, October). Predicting site-specific storm
484	wave run-up. Natural Hazards, 104(1), 493–517. Retrieved 2020-10-08.
485	from http://link.springer.com/10.1007/s11069-020-04178-3 doi:
486	10.1007/s11069-020-04178-3
487	Gallagher, B. (1971, September). Generation of surf beat by non-linear
488	wave interactions. Journal of Fluid Mechanics, $49(1)$, 1–20. Re-

489	trieved 2021-03-01, from https://www.cambridge.org/core/product/
490	identifier/S0022112071001897/type/journal_article doi: $10.1017/$
491	S0022112071001897
492	Guza, R. T., & Thornton, E. B. (1982). Swash oscillations on a natural beach. Jour-
493	nal of Geophysical Research, 87(C1), 483. Retrieved 2020-06-08, from http://
494	doi.wiley.com/10.1029/JC087iC01p00483
495	Guza, R. T., & Thornton, E. B. (1985). Observations of surf beat. Journal of
496	Geophysical Research, 90(C2), 3161. Retrieved 2021-04-03, from http://doi
497	.wiley.com/10.1029/JC090iC02p03161 doi: 10.1029/JC090iC02p03161
498	Hasselmann, K. (1962, April). On the non-linear energy transfer in a gravity-
499	wave spectrum Part 1. General theory. Journal of Fluid Mechanics, 12(04),
500	481. Retrieved 2020-10-08, from http://www.journals.cambridge.org/
501	abstract_S0022112062000373 doi: 10.1017/S0022112062000373
502	Hasselmann, K., Munk, W. H., & MacDonald, G. (1963). Bispectra of Ocean Waves.
503	Proc. of Time Series Analysis.
504	Henderson, C. S., Fiedler, J. W., Merrifield, M. A., Guza, R., & Young, A. P.
505	(2022, August). Phase resolving runup and overtopping field validation of
506	SWASH. Coastal Engineering, 175, 104128. Retrieved 2023-04-06, from
507	https://linkinghub.elsevier.com/retrieve/pii/S0378383922000436
508	doi: 10.1016/j.coastaleng.2022.104128
509	Henderson, S. M., Guza, R. T., Elgar, S., Herbers, T. H. C., & Bowen, A. J.
510	(2006, December). Nonlinear generation and loss of infragravity wave en-
511	ergy. Journal of Geophysical Research, 111(C12), C12007. Retrieved
512	2019-05-13, from http://doi.wiley.com/10.1029/2006JC003539 doi:
513	10.1029/2006JC003539
514	Herbers, T. H. C., Elgar, S., & Guza, R. T. (1995). Generation and propagation of
515	infragravity waves. Journal of Geophysical Research, 100(C12), 24863. Re-
516	trieved 2019-05-13, from http://doi.wiley.com/10.1029/95JC02680 doi: 10
517	.1029/95JC02680
518	Herbers, T. H. C., Elgar, S., Guza, R. T., & O'Reilly, W. C. (1995). Infragravity-
519	Frequency (0.005–0.05 Hz) Motions on the Shelf. Part II Free Waves. Journal
520	of Physical Oceanography, 1063–1079.
521	Herbers, T. H. C., & Guza, R. T. (1994). Infragravity-Frequency (0.005–0.05 Hz)
522	Motions on the Shelf. Part I Forced Waves. Journal of Physical Oceanography.
523	Huntley, D. A. (1976, December). Long-period waves on a natural beach. Journal of
524	Geophysical Research, 81(36), 6441-6449. Retrieved 2020-10-20, from http://
525	doi.wiley.com/10.1029/JC081i036p06441 doi: 10.1029/JC081i036p06441
526	Huntley, D. A., Guza, R. T., & Thornton, E. B. (1981). Field observations of
527	surf beat: 1. Progressive edge waves. <i>Journal of Geophysical Research</i> ,
528	86(C7), 6451. Retrieved 2021-03-02, from http://doi.wiley.com/10.1029/
529	JC086iC07p06451 doi: 10.1029/JC086iC07p06451
530	Kim, Y. C., Beall, J. M., Powers, E. J., & Miksad, R. W. (1980). Bispectrum and
531	nonlinear wave coupling. <i>Physics of Fluids</i> , 23(2), 258. Retrieved 2019-06-
532	01, from https://aip.scitation.org/doi/10.1063/1.862966 doi: 10.1063/
533	1.862966
534	Kuik, A. (1988). A Method for the Routine Analysis of Pitch-and-Roll Buoy Wave
535	Data. Journal of Physical Oceanography.
536	Lange, A. M., Fiedler, J. W., Becker, J. M., Merrifield, M. A., & Guza, R. (2022)
537	March). Estimating runup with limited bathymetry. Coastal Engineering. 172.
538	104055. Retrieved 2023-04-06. from https://linkinghub.elsevier.com/
539	retrieve/pii/S0378383921001940 doi: 10.1016/i.coastaleng.2021.104055
540	Li, S., Liao, Z., Liu, Y., & Zou, O. (2020, August). Evolution of Infragravity Waves
541	Over a Shoal Under Nonbreaking Conditions. Journal of Geophysical Research:
542	Oceans, 125(8). Retrieved 2023-05-02. from https://onlinelibrarv.wilev
543	.com/doi/10.1029/2019JC015864 doi: 10.1029/2019JC015864

544 545	List, J. H. (1986). Wave Groupiness as a Source of Nearshore Long Waves. COASTAL ENGINEERING, 15.
546	Longuet-Higgins, M. S., & Stewart, R. W. (1962, August). Radiation stress and
547	mass transport in gravity waves, with application to 'surf beats'. Journal
548	of Fluid Mechanics, 13(4), 481–504. Retrieved 2019-05-13, from https://
540	www.cambridge.org/core/product/identifier/S0022112062000877/type/
550	journal article doi: 10.1017/S0022112062000877
551	Ludka B C Guza B T O'Beilly W C Merrifield M A Flick B E Bak
552	A S Boyd G (2019 December) Sixteen years of bathymetry and
552	waves at San Diego beaches. Scientific Data, 6(1), 161. Retrieved 2020-
554	07-27 from http://www.nature.com/articles/s41597-019-0167-6 doi:
555	10.1038/s41597-019-0167-6
556	Mendes D Pinto J P Pires-Silva A A & Fortunato A B (2018 October)
557	Infragravity wave energy changes on a dissipative barred beach: A numeri-
558	cal study. Coastal Engineering, 140, 136–146. Retrieved 2023-07-25. from
559	https://linkinghub.elsevier.com/retrieve/pii/S0378383918300322
560	doi: 10.1016/i.coastaleng.2018.07.005
561	Munk, W. H. (1949). Surf beats. Transactions. American Geophysical Union.
562	30(6), 849. Betrieved 2019-05-28. from http://doi.wilev.com/10.1029/
563	TR030i006p00849 doi: 10.1029/TR030i006p00849
564	Nicolae Lerma, A., Pedreros, R., Robinet, A., & Sénéchal, N. (2017, May), Sim-
565	ulating wave setup and runup during storm conditions on a complex barred
566	beach. Coastal Engineering, 123, 29–41. Retrieved 2023-04-06. from
567	https://linkinghub.elsevier.com/retrieve/pii/S0378383916301284
568	doi: 10.1016/j.coastaleng.2017.01.011
569	Okihiro, M., & Guza, R. T. (1995). Infragravity energy modulation by tides. <i>Journal</i>
570	of Geophysical Research, 100(C8), 16143. Retrieved 2021-03-12, from http://
571	doi.wilev.com/10.1029/95JC01545 doi: 10.1029/95JC01545
572	Okihiro, M., Guza, R. T., & Seymour, R. J. (1992). Bound Infragravity Waves.
573	Journal of Geophysical Research, 97(C7), 11453–11469. Retrieved 2021-03-01,
574	from http://doi.wiley.com/10.1029/92JC00270 doi: 10.1029/92JC00270
575	Okihiro, M., Guza, R. T., & Seymour, R. J. (1993). Excitation of seiche observed in
576	a small harbor. Journal of Geophysical Research, 98(C10), 18201. Retrieved
577	2023-04-30, from http://doi.wiley.com/10.1029/93JC01760 doi: 10.1029/
578	93JC01760
579	Oltman-Shay, J., & Guza, R. T. (1987). Infragravity Edge Wave Observations on
580	Two California Beaches.pdf. Journal of Physical Oceanography.
581	Oltman-Shay, J., & Howd, P. A. (1993, February). Edge waves on nonplanar
582	bathymetry and alongshore currents: A model and data comparison. Journal
583	of Geophysical Research: Oceans, 98(C2), 2495–2507. Retrieved 2023-04-27,
584	from http://doi.wiley.com/10.1029/92JC02609 doi: 10.1029/92JC02609
585	O'Reilly, W., Olfe, C. B., Thomas, J., Seymour, R., & Guza, R. (2016, Oc-
586	tober). The California coastal wave monitoring and prediction sys-
587	tem. Coastal Engineering, 116, 118–132. Retrieved 2019-08-14, from
588	https://linkinghub.elsevier.com/retrieve/pii/S0378383916301120
589	doi: 10.1016/j.coastaleng.2016.06.005
590	Qin, L., & Li, Y. (2021, November). Significant Wave Height Estimation Using
591	Multi-Satellite Observations from GNSS-R. Remote Sensing, 13(23), 4806. Re-
592	trieved 2023-04-27, from https://www.mdpi.com/2072-4292/13/23/4806 doi:
593	10.3390/rs13234806
594	Rawat, A., Ardhuin, F., Ballu, V., Crawford, W., Corela, C., & Aucan, J. (2014,
595	November). Infragravity waves across the oceans: Following Infra-Gravity
596	Wave Bursts. Geophysical Research Letters, 41(22), 7957–7963. Retrieved
597	2021-04-02, from http://doi.wiley.com/10.1002/2014GL061604 doi:
598	10.1002/2014GL061604

599	Reniers, A. J., Naporowski, R., Tissier, M. F. S., de Schipper, M. A., Akrish, G.,
600	& Rijnsdorp, D. P. (2021, January). North Sea Infragravity Wave Ob-
601	servations. Journal of Marine Science and Engineering, $9(2)$, 141. Re-
602	trieved 2021-04-02, from https://www.mdpi.com/2077-1312/9/2/141 doi:
603	10.3390/jmse9020141
604	Reniers, A. J. H. M. (2002). Linear modeling of infragravity waves during
605	Delilah. Journal of Geophysical Research, 107(C10), 3137. Retrieved
606	2021-04-02 from http://doi.wilev.com/10.1029/2001.IC001083 doi:
607	10 1029/2001 JC001083
007	Phie I & Romanowicz P (2006 October) A study of the relation between
608	A study of the Farth's hum: OCEAN STORMS AND FARTH'S
609	Ocean storms and the Earth's num: OCEAN STORMS AND EARTH S HIM — <i>Construction Construction (Construction (Construction)</i>) and a relation of the storm of the
610	nom. Geochemistry, Geophysics, Geosystems, 7(10), 1/a–1/a. Retrieved
611	2023-04-27, from http://doi.wiley.com/10.1029/2006GC001274 doi:
612	10.1029/2006GC001274
613	Ribal, A., & Young, I. R. (2019, May). 33 years of globally calibrated wave
614	height and wind speed data based on altimeter observations. Scientific Data,
615	6(1), 77. Retrieved 2023-04-27, from https://www.nature.com/articles/
616	s41597-019-0083-9 doi: 10.1038/s41597-019-0083-9
617	Rijnsdorp, D. P., Reniers, A. J. H. M., & Zijlema, M. (2021, August). Free In-
618	fragravity Waves in the North Sea. Journal of Geophysical Research: Oceans,
619	126(8). Retrieved 2023-04-06, from https://onlinelibrary.wiley.com/doi/
620	10.1029/2021JC017368 doi: 10.1029/2021JC017368
621	Rijnsdorp, D. P., Ruessink, G., & Zijlema, M. (2015, June). Infragravity-wave dy-
622	namics in a barred coastal region, a numerical study. Journal of Geophysical
623	Research: Oceans, 120(6), 4068–4089. Retrieved 2021-04-02, from https://
624	onlinelibrary.wiley.com/doi/abs/10.1002/2014.IC010450 doi: 10.1002/
625	2014JC010450
626	Riinsdorp D P Smit P B & Guza B (2022 August) A nonlinear non-
620	dispersive energy balance for surfzone waves: infragravity wave dynamics on
027	a sloping beach $Lowrnal of Eluid Mechanics 0/1 = 445 Betrieved 2023-$
628	07.25 from https://www.combridge.org/core/product/identifier/
629	(1-20, 100111002000E122)/twos/iournal article doi: 10.1017/ifm 2022.512
630	$D_{instant} = D_{instant} D_{instant} D_{instant} = M_{instant} = M_{i$
631	Rijnsdorp, D. F., Shitt, F. D., & Zijieina, M. (2014, March). Non-hydrostatic mod-
632	ening of infragravity waves under laboratory conditions. Coastal Engineering,
633	85, 30-42. Retrieved 2023-05-02, from https://linkinghub.elsevier.com/
634	retrieve/pii/S03/8383913001944 doi: 10.1016/j.coastaleng.2013.11.011
635	Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., McCall, R.,
636	& Lescinski, J. (2009, November). Modelling storm impacts on beaches,
637	dunes and barrier islands. Coastal Engineering, 56(11-12), 1133–1152. Re-
638	trieved 2023-05-02, from https://linkinghub.elsevier.com/retrieve/pii/
639	S0378383909001252 doi: 10.1016/j.coastaleng.2009.08.006
640	Ruessink, B. G. (1998, June). Bound and free infragravity waves in the nearshore
641	zone under breaking and nonbreaking conditions. Journal of Geophysical Re-
642	search: Oceans, 103(C6), 12795–12805. Retrieved 2019-05-13, from http://
643	doi wiley com/10 1029/98JC00893 doi: 101029/98JC00893
644	doi.wiidy.com/10.1020/00000000 doi: 10.1020/0000000
645	Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., &
	Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING
646	 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. Coastal Dynamics, 12.
646 647	 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. <i>Coastal Dynamics</i>, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. <i>Journal of</i>
646 647 648	 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. <i>Coastal Dynamics</i>, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. <i>Journal of Geophysical Research</i>, 109(C6), C06025. Retrieved 2021-03-12 from http://
646 647 648 649	 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. <i>Coastal Dynamics</i>, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. <i>Journal of Geophysical Research</i>, 109(C6), C06025. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2003JC002160. doi: 10.1029/2003JC002160
646 647 648 649	 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. <i>Coastal Dynamics</i>, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. <i>Journal of Geophysical Research</i>, 109(C6), C06025. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2003JC002160 doi: 10.1029/2003JC002160 Ruiu A. Lara, J. L. & Losada, J. J. (2012, October). Rediction stress
646 647 648 649 650	 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. <i>Coastal Dynamics</i>, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. <i>Journal of Geophysical Research</i>, 109(C6), C06025. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2003JC002160 doi: 10.1029/2003JC002160 Ruju, A., Lara, J. L., & Losada, I. J. (2012, October). Radiation stress and low-frequency energy balance within the surf zone: A numerical approximation.
646 647 648 649 650 651	 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. <i>Coastal Dynamics</i>, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. <i>Journal of Geophysical Research</i>, 109(C6), C06025. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2003JC002160 doi: 10.1029/2003JC002160 Ruju, A., Lara, J. L., & Losada, I. J. (2012, October). Radiation stress and low-frequency energy balance within the surf zone: A numerical approach. <i>Coastal Engineering</i>, 68, 44, 55. Patriceved 2022 04, 20, from
646 647 648 649 650 651 652	 Ruessink, G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J. L., Silva, P. A., & Wellens, P. (2013). GLOBEX: WAVE DYNAMICS ON A GENTLY SLOPING LABORATORY BEACH. Coastal Dynamics, 12. Ruggiero, P. (2004). Wave run-up on a high-energy dissipative beach. Journal of Geophysical Research, 109(C6), C06025. Retrieved 2021-03-12, from http:// doi.wiley.com/10.1029/2003JC002160 doi: 10.1029/2003JC002160 Ruju, A., Lara, J. L., & Losada, I. J. (2012, October). Radiation stress and low-frequency energy balance within the surf zone: A numerical ap- proach. Coastal Engineering, 68, 44-55. Retrieved 2023-04-30, from https://linkinghub.el.govier.com/stationarcoacteries/proceeding/apart/20202020

 Ruju, A., Lara, J. L., & Losda, I. J. (2014, April). Numerical analysis of run-up oscillations under dissipative conditions. Coastal Engineering, 86, 45-56. Retrived 2020-10-08, from https://linkinghub.elsevier.com/retrieve/pil/S0378383914000192 doi: 10.1016/j.coastaleng.2014.01.010 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. Ocean Engineering, 9(6), 567-50. Retriveed 201-03-01, from https://linkinghub.elsevier.com/retrieve/pil/029801882900038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research. 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000976 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Sheff Break. Journal of Geophysical Research: locans, 123(7), 4483-4490. Retrieved 2021-03-17, from https:// on thtps:// alto: 10.1029/2013JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 55(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pil/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Stuckki, T. Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pil/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H		l.:. 10 1016 /:
 Kiju, A., Lara, J. L., & Losada, I. J. (2014, April). Numerical analysis of run-up coscillations under dissipative conditions. <i>Cossial Engineering</i>, <i>48</i>, 65–66. Kertieved 2020-10-08, from https://linkinghub.elsevier.com/retrieve/pii// S0378383914000192 doi: 10.1016/j.cosstaleng.2014.01.010 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. <i>Ocean Engineering</i>, <i>9</i>(6), 567–580. Retrieved 2021-03-01, from http://linkinghub.elsevier.com/retrieve/pii/0029801882900038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearbore infragravity waves: Seaward and shoreward propagating components. <i>Journal of Geophysical Research</i>, <i>107</i>(C8), 3095. Retrieved 2021-03-12, from http://oi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/201JC000970 doi: 10.1029/201JC013966 doi: 10.1029/201JC013986 doi: 10.1029/201JS013986 doi: 10.1029/201S013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runp. <i>Coastal Engineering</i>, <i>55</i>(7), 573–588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S037838391630044 doi: 10.1016/j.coastaleng.2015.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trow, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave covertopping estimation for impermeable coastal structures in shallow foreshores using SWASII. <i>Coastal Engineering</i>,	654	doi: $10.1016/J.coastaleng.2012.05.003$
 oscillations under disspative conditions. Constal Engineering, 80, 49-50. Ketrived 2021-10-08, from https://linkinghub.elsevier.com/retrives/pii/ Sand, S. E. (1982, Jannary). Wave grouping described by bounded long waves. Ocean Engineering, 9(6), 567-580. Retrieved 2021-03-01, from https://linkinghub.elsevier.com/retrives/pii/0029801882900038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research. 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shell Break. Journal of Geophysical Research: 024(-03.12, 67-04). Retrieved 2021-03.01, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://1 linkinghub.elsevier.com/retrieve/pii/S037838390600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2021-02.0, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy bases in the surface. Geophysical Research Log21-02.20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.003514. Gro	655	Ruju, A., Lara, J. L., & Losada, I. J. (2014, April). Numerical analysis of run-up
 trueved 2020-10-05, from https://linkinghub.elsevier.com/retrieve/pil/ Sor8383814000192 doi: 10.1016/j.coastaleng.2014.01.010 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. Ocean Engineering, 9(6), 567-580. Retrieved 2021-03-01, from https://linkinghub.elsevier.com/retrieve/pil/0029801882200038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Gophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC0000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://loalinalibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holma, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pil/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwast, T., Trouw, K., Troch, P., & Zijema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pil/S0378338316302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surface. Geophysical Research Letters, 37(5), L05601. Retrieved 2010-02.01, from https://inkinghub.elsevier.com/retrieve/pil/S037833816302435 doi: 10.1029/2005GL0255	656	oscillations under dissipative conditions. Coastal Engineering, 86, 45–56. Re-
 S0378383914000192 doi: 10.1016/j.coastaleng.2014.01.010 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. Ocean Engineering, 9(6), 567-580. Retrieved 2021-03-01, from https://linkinghub.elsevire.com/retrieve/pii/002980182900038 doi: 10.1016/0029-8018(82)90003-8 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4400. Retrieved 2023-01-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and rump. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://inkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2015.12.005 Suzuki, T., Altomare, C., Veela, W., Verwaest, T., Trouw, K., Troch, P., & Zijlema, M. (2017, April). Efficient and robust wave overotopping estimation for impermeable coastal structures in shallw foreshores using SWASH. Coastal Engineering, 32(1), 1073-23(5).105601. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thoomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surface. Geophysical Research Letters, 35(5), 105501. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sca waves of 1	657	trieved 2020-10-08, from https://linkinghub.elsevier.com/retrieve/pii/
 Sand, S. E. (1982, January). Wave grouping described by bounded long waves. Occan Engineering, 9(6), 567–580. Retrieved 2021-03-01, from https://linkinghub.elsevier.com/retrieve/pii/0029801882900038 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research, 107(CS), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 doi: 10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Occans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://ollinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S037838396000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity wave via nonlinear energy losses in the surface. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1016/j.coastaleng.2017.01.009 Thocker, M. (1950, August). Surf beats: sca waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and	658	S0378383914000192 doi: 10.1016/j.coastaleng.2014.01.010
 waves. Ocean Engineering, 9(6), 567–580. Retrieved 2021-03-01, from https://linkinghub.elsevier.com/retrieve/pii/0029801882900038 doi: 10.1016/0029-8018(82)90003-8 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observa- tions of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Cophysical Research, 107(CS), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Coophysical Research: Occans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2013IC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https:// 11nkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tddal modulation of infragravity waves via nonlinear energy losse in the surfizone. Geophysical Research Letters, 35(5), LD5601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tddal modulation of infragravity waves via nonlinear energy losse in the	659	Sand, S. E. (1982, January). Wave grouping described by bounded long
 https://linkinghub.elsevier.com/retrieve/pii/002901882900038 doi: 10.1016/0029-0018(29)0003-8 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research, 107(CS), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Com/doi/10.1029/2013C013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S037838396600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://lidai.scoastaleng.2017.01.009 Thouson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.viley.com/10.1029/2005L025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical Mehys-ical Sciences, 202(107), 155-573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1029/2005L025514 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponeri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach	660	waves. $Ocean Engineering, 9(6), 567-580.$ Retrieved 2021-03-01, from
 doi: 10.1016/0029-8018(82)90003-8 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Coophysical Research, 107(C8), 3095. Retrieved 2021-03:14, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://olinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijlema, M. (2017, April). Efficient and robust wave overopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-01-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surface. Geophysical Research Letters, 33(5), Lö5601. Retrieved 2019-05.16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1029/2005GL025514 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damia	661	https://linkinghub.elsevier.com/retrieve/pii/0029801882900038
 Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.viley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research. 2027.143(7), 4435-4400. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://11.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overotopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2015.12.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infagravity waves via nonlinear energy losses in the surface. Ceophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical	662	doi: 10.1016/0029-8018(82)90003-8
 tions of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Gcophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi: 10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Gcophysical Research: Occans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://olinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and rump. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevir.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Gcophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://<ir> royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N.</ir>	663	Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observa-
 components. Journal of Geophysical Research, 107(C8), 3095. Retrieved 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 55(7), 573-588. Retrieved 2020-03-17, from https:// 11nkinghub.elsevier.com/retrieve/pii/S0378383966000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(107), 56-573. Retrieved 2021-02-26, from https:// royal.societypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf	664	tions of nearshore infragravity waves: Seaward and shoreward propagating
 2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S037838390600044 Mol.016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-jlema, M. (2017, April). Efficient and robust wave overopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019	665	components. Journal of Geophysical Research, $107(C8)$, 3095. Retrieved
 10.1029/2001JC000970 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 55(7), 573-588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Society publishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.0106/j.cos2.019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhau	666	2021-03-12, from http://doi.wiley.com/10.1029/2001JC000970 doi:
 Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A. (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483–4490. Retrieved 2023-04-30, from https://ollinelibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S037838390600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overlopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Sponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Sheel'Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j	667	10.1029/2001 JC000970
 (2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal of Geophysical Research: Oceans, 123(7), 4483–4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and rumup. Coastal Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Sponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a rumup model framework. Estuarine, Coastal and Sheel Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer,	668	Smit, P. B., Janssen, T. T., Herbers, T. H. C., Taira, T., & Romanowicz, B. A.
 of Geophysical Research: Oceans, 123(7), 4483-4490. Retrieved 2023-04-30, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tildal modulation of infragravity waves via nonlinear energy losses in the surface. Geophysical Research Letters, 39(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Jansen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers,	669	(2018, July). Infragravity Wave Radiation Across the Shelf Break. Journal
 from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi: 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https://linkinghub.elsevier.com/retrieve/pii/S037838390600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(670	of Geophysical Research: Oceans, 123(7), 4483–4490. Retrieved 2023-04-30,
 10.1029/2018JC013986 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S037838390600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1	671	from https://onlinelibrary.wiley.com/doi/10.1029/2018JC013986 doi:
 Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006, May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. <i>Geophysical Research Letters</i>, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701	672	10.1029/2018JC013986
 May). Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7), 573-588. Retrieved 2020-03-17, from https:// linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer be	673	Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006,
 Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https:// 1inkinghub.elsevier.com/retrieve/pii/S037838390600044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope.	674	May). Empirical parameterization of setup, swash, and runup. Coastal
 linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi: 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of du	675	Engineering, 53(7), 573–588. Retrieved 2020-03-17, from https://
 10.1016/j.coastaleng.2005.12.005 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion proceses in large-scal	676	linkinghub.elsevier.com/retrieve/pii/S0378383906000044 doi:
 Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi- jlema, M. (2017, April). Efficient and robust wave overtopping esti- mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dume erosion processes in large-scale flume experi- me	677	10.1016/j.coastaleng.2005.12.005
 jlema, M. (2017, April). Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https://<ri> royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12)</ri>	678	Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zi-
 mation for impermeable coastal structures in shallow foreshores using SWASH. Coastal Engineering, 122, 108-123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S02727771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from 	679	jlema, M. (2017, April). Efficient and robust wave overtopping esti-
 SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	680	mation for impermeable coastal structures in shallow foreshores using
 https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://<ri> royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S027271418310333 doi: 10.1016/j.ccss.2019.106244 van Dongeren, A., Batijes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from </ri>	681	SWASH. Coastal Engineering, 122, 108–123. Retrieved 2020-10-20, from
 doi: 10.1016/j.coastaleng.2017.01.009 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a rumup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from 	682	https://linkinghub.elsevier.com/retrieve/pii/S0378383916302435
 Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T. (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565-573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from 	683	doi: 10.1016/j.coastaleng.2017.01.009
 (2006). Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	684	Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T. H. C., & Guza, R. T.
 in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	685	(2006). Tidal modulation of infragravity waves via nonlinear energy losses
 2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi: 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	686	in the surfzone. Geophysical Research Letters, 33(5), L05601. Retrieved
 10.1029/2005GL025514 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro- ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	687	2019-05-16, from http://doi.wiley.com/10.1029/2005GL025514 doi:
 Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	688	10.1029/2005 GL 025514
 ceedings of the Royal Society of London. Series A. Mathematical and Phys- ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem- ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	689	Tucker, M. (1950, August). Surf beats: sea waves of 1 to 5 min. period. Pro-
 <i>ical Sciences</i>, 202(1071), 565–573. Retrieved 2021-02-26, from https:// royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. <i>Estuarine, Coastal and Shelf Science, 225</i>, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research, 112</i>(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering, 55</i>(12), 1028–1040. Retrieved 2023-05-02, from 	690	ceedings of the Royal Society of London. Series A. Mathematical and Phys-
 royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi: 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. <i>Estuarine, Coastal and Shelf Science, 225</i>, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research, 112</i>(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering, 55</i>(12), 1028–1040. Retrieved 2023-05-02, from 	691	ical Sciences, 202(1071), 565–573. Retrieved 2021-02-26, from https://
 10.1098/rspa.1950.0120 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. <i>Estuarine, Coastal and Shelf Science, 225</i>, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research, 112</i>(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering, 55</i>(12), 1028-1040. Retrieved 2023-05-02, from 	692	royalsocietypublishing.org/doi/10.1098/rspa.1950.0120 doi:
 Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, September). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. <i>Estuarine, Coastal and Shelf Science, 225</i>, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research, 112</i> (C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering, 55</i>(12), 1028-1040. Retrieved 2023-05-02, from 	693	10.1098/rspa.1950.0120
 ber). Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. Coastal Engineering, 55(12), 1028-1040. Retrieved 2023-05-02, from 	694	Valentini, N., Saponieri, A., Danisi, A., Pratola, L., & Damiani, L. (2019, Septem-
 of a runup model framework. Estuarine, Coastal and Shelf Science, 225, 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	695	ber). Exploiting remote imagery in an embayed sandy beach for the validation
 106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/ retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	696	of a runup model framework. Estuarine, Coastal and Shelf Science, 225,
 retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. <i>Journal of Geophysical Research</i>, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering</i>, 55(12), 1028–1040. Retrieved 2023-05-02, from 	697	106244. Retrieved 2023-07-25, from https://linkinghub.elsevier.com/
 van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen- bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	698	retrieve/pii/S0272771418310333 doi: 10.1016/j.ecss.2019.106244
 bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	699	van Dongeren, A., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steen-
 of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011. Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	700	bergen, G., & Reniers, A. (2007, February). Shoaling and shoreline dissipation
 Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	701	of low-frequency waves. Journal of Geophysical Research, 112(C2), C02011.
 doi: 10.1029/2006JC003701 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. <i>Coastal Engineering</i>, 55(12), 1028–1040. Retrieved 2023-05-02, from 	702	Retrieved 2019-05-13, from http://doi.wiley.com/10.1029/2006JC003701
 van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, De- cember). Analysis of dune erosion processes in large-scale flume experi- ments. <i>Coastal Engineering</i>, 55(12), 1028–1040. Retrieved 2023-05-02, from 	703	doi: 10.1029/2006JC003701
 long waves on a plane slope. Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008, December). Analysis of dune erosion processes in large-scale flume experiments. <i>Coastal Engineering</i>, 55(12), 1028–1040. Retrieved 2023-05-02, from 	704	van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound
706Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A.(2008, De-707cember).Analysis of dune erosion processes in large-scale flume experi-708ments.Coastal Engineering, 55(12), 1028–1040.709Retrieved 2023-05-02, from	705	long waves on a plane slope.
 cember). Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from 	706	Van Thiel De Vries, J., Van Gent, M., Walstra, D., & Reniers, A. (2008. De-
⁷⁰⁸ ments. <i>Coastal Engineering</i> , 55(12), 1028–1040. Retrieved 2023-05-02, from	707	cember). Analysis of dune erosion processes in large-scale flume experi-
	708	ments. Coastal Engineering, 55(12), 1028–1040. Retrieved 2023-05-02, from

709	https://linkinghub.elsevier.com/retrieve/pii/S0378383908000860
710	doi: 10.1016/j.coastaleng.2008.04.004
711	Webb, S. C. (2007, February). The Earth's 'hum' is driven by ocean waves over the
712	continental shelves. <i>Nature</i> , 445 (7129), 754–756. Retrieved 2023-04-30, from
713	http://www.nature.com/articles/nature05536 doi: 10.1038/nature05536
714	Webb, S. C., Zhang, X., & Crawford, W. (1991). Infragravity waves in the deep
715	ocean., 14.
716	Zhang, Q., Toorman, E. A., & Monbaliu, J. (2020, June). Shoaling of
717	bound infragravity waves on plane slopes for bichromatic wave condi-
718	tions. Coastal Engineering, 158, 103684. Retrieved 2023-05-02, from
719	https://linkinghub.elsevier.com/retrieve/pii/S037838391930198X
720	doi: 10.1016/j.coastaleng.2020.103684
721	Zheng, Z., Ma, X., Ma, Y., Huang, X., & Dong, G. (2021, December). Modeling
722	of coastal infragravity waves using the spectral model WAVEWATCH . ${\it Coastal}$
723	Engineering, 170, 104016. Retrieved 2023-04-20, from https://linkinghub
724	.elsevier.com/retrieve/pii/S0378383921001654 doi: 10.1016/j.coastaleng
725	.2021.104016
726	Zijlema, M. (2012, October). MODELLING WAVE TRANSFORMATION ACROSS
727	A FRINGING REEF USING SWASH. Coastal Engineering Proceedings,
728	1(33), 26. Retrieved 2020-07-14, from https://icce-ojs-tamu.tdl.org/
729	icce/index.php/icce/article/view/6479 doi: 10.9753/icce.v33.currents
730	.26
731	Zijlema, M., Stelling, G., & Smit, P. (2011, October). SWASH: An operational pub-
732	lic domain code for simulating wave fields and rapidly varied flows in coastal
733	waters. Coastal Engineering, $58(10)$, $992-1012$. Retrieved 2020-10-08, from
734	https://linkinghub.elsevier.com/retrieve/pii/S0378383911000974

⁷³⁵ doi: 10.1016/j.coastaleng.2011.05.015