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Abstract

Compound dry and hot extremes (CDHE, such as recent summers 2015, 2018 and 2022 in Europe) have wide ranging impacts:

Heat exacerbates moisture shortages during dry periods whereas water demand rises. Climate change will likely increase the

intensity, frequency, and duration of CDHE events in Europe. However, current studies focus on drivers and impacts in coarse-

resolution global climate models and likely miss spatial details of CDHE characteristics. To overcome this issue, we exploit

a regional 50-member single-model initial condition large ensemble (SMILE) at 12 km spatial resolution. Hence 1000 model

years per 20 year-periods provide an extensive database of CDHE and robust estimations of their occurrence changes across

Europe in high geographical detail. CDHE occurrences are investigated in a current climate and at two global warming levels

(+2 °C, +3 °C). We identify Northern France, Southern Germany, Switzerland, Southern Ireland, and the western coasts of the

Black Sea with currently low CDHE frequencies as emerging hotspots. These regions experience a tenfold occurrence increase

under global warming conditions. Apart from Western Europe, temperature is the dominant contributor to frequency increases.

Furthermore, tail dependencies strengthen in regions with high CDHE frequency increases. In European agricultural areas, soil

moisture shows very strong negative correlations with CDHE extremeness. Last, our results suggest a halving of CDHE in a

+2 °C world compared to a +3 °C world, highlighting the necessity of climate mitigation with respect to this hazard type.
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Key Points:9

• During compound dry and hot extreme (CDHE) summers, latent heat flux is markedly10

reduced in widespread areas of the European continent.11

• The frequency increase of CDHE events, associated with extremely low soil mois-12

ture, doubles under GWL3 compared to GWL2.13

• CDHE frequency increases are predominantly driven by rising temperature, with14

regional contributions of bivariate tail dependence increases.15
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Abstract16

Compound dry and hot extremes (CDHE, such as recent summers 2015, 2018 and 202217

in Europe) have wide ranging impacts: Heat exacerbates moisture shortages during dry18

periods whereas water demand rises. Climate change will likely increase the intensity,19

frequency, and duration of CDHE events in Europe. However, current studies focus on20

drivers and impacts in coarse-resolution global climate models and likely miss spatial de-21

tails of CDHE characteristics. To overcome this issue, we exploit a regional 50-member22

single-model initial condition large ensemble (SMILE) at 12 km spatial resolution. Hence23

1000 model years per 20 year-periods provide an extensive database of CDHE and ro-24

bust estimations of their occurrence changes across Europe in high geographical detail.25

CDHE occurrences are investigated in a current climate and at two global warming lev-26

els (+2 °C, +3 °C). We identify Northern France, Southern Germany, Switzerland, South-27

ern Ireland, and the western coasts of the Black Sea with currently low CDHE frequen-28

cies as emerging hotspots. These regions experience a tenfold occurrence increase un-29

der global warming conditions. Apart from Western Europe, temperature is the dom-30

inant contributor to frequency increases. Furthermore, tail dependencies strengthen in31

regions with high CDHE frequency increases. In European agricultural areas, soil mois-32

ture shows very strong negative correlations with CDHE extremeness. Last, our results33

suggest a halving of CDHE in a +2 °C world compared to a +3 °C world, highlighting34

the necessity of climate mitigation with respect to this hazard type.35

Plain Language Summary36

During the last years, summers tended to be exceptionally dry and hot at the same37

time. Dry and hot conditions affect various economic and ecologic sectors, for example38

agriculture by soil moisture reduction. Assessing their frequency and intensity under cli-39

mate change conditions is hence pivotal to develop effective adaptation strategies. The40

particularity of this study is a so-called regional climate model large ensemble: Its 5041

simulations from the same model are equally probable realizations of climate trajecto-42

ries. We thus investigate 1000 model years for a current climate, a +2°C and +3°C warmer43

world at high geographical detail. This allows for robust analysis as numerous events oc-44

cur per period. We show that hot and dry summers become more frequent, mostly be-45

cause of warming with some regions affected by both warming and drying. Furthermore,46

we find a strengthening link between high temperature and low precipitation, which is47

often not considered in studies. Additionally, lower soil moisture conditions in agricul-48

tural areas coincide with more extreme dry and hot summers. In a +3°C world, these49

events are projected to occur at least twice as frequent as in a +2°C world. This stresses50

the relevance of climate change mitigation efforts.51

1 Introduction52

Triggered by an accumulation of recent events, the temporal co-occurrence of ex-53

tremely dry and hot conditions has sparked a large literature body. Globally, but espe-54

cially in Europe, simultaneous droughts and heatwaves rank first among multivariate haz-55

ard investigations (Afroz et al., 2023). Up to 20 % of heatwaves coincided with droughts56

since the 1980s (rising trend; Mukherjee & Mishra, 2021). In Europe, droughts during57

the warm season – often accompanied by heatwaves – increasingly emerge as the dom-58

inant drought type (Markonis et al., 2021). For instance, the year 2018 exhibited unprece-59

dented dry and hot conditions during spring to summer in the northern hemisphere (Buras60

et al., 2020). Vegetation, thriving from suitable growing conditions in spring, aggravated61

soil depletion by summer due to enhanced transpiration (Bastos et al., 2020).62

Heatwaves and droughts share common drivers, albeit on different effective time63

scales (Miralles et al., 2019). This is reflected in the general negative correlation of tem-64

perature and precipitation (Zscheischler & Fischer, 2020; Trenberth & Shea, 2005). For65
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example, in 2018 anticyclonic blocking through April–October over central Europe, in66

particular a stationary pattern that was recurrently associated with heat anomalies over67

Europe and North America, favored persistent dry and hot conditions (Buras et al., 2020;68

Toreti et al., 2019; Rousi et al., 2023; Kornhuber et al., 2019). Buras et al. (2020) also69

show the close spatial correspondence of high pressure, hot extremes (which typically oc-70

cur below anticyclonic conditions, Kornhuber et al., 2019), and water budget deficits.71

This context can be explained by drying and warming in descending air masses, which72

exacerbate atmospheric evaporative demand such that subsequently increased evapotran-73

spiration may reduce soil moisture (e.g., Zscheischler et al., 2020). Dry soils in turn heat74

up more quickly and thus support the sensible heat flux (e.g., Schwingshackl et al., 2017).75

The warming effect in humid areas during hot and dry conditions due to enhanced net76

radiation is dampened by evaporative cooling, which is induced by vegetation transpi-77

ration and soil evaporation (O et al., 2022). In arid areas, generally low soil water con-78

tents and dry vegetation constrain latent heat and amplify temperature increases via en-79

hanced sensible heat fluxes (O et al., 2022). Locally, drought conditions precede extreme80

heat in summers (Felsche et al., 2023), while simultaneous drought conditions may pro-81

long heatwaves via land-atmospheric coupling (Fischer et al., 2007).82

This relationship is mutual: Manning et al. (2019) suggest that enduring and in-83

tense hot and dry conditions also trigger soil moisture droughts, and Mukherjee et al.84

(2023) find amplifying soil effects in both drought–heat and heat–drought cascades. In85

Germany, soil moisture depletion and precipitation deficits during summer 2018 resulted86

in a shift from commonly energy-limited to moisture-limited evaporative regimes (Rousi87

et al., 2023). Soil moisture deficits, however, considerably hamper vegetation produc-88

tivity (Bastos et al., 2020). In summer 2018, the general water budget was more strongly89

affected in European agricultural and pasture regions than in forests, but vegetation de-90

graded in both arable and forest regions (Buras et al., 2020). Crop yields of major plants91

in Northern and central Europe were halved compared to the preceding 5 years (Toreti92

et al., 2019). In the similarly hot and dry summer of 2003, European gross and net pri-93

mary production decreased by up to 30 % and 20 %, respectively (Ciais et al., 2005). While94

heat was shown to mostly affect crop yields, droughts additionally kill the plants (Lesk95

et al., 2016). Thus a co-occurrence of both extremes also bears the potential to merge96

impacts, especially by affecting soil moisture as a pre-condition for crop development.97

The impacts of compounding extremes are hence amplified compared to its single98

components. This holds also true for compound dry and hot extreme (CDHE) events,99

as mentioned previously. Literature describes various kinds of compound events, e.g., pre-100

conditioned, temporally or spatially compounding, and multivariate types (e.g., Zscheis-101

chler et al., 2020). CDHE can be considered as multivariate, in that two hazards co-occur102

simultaneously in time and space due to their common drivers, or as pre-conditioned if,103

e.g., soil moisture conditions of previous seasons were taken into account (Zscheischler104

et al., 2020). Identifying compound events with joint distributions, in this case of tem-105

perature and precipitation, allows their investigation via multivariate probability distri-106

bution functions, i.e., copulas (Bevacqua et al., 2017; Zscheischler et al., 2020). These107

represent dependencies among the variables and can be used to derive multivariate ex-108

treme value probabilities (Zscheischler et al., 2020). Event occurrence probabilities in109

turn can be expressed as return periods. For instance, return periods for the CDHE grow-110

ing season 2018 exceed several thousand years for certain event definitions (Zscheischler111

& Fischer, 2020). Especially in situations where adaptation and decision making rely on112

return periods, such as water resources management, bivariate analyses are essential. With-113

out considering the bivariate dependence structure, there is a risk of both overestimat-114

ing or underestimating the occurrence of events (Bevacqua et al., 2017): For instance,115

bivariate return periods of the 2014 California winter drought, one of the first CDHE to116

be investigated bivariately, were shown to be higher than univariate precipitation deficit117

return periods owing to extremely high winter temperatures (AghaKouchak et al., 2014).118
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Most studies on bivariate events focus on prominent cases without gaining gener-119

alized knowledge on the event–impact relationships by, e.g., aligning event extremeness120

with impact extremeness. Examples for this approach include the calculation of (stan-121

dardized) temperature and precipitation ratios or products (Hao et al., 2018; Mukher-122

jee & Mishra, 2021), but without considering the variable dependencies. Others employ123

water budget deficits as CDHE intensity surrogate (Buras et al., 2020). In this study,124

we consider bivariate return periods as an intensity surrogate. Since they indicate the125

joint extremeness of the considered variables, higher return periods also correspond to126

higher temperatures and lower precipitation in the CDHE case. To illustrate the inten-127

sity of the bivariate return periods, we align soil moisture to the CDHE.128

In order to evaluate low-frequency compound events and derive meaningful knowl-129

edge on their effects on soil moisture, observational records provide too few events. Hence,130

ensembles of climate model simulations are beneficial to enlarge the event sample. How-131

ever, for the investigation of compound events, it is advisable to be sure about compa-132

rable process representation in all used simulations (e.g., regarding the joint temperature–133

precipitation distribution). Both issues can be addressed by accessing single-model ini-134

tial condition large ensembles (SMILEs) (e.g., Maher et al., 2021). SMILEs consist of135

several simulations of the same model under the same external forcing conditions (i.e.,136

scenario), differing only due to their initial conditions. Global SMILEs proved to be a137

skillful tool for the reduction of uncertainty due to internal variability in multivariate138

event attribution (Bevacqua et al., 2023). However, it is a known issue that compound139

events require finer spatial resolution if realistic information for adaptation planning on140

a regional scale is sought (François & Vrac, 2023).141

The goal of this study is thus to (a) obtain and explain spatially explicit frequency142

changes in European CDHE summers (June–August, JJA) under three global warming143

levels and (b) relate the ranked events with soil moisture as a relevant condition for im-144

pacts on agriculture. In order to reduce sampling uncertainties from a statistical per-145

spective and address internal climate variability, we employ a regional high resolution146

SMILE.147

2 Materials and Methods148

2.1 Regional Large Ensemble Data for robust sampling149

Investigating low-probability compound events of extremes requires an abundant150

data base. We therefore employ the regional SMILE of the Canadian Regional Climate151

Model, version 5 (CRCM5-LE; Leduc et al., 2019). The CRCM5-LE was developed within152

the ClimEx project: 50 members of the Canadian Earth System Model, version 2, Large153

Ensemble (CanESM2-LE; Fyfe et al., 2017; Kirchmeier-Young et al., 2017) were dynam-154

ically downscaled with the CRCM5 to obtain 50 high-resolution (0.11 °, corresponding155

to 12.5 km) time series of 1950–2099 over two domains, Europe and Northeastern North156

America (Leduc et al., 2019). The original members of the CanESM2-LE were constructed157

by applying small random perturbations to the long-term control run in 1850 and sub-158

sequently in 1950. After a few years, the 50 members are considered to be independent159

due to the chaotic nature of weather sequences, while still following the same forcing con-160

ditions (RCP8.5 from 2006 onward) and thus pertaining comparable climate statistics161

(Leduc et al., 2019).162

The CRCM5-LE already proved its value for compound analyses of hydro-meteorological163

extremes, namely rain on saturated soil and rain-on-snow events (Poschlod et al., 2020).164

Further, this regional SMILE was used for investigation of heatwaves (Böhnisch et al.,165

2023), droughts (Böhnisch et al., 2021), and heat and drought linkage at an inter-seasonal166

scale (Felsche et al., 2023).167
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2.2 Global Warming Levels in a regional climate model168

We employed global warming levels (GWL) for our analysis of future climate pro-169

jections. This approach has been widely applied because it has the advantage of being170

less sensitive to the selected model and scenario. Furthermore, it allows to directly com-171

pare the warming rate to the goal of the Paris Agreement of limiting global warming to172

“(. . . ) well below 2 °C above pre-industrial levels and to pursue efforts to limit the tem-173

perature increase to 1.5 °C (. . . )” (UNFCCC, 2015). The GWLs were calculated as anoma-174

lies in the yearly global mean surface air temperature (tas) to the pre-industrial refer-175

ence period 1850–1900 (Hauser et al., 2022; Seneviratne et al., 2021). GWLs refer to a176

20-year period centered around the first year, in which the warming level is exceeded (tas177

> GWL). The methodology is based on Hauser et al. (2022), which was used for the Sixth178

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). We adopted179

the code for the use in the CanESM2-LE. To this end, we pooled all 50 members before180

calculating the anomalies to 1850–1900.181

Our reference period 2001–2020 translates to GWL= +1.2 °C (GWL1.2) in CanESM2-182

LE (observed approximately 1 °C; Gulev et al., 2021). This is less an effect of the forc-183

ing scenario for RCP8.5 was shown to be in high agreement with observed emissions (Schwalm184

et al., 2020). Instead, it mirrors the model’s rather high equilibrium climate sensitivity185

(3.7 K; Swart et al., 2019). Comparing modeled global tas with observational global mean186

temperature though may result in an overestimation partly due to insufficient observa-187

tional data coverage and blending air temperature over land with sea surface temper-188

atures over ocean areas in observations (Richardson et al., 2016; Vogel et al., 2019).189

Future periods in our study are represented by 20-year slices centered at GWL=190

+2 °C (GWL2, Paris Agreement; UNFCCC, 2015) and GWL= +3 °C (GWL3, close to191

the most realistic end-of-century temperature of 2.8 °C under current trends in climate192

policy; Liu & Raftery, 2021).193

Time periods corresponding to a given GWL were calculated within the global SMILE,194

and adopted for use in the regional SMILE.195

2.3 Definition and Bivariate Evaluation of Compound Events196

2.3.1 Event Definition197

This study takes a multivariate perspective on dry and hot extremes, since we are198

particularly interested in the combined occurrences of these hazards. We employed thus199

the “AND” hazard scenario to connect both univariate extremes (Zscheischler & Fischer,200

2020): the temporal co-occurrence of linearly detrended summer mean temperatures and201

(negative) precipitation sums exceeding the respective 95th percentile of 2001–2020 (with202

the 95th percentile of negative precipitation equaling the 5th percentile; see Supplemen-203

tary figure S1). By definition, these events are expected to be very rare because both204

variables have to exceed a high threshold. However, since JJA temperature and nega-205

tive precipitation show strong correlations in most parts of Europe, which intensified dur-206

ing the 21st century, CDHE occur more often than would be implied by independence207

(Zscheischler & Seneviratne, 2017). This implies that warm summers are commonly dry208

and wet summers are cool (see also Trenberth & Shea, 2005; Wang et al., 2021). Due209

to the extensive large ensemble database, 1000 years instead of 20 years (see fig. 1 (a))210

are available per analysis period and allow for robust baseline definition (i.e., percentile211

estimates across all 50 ensemble members) and event characteristic estimation (e.g., fre-212

quency changes, associated behavior).213

In order to characterize CDHE summer energy partitioning compared to non-CDHE214

summers, we employed the Bowen Ratio (BR, Bowen, 1926). The BR describes the ra-215

tio of sensible heat flux and latent heat flux, which are negatively coupled (e.g., Schwing-216
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shackl et al., 2017). For this analysis, we used the model variables surface upward la-217

tent heat flux and surface upward sensible heat flux.218

2.3.2 Estimation of Bivariate Return Periods219

In order to estimate the joint extremeness of CDHEs, we calculated bivariate re-220

turn periods. Generally, return periods are the inverse of the (annual) exceedance prob-221

ability p of a given event intensity, the return level zp. Hence, the return level zp is ex-222

pected to be exceeded every 1/p years, defining thus the return period T = 1/p (Coles,223

2001). Bivariate return periods however remain ambiguous and become larger than their224

univariate component return periods due to the second variable that is required to meet225

the extremes condition as well (AghaKouchak et al., 2014; Zscheischler & Fischer, 2020).226

In large samples like the CRCM5-LE, (annual) event occurrences per time period can227

be counted and inverted to obtain the return period (Zscheischler & Fischer, 2020). This228

empirical approach is generally limited by the time series length. With 1000 years avail-229

able, 10 events with T = 100 are to be expected statistically, while the most extreme230

case would be T = 1000. Any inference on this level would be highly uncertain since231

it is based on a single event (e.g., Zscheischler & Fischer, 2020). For shorter time series,232

the maximum empirical T also decreases such that extreme event estimation suffers from233

high uncertainties (Bevacqua et al., 2017). Instead of event counting, we here fitted cop-234

ulas, i.e., multivariate probability distributions, to the bivariate distributions (Zscheischler235

& Fischer, 2020). The large advantage of distribution fitting is the option for pushing236

the rareness boundaries of the empirical approach.237

For the procedure in this study we used the R package VineCopula (Nagler et al.,238

2023). First, we transformed the empirical marginals of summer temperature and pre-239

cipitation (multiplied with -1 for calculation purposes) to uniform distributions on [0,1].240

Next, the most suitable copula family was estimated using the Bayesian Information Cri-241

terion (BIC) and fitted to the data. For this study, we chose the locally best fitting cop-242

ula family from eight single-parametric copula families (fig. S3).243

Following the relation in Brunner et al. (2016), the return period T was obtained244

by:245

T (u, v) =
µ

1− u− v + C(u, v)
(1)

giving the probability for jointly exceeding the event defining thresholds in the de-246

nominator, with u, v corresponding to univariate probabilities of exceeding the respec-247

tive threshold, C(u, v) being the copula at (u, v), and the mean interarrival time µ =248

1 in our case since we investigated annual events (Zscheischler & Fischer, 2020; Zscheis-249

chler & Seneviratne, 2017; Brunner et al., 2016).250

2.3.3 Distributional Change Assessments251

Both changes in temperature and precipitation may lead to frequency changes by252

shifting the bivariate distribution compared to the reference period. Additionally, the253

bivariate (tail) dependence structure may change over time.254

In order to address the first point, we here propose a method to disentangle the255

dominating drivers of frequency changes. Horizontal shifts of the distribution (along the256

orange line in fig. 1 (b)) indicate temperature changes as sole drivers whereas vertical257

shifts (along the blue line in fig. 1 (b)) point to precipitation changes. Any change with258

both a horizontal and vertical component thus is due to a combination of temperature259

and precipitation changes. For the definition of the dominating driver, we used the av-260

erage JJA drying per degree warming (fig. 1 (b)): In Europe, the slope of this relation-261
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Figure 1. (a) Precipitation and temperature of 1000 summers (50 members for 2001–2020)

over a grid cell representing Munich/Germany (star in (c)). Dark grey and dark red dots show

the limited sample of one arbitrary member. Black lines indicate the 95th percentile of tempera-

ture (vertical) and 5th percentile of precipitation (i.e., the 95th percentile of negative precipita-

tion; horizontal) with the red area highlighting all summers meeting the definition criterion for

a CDHE. (b) Definition of temperature (orange) and precipitation (blue) dominance in distribu-

tional shifts under climate change conditions. Yellow indicates mixed contributions of tempera-

ture and precipitation (see text). Grey shaded point clouds correspond to current, GWL2, and

GWL3 climates for the same pixel as in (a). The black line represents the local average summer

drying scaled with warming. (c) Average summer drying scaled with warming expressed as slopes

of a linear line fitted to the local bivariate distribution.

ship follows a North–South gradient with highest values in the Mediterranean area and262

especially over the Iberian Peninsula where summer precipitation is very low (fig. 1 (c)).263

Distributional shifts along this slope represent the occurrence of more extreme events264

by heating and drying following the current relationship. If the center of the distribu-265

tion is shifted within the orange sector of fig. 1 (b), temperature is identified as dom-266

inating driver, while it is precipitation for shifts into the blue sector. Since we are also267

interested in simultaneous changes of temperature and precipitation, we introduced a268

buffer zone between a line with half the local slope and a line with twice the local slope269

to account for uncertainties in slope estimation (yellow sector). This combination is fur-270

ther referred to as mixed drivers. This approach is based on correlation of the full dis-271

tributions, which, as Zscheischler and Seneviratne (2017) argue, can serve as an indica-272

tor for the likelihood of CDHE if the percentile threshold for event definition is not too273

high.274

To account for dependencies in the distribution extremes, tail ( = extremal) de-275

pendence above the 95th univariate percentiles (chi(0.95); Coles et al., 1999) were cal-276

culated for each period separately using the R package extRemes (Gilleland, 2022). Con-277

fidence intervals at the 0.05 level were obtained by bootstrapping 1000 times.278

2.4 Assessment of CDHE Impacts on Soil Moisture279

In one of the first compound event definitions by Leonard et al. (2014), compound280

events are defined by the extremeness of impacts originating from multiple contribut-281

ing hazards. While our CDHE definition rather follows a hazard-based perspective, we282

nevertheless aim to assess CDHE effects in this study. Our (univariate) target variable283

is soil moisture, classified as the soil moisture index (SMI) of Zink et al. (2016), which284

also forms the basis of the German Drought Monitor. The SMI is based on soil mois-285
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ture percentiles of a reference period (2001–2020 in our case). We used JJA soil mois-286

ture in the upper portion of the soil column to assess agricultural droughts during cur-287

rent climate, GWL2, and GWL3. Soil moisture is especially useful when assessing event288

impacts, for soil moisture droughts have large agricultural and ecosystem-specific impacts.289

Assessing soil moisture conditions is hence most relevant in areas where they potentially290

have an impact. Therefore, we confined our analyses of CDHE–soil moisture relation-291

ships on European agricultural areas. These comprise Corine Land Cover (CLC2018 ver-292

sion 2020 20u1, linearly regridded to CRCM5-LE spatial resolution; EEA, 2020) level-293

2 classes arable land, permanent crops, and heterogeneous agricultural areas.294

3 Results295

3.1 Bowen Ratio Increases During CDHE296

CDHE and non-CDHE summers differ with respect to the energy-partitioning of297

sensible and latent heat flux. In order to illustrate these differences in a spatially explicit298

way, we first look at the Bowen Ratio during summer under current climate conditions.299

During non-CDHE summers, the latent heat flux, i.e., evaporative cooling (O et al., 2022),300

is dominating over the sensible heat flux in large areas of Europe (fig. 2 (a)–(b)). These301

coincide with the wet evapotranspiration regions (energy-limited) of Schwingshackl et302

al. (2017). The dominating low BR conditions favor widespread cloud formation and sum-303

mer precipitation. In CDHE summers (fig. 2 (b)), however, BR increases in large areas.304

High BR occurs in their wet/transition regions (moisture-limited). Zscheischler et al. (2015)305

state that under dry conditions, evapotranspiration and temperature are strongly dom-306

inated by soil moisture. Especially the Mediterranean regions, the lower course of the307

Danube and coastal regions of the Black Sea experience BR > 10. Under these condi-308

tions, a reduced latent heat flux (and hence evaporation) suggests low soil moisture avail-309

ability, while temperatures rise (Mukherjee et al., 2023). Consequently, cloud convec-310

tion and precipitation are inhibited.311

We find no BR inversions or only small increases during CDHE in Northern and312

central Europe as well as in mountainous regions (fig. 2 (a)–(b)). However, these regions313

are characterized by evaporation increases (and hence soil drying) during CDHE sum-314

mers (fig. 2 (c)). This suggests an increase in latent heat flux and, potentially, a reduced315

temperature increase due to evaporative cooling (O et al., 2022). These regions are char-316

acterized by an energy-limited evapotranspiration regime (Teuling et al., 2009), where317

higher temperatures in CDHE summers compared to non-CDHE summers favor evap-318

oration. The remainder of the domain, largely defined by soil-moisture limited evapo-319

transpiration regimes (Teuling et al., 2009), experiences major evaporation reductions320

(fig. 2 (c)), presumably due to moisture limitations in comparison to non-CDHE sum-321

mers. High BR values, i.e., low latent heat flux compared to sensible heat flux, may re-322

sult from low soil moisture conditions (Trenberth & Shea, 2005). Since soil moisture and323

evaporation mutually influence each other and CDHE affect evaporation (Miralles et al.,324

2019), we conclude here that soil moisture is affected by CDHE occurrences as well.325

The described relationships for CDHE and non-CDHE hold true for GWL2 and326

GWL3 (see supplementary fig. S2 for BR evolution under GWL2 and GWL3).327

3.2 CDHE Frequency Increases328

CDHE occur rarely under current climate conditions (fig. 3 (a)). Assuming no de-329

pendence between temperature and precipitation, the occurrence probability of a CDHE330

would amount to 0.05 × 0.05 = 0.0025 = 0.25 events per 100 years. This corresponds331

to a 1-in-400 year event. This very rare frequency is however exceeded over most of Eu-332

rope. Assuming total dependence, the frequency has an upper limit at 5 events per 100333

years by definition of the CDHE events, equaling a 1-in-20 year event. In the CRCM5-334
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Figure 2. Bowen Ratio for non-CDHE summers (a) and CDHE summers (b) under current

climate conditions. The median across all ensemble members is shown per category. Brownish

colors indicate regions with sensible heat > latent heat, greenish colors indicate regions with

sensible heat < latent heat. (c) evaporation increases (purple) and decreases (orange) in CDHE

summers compared to non-CDHE summers under current conditions.

LE, highest event frequencies reach 3.5 events per 100 years in central eastern Europe335

(roughly 1-in-28 year event). On the contrary, parts of the Mediterranean, Aegean and336

Black Sea coastal regions as well as Southern Ireland, Northern France, and mountain-337

ous regions in central and Northern Europe encounter < 0.5 events per 100 years which338

corresponds to a 1-in-200 year event.339

For GWL2, event frequencies regionally double to triple, with strongest increases340

in Southern Europe and weakest changes in Northern and central eastern Europe as well341

as the Western Iberian Peninsula (fig. 3 (b)). No decreases are detected. Interestingly,342

while some regions with highest event frequencies under current conditions, e.g., central343

eastern Europe, encounter only increases by < 3 events per 100 years, Southeastern France344

both shows high frequencies under current conditions and strong increases under GWL2.345

Contrasting to that, the coastal areas of the Mediterranean, Aegean and Black Sea with346

low event occurrences under current conditions experience an even higher increase by347

6–9 events per 100 years.348

With further ascending GWL, event frequencies surge (fig. 3 (c)): Especially in moun-349

tainous forelands of Northern/Northeastern Spain and central/Southwestern France more350

than 1 out of 4 years under GWL3 qualify as a CDHE with respect to current percentile351

definitions (adding frequencies in fig. 3 (a) and (c)). The same holds true for the Po Val-352

ley in Northern Italy. Regions north of the Alps, in Northern France, Southern Ireland353

or the Western Iberian Peninsula with currently very few events (< 0.5 per 100 years)354

experience up to > 15 events per 100 years in addition to current frequencies. East-355

ern Europe and the Balkans are characterized by a North–South gradient of increases.356

Lowest gains are found in Scandinavia, Northeastern Europe, the highest Alpine ridges,357

and Southern Spain. To put these numbers into perspective, Toreti et al. (2019) show358

that 2018-like droughts mirror typical summer conditions by the 2040s, using a multi-359

model ensemble under RCP8.5.360

3.3 Drivers of CDHE Frequency Increases361

What is driving these frequency increases? In fig. 4, we investigate changes in the362

bivariate distribution of temperature and precipitation. First, fig. 4 (a)–(b) demonstrate363

the prevalent dominance of temperature increases in shifting the distribution into the364
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Figure 3. CDHE frequency for three global warming levels (absolute values for present cli-

mate (a) and changes under GWL2 (b) and GWL3 (c)). Events are defined as local exceedance

of the current (2001–2020) 95th percentile of temperature and (negative) precipitation.

defined CDHE diagram space (see also fig. 1 (b)) under both GWL2 and GWL3. Pre-365

cipitation dominates in mountainous Norway and Northern Spain. In the Atlantic re-366

gions of Western Europe, temperature and precipitation changes jointly foster frequency367

increases. Under GWL3 conditions, these areas with mixed drivers expand towards the368

East. In addition, precipitation dominance emerges from previously mixed driver regions.369

This finding mirrors earlier emergence of (mean summer) temperature trends compared370

to higher uncertainty and variability in precipitation trends (e.g., von Trentini et al., 2019;371

Seneviratne et al., 2021). For large parts of Europe, precipitation variability defines hence372

whether a CDHE occurs, if (nearly) every year exceeds the present temperature thresh-373

old of event definition (consistent with e.g., Zscheischler & Fischer, 2020).374

Secondly, we consider the dependence structure of the distributions (fig. 4 (c)–(e)).375

As stated above, a tail dependence of 1 implies that each temperature extreme (as de-376

fined here) is associated with a precipitation extreme and vice versa. The joint occur-377

rence probability of CDHE is thus 0.05 (i.e., 5 events per 100 years) and hence the same378

as for univariate extremes in our definition. On the contrary, a tail dependence of 0 im-379

plies independent behavior of temperature and precipitation extremes and thus a prob-380

ability of 0.05 × 0.05 = 0.0025 (i.e., 0.25 events per 100 years in our case). It follows381

that the spatial distribution in fig. 4 (c) mirrors the spatially distributed CDHE frequen-382

cies (fig. 3 (a)) with highest tail dependence corresponding to highest event frequencies383

in central eastern Europe and bivariate tail independence in mountainous Norway, North-384

ern France, Southern Ireland, inner Alpine regions, and Mediterranean coastal regions385

with very rare CDHE occurrence. Under GWL2, the tail dependence exceeds the cur-386

rent 95 % confidence interval especially in regions with currently low tail dependence val-387

ues (e.g., Northeastern France and Northern Italy, the Danube delta or mountainous Nor-388

way, fig. 4 (d)). In these regions, the tail dependence increase may add to event frequency.389

Tail dependence reductions are found on the western Iberian Peninsula with already low390

values and, notably, in central eastern Europe with currently highest values. More spa-391

tially distinct clusters emerge under GWL3 (fig. 4 (e)), where robust tail dependence in-392

creases occur in Northern France, Southern UK and Ireland, the Alpine (foreland) and393

Cantabrian Mountain regions, and Scandinavia. Tail dependence decreases, e.g., in South-394

ern Sweden, parts of the Iberian Peninsula, and central eastern Europe. In South-western395

Spain, this decrease may contribute to the rather low CDHE occurrence increase under396

GWL3 conditions (see fig. 3 (c)). Tail dependence changes are reflected by changes in397

the underlying copula family (supplementary fig. S3 (a)–(c)): For example, tail depen-398
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Figure 4. Changes in combined temperature and precipitation distributions. (a)–(b) dis-

tributional shifts due to temperature increases (orange), precipitation decreases (blue) or both

(yellow) following the approach from fig. 1 (b)). Only land areas with significant correlations

of JJA temperature and precipitation are colored. (c)–(e) tail dependence of temperature and

(negative) precipitation: (c) current absolute values, changes for GWL2 (d) and GWL3 (e). For

GWL2 and GWL3 only regions with changes exceeding the present 95 % confidence interval are

shown. Note: The tail dependence refers to the tails above the respective 95th temperature and

(negative) precipitation percentile of each period.
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dence increases mostly correspond to switches from symmetric copula families (mostly399

Gaussian or Frank) to asymmetric families (e.g., Gumbel which only occur in regions with400

BR < 1 under current conditions). Decreases are associated with the inverted switch.401

Symmetric families represent regions with amplified tail dependence in the hot-dry and402

cold-wet tail, whereas asymmetric families include only one tail with enhanced depen-403

dence. Note that the bivariate structure is generally weak to moderate in most regions404

(theoretical Kendall’s τ with 0.2 < τ < 0.5, fig. S2 (d)–(f)), pointing towards rather405

similar bivariate distributions. With increasing GWL, τ increases in Western Europe,406

hence strengthening the differences between the joint summer temperature–precipitation407

distributions.408

The tail dependence also allows for a quick change of perspective: Since it is cal-409

culated with respect to each period (current, GWL2, GWL3), we are also able to infer410

that CDHEs defined relative to the percentiles of each period occur more (less) frequently411

where tail dependence increases (decreases).412

3.4 Soil Moisture Scaling with CDHE Extremeness413

To account for the risk that agricultural droughts, i.e., soil moisture deficits, pose414

on crops, we focus our further assessment on European agricultural regions.415

We start our assessment with return periods T of CDHE in current, GWL2, and416

GWL3 conditions (fig. 5 (a)–(c)). Therefore, we ask the question: How extreme would417

a future CDHE be in relation to the current temperature and precipitation distribution?418

Since higher return periods correspond to hotter and drier summers with respect to cur-419

rent CDHE, they are interpreted as surrogates for joint event intensity. T is obtained420

for the 95th percentile of temperature and (negative) precipitation of the respective pe-421

riods from the copula fitted to the present bivariate distribution. Hence under current422

conditions (fig. 5 (a)), the distribution again mirrors the current tail dependence (fig. 4 (c))423

and event frequency distribution (fig. 3 (a)). The theoretical minimum return period of424

the current period is T = 20 (perfect tail dependence), the maximum T = 400 (inde-425

pendence). Consistent with that, we find among the CDHE just passing both thresh-426

olds return periods of T = 30 to T = 300 in the current period. Under GWL2 condi-427

tions (fig. 5 (b)), return periods increase to several hundreds to thousands of years with428

respect to the current distribution. In single grid cells (dark red), the extremeness of these429

CDHE is unprecedented (T = inf.). In these cases, (mostly) future temperature or pre-430

cipitation lie outside the margins of the current distribution. Hence CDHE of this ex-431

tremeness did not occur at all in the current period of the CRCM5-LE. Under GWL3432

(fig. 5 (c)), these CDHE are dominating across Europe: We find T = 1000 to T = 3000433

years in eastern Germany, Poland, and the Baltics, whereas the remainder of Europe is434

subject to CDHE with a current occurrence probability p = 0. To generalize, the con-435

ditions of CDHE definition correspond to highly unlikely current conditions when con-436

sidering GWL2, and unprecedented conditions in GWL3.437

During all summers exceeding the respective CDHE definition in current, GWL2,438

and GWL3 climates (fig. 5 (d)–(f)), extreme (below 5th percentile) or exceptional droughts439

(below 2nd percentile) prevail in European agricultural regions. Exceptions are very southerly440

parts (Southern Spain, Turkey) where the soil moisture content corresponds to moder-441

ate (below 20th percentile) or severe (below 10th percentile) droughts. However, since442

SMI classes are calculated with respect to the local distribution and the local distribu-443

tions do not always range from total depletion to total saturation, the ‘less severe’ cat-444

egories may represent low absolute soil moisture conditions as well, while more severe445

drought conditions in humid regions may represent higher absolute soil moisture con-446

ditions. With rising GWL, virtually all European agricultural areas experience excep-447

tional drought conditions during future CDHE.448
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Figure 5. CDHE intensity for current, GWL2 and GWL3 conditions in European agricultural

regions. (a)–(c) return period of summers with temperatures and (negative) precipitation at

the GWL-specific 95th percentile (crosses of thick black lines in (g) and red lines in (h) and (i).

(d)–(f) average SMI categories during all summers exceeding the GWL-specific 95th percentiles

of temperature and (negative) precipitation. (g)–(i) scatter plots of summer precipitation against

summer temperature for an example region (Po Valley, Northern Italy). Thick (thin) black lines

show the present 5th and 95th percentiles (minimum and maximum) for precipitation and tem-

perature, respectively. Red lines mark the 5th and 95th percentiles for GWL2 and GWL3. Light

red background highlights current CDHE summers; strong red background CDHE summers for

GWL2 and GWL3 percentiles. Blue dots show the current mean, crosses span one standard de-

viation of the respective periods for temperature and precipitation. Colors in (d)–(i) indicate soil

moisture drought categories (percentiles) with respect to the current period following Zink et al.

(2016).
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Figures 5 (g)–(i) further show the relationship among soil moisture droughts and449

compound events in an example region (Po Valley, south of the Alps) to illustrate the450

relationship between temperature, precipitation and SMI in all summers: Summers within451

the shaded diagram space (i.e., CDHE) are affected by more extreme SMI categories in452

all periods; under GWL3 the majority of CDHE summers corresponds to ‘exceptional453

drought’ (fig. 5 (i)). Soil moisture drought extremeness follows the distributional axis,454

(i.e., not dominantly along the temperature or precipitation axis). With progressing global455

climate change, distribution shifts towards warmer and drier conditions (see crosses rel-456

ative to blue dots in (h) and (i)) increase the frequency of summers within the light red457

shaded diagram space and also more extreme SMI. The majority of CDHE summers in458

GWL2 and GWL3 is characterized by unprecedented temperatures (dotted black ver-459

tical line) and numerous future events undercut the driest current summer as well (dot-460

ted black horizontal line). This fact illustrates why this region is colored in dark red in461

fig. 5(c). CDHE frequencies even increase with respect to the future percentiles (dark462

red shaded diagram space) which aligns with risen tail dependence in this region (fig. 4 (h)–463

(i)). Overall, figs. 5 (g)–(i) suggest a stable relationship of high (low) absolute temper-464

ature (precipitation) values and soil moisture drought categories.465

Last, how is bivariate extremeness of summers related to SMI? Figures 6 (a)–(c)466

provide Spearman rank correlations well below -0.8 in most of European agricultural ar-467

eas. This strong relationship implies that more extreme CDHE translate to lower mois-468

ture conditions. Note that the correlation does not allow to conclude whether CDHE are469

triggered or enhanced by low SMI values or vice versa, e.g., via land-atmosphere feed-470

backs. As discussed in Manning et al. (2019) and Mukherjee et al. (2023), both is plau-471

sible and most likely interconnected. In addition, soil moisture effects from previous sea-472

sons or years (Felsche et al., 2023; Bastos et al., 2020) may confound the effect of CDHE473

on soil moisture conditions of the same summer. The correlation is highly linear in all474

GWLs (fig. 6 (d)–(f)), with a shift from low event extremeness and high soil moisture475

in the example region during current conditions to high event extremeness and low soil476

moisture conditions under GWL3. Again, this mirrors large projected CDHE frequency477

increases both in absolute terms and relative to all summers of a given GWL epoch. These478

summers hence pose a triple hazard to ecosystems and agriculture in the affected regions,479

arising from low soil moisture, high temperature and thus high water demand for tran-480

spiration, and low precipitation.481

4 Discussion482

In this study, we assessed frequency increases of European CDHE within a regional483

SMILE, drivers of these increases, and the association of CDHE with soil moisture droughts.484

The study does not provide insights in the causal directions of the SMI–CDHE relation-485

ship, i.e., answer the question whether low soil moisture results in or from CDHE occur-486

rence.487

Defining CDHE based on summer precipitation percentiles comes at a cost as we488

found in our results: In very dry regions, precipitation fluctuates on a low level. Hence,489

due to the local JJA precipitation distribution, absolute differences between years be-490

low or above the percentile threshold are rather small. Here, temperature variability de-491

fines whether a CDHE occurs during a given period. Note that this is a different effect492

than precipitation variability driving CDHE occurrence in areas where regional warm-493

ing induces yearly exceedance of the temperature threshold. Compared to the remain-494

der of the domain, lag effects may play a more important role in soil moisture contents495

in areas with very low JJA precipitation sums. In general, CDHE may be more precisely496

defined with a Survival Kendall hazard definition instead of the AND definition (see, e.g.,497

in fig. 5 (g)–(i), Salvadori et al., 2016). However, the correlation of SMI and CDHE ex-498

tremeness is highly linear even in our simplified event definition.499
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Figure 6. Relationship between CDHE extremeness (relative to conditions of the current pe-

riod) and SMI values. (a)–(c) Spatially distributed Spearman rank correlation of CDHE extreme-

ness and SMI values. (d)–(f) bivariate histograms of spatially aggregated CDHE extremeness and

SMI in an example region (Po Valley, Northern Italy). Colors indicate the amount of summers in

a given square. Dashed lines correspond to abnormally dry (grey), moderate drought (yellow), se-

vere drought (orange), extreme drought (red), and exceptional drought (dark red) SMI conditions

expressed as percentiles following Zink et al. (2016).
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For explaining CDHE frequency increases, we focused on temperature and precip-500

itation mean shifts, i.e., no variability or higher-order distributional changes which are501

represented, e.g., in the marginal changes in François and Vrac (2023). Inspections of502

local distributions showed that for summer CDHE variability changes only marginally503

under GWL2 and GWL3 (e.g., fig. 5 (d)–(f)). Shifts of the joint distributions alone were504

shown to considerably increase CDHE frequencies – not only in arid regions as done by505

Hao et al. (2018) and Mukherjee and Mishra (2021), but also in transitional/humid re-506

gions. Our approach is limited by the margins of the current temperature and precip-507

itation distributions since we relate future events to the current distribution. Neverthe-508

less, we showed that the joint increase of hot and dry extremeness can be used as a qual-509

itative intensity measure. Beyond that, Wang et al. (2021) pointed to regionally inten-510

sifying negative correlations between temperature and precipitation over the last decades511

which led to an increase of CDHE, especially in the form of more heat events during droughts.512

However, we show that not only correlation of the full distribution is projected to change513

with rising GWL, but also the distributional tails and the entire dependence structure.514

Bivariate dependence structures in models though require cautious consideration. Zscheischler515

and Fischer (2020) point towards an underestimation of temperature and precipitation516

tail dependence in CMIP5 models. This would imply a potential underestimation of CDHE.517

A more detailed investigation into bivariate distributional characteristics in model and518

observational data is hence advisable for locally specific assessments.519

By reaching GWL3 in the middle of the 21st century (2042–2061) under RCP8.5,520

the CanESM2 driving the CRCM5-LE proves to be a rather hot global climate model.521

We therefore used a relative model- and scenario-independent measure of time, i.e., the522

GWL, to overcome the effect of an intrinsically ‘hot’ global climate model with a high-523

emission scenario. Assessing uncertainties related to this approach requires comparative524

studies in other model SMILEs and with other scenarios. Yet, so far, there is only a very525

limited number of regional SMILEs (typically with only few members) available (e.g.,526

Aalbers et al., 2018).527

As argued in Jha et al. (2023), the selection of warming levels and models explains528

most of the uncertainty in CDHE changes over Europe. The choice of copula families529

contributes the least in their assessment, while Zscheischler and Fischer (2020) argue that530

event definition and copula fitting affect the final probability and therefore extremeness531

of events. In our study, we attempted to reduce this kind of uncertainty by not focus-532

ing on single events. Instead, the SMILE served as a basis for investigating general char-533

acteristics of a large number of events, thus reducing the influence of outliers. Testing534

several copula families helped to find the locally best fitting bivariate distribution. Fur-535

ther, while in principle the SMILE provides the required size to sample low-probability536

events (T = 1000), we found that future events tend to be clearly more rare than cur-537

rent 1-in-1000 year events. Hence, even the large ensemble is insufficient for empirical538

estimations and distributional sampling is necessary.539

Using the SMILE though allows for a robust sampling of internal variability which540

potentially masks dependence changes in setups with few members (Bevacqua et al., 2023).541

In addition, differing states of large-scale atmospheric modes prevalent in single mem-542

bers during the selected period of investigation may trigger differences in compound event543

frequencies (Bevacqua et al., 2023). This shows the high importance of internal variabil-544

ity in the evaluation of low-probability events and justifies the use of a SMILE.545

While the CRCM5-LE provides high geographical detail in the spatial distribution546

of frequency (changes), results are affected by coarse resolution geophysical inputs as is547

visible in fig. 2: The tiling pattern resolution (1°) is coarser than the CRCM5 resolution,548

but finer than the spatial resolution of the driving general circulation model CanESM2.549

In central Europe, high bedrock depths (i.e., large soil column) coincide particularly well550

with low BR in fig. 2 (b) and high evaporation in fig. 2 (c). Presumably, a large soil col-551

umn contributes more strongly to evaporation than neighboring areas with thin soil columns.552
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However, this assumption requires further investigation, as well as implications on the553

reliability of other variables. For instance, this effect is also visible in the upper distri-554

butional tail of temperature at high temporal resolution (see also Miller et al., 2023). In555

spite of this, the regional SMILE allowed to highlight hotspots of event frequency (changes)556

and regionally varying driver dominance in high geographical detail. This is a large ad-557

vantage of our study over similar analyses with coarse-resolution global SMILEs: For ex-558

ample, a distinction of coastal or mountainous regions would not be possible on a coarse559

grid since the small-scale features cannot be resolved. Hence, the derivation of relevant560

drivers or dependence changes would have been impeded.561

Given considerable frequency increases of CDHE and their association to low soil562

moisture contents, we argue that the relationship between both deserves further inves-563

tigation. Denissen et al. (2022) show that soil moisture limited conditions represent the564

new normal under a high-emission global warming scenario in that they intensify and565

expand in length. Since it has been shown that heatwaves, droughts or compound CDHE566

can be triggered by depleted soils (Fischer et al., 2007), investigating CDHE effects on567

soil moisture is also crucial in bringing forth the research on potential legacy effects on568

subsequent seasons or years (e.g., CDHE triggering subsequent CDHE mediated by pre-569

vailing soil depletion). CDHE may exert influence not only on temporally, but also spa-570

tially distant events: Li et al. (2023) show that dry soils in upwind regions may lead to571

propagation of events and, adding onto local land-atmosphere coupling, affect crop yields572

downwind of events. For example, these authors found that maize failure in Southeast-573

ern Europe and wheat failure in Italy tend to be associated with dry and hot conditions.574

5 Conclusions575

We find that European compound hot and dry summers are characterized by an576

increase of evaporative demand in the atmosphere, but with reduced evaporation in most577

regions, presumably due to soil moisture deficits. Mountainous regions experience increased578

evaporation, most likely due to higher temperatures and still dominant energy limita-579

tion of their evaporation regime. The frequency of CDHE summers increases consider-580

ably in Europe under climate change conditions. Owing to the high spatial resolution581

of our SMILE, we robustly identify regions in Southern France and Northern Spain as582

hotspots due to highest absolute increases, whereas, e.g., Southern Germany, Northern583

France, Southern Ireland, or the southwestern Black Sea coast can be identified as cur-584

rently low-frequency areas with highest multiplication of events under climate change.585

Apart from Western European regions, Northern Spain and mountainous Norway, fre-586

quency increases can be mostly attributed to rising temperatures. Yet, climate change587

also affects the bivariate dependence structure of temperature and precipitation, foster-588

ing tail dependencies and hence the co-occurrence of dry and hot conditions. Further,589

events intensify with respect to the current conditions of precipitation and temperature.590

Soil moisture during CDHE is projected to remain extremely low under GWL2 and GWL3591

in agricultural regions and shows particularly strong negative correlations with bivari-592

ate summer intensity.593

This study finds newly emerging CDHE hotspots in European areas with yet un-594

seen combinations of extremely hot and dry conditions. Regardless of the causal direc-595

tions in the SMI–CDHE relationship, the tight relationship of low soil moisture and CDHE596

therefore poses an increasing risk to agriculture that requires consideration in adapta-597

tion planning.598

This study also shows an ordering of temperature and precipitation changes in driv-599

ing the frequency increases: For GWL2, temperature increase is the major driver of CDHE600

frequency increases. For GWL3, precipitation decrease additionally emerge as impor-601

tant driver (in the form of mixed contributions). Here, it would be interesting to further602

investigate the processes and mechanisms driving local dependence increases or decreases.603
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The regional SMILE is particularly apt for analyzing compound events in the ex-604

treme tails of the bivariate distribution. Climate change is shown to produce events that605

are much rarer than any observed summer, while currently extremely rare events become606

the new normal. Fitting distributions instead of counting the summers that meet the607

event definition criteria hence allows to avoid a saturation effect related to the maximum608

empirical event rareness under current conditions (i.e., T = 1000 years). Using SMILEs,609

further research can elucidate potential benefits of increasing sample sizes in reducing610

the uncertainty ranges of distribution fitting for extremely rare events.611

Last, we conclude that limiting global warming to +2 °C considerably reduces CDHE612

hazards in Europe, which regionally then results in half the amount of summers with ex-613

tremely low soil moisture availability. Since the risk of impacts on human systems de-614

pends on resilience structures in the affected regions (e.g., Lesk et al., 2016), hazard re-615

duction should be accompanied by fostering resilience towards CDHE effects as well.616
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Key Points:9

• During compound dry and hot extreme (CDHE) summers, latent heat flux is markedly10

reduced in widespread areas of the European continent.11

• The frequency increase of CDHE events, associated with extremely low soil mois-12

ture, doubles under GWL3 compared to GWL2.13

• CDHE frequency increases are predominantly driven by rising temperature, with14

regional contributions of bivariate tail dependence increases.15
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Abstract16

Compound dry and hot extremes (CDHE, such as recent summers 2015, 2018 and 202217

in Europe) have wide ranging impacts: Heat exacerbates moisture shortages during dry18

periods whereas water demand rises. Climate change will likely increase the intensity,19

frequency, and duration of CDHE events in Europe. However, current studies focus on20

drivers and impacts in coarse-resolution global climate models and likely miss spatial de-21

tails of CDHE characteristics. To overcome this issue, we exploit a regional 50-member22

single-model initial condition large ensemble (SMILE) at 12 km spatial resolution. Hence23

1000 model years per 20 year-periods provide an extensive database of CDHE and ro-24

bust estimations of their occurrence changes across Europe in high geographical detail.25

CDHE occurrences are investigated in a current climate and at two global warming lev-26

els (+2 °C, +3 °C). We identify Northern France, Southern Germany, Switzerland, South-27

ern Ireland, and the western coasts of the Black Sea with currently low CDHE frequen-28

cies as emerging hotspots. These regions experience a tenfold occurrence increase un-29

der global warming conditions. Apart from Western Europe, temperature is the dom-30

inant contributor to frequency increases. Furthermore, tail dependencies strengthen in31

regions with high CDHE frequency increases. In European agricultural areas, soil mois-32

ture shows very strong negative correlations with CDHE extremeness. Last, our results33

suggest a halving of CDHE in a +2 °C world compared to a +3 °C world, highlighting34

the necessity of climate mitigation with respect to this hazard type.35

Plain Language Summary36

During the last years, summers tended to be exceptionally dry and hot at the same37

time. Dry and hot conditions affect various economic and ecologic sectors, for example38

agriculture by soil moisture reduction. Assessing their frequency and intensity under cli-39

mate change conditions is hence pivotal to develop effective adaptation strategies. The40

particularity of this study is a so-called regional climate model large ensemble: Its 5041

simulations from the same model are equally probable realizations of climate trajecto-42

ries. We thus investigate 1000 model years for a current climate, a +2°C and +3°C warmer43

world at high geographical detail. This allows for robust analysis as numerous events oc-44

cur per period. We show that hot and dry summers become more frequent, mostly be-45

cause of warming with some regions affected by both warming and drying. Furthermore,46

we find a strengthening link between high temperature and low precipitation, which is47

often not considered in studies. Additionally, lower soil moisture conditions in agricul-48

tural areas coincide with more extreme dry and hot summers. In a +3°C world, these49

events are projected to occur at least twice as frequent as in a +2°C world. This stresses50

the relevance of climate change mitigation efforts.51

1 Introduction52

Triggered by an accumulation of recent events, the temporal co-occurrence of ex-53

tremely dry and hot conditions has sparked a large literature body. Globally, but espe-54

cially in Europe, simultaneous droughts and heatwaves rank first among multivariate haz-55

ard investigations (Afroz et al., 2023). Up to 20 % of heatwaves coincided with droughts56

since the 1980s (rising trend; Mukherjee & Mishra, 2021). In Europe, droughts during57

the warm season – often accompanied by heatwaves – increasingly emerge as the dom-58

inant drought type (Markonis et al., 2021). For instance, the year 2018 exhibited unprece-59

dented dry and hot conditions during spring to summer in the northern hemisphere (Buras60

et al., 2020). Vegetation, thriving from suitable growing conditions in spring, aggravated61

soil depletion by summer due to enhanced transpiration (Bastos et al., 2020).62

Heatwaves and droughts share common drivers, albeit on different effective time63

scales (Miralles et al., 2019). This is reflected in the general negative correlation of tem-64

perature and precipitation (Zscheischler & Fischer, 2020; Trenberth & Shea, 2005). For65
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example, in 2018 anticyclonic blocking through April–October over central Europe, in66

particular a stationary pattern that was recurrently associated with heat anomalies over67

Europe and North America, favored persistent dry and hot conditions (Buras et al., 2020;68

Toreti et al., 2019; Rousi et al., 2023; Kornhuber et al., 2019). Buras et al. (2020) also69

show the close spatial correspondence of high pressure, hot extremes (which typically oc-70

cur below anticyclonic conditions, Kornhuber et al., 2019), and water budget deficits.71

This context can be explained by drying and warming in descending air masses, which72

exacerbate atmospheric evaporative demand such that subsequently increased evapotran-73

spiration may reduce soil moisture (e.g., Zscheischler et al., 2020). Dry soils in turn heat74

up more quickly and thus support the sensible heat flux (e.g., Schwingshackl et al., 2017).75

The warming effect in humid areas during hot and dry conditions due to enhanced net76

radiation is dampened by evaporative cooling, which is induced by vegetation transpi-77

ration and soil evaporation (O et al., 2022). In arid areas, generally low soil water con-78

tents and dry vegetation constrain latent heat and amplify temperature increases via en-79

hanced sensible heat fluxes (O et al., 2022). Locally, drought conditions precede extreme80

heat in summers (Felsche et al., 2023), while simultaneous drought conditions may pro-81

long heatwaves via land-atmospheric coupling (Fischer et al., 2007).82

This relationship is mutual: Manning et al. (2019) suggest that enduring and in-83

tense hot and dry conditions also trigger soil moisture droughts, and Mukherjee et al.84

(2023) find amplifying soil effects in both drought–heat and heat–drought cascades. In85

Germany, soil moisture depletion and precipitation deficits during summer 2018 resulted86

in a shift from commonly energy-limited to moisture-limited evaporative regimes (Rousi87

et al., 2023). Soil moisture deficits, however, considerably hamper vegetation produc-88

tivity (Bastos et al., 2020). In summer 2018, the general water budget was more strongly89

affected in European agricultural and pasture regions than in forests, but vegetation de-90

graded in both arable and forest regions (Buras et al., 2020). Crop yields of major plants91

in Northern and central Europe were halved compared to the preceding 5 years (Toreti92

et al., 2019). In the similarly hot and dry summer of 2003, European gross and net pri-93

mary production decreased by up to 30 % and 20 %, respectively (Ciais et al., 2005). While94

heat was shown to mostly affect crop yields, droughts additionally kill the plants (Lesk95

et al., 2016). Thus a co-occurrence of both extremes also bears the potential to merge96

impacts, especially by affecting soil moisture as a pre-condition for crop development.97

The impacts of compounding extremes are hence amplified compared to its single98

components. This holds also true for compound dry and hot extreme (CDHE) events,99

as mentioned previously. Literature describes various kinds of compound events, e.g., pre-100

conditioned, temporally or spatially compounding, and multivariate types (e.g., Zscheis-101

chler et al., 2020). CDHE can be considered as multivariate, in that two hazards co-occur102

simultaneously in time and space due to their common drivers, or as pre-conditioned if,103

e.g., soil moisture conditions of previous seasons were taken into account (Zscheischler104

et al., 2020). Identifying compound events with joint distributions, in this case of tem-105

perature and precipitation, allows their investigation via multivariate probability distri-106

bution functions, i.e., copulas (Bevacqua et al., 2017; Zscheischler et al., 2020). These107

represent dependencies among the variables and can be used to derive multivariate ex-108

treme value probabilities (Zscheischler et al., 2020). Event occurrence probabilities in109

turn can be expressed as return periods. For instance, return periods for the CDHE grow-110

ing season 2018 exceed several thousand years for certain event definitions (Zscheischler111

& Fischer, 2020). Especially in situations where adaptation and decision making rely on112

return periods, such as water resources management, bivariate analyses are essential. With-113

out considering the bivariate dependence structure, there is a risk of both overestimat-114

ing or underestimating the occurrence of events (Bevacqua et al., 2017): For instance,115

bivariate return periods of the 2014 California winter drought, one of the first CDHE to116

be investigated bivariately, were shown to be higher than univariate precipitation deficit117

return periods owing to extremely high winter temperatures (AghaKouchak et al., 2014).118
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Most studies on bivariate events focus on prominent cases without gaining gener-119

alized knowledge on the event–impact relationships by, e.g., aligning event extremeness120

with impact extremeness. Examples for this approach include the calculation of (stan-121

dardized) temperature and precipitation ratios or products (Hao et al., 2018; Mukher-122

jee & Mishra, 2021), but without considering the variable dependencies. Others employ123

water budget deficits as CDHE intensity surrogate (Buras et al., 2020). In this study,124

we consider bivariate return periods as an intensity surrogate. Since they indicate the125

joint extremeness of the considered variables, higher return periods also correspond to126

higher temperatures and lower precipitation in the CDHE case. To illustrate the inten-127

sity of the bivariate return periods, we align soil moisture to the CDHE.128

In order to evaluate low-frequency compound events and derive meaningful knowl-129

edge on their effects on soil moisture, observational records provide too few events. Hence,130

ensembles of climate model simulations are beneficial to enlarge the event sample. How-131

ever, for the investigation of compound events, it is advisable to be sure about compa-132

rable process representation in all used simulations (e.g., regarding the joint temperature–133

precipitation distribution). Both issues can be addressed by accessing single-model ini-134

tial condition large ensembles (SMILEs) (e.g., Maher et al., 2021). SMILEs consist of135

several simulations of the same model under the same external forcing conditions (i.e.,136

scenario), differing only due to their initial conditions. Global SMILEs proved to be a137

skillful tool for the reduction of uncertainty due to internal variability in multivariate138

event attribution (Bevacqua et al., 2023). However, it is a known issue that compound139

events require finer spatial resolution if realistic information for adaptation planning on140

a regional scale is sought (François & Vrac, 2023).141

The goal of this study is thus to (a) obtain and explain spatially explicit frequency142

changes in European CDHE summers (June–August, JJA) under three global warming143

levels and (b) relate the ranked events with soil moisture as a relevant condition for im-144

pacts on agriculture. In order to reduce sampling uncertainties from a statistical per-145

spective and address internal climate variability, we employ a regional high resolution146

SMILE.147

2 Materials and Methods148

2.1 Regional Large Ensemble Data for robust sampling149

Investigating low-probability compound events of extremes requires an abundant150

data base. We therefore employ the regional SMILE of the Canadian Regional Climate151

Model, version 5 (CRCM5-LE; Leduc et al., 2019). The CRCM5-LE was developed within152

the ClimEx project: 50 members of the Canadian Earth System Model, version 2, Large153

Ensemble (CanESM2-LE; Fyfe et al., 2017; Kirchmeier-Young et al., 2017) were dynam-154

ically downscaled with the CRCM5 to obtain 50 high-resolution (0.11 °, corresponding155

to 12.5 km) time series of 1950–2099 over two domains, Europe and Northeastern North156

America (Leduc et al., 2019). The original members of the CanESM2-LE were constructed157

by applying small random perturbations to the long-term control run in 1850 and sub-158

sequently in 1950. After a few years, the 50 members are considered to be independent159

due to the chaotic nature of weather sequences, while still following the same forcing con-160

ditions (RCP8.5 from 2006 onward) and thus pertaining comparable climate statistics161

(Leduc et al., 2019).162

The CRCM5-LE already proved its value for compound analyses of hydro-meteorological163

extremes, namely rain on saturated soil and rain-on-snow events (Poschlod et al., 2020).164

Further, this regional SMILE was used for investigation of heatwaves (Böhnisch et al.,165

2023), droughts (Böhnisch et al., 2021), and heat and drought linkage at an inter-seasonal166

scale (Felsche et al., 2023).167
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2.2 Global Warming Levels in a regional climate model168

We employed global warming levels (GWL) for our analysis of future climate pro-169

jections. This approach has been widely applied because it has the advantage of being170

less sensitive to the selected model and scenario. Furthermore, it allows to directly com-171

pare the warming rate to the goal of the Paris Agreement of limiting global warming to172

“(. . . ) well below 2 °C above pre-industrial levels and to pursue efforts to limit the tem-173

perature increase to 1.5 °C (. . . )” (UNFCCC, 2015). The GWLs were calculated as anoma-174

lies in the yearly global mean surface air temperature (tas) to the pre-industrial refer-175

ence period 1850–1900 (Hauser et al., 2022; Seneviratne et al., 2021). GWLs refer to a176

20-year period centered around the first year, in which the warming level is exceeded (tas177

> GWL). The methodology is based on Hauser et al. (2022), which was used for the Sixth178

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). We adopted179

the code for the use in the CanESM2-LE. To this end, we pooled all 50 members before180

calculating the anomalies to 1850–1900.181

Our reference period 2001–2020 translates to GWL= +1.2 °C (GWL1.2) in CanESM2-182

LE (observed approximately 1 °C; Gulev et al., 2021). This is less an effect of the forc-183

ing scenario for RCP8.5 was shown to be in high agreement with observed emissions (Schwalm184

et al., 2020). Instead, it mirrors the model’s rather high equilibrium climate sensitivity185

(3.7 K; Swart et al., 2019). Comparing modeled global tas with observational global mean186

temperature though may result in an overestimation partly due to insufficient observa-187

tional data coverage and blending air temperature over land with sea surface temper-188

atures over ocean areas in observations (Richardson et al., 2016; Vogel et al., 2019).189

Future periods in our study are represented by 20-year slices centered at GWL=190

+2 °C (GWL2, Paris Agreement; UNFCCC, 2015) and GWL= +3 °C (GWL3, close to191

the most realistic end-of-century temperature of 2.8 °C under current trends in climate192

policy; Liu & Raftery, 2021).193

Time periods corresponding to a given GWL were calculated within the global SMILE,194

and adopted for use in the regional SMILE.195

2.3 Definition and Bivariate Evaluation of Compound Events196

2.3.1 Event Definition197

This study takes a multivariate perspective on dry and hot extremes, since we are198

particularly interested in the combined occurrences of these hazards. We employed thus199

the “AND” hazard scenario to connect both univariate extremes (Zscheischler & Fischer,200

2020): the temporal co-occurrence of linearly detrended summer mean temperatures and201

(negative) precipitation sums exceeding the respective 95th percentile of 2001–2020 (with202

the 95th percentile of negative precipitation equaling the 5th percentile; see Supplemen-203

tary figure S1). By definition, these events are expected to be very rare because both204

variables have to exceed a high threshold. However, since JJA temperature and nega-205

tive precipitation show strong correlations in most parts of Europe, which intensified dur-206

ing the 21st century, CDHE occur more often than would be implied by independence207

(Zscheischler & Seneviratne, 2017). This implies that warm summers are commonly dry208

and wet summers are cool (see also Trenberth & Shea, 2005; Wang et al., 2021). Due209

to the extensive large ensemble database, 1000 years instead of 20 years (see fig. 1 (a))210

are available per analysis period and allow for robust baseline definition (i.e., percentile211

estimates across all 50 ensemble members) and event characteristic estimation (e.g., fre-212

quency changes, associated behavior).213

In order to characterize CDHE summer energy partitioning compared to non-CDHE214

summers, we employed the Bowen Ratio (BR, Bowen, 1926). The BR describes the ra-215

tio of sensible heat flux and latent heat flux, which are negatively coupled (e.g., Schwing-216
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shackl et al., 2017). For this analysis, we used the model variables surface upward la-217

tent heat flux and surface upward sensible heat flux.218

2.3.2 Estimation of Bivariate Return Periods219

In order to estimate the joint extremeness of CDHEs, we calculated bivariate re-220

turn periods. Generally, return periods are the inverse of the (annual) exceedance prob-221

ability p of a given event intensity, the return level zp. Hence, the return level zp is ex-222

pected to be exceeded every 1/p years, defining thus the return period T = 1/p (Coles,223

2001). Bivariate return periods however remain ambiguous and become larger than their224

univariate component return periods due to the second variable that is required to meet225

the extremes condition as well (AghaKouchak et al., 2014; Zscheischler & Fischer, 2020).226

In large samples like the CRCM5-LE, (annual) event occurrences per time period can227

be counted and inverted to obtain the return period (Zscheischler & Fischer, 2020). This228

empirical approach is generally limited by the time series length. With 1000 years avail-229

able, 10 events with T = 100 are to be expected statistically, while the most extreme230

case would be T = 1000. Any inference on this level would be highly uncertain since231

it is based on a single event (e.g., Zscheischler & Fischer, 2020). For shorter time series,232

the maximum empirical T also decreases such that extreme event estimation suffers from233

high uncertainties (Bevacqua et al., 2017). Instead of event counting, we here fitted cop-234

ulas, i.e., multivariate probability distributions, to the bivariate distributions (Zscheischler235

& Fischer, 2020). The large advantage of distribution fitting is the option for pushing236

the rareness boundaries of the empirical approach.237

For the procedure in this study we used the R package VineCopula (Nagler et al.,238

2023). First, we transformed the empirical marginals of summer temperature and pre-239

cipitation (multiplied with -1 for calculation purposes) to uniform distributions on [0,1].240

Next, the most suitable copula family was estimated using the Bayesian Information Cri-241

terion (BIC) and fitted to the data. For this study, we chose the locally best fitting cop-242

ula family from eight single-parametric copula families (fig. S3).243

Following the relation in Brunner et al. (2016), the return period T was obtained244

by:245

T (u, v) =
µ

1− u− v + C(u, v)
(1)

giving the probability for jointly exceeding the event defining thresholds in the de-246

nominator, with u, v corresponding to univariate probabilities of exceeding the respec-247

tive threshold, C(u, v) being the copula at (u, v), and the mean interarrival time µ =248

1 in our case since we investigated annual events (Zscheischler & Fischer, 2020; Zscheis-249

chler & Seneviratne, 2017; Brunner et al., 2016).250

2.3.3 Distributional Change Assessments251

Both changes in temperature and precipitation may lead to frequency changes by252

shifting the bivariate distribution compared to the reference period. Additionally, the253

bivariate (tail) dependence structure may change over time.254

In order to address the first point, we here propose a method to disentangle the255

dominating drivers of frequency changes. Horizontal shifts of the distribution (along the256

orange line in fig. 1 (b)) indicate temperature changes as sole drivers whereas vertical257

shifts (along the blue line in fig. 1 (b)) point to precipitation changes. Any change with258

both a horizontal and vertical component thus is due to a combination of temperature259

and precipitation changes. For the definition of the dominating driver, we used the av-260

erage JJA drying per degree warming (fig. 1 (b)): In Europe, the slope of this relation-261
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Figure 1. (a) Precipitation and temperature of 1000 summers (50 members for 2001–2020)

over a grid cell representing Munich/Germany (star in (c)). Dark grey and dark red dots show

the limited sample of one arbitrary member. Black lines indicate the 95th percentile of tempera-

ture (vertical) and 5th percentile of precipitation (i.e., the 95th percentile of negative precipita-

tion; horizontal) with the red area highlighting all summers meeting the definition criterion for

a CDHE. (b) Definition of temperature (orange) and precipitation (blue) dominance in distribu-

tional shifts under climate change conditions. Yellow indicates mixed contributions of tempera-

ture and precipitation (see text). Grey shaded point clouds correspond to current, GWL2, and

GWL3 climates for the same pixel as in (a). The black line represents the local average summer

drying scaled with warming. (c) Average summer drying scaled with warming expressed as slopes

of a linear line fitted to the local bivariate distribution.

ship follows a North–South gradient with highest values in the Mediterranean area and262

especially over the Iberian Peninsula where summer precipitation is very low (fig. 1 (c)).263

Distributional shifts along this slope represent the occurrence of more extreme events264

by heating and drying following the current relationship. If the center of the distribu-265

tion is shifted within the orange sector of fig. 1 (b), temperature is identified as dom-266

inating driver, while it is precipitation for shifts into the blue sector. Since we are also267

interested in simultaneous changes of temperature and precipitation, we introduced a268

buffer zone between a line with half the local slope and a line with twice the local slope269

to account for uncertainties in slope estimation (yellow sector). This combination is fur-270

ther referred to as mixed drivers. This approach is based on correlation of the full dis-271

tributions, which, as Zscheischler and Seneviratne (2017) argue, can serve as an indica-272

tor for the likelihood of CDHE if the percentile threshold for event definition is not too273

high.274

To account for dependencies in the distribution extremes, tail ( = extremal) de-275

pendence above the 95th univariate percentiles (chi(0.95); Coles et al., 1999) were cal-276

culated for each period separately using the R package extRemes (Gilleland, 2022). Con-277

fidence intervals at the 0.05 level were obtained by bootstrapping 1000 times.278

2.4 Assessment of CDHE Impacts on Soil Moisture279

In one of the first compound event definitions by Leonard et al. (2014), compound280

events are defined by the extremeness of impacts originating from multiple contribut-281

ing hazards. While our CDHE definition rather follows a hazard-based perspective, we282

nevertheless aim to assess CDHE effects in this study. Our (univariate) target variable283

is soil moisture, classified as the soil moisture index (SMI) of Zink et al. (2016), which284

also forms the basis of the German Drought Monitor. The SMI is based on soil mois-285
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ture percentiles of a reference period (2001–2020 in our case). We used JJA soil mois-286

ture in the upper portion of the soil column to assess agricultural droughts during cur-287

rent climate, GWL2, and GWL3. Soil moisture is especially useful when assessing event288

impacts, for soil moisture droughts have large agricultural and ecosystem-specific impacts.289

Assessing soil moisture conditions is hence most relevant in areas where they potentially290

have an impact. Therefore, we confined our analyses of CDHE–soil moisture relation-291

ships on European agricultural areas. These comprise Corine Land Cover (CLC2018 ver-292

sion 2020 20u1, linearly regridded to CRCM5-LE spatial resolution; EEA, 2020) level-293

2 classes arable land, permanent crops, and heterogeneous agricultural areas.294

3 Results295

3.1 Bowen Ratio Increases During CDHE296

CDHE and non-CDHE summers differ with respect to the energy-partitioning of297

sensible and latent heat flux. In order to illustrate these differences in a spatially explicit298

way, we first look at the Bowen Ratio during summer under current climate conditions.299

During non-CDHE summers, the latent heat flux, i.e., evaporative cooling (O et al., 2022),300

is dominating over the sensible heat flux in large areas of Europe (fig. 2 (a)–(b)). These301

coincide with the wet evapotranspiration regions (energy-limited) of Schwingshackl et302

al. (2017). The dominating low BR conditions favor widespread cloud formation and sum-303

mer precipitation. In CDHE summers (fig. 2 (b)), however, BR increases in large areas.304

High BR occurs in their wet/transition regions (moisture-limited). Zscheischler et al. (2015)305

state that under dry conditions, evapotranspiration and temperature are strongly dom-306

inated by soil moisture. Especially the Mediterranean regions, the lower course of the307

Danube and coastal regions of the Black Sea experience BR > 10. Under these condi-308

tions, a reduced latent heat flux (and hence evaporation) suggests low soil moisture avail-309

ability, while temperatures rise (Mukherjee et al., 2023). Consequently, cloud convec-310

tion and precipitation are inhibited.311

We find no BR inversions or only small increases during CDHE in Northern and312

central Europe as well as in mountainous regions (fig. 2 (a)–(b)). However, these regions313

are characterized by evaporation increases (and hence soil drying) during CDHE sum-314

mers (fig. 2 (c)). This suggests an increase in latent heat flux and, potentially, a reduced315

temperature increase due to evaporative cooling (O et al., 2022). These regions are char-316

acterized by an energy-limited evapotranspiration regime (Teuling et al., 2009), where317

higher temperatures in CDHE summers compared to non-CDHE summers favor evap-318

oration. The remainder of the domain, largely defined by soil-moisture limited evapo-319

transpiration regimes (Teuling et al., 2009), experiences major evaporation reductions320

(fig. 2 (c)), presumably due to moisture limitations in comparison to non-CDHE sum-321

mers. High BR values, i.e., low latent heat flux compared to sensible heat flux, may re-322

sult from low soil moisture conditions (Trenberth & Shea, 2005). Since soil moisture and323

evaporation mutually influence each other and CDHE affect evaporation (Miralles et al.,324

2019), we conclude here that soil moisture is affected by CDHE occurrences as well.325

The described relationships for CDHE and non-CDHE hold true for GWL2 and326

GWL3 (see supplementary fig. S2 for BR evolution under GWL2 and GWL3).327

3.2 CDHE Frequency Increases328

CDHE occur rarely under current climate conditions (fig. 3 (a)). Assuming no de-329

pendence between temperature and precipitation, the occurrence probability of a CDHE330

would amount to 0.05 × 0.05 = 0.0025 = 0.25 events per 100 years. This corresponds331

to a 1-in-400 year event. This very rare frequency is however exceeded over most of Eu-332

rope. Assuming total dependence, the frequency has an upper limit at 5 events per 100333

years by definition of the CDHE events, equaling a 1-in-20 year event. In the CRCM5-334
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Figure 2. Bowen Ratio for non-CDHE summers (a) and CDHE summers (b) under current

climate conditions. The median across all ensemble members is shown per category. Brownish

colors indicate regions with sensible heat > latent heat, greenish colors indicate regions with

sensible heat < latent heat. (c) evaporation increases (purple) and decreases (orange) in CDHE

summers compared to non-CDHE summers under current conditions.

LE, highest event frequencies reach 3.5 events per 100 years in central eastern Europe335

(roughly 1-in-28 year event). On the contrary, parts of the Mediterranean, Aegean and336

Black Sea coastal regions as well as Southern Ireland, Northern France, and mountain-337

ous regions in central and Northern Europe encounter < 0.5 events per 100 years which338

corresponds to a 1-in-200 year event.339

For GWL2, event frequencies regionally double to triple, with strongest increases340

in Southern Europe and weakest changes in Northern and central eastern Europe as well341

as the Western Iberian Peninsula (fig. 3 (b)). No decreases are detected. Interestingly,342

while some regions with highest event frequencies under current conditions, e.g., central343

eastern Europe, encounter only increases by < 3 events per 100 years, Southeastern France344

both shows high frequencies under current conditions and strong increases under GWL2.345

Contrasting to that, the coastal areas of the Mediterranean, Aegean and Black Sea with346

low event occurrences under current conditions experience an even higher increase by347

6–9 events per 100 years.348

With further ascending GWL, event frequencies surge (fig. 3 (c)): Especially in moun-349

tainous forelands of Northern/Northeastern Spain and central/Southwestern France more350

than 1 out of 4 years under GWL3 qualify as a CDHE with respect to current percentile351

definitions (adding frequencies in fig. 3 (a) and (c)). The same holds true for the Po Val-352

ley in Northern Italy. Regions north of the Alps, in Northern France, Southern Ireland353

or the Western Iberian Peninsula with currently very few events (< 0.5 per 100 years)354

experience up to > 15 events per 100 years in addition to current frequencies. East-355

ern Europe and the Balkans are characterized by a North–South gradient of increases.356

Lowest gains are found in Scandinavia, Northeastern Europe, the highest Alpine ridges,357

and Southern Spain. To put these numbers into perspective, Toreti et al. (2019) show358

that 2018-like droughts mirror typical summer conditions by the 2040s, using a multi-359

model ensemble under RCP8.5.360

3.3 Drivers of CDHE Frequency Increases361

What is driving these frequency increases? In fig. 4, we investigate changes in the362

bivariate distribution of temperature and precipitation. First, fig. 4 (a)–(b) demonstrate363

the prevalent dominance of temperature increases in shifting the distribution into the364
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Figure 3. CDHE frequency for three global warming levels (absolute values for present cli-

mate (a) and changes under GWL2 (b) and GWL3 (c)). Events are defined as local exceedance

of the current (2001–2020) 95th percentile of temperature and (negative) precipitation.

defined CDHE diagram space (see also fig. 1 (b)) under both GWL2 and GWL3. Pre-365

cipitation dominates in mountainous Norway and Northern Spain. In the Atlantic re-366

gions of Western Europe, temperature and precipitation changes jointly foster frequency367

increases. Under GWL3 conditions, these areas with mixed drivers expand towards the368

East. In addition, precipitation dominance emerges from previously mixed driver regions.369

This finding mirrors earlier emergence of (mean summer) temperature trends compared370

to higher uncertainty and variability in precipitation trends (e.g., von Trentini et al., 2019;371

Seneviratne et al., 2021). For large parts of Europe, precipitation variability defines hence372

whether a CDHE occurs, if (nearly) every year exceeds the present temperature thresh-373

old of event definition (consistent with e.g., Zscheischler & Fischer, 2020).374

Secondly, we consider the dependence structure of the distributions (fig. 4 (c)–(e)).375

As stated above, a tail dependence of 1 implies that each temperature extreme (as de-376

fined here) is associated with a precipitation extreme and vice versa. The joint occur-377

rence probability of CDHE is thus 0.05 (i.e., 5 events per 100 years) and hence the same378

as for univariate extremes in our definition. On the contrary, a tail dependence of 0 im-379

plies independent behavior of temperature and precipitation extremes and thus a prob-380

ability of 0.05 × 0.05 = 0.0025 (i.e., 0.25 events per 100 years in our case). It follows381

that the spatial distribution in fig. 4 (c) mirrors the spatially distributed CDHE frequen-382

cies (fig. 3 (a)) with highest tail dependence corresponding to highest event frequencies383

in central eastern Europe and bivariate tail independence in mountainous Norway, North-384

ern France, Southern Ireland, inner Alpine regions, and Mediterranean coastal regions385

with very rare CDHE occurrence. Under GWL2, the tail dependence exceeds the cur-386

rent 95 % confidence interval especially in regions with currently low tail dependence val-387

ues (e.g., Northeastern France and Northern Italy, the Danube delta or mountainous Nor-388

way, fig. 4 (d)). In these regions, the tail dependence increase may add to event frequency.389

Tail dependence reductions are found on the western Iberian Peninsula with already low390

values and, notably, in central eastern Europe with currently highest values. More spa-391

tially distinct clusters emerge under GWL3 (fig. 4 (e)), where robust tail dependence in-392

creases occur in Northern France, Southern UK and Ireland, the Alpine (foreland) and393

Cantabrian Mountain regions, and Scandinavia. Tail dependence decreases, e.g., in South-394

ern Sweden, parts of the Iberian Peninsula, and central eastern Europe. In South-western395

Spain, this decrease may contribute to the rather low CDHE occurrence increase under396

GWL3 conditions (see fig. 3 (c)). Tail dependence changes are reflected by changes in397

the underlying copula family (supplementary fig. S3 (a)–(c)): For example, tail depen-398
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Figure 4. Changes in combined temperature and precipitation distributions. (a)–(b) dis-

tributional shifts due to temperature increases (orange), precipitation decreases (blue) or both

(yellow) following the approach from fig. 1 (b)). Only land areas with significant correlations

of JJA temperature and precipitation are colored. (c)–(e) tail dependence of temperature and

(negative) precipitation: (c) current absolute values, changes for GWL2 (d) and GWL3 (e). For

GWL2 and GWL3 only regions with changes exceeding the present 95 % confidence interval are

shown. Note: The tail dependence refers to the tails above the respective 95th temperature and

(negative) precipitation percentile of each period.
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dence increases mostly correspond to switches from symmetric copula families (mostly399

Gaussian or Frank) to asymmetric families (e.g., Gumbel which only occur in regions with400

BR < 1 under current conditions). Decreases are associated with the inverted switch.401

Symmetric families represent regions with amplified tail dependence in the hot-dry and402

cold-wet tail, whereas asymmetric families include only one tail with enhanced depen-403

dence. Note that the bivariate structure is generally weak to moderate in most regions404

(theoretical Kendall’s τ with 0.2 < τ < 0.5, fig. S2 (d)–(f)), pointing towards rather405

similar bivariate distributions. With increasing GWL, τ increases in Western Europe,406

hence strengthening the differences between the joint summer temperature–precipitation407

distributions.408

The tail dependence also allows for a quick change of perspective: Since it is cal-409

culated with respect to each period (current, GWL2, GWL3), we are also able to infer410

that CDHEs defined relative to the percentiles of each period occur more (less) frequently411

where tail dependence increases (decreases).412

3.4 Soil Moisture Scaling with CDHE Extremeness413

To account for the risk that agricultural droughts, i.e., soil moisture deficits, pose414

on crops, we focus our further assessment on European agricultural regions.415

We start our assessment with return periods T of CDHE in current, GWL2, and416

GWL3 conditions (fig. 5 (a)–(c)). Therefore, we ask the question: How extreme would417

a future CDHE be in relation to the current temperature and precipitation distribution?418

Since higher return periods correspond to hotter and drier summers with respect to cur-419

rent CDHE, they are interpreted as surrogates for joint event intensity. T is obtained420

for the 95th percentile of temperature and (negative) precipitation of the respective pe-421

riods from the copula fitted to the present bivariate distribution. Hence under current422

conditions (fig. 5 (a)), the distribution again mirrors the current tail dependence (fig. 4 (c))423

and event frequency distribution (fig. 3 (a)). The theoretical minimum return period of424

the current period is T = 20 (perfect tail dependence), the maximum T = 400 (inde-425

pendence). Consistent with that, we find among the CDHE just passing both thresh-426

olds return periods of T = 30 to T = 300 in the current period. Under GWL2 condi-427

tions (fig. 5 (b)), return periods increase to several hundreds to thousands of years with428

respect to the current distribution. In single grid cells (dark red), the extremeness of these429

CDHE is unprecedented (T = inf.). In these cases, (mostly) future temperature or pre-430

cipitation lie outside the margins of the current distribution. Hence CDHE of this ex-431

tremeness did not occur at all in the current period of the CRCM5-LE. Under GWL3432

(fig. 5 (c)), these CDHE are dominating across Europe: We find T = 1000 to T = 3000433

years in eastern Germany, Poland, and the Baltics, whereas the remainder of Europe is434

subject to CDHE with a current occurrence probability p = 0. To generalize, the con-435

ditions of CDHE definition correspond to highly unlikely current conditions when con-436

sidering GWL2, and unprecedented conditions in GWL3.437

During all summers exceeding the respective CDHE definition in current, GWL2,438

and GWL3 climates (fig. 5 (d)–(f)), extreme (below 5th percentile) or exceptional droughts439

(below 2nd percentile) prevail in European agricultural regions. Exceptions are very southerly440

parts (Southern Spain, Turkey) where the soil moisture content corresponds to moder-441

ate (below 20th percentile) or severe (below 10th percentile) droughts. However, since442

SMI classes are calculated with respect to the local distribution and the local distribu-443

tions do not always range from total depletion to total saturation, the ‘less severe’ cat-444

egories may represent low absolute soil moisture conditions as well, while more severe445

drought conditions in humid regions may represent higher absolute soil moisture con-446

ditions. With rising GWL, virtually all European agricultural areas experience excep-447

tional drought conditions during future CDHE.448
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Figure 5. CDHE intensity for current, GWL2 and GWL3 conditions in European agricultural

regions. (a)–(c) return period of summers with temperatures and (negative) precipitation at

the GWL-specific 95th percentile (crosses of thick black lines in (g) and red lines in (h) and (i).

(d)–(f) average SMI categories during all summers exceeding the GWL-specific 95th percentiles

of temperature and (negative) precipitation. (g)–(i) scatter plots of summer precipitation against

summer temperature for an example region (Po Valley, Northern Italy). Thick (thin) black lines

show the present 5th and 95th percentiles (minimum and maximum) for precipitation and tem-

perature, respectively. Red lines mark the 5th and 95th percentiles for GWL2 and GWL3. Light

red background highlights current CDHE summers; strong red background CDHE summers for

GWL2 and GWL3 percentiles. Blue dots show the current mean, crosses span one standard de-

viation of the respective periods for temperature and precipitation. Colors in (d)–(i) indicate soil

moisture drought categories (percentiles) with respect to the current period following Zink et al.

(2016).
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Figures 5 (g)–(i) further show the relationship among soil moisture droughts and449

compound events in an example region (Po Valley, south of the Alps) to illustrate the450

relationship between temperature, precipitation and SMI in all summers: Summers within451

the shaded diagram space (i.e., CDHE) are affected by more extreme SMI categories in452

all periods; under GWL3 the majority of CDHE summers corresponds to ‘exceptional453

drought’ (fig. 5 (i)). Soil moisture drought extremeness follows the distributional axis,454

(i.e., not dominantly along the temperature or precipitation axis). With progressing global455

climate change, distribution shifts towards warmer and drier conditions (see crosses rel-456

ative to blue dots in (h) and (i)) increase the frequency of summers within the light red457

shaded diagram space and also more extreme SMI. The majority of CDHE summers in458

GWL2 and GWL3 is characterized by unprecedented temperatures (dotted black ver-459

tical line) and numerous future events undercut the driest current summer as well (dot-460

ted black horizontal line). This fact illustrates why this region is colored in dark red in461

fig. 5(c). CDHE frequencies even increase with respect to the future percentiles (dark462

red shaded diagram space) which aligns with risen tail dependence in this region (fig. 4 (h)–463

(i)). Overall, figs. 5 (g)–(i) suggest a stable relationship of high (low) absolute temper-464

ature (precipitation) values and soil moisture drought categories.465

Last, how is bivariate extremeness of summers related to SMI? Figures 6 (a)–(c)466

provide Spearman rank correlations well below -0.8 in most of European agricultural ar-467

eas. This strong relationship implies that more extreme CDHE translate to lower mois-468

ture conditions. Note that the correlation does not allow to conclude whether CDHE are469

triggered or enhanced by low SMI values or vice versa, e.g., via land-atmosphere feed-470

backs. As discussed in Manning et al. (2019) and Mukherjee et al. (2023), both is plau-471

sible and most likely interconnected. In addition, soil moisture effects from previous sea-472

sons or years (Felsche et al., 2023; Bastos et al., 2020) may confound the effect of CDHE473

on soil moisture conditions of the same summer. The correlation is highly linear in all474

GWLs (fig. 6 (d)–(f)), with a shift from low event extremeness and high soil moisture475

in the example region during current conditions to high event extremeness and low soil476

moisture conditions under GWL3. Again, this mirrors large projected CDHE frequency477

increases both in absolute terms and relative to all summers of a given GWL epoch. These478

summers hence pose a triple hazard to ecosystems and agriculture in the affected regions,479

arising from low soil moisture, high temperature and thus high water demand for tran-480

spiration, and low precipitation.481

4 Discussion482

In this study, we assessed frequency increases of European CDHE within a regional483

SMILE, drivers of these increases, and the association of CDHE with soil moisture droughts.484

The study does not provide insights in the causal directions of the SMI–CDHE relation-485

ship, i.e., answer the question whether low soil moisture results in or from CDHE occur-486

rence.487

Defining CDHE based on summer precipitation percentiles comes at a cost as we488

found in our results: In very dry regions, precipitation fluctuates on a low level. Hence,489

due to the local JJA precipitation distribution, absolute differences between years be-490

low or above the percentile threshold are rather small. Here, temperature variability de-491

fines whether a CDHE occurs during a given period. Note that this is a different effect492

than precipitation variability driving CDHE occurrence in areas where regional warm-493

ing induces yearly exceedance of the temperature threshold. Compared to the remain-494

der of the domain, lag effects may play a more important role in soil moisture contents495

in areas with very low JJA precipitation sums. In general, CDHE may be more precisely496

defined with a Survival Kendall hazard definition instead of the AND definition (see, e.g.,497

in fig. 5 (g)–(i), Salvadori et al., 2016). However, the correlation of SMI and CDHE ex-498

tremeness is highly linear even in our simplified event definition.499
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Figure 6. Relationship between CDHE extremeness (relative to conditions of the current pe-

riod) and SMI values. (a)–(c) Spatially distributed Spearman rank correlation of CDHE extreme-

ness and SMI values. (d)–(f) bivariate histograms of spatially aggregated CDHE extremeness and

SMI in an example region (Po Valley, Northern Italy). Colors indicate the amount of summers in

a given square. Dashed lines correspond to abnormally dry (grey), moderate drought (yellow), se-

vere drought (orange), extreme drought (red), and exceptional drought (dark red) SMI conditions

expressed as percentiles following Zink et al. (2016).
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For explaining CDHE frequency increases, we focused on temperature and precip-500

itation mean shifts, i.e., no variability or higher-order distributional changes which are501

represented, e.g., in the marginal changes in François and Vrac (2023). Inspections of502

local distributions showed that for summer CDHE variability changes only marginally503

under GWL2 and GWL3 (e.g., fig. 5 (d)–(f)). Shifts of the joint distributions alone were504

shown to considerably increase CDHE frequencies – not only in arid regions as done by505

Hao et al. (2018) and Mukherjee and Mishra (2021), but also in transitional/humid re-506

gions. Our approach is limited by the margins of the current temperature and precip-507

itation distributions since we relate future events to the current distribution. Neverthe-508

less, we showed that the joint increase of hot and dry extremeness can be used as a qual-509

itative intensity measure. Beyond that, Wang et al. (2021) pointed to regionally inten-510

sifying negative correlations between temperature and precipitation over the last decades511

which led to an increase of CDHE, especially in the form of more heat events during droughts.512

However, we show that not only correlation of the full distribution is projected to change513

with rising GWL, but also the distributional tails and the entire dependence structure.514

Bivariate dependence structures in models though require cautious consideration. Zscheischler515

and Fischer (2020) point towards an underestimation of temperature and precipitation516

tail dependence in CMIP5 models. This would imply a potential underestimation of CDHE.517

A more detailed investigation into bivariate distributional characteristics in model and518

observational data is hence advisable for locally specific assessments.519

By reaching GWL3 in the middle of the 21st century (2042–2061) under RCP8.5,520

the CanESM2 driving the CRCM5-LE proves to be a rather hot global climate model.521

We therefore used a relative model- and scenario-independent measure of time, i.e., the522

GWL, to overcome the effect of an intrinsically ‘hot’ global climate model with a high-523

emission scenario. Assessing uncertainties related to this approach requires comparative524

studies in other model SMILEs and with other scenarios. Yet, so far, there is only a very525

limited number of regional SMILEs (typically with only few members) available (e.g.,526

Aalbers et al., 2018).527

As argued in Jha et al. (2023), the selection of warming levels and models explains528

most of the uncertainty in CDHE changes over Europe. The choice of copula families529

contributes the least in their assessment, while Zscheischler and Fischer (2020) argue that530

event definition and copula fitting affect the final probability and therefore extremeness531

of events. In our study, we attempted to reduce this kind of uncertainty by not focus-532

ing on single events. Instead, the SMILE served as a basis for investigating general char-533

acteristics of a large number of events, thus reducing the influence of outliers. Testing534

several copula families helped to find the locally best fitting bivariate distribution. Fur-535

ther, while in principle the SMILE provides the required size to sample low-probability536

events (T = 1000), we found that future events tend to be clearly more rare than cur-537

rent 1-in-1000 year events. Hence, even the large ensemble is insufficient for empirical538

estimations and distributional sampling is necessary.539

Using the SMILE though allows for a robust sampling of internal variability which540

potentially masks dependence changes in setups with few members (Bevacqua et al., 2023).541

In addition, differing states of large-scale atmospheric modes prevalent in single mem-542

bers during the selected period of investigation may trigger differences in compound event543

frequencies (Bevacqua et al., 2023). This shows the high importance of internal variabil-544

ity in the evaluation of low-probability events and justifies the use of a SMILE.545

While the CRCM5-LE provides high geographical detail in the spatial distribution546

of frequency (changes), results are affected by coarse resolution geophysical inputs as is547

visible in fig. 2: The tiling pattern resolution (1°) is coarser than the CRCM5 resolution,548

but finer than the spatial resolution of the driving general circulation model CanESM2.549

In central Europe, high bedrock depths (i.e., large soil column) coincide particularly well550

with low BR in fig. 2 (b) and high evaporation in fig. 2 (c). Presumably, a large soil col-551

umn contributes more strongly to evaporation than neighboring areas with thin soil columns.552
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However, this assumption requires further investigation, as well as implications on the553

reliability of other variables. For instance, this effect is also visible in the upper distri-554

butional tail of temperature at high temporal resolution (see also Miller et al., 2023). In555

spite of this, the regional SMILE allowed to highlight hotspots of event frequency (changes)556

and regionally varying driver dominance in high geographical detail. This is a large ad-557

vantage of our study over similar analyses with coarse-resolution global SMILEs: For ex-558

ample, a distinction of coastal or mountainous regions would not be possible on a coarse559

grid since the small-scale features cannot be resolved. Hence, the derivation of relevant560

drivers or dependence changes would have been impeded.561

Given considerable frequency increases of CDHE and their association to low soil562

moisture contents, we argue that the relationship between both deserves further inves-563

tigation. Denissen et al. (2022) show that soil moisture limited conditions represent the564

new normal under a high-emission global warming scenario in that they intensify and565

expand in length. Since it has been shown that heatwaves, droughts or compound CDHE566

can be triggered by depleted soils (Fischer et al., 2007), investigating CDHE effects on567

soil moisture is also crucial in bringing forth the research on potential legacy effects on568

subsequent seasons or years (e.g., CDHE triggering subsequent CDHE mediated by pre-569

vailing soil depletion). CDHE may exert influence not only on temporally, but also spa-570

tially distant events: Li et al. (2023) show that dry soils in upwind regions may lead to571

propagation of events and, adding onto local land-atmosphere coupling, affect crop yields572

downwind of events. For example, these authors found that maize failure in Southeast-573

ern Europe and wheat failure in Italy tend to be associated with dry and hot conditions.574

5 Conclusions575

We find that European compound hot and dry summers are characterized by an576

increase of evaporative demand in the atmosphere, but with reduced evaporation in most577

regions, presumably due to soil moisture deficits. Mountainous regions experience increased578

evaporation, most likely due to higher temperatures and still dominant energy limita-579

tion of their evaporation regime. The frequency of CDHE summers increases consider-580

ably in Europe under climate change conditions. Owing to the high spatial resolution581

of our SMILE, we robustly identify regions in Southern France and Northern Spain as582

hotspots due to highest absolute increases, whereas, e.g., Southern Germany, Northern583

France, Southern Ireland, or the southwestern Black Sea coast can be identified as cur-584

rently low-frequency areas with highest multiplication of events under climate change.585

Apart from Western European regions, Northern Spain and mountainous Norway, fre-586

quency increases can be mostly attributed to rising temperatures. Yet, climate change587

also affects the bivariate dependence structure of temperature and precipitation, foster-588

ing tail dependencies and hence the co-occurrence of dry and hot conditions. Further,589

events intensify with respect to the current conditions of precipitation and temperature.590

Soil moisture during CDHE is projected to remain extremely low under GWL2 and GWL3591

in agricultural regions and shows particularly strong negative correlations with bivari-592

ate summer intensity.593

This study finds newly emerging CDHE hotspots in European areas with yet un-594

seen combinations of extremely hot and dry conditions. Regardless of the causal direc-595

tions in the SMI–CDHE relationship, the tight relationship of low soil moisture and CDHE596

therefore poses an increasing risk to agriculture that requires consideration in adapta-597

tion planning.598

This study also shows an ordering of temperature and precipitation changes in driv-599

ing the frequency increases: For GWL2, temperature increase is the major driver of CDHE600

frequency increases. For GWL3, precipitation decrease additionally emerge as impor-601

tant driver (in the form of mixed contributions). Here, it would be interesting to further602

investigate the processes and mechanisms driving local dependence increases or decreases.603
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The regional SMILE is particularly apt for analyzing compound events in the ex-604

treme tails of the bivariate distribution. Climate change is shown to produce events that605

are much rarer than any observed summer, while currently extremely rare events become606

the new normal. Fitting distributions instead of counting the summers that meet the607

event definition criteria hence allows to avoid a saturation effect related to the maximum608

empirical event rareness under current conditions (i.e., T = 1000 years). Using SMILEs,609

further research can elucidate potential benefits of increasing sample sizes in reducing610

the uncertainty ranges of distribution fitting for extremely rare events.611

Last, we conclude that limiting global warming to +2 °C considerably reduces CDHE612

hazards in Europe, which regionally then results in half the amount of summers with ex-613

tremely low soil moisture availability. Since the risk of impacts on human systems de-614

pends on resilience structures in the affected regions (e.g., Lesk et al., 2016), hazard re-615

duction should be accompanied by fostering resilience towards CDHE effects as well.616
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Bevacqua, E., Suarez-Gutierrez, L., Jézéquel, A., Lehner, F., Vrac, M., Yiou, P., &663

Zscheischler, J. (2023). Advancing research on compound weather and climate664

events via large ensemble model simulations. Nature Communications, 14 ,665

2145. Retrieved from https://doi.org/10.1038/s41467-023-37847-5 doi:666

10.1038/s41467-023-37847-5667

Bowen, I. S. (1926). The ratio of heat losses by conduction and by evaporation from668

any water surface. Physical Review , 27 , 779-787.669

Brunner, M. I., Seibert, J., & Favre, A.-C. (2016). Bivariate return periods and their670

importance for flood peak and volume estimation. WIREs Water , 3 (6), 819-671

833. Retrieved from https://wires.onlinelibrary.wiley.com/doi/abs/10672

.1002/wat2.1173 doi: https://doi.org/10.1002/wat2.1173673

Buras, A., Rammig, A., & Zang, C. S. (2020). Quantifying impacts of the 2018674

drought on european ecosystems in comparison to 2003. Biogeosciences, 17 (6),675

1655–1672. Retrieved from https://bg.copernicus.org/articles/17/1655/676

2020/ doi: 10.5194/bg-17-1655-2020677
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Figure S1. (a) 95th percentile of summer (June-July-August) temperatures across all

CRCM5-LE members in Europe. (b) as (a) but for summer precipitation.
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Figure S2. Bowen Ratio (BR) for all global warming levels (current, +2 °C, +3 °C;

see main text). Columns show BR during all summers, CDHE-summers, and non-CDHE-

summers.
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Figure S3. (a)–(c): Spatial distribution of fitted copula families for three global

warming levels (current, +2 °C, +3 °C; see main text) in the CRCM5-LE. Yellow to red

colors correspond to symmetric copula families, green to blue to asymmetric families,

(d)–(f): theoretical Kendall’s τ based on the copula family and parameter.
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