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Key Points: 16 

• We show clear urban HCHO plumes from 16 cities over the globe by relating satellite 17 

pixels with wind fields  18 

• We obtain urban effective HCHO production rates by fitting the downwind structure of 19 

HCHO plumes 20 

• Satellite-based effective HCHO production rates provide potential measures of total non-21 

methane volatile organic compound emissions   22 



Geophysical Research Letters 

2 

 

Abstract 23 

Non-methane volatile organic compounds (NMVOCs) have a significant impact on air quality in 24 

urban areas. Detecting NMVOC emissions with its proxy HCHO on urban scales from space, 25 

however, has been limited by the lack of discernible enhancement. Here we show clear urban 26 

HCHO plumes from 16 cities over the globe by rotating TROPOspheric Monitoring Instrument 27 

(TROPOMI) HCHO pixels according to wind directions. We fit the downwind structure of the 28 

plumes with the exponentially modified Gaussian (EMG) approach to quantify urban HCHO 29 

effective production rates between 7.0 mol s-1 and 88.5 mol s-1. Our results are in line with total 30 

NMVOC emissions from the EDGAR inventory (r = 0.76). Our work offers a new measure of 31 

total NMVOC emissions from urban areas and highlights the potential of satellite HCHO data to 32 

provide new information for monitoring urban air quality. 33 

Plain Language Summary 34 

Non-methane volatile organic compounds (NMVOCs) play an important role in urban air 35 

quality. Formaldehyde (HCHO) satellite observations have been shown to be able to reliably 36 

track and quantify NMVOC emissions at global and regional scales. Here, we use state-of-the-art 37 

satellite sensors to quantify effective HCHO production rates in 16 global cities and further 38 

constrain total NMVOC emissions. Our results are broadly consistent with current emissions 39 

inventories, implying that satellites may be able to provide new information for urban air studies. 40 

1 Introduction 41 

Atmospheric formaldehyde (HCHO) is an intermediate produced via primary emission 42 

and secondary formation from the oxidation of a range of volatile organic compounds (VOCs). 43 

Therefore, the production rate of HCHO provides a potential constraint on the underlying VOC 44 
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emissions (Barkley et al., 2013; Bauwens et al., 2022; Shen et al., 2019; Zhu et al., 2014). 45 

Previous field measurements show that anthropogenic non-methane VOC (NMVOC) emissions 46 

are critical drivers of urban HCHO production rates (Liu et al., 2023; Zeng et al., 2019). Here, 47 

we present the first attempt to apply satellite HCHO columns to estimate effective HCHO 48 

production rates and to infer total anthropogenic NMVOC emissions in urban areas over the 49 

globe by analyzing the downwind structures of their HCHO plumes. 50 

Regional and local HCHO enhancements result from NMVOCs emitted by plants 51 

(Barkley et al., 2013; Millet et al., 2006; Palmer et al., 2003; Wells et al., 2020; Wolfe et al., 52 

2016), fires (Alvarado et al., 2020; Cao et al., 2018; Holzinger et al., 1999; Yokelson et al., 53 

1999), and human activities (Bauwens et al., 2022; Pu et al., 2022; Shen et al., 2019; Sun et al., 54 

2021; Zhu et al., 2014; Zhu, Mickley, et al., 2017). In urban areas, the use of natural gas, diesel, 55 

gasoline, and solid fuels results in direct emissions of HCHO and secondary production of 56 

HCHO from various anthropogenic NMVOCs (Alzueta & Glarborg, 2003; Clairotte et al., 2013; 57 

Green et al., 2021). 58 

Satellites observe HCHO from space in a column manner. Previously, HCHO 59 

tropospheric columns have been used in the inversion framework to constrain NMVOC 60 

emissions from biogenic sources (Barkley et al., 2013; Millet et al., 2008; Millet et al., 2006; 61 

Palmer et al., 2006; Wu et al., 2023) and fires (Cao et al., 2018; Fu et al., 2007; Gonzi et al., 62 

2011). However, applying HCHO columns to derive anthropogenic NMVOC emissions is 63 

challenging due to the (1) high uncertainty in the a priori estimations (Huang et al., 2017; Zheng 64 

et al., 2018), (2) lack of discernible enhancement on urban scales (Zhu et al., 2014), and (3) 65 

highly nonlinear small-scale chemistry that makes using atmospheric chemistry transport models 66 

challenging (Laughner & Cohen, 2019; Valin et al., 2013). 67 
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For gases (mainly NO2 and SO2) emitted from point sources (e.g., megacities or power 68 

plants), the combined analysis of satellite observations and wind fields reveals the downwind 69 

decay of plumes and has been further used to estimate their lifetimes and emissions (Beirle et al., 70 

2011; de Foy et al., 2015; V. E. Fioletov et al., 2016; Goldberg et al., 2019; Lee et al., 2022; Lu 71 

et al., 2015). However, similar observation-based approaches have long been recognized as 72 

missing for NMVOCs, which are equally important for urban air pollution (von Schneidemesser 73 

et al., 2023). In this study, we show evident downwind decay of urban plumes over the globe 74 

with the state-of-the-art TROPOMI instrument (Veefkind et al., 2012) and the wind rotation 75 

technique. By fitting HCHO plumes with the exponentially modified Gaussian (EMG) function, 76 

we obtain the effective HCHO production rates and lifetimes, reflecting the emission and rapid 77 

photochemical oxidation of NMVOCs. 78 

2 TROPOMI HCHO columns and wind rotation approach 79 

Onboard the Copernicus Sentinel-5 Precursor platform, TROPOMI is a nadir-viewing 80 

spectrometer launched in October 2017, which scans the whole globe within a day at a local 81 

passing time of 13:30 and a nadir resolution of 5.5 km × 3.5 km (7 km × 3.5 km before August 82 

2019). It achieves a spectral resolution of 0.55 nm in the 328-359 nm band range where HCHO 83 

retrieval is performed. We use 2019-2022 TROPOMI HCHO tropospheric vertical column 84 

product (De Smedt et al., 2018), which has been thoroughly validated (Chan et al., 2020; De 85 

Smedt et al., 2018; Vigouroux et al., 2020) and used to study NMVOC emissions (Pu et al., 86 

2022; Sun et al., 2021; Wang et al., 2022). To ensure data quality, we select level 2 pixels with 87 

quality assurance (QA) value greater than 0.5, cloud fraction less than 0.3, and solar zenith angle 88 

less than 60º. 89 
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To investigate the downwind structures of urban HCHO plumes, we associate each pixel 90 

with its wind direction and speed, sampled from the ECMWF Reanalysis v5 (ERA5) hourly data 91 

(Hersbach et al., 2020). We use the average ERA5 wind fields in the bottom 5 levels (~ up to 1.0 92 

km above sea level), following V. E. Fioletov et al. (2015). We then apply the wind rotation 93 

technique (de Foy et al., 2015; V. E. Fioletov et al., 2015; Lu et al., 2015; Pommier et al., 2013; 94 

Valin et al., 2013) to rotate each TROPOMI pixel around the city center (apparent source) 95 

according to wind direction. Figure S1 illustrates the schematic of such a wind rotation approach. 96 

First proposed by Valin et al. (2013) in their study of NO2 urban plumes, the wind 97 

rotation approach effectively redistributes satellite observations near the source along the 98 

downwind direction. After rotation, all TROPOMI pixels have a common wind direction and can 99 

be analyzed together, which helps us to accumulate a statistically significant TROPOMI HCHO 100 

data set while preserving the upwind-downwind characteristics of each pixel. Another advantage 101 

of wind rotation is that it makes the central source more pronounced while attenuating the signals 102 

of the surrounding sources (V. E. Fioletov et al., 2015), which is particularly helpful for the 103 

capture of HCHO urban plumes, as for HCHO the background levels are much higher and the 104 

sources are less localized than NO2 and SO2.  105 

3 Observing and fitting urban HCHO plume: an example from Riyadh 106 

Our attempt starts with Riyadh (Saudi Arabia), one of the largest cities on the Arabian 107 

Peninsula and is usually considered as an ideal place for satellite detection of urban plumes (e.g., 108 

NO2 and CO) due to its isolated location, large emission, and frequent clear sky conditions 109 

(Beirle et al., 2011; Lama et al., 2022; Valin et al., 2013). It is also an optimal spot to observe the 110 

HCHO urban plume as it is surrounded by desert and has low biogenic VOC emissions. Figure 111 

1a shows the 2019-2022 mean TROPOMI HCHO tropospheric columns around Riyadh with a 112 
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0.02° × 0.02° (~ 2 km × 2 km) resolution. The oversampling method we use is a weighted 113 

average of the satellite pixels on each grid, with weights obtained based on the overlap area of 114 

the pixels with the grid (Zhu, Jacob, et al., 2017). Wind rotation allows us to see a distinct urban 115 

HCHO plume above the regional background (Figure 1b). By integrating the two-dimensional 116 

HCHO plume (Figure 1b) along the cross-wind direction, we obtain the one-dimensional HCHO 117 

line densities, which exhibit a Gaussian shape and decay pattern (black circles in Figure 1c). We 118 

find that the maximum enhancement of HCHO (~ 27 k mol km -1) occurs at about 75 km 119 

downwind of Riyadh, which is almost three times the distance of NO2 maximum enhancement 120 

under fast wind conditions (Valin et al., 2013). This highlights the difference in lifetimes of 121 

HCHO and NO2, which implies the additional secondary production for HCHO from NMVOCs.   122 

 123 

Figure 1. TROPOMI HCHO columns and downwind plume structure in Riyadh. (a) TROPOMI 124 

HCHO oversampled to 0.02º × 0.02º (~ 2 km × 2 km) resolution from 2019 to 2022, with the 125 
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black cross marking the city center. Gray lines denote trunk roads and motorways. (b) Wind-126 

aligned HCHO plume in Riyadh. (c) Line densities (black circles) of HCHO columns as a 127 

function of downwind distance from the city center. Each circle represents the TROPOMI 128 

HCHO line density integrated along the cross-wind direction (± 100 km). The red curve (Ωline(x), 129 

see Section 3) is the exponentially modified Gaussian (EMG) fitting result, with the averaged 130 

wind speed (w) from ERA5 data, fitted effective HCHO production rate (P), and fitting 131 

determination coefficient (R2) insert. 132 

The exponential modified Gaussian (EMG) method has been widely applied in fitting the 133 

downwind plumes of NO2 (Goldberg et al., 2019; Jin et al., 2021; Laughner & Cohen, 2019; Lu 134 

et al., 2015; Pommier, 2023) and SO2 (Beirle et al., 2014; V. E. Fioletov et al., 2015; McLinden 135 

et al., 2016). This method assumes an approximate point source elevated from the background 136 

(V. Fioletov et al., 2022; Lange et al., 2022), which can be tested with the signal-to-noise (SNR) 137 

ratio that compares the upwind-downwind difference with satellite signals (McLinden et al., 138 

2016; Pommier, 2023).  139 

 
𝑆𝑁𝑅 =

Ω𝑑 − Ω𝑢 
σΩ𝑑

√𝑁𝑑

+  
σΩ𝑢

√𝑁𝑢

 
(1) 

where Ωd and Ωu is the average HCHO column in downwind and upwind regions at the same 140 

distance from the center (Figure S2); σΩd, σΩu, Nd, and Nu is the standard deviation and number 141 

of observations in the two regions, respectively. To ensure sufficient contrast to the background, 142 

we set an SNR threshold of 10.0 to determine an approximate point source for HCHO, 143 

considering the lifetime of HCHO (few hours, similar to NO2 and SO2), resolution of 144 

TROPOMI, and size of the sources observed in each city. For Riyadh, the SNR value is 15.6. 145 
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The EMG method to fit HCHO line densities Ωline(x) (Figure 1c) is: 146 

 
Ω line(𝑥|μ, σ, 𝑥0, α, 𝐵) = α · [

1

𝑥0
exp (

μ

𝑥0
+

σ2

2𝑥0
2 −

𝑥

𝑥0
) Ф (

𝑥 − μ

σ
+

𝜎

𝑥0
)] + 𝐵 (2) 

where α (mol) is a scale factor of the total number of HCHO molecules observed near the 147 

hotspot, elevated from the background (B, mol km-1); μ (km) is the location of the point source 148 

relative to the urban center (defined as x = 0); x0 (km) is the e-folding distance downwind; σ 149 

(km) is the standard deviation of the Gaussian function; and Ф is the cumulative distribution of 150 

exponential function.  151 

Similar to studies on NO2 and SO2 point source emissions, we define an effective lifetime 152 

of HCHO (τ*) as: 153 

 𝜏∗  =  𝑥0 / 𝑤 (3) 

Here τ* (hour) represents the effective mean lifetime of HCHO within the fitting domain from an 154 

approximate point source, encapsulating the effects of primary emission, secondary production, 155 

loss, and transport. w (4.7 m s-1) is the effective wind speed of the study domain according to 156 

ERA5 wind fields. Further, the effective HCHO production rate P (mol s-1) is defined as:  157 

 𝑃 =  α / τ∗  (4) 

which includes both primary HCHO emitted in the city and secondary HCHO produced within 158 

the downwind plume. 159 

For Riyadh, the fitted line densities are close to TROPOMI observations with a 160 

determination coefficient (R2) of 0.98 (Figure 1c), an effective lifetime of HCHO (τ*) of 4.3 ± 161 

1.1 hours (95% confidence interval), and an effective HCHO production rate (P) of 33.1 ± 3.6 162 

mol s-1. The fitted background (B) is 24.4 ± 0.1 k mol km-1, corresponding to a column density of 163 
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7.3 × 1015 molecules cm-2 in the fitting domain, which we attribute to the oxidation of regional 164 

biogenic (e.g., isoprene) and long-lived VOCs (e.g., methane). Here, we refer to Beirle et al. 165 

(2011) and Lu et al. (2015) to quantify the uncertainties of our results (Text S2). 166 

4 Downwind structures of urban HCHO plumes over the globe 167 

As demonstrated in Riyadh (Figure 1b and 1c), the wind rotation approach enables 168 

detection of urban HCHO plumes. Based on this, we extend our analysis globally by focusing on 169 

55 cities or urban agglomerations with populations over 5 million and another 11 cities with 170 

visible HCHO enhancements. Table S1 lists those 66 cities or urban agglomerations, among 171 

which 25 satisfy the point source criterion (i.e., SNR > 10.0). 172 

We then apply the EMG method for each approximate point source candidate city in a 173 

200 km by 250 km (± 100 km cross-wind, 100 km upwind, and 150 km downwind) domain. This 174 

domain size is selected to minimize interference from surrounding sources (biogenic and 175 

anthropogenic) while retaining enough satellite pixels. Following Jin et al. (2021) and Laughner 176 

& Cohen (2019), we set additional criteria to obtain reasonable EMG fitting: (1) R2 > 0.8, which 177 

ensures the fitted EMG curve is close to the observations; (2) x0 > σ, which requires emission 178 

width shorter than the e-folding distance to avoid the case that emission shape confounds with 179 

HCHO decay structure; and (3) (150 km – μ) / w > τ*, which states the plume residence time 180 

should be longer than the effective HCHO lifetime to reduce EMG fitting uncertainty. Table S1 181 

provides whether each criterion is valid for the approximate point source candidate cities. 182 

Figure 2 shows downwind structures of the resulting plumes in 16 cities or urban 183 

agglomerations, with wind-aligned HCHO plumes provided in Figure S3. Table S2 summarizes 184 

the corresponding EMG fitting results. The fitted effective production rate of HCHO (P) ranges 185 
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from 7.0 mol km-1 (Esfahan) to 88.5 mol km-1 (Pearl River Delta), with background (B) ranges 186 

from 22.2 k mol km-1 to 44.2 k mol km-1 (6.6 × 1015 molecules cm-2 to 13.2 × 1015 molecules cm-
187 

2, Table S2). The effective lifetime (τ*) is between 4.0 hours (Teheran) and 17.2 (Lahore) hours.  188 

 189 

Figure 2. Global urban HCHO hotspots and their downwind plume structures. The center panel 190 

shows the mean TROPOMI tropospheric HCHO columns from 2019 to 2022 at a resolution of 191 

0.1º × 0.1º (~ 10 km × 10 km), with HCHO hotspots circled in red. The black arrow points to the 192 

observed (black circles) and fitted (red curve) line densities for each approximate point source 193 

city (panel a-p). The horizontal coordinate is the downwind distance (km) from the 194 
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corresponding city center. The vertical coordinate is HCHO line density (k mol km-1), integrated 195 

along the cross-wind direction.  196 

As shown in Figure 3, our effective production rates of HCHO (P) are generally in line 197 

with local total anthropogenic NMVOC (panel a; r = 0.76) emissions from EDGAR (v6.1) 198 

within a 100 km radius of the city center. Within the fitting domains of the 16 cities or urban 199 

agglomerations in Figure 3, biogenic isoprene emission (MEGAN v2.1 run for 2019; Guenther et 200 

al., 2012) accounts for on average 25% of the total NMVOC emissions, arguing for an 201 

anthropogenic dominated origin of HCHO. This could be further backed up by the consistency (r 202 

= 0.78) between effective HCHO production rates and anthropogenic nitrogen oxides (NOx; 203 

Figure 3 panel b) emissions.  204 

We acknowledge the spatial heterogeneity of biogenic NMVOC emissions over hundreds 205 

of kilometers around the city, which may introduce uncertainties to the fitting results. In 206 

addition, the temporal difference between TROPOMI overpass time (13:30 local time) and 207 

EDGAR inventory (24-hour average for the year 2018) may be another source of uncertainties. 208 

Nevertheless, the broad agreement with EDGAR inventory corroborates the reliability of our 209 

approach, suggesting the effective production rate of HCHO could be a potential measure of total 210 

anthropogenic NMVOC emissions in urban areas despite NMVOCs contributing to HCHO 211 

differently under various OH levels. 212 
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213 

Figure 3. Comparison between EMG-fitted effective HCHO production rates with total 214 

anthropogenic NMVOC (panel a) nitrogen oxides (NOx; panel b) from EDGAR. The fitted rates 215 

are from the EMG fitting results (Section 4). Each point represents a city in Figure 2, colored by 216 

its fitted effective lifetime (τ*) that saturates at 10 hours. Error bars show the total uncertainties 217 

of PHCHO (Text S1), whereas EDGAR uncertainties are set to be 50% (Beirle et al., 2011). The 218 

Pearson correlation coefficient (r) is also inserted.  219 

Previous studies report that the EMG method accurately estimates emissions, but the 220 

effective lifetime is not a reliable measure of a gas chemical lifetime due to plume meandering 221 

and grid resolution (de Foy et al., 2015). In addition, secondary production also complicates the 222 

effective lifetime of HCHO, along with physical diffusion and chemical losses in urban plumes. 223 

That being said, τ* depends mainly on the photolysis rate and OH concentration. If photolysis 224 

rates are known, one could determine the OH level of the urban plume (Liao et al., 2021) in a 225 

similar rationale to the study of NO2 lifetimes (de Foy et al., 2015; Laughner & Cohen, 2019; 226 

Valin et al., 2013). Such information may help us better quantify urban atmospheric oxidation 227 

levels through satellite remote sensing.  228 
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5 Conclusion 229 

We have used TROPOMI satellite observations and ERA5 wind fields to detect urban 230 

HCHO plumes from 16 cities over the globe. By fitting the downwind structure of the plumes, 231 

we quantify effective HCHO production rates in urban areas, which are in line with total non-232 

methane volatile organic compound (NMVOC) emissions from the bottom-up inventory. Our 233 

work shows the potential of satellite HCHO columns in providing new information for urban air 234 

quality studies. 235 
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