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Abstract

Cirrus dominate the longwave radiative budget of the tropics. For the first time, we quantify the variability in cirrus properties

and longwave cloud radiative effects (CREs) that arises from differences in microphysics within nudged global storm-resolving

simulations from a single model. Nudging allows us to compute radiative biases precisely using coincident satellite measurements

and to fix the large-scale dynamics across our set of simulations and isolate the influence of microphysics. We run five-day

simulations with four commonly-used microphysics schemes of varying complexity (SAM1MOM, Thompson, M2005 and P3)

and find that the tropical average longwave CRE varies over 20 W m$ˆ{-2}$ between schemes. P3 best reproduces observed

longwave CRE. M2005 and P3 simulate cirrus with realistic frozen water path but unrealistically high ice crystal number

concentrations which commonly hit limiters and lack the variability and dependence on frozen water content seen in aircraft

observations. Thompson and SAM1MOM have too little cirrus.
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Total Cloud Ice Limiter          Deposition Nucleation Limiter

Single-particle masses/mean equivalent sphere radii for isolines (top to bottom):
1)  2 x 10-7 mg / 3.7 μm    2)  1 x 10-6 mg / 6.4 μm    3)  5 x 10-6 mg / 10.9 μm    4)  2.5 x 10-5 mg / 18.7 μm 
5)  1.3 x 10-4 mg / 31.9 μm    6)  6.3 x 10-4 mg / 54.6 μm    7)  3.1 x 10-3 mg / 93.4 μm

 ERA5 Model Levels                             ERA5 Pressure Levels     
  2C-ICE         DARDAR V2.1.1                 DARDAR V3.1

a) b) c) d)

 P3                    M2005                   Thompson                     SAM1MOM

e)
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a) b) c) d)

Observations    Simulations
CERES    P3              M2005              Thompson              SAM1MOM

Zonally averaged cloud radiative effects (CREs) and biases

e)

Hosted file

970999_0_video_11270450_rz3bd9.gif available at https://authorea.com/users/549349/articles/

659477-tropical-anvil-cirrus-are-highly-sensitive-to-ice-microphysics-within-a-nudged-

global-storm-resolving-model
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Key Points:12

• Nudged global storm-resolving simulations are valuable for microphysics sensitiv-13

ity studies.14

• Mean tropical longwave cloud radiative effect biases vary over 20 W m−2 depend-15

ing on microphysics scheme.16

• Two-moment schemes outperform simpler one-moment and partial double-moment17

schemes, and P3 has the smallest longwave radiative bias.18
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Abstract19

Cirrus dominate the longwave radiative budget of the tropics. For the first time,20

we quantify the variability in cirrus properties and longwave cloud radiative effects (CREs)21

that arises from differences in microphysics within nudged global storm-resolving sim-22

ulations from a single model. Nudging allows us to compute radiative biases precisely23

using coincident satellite measurements and to fix the large-scale dynamics across our24

set of simulations and isolate the influence of microphysics. We run five-day simulations25

with four commonly-used microphysics schemes of varying complexity (SAM1MOM, Thomp-26

son, M2005 and P3) and find that the tropical average longwave CRE varies over 20 W m−2
27

between schemes. P3 best reproduces observed longwave CRE. M2005 and P3 simulate28

cirrus with realistic frozen water path but unrealistically high ice crystal number con-29

centrations which commonly hit limiters and lack the variability and dependence on frozen30

water content seen in aircraft observations. Thompson and SAM1MOM have too little31

cirrus.32

Plain Language Summary33

Recently, advancements in computing have made it possible for atmospheric sci-34

entists to simulate Earth’s global atmosphere with higher resolution than ever before.35

This new generation of models, called global-storm resolving models, have a horizontal36

grid spacing of just a few kilometers, which permits the formation of thunderstorms. As37

a result, they simulate clouds more realistically than traditionally climate and weather38

models and are a great tool for diagnosing cloud biases in atmospheric models. Here, we39

run a single global storm-resolving model with four different representations of cloud physics40

called M2005, P3, SAM1MOM and Thompson. We evaluate simulated tropical cirrus,41

which are stratiform ice clouds at the top of the troposphere that reduce the amount of42

infrared radiation emitted by the Earth, with satellite and aircraft data to see which rep-43

resentations have the best performance. SAM1MOM and Thompson make too little cir-44

rus causing too much infrared radiation to be emitted, M2005 makes too much cirrus,45

causing too little infrared radiation to be emitted, and P3 makes about the right amount.46
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1 Introduction47

Anvil cirrus, which flow outward from deep convective cores (Deng et al., 2016),48

absorb longwave radiation from Earth’s surface and re-emit it at colder temperatures,49

thereby reducing outgoing longwave radiation and heating the atmosphere (Hartmann50

et al., 2001). Differences in their representation in global climate models (GCMs), which51

stem from diverse model dynamics and physical parameterizations, are a major source52

of uncertainty in constraining the longwave radiative budget of the tropics and cloud cli-53

mate feedbacks (Sherwood et al., 2020). Here, we quantify the variability in tropical long-54

wave cloud radiative effect (CRE) that arises from differences in model microphysics across55

a set of global storm-resolving simulations (GSRMs), and we identify an important av-56

enue for improving ice microphysics and the representation of anvil cirrus.57

Anvil cirrus are sensitive to the representation of deep convection and ice micro-58

physics. These influences are difficult to disentangle in most global models, including high59

resolution GCMs, where both are parameterized. GSRMs, which typically have sub-560

km horizontal grid spacing and explicit rather than parameterized deep convection, pro-61

vide a unique opportunity to isolate the influence of ice microphysics.62

GSRMs are computationally expensive and thus are typically run for short dura-63

tions ranging from a few days to a year. Comparisons of simulated CREs from short-64

duration simulations with climatological observations are sensitive to sampling bias. We65

address this issue by nudging our simulations to reanalysis to prevent the microphysics66

from feeding back onto the large-scale flow. This approach has many advantages includ-67

ing 1) allowing comparisons with coincident real-world observations, 2) isolating the di-68

rect impact of differences in model microphysics on simulated cloud properties, and 3)69

reducing model spin-up time.70

We run our nudged GSRM with four widely used microphysics schemes of vary-71

ing complexity (single-moment, partial double-moment, and double-moment). We eval-72

uate our simulations with remote sensing observations, including the newly released DARDAR-73

CLOUD v3.10 dataset (Delanoë & Hogan, 2010), and in-situ observations, leveraging a74

new dataset aggregating measurements from multiple aircraft campaigns that sampled75

cirrus clouds (Krämer, Rolf, Spelten, Afchine, et al., 2020).76

–3–
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2 Data77

Four five-day simulations are run with the Global System for Atmospheric Mod-78

elling (Khairoutdinov et al., 2022). They are set up identically, as described in Atlas et79

al. (2022), except that they are run with different bulk microphysics schemes: M2005 (Morrison,80

Curry, & Khvorostyanov, 2005; Morrison et al., 2009), Thompson (Thompson et al., 2008),81

P3 (Morrison & Milbrandt, 2015) with one ice class, and SAM1MOM (Khairoutdinov82

& Randall, 2003). All schemes except SAM1MOM were originally developed for the Weather83

Research & Forecasting model (Skamarock & Klemp, 2008), and are also operational within84

the Model for Prediction Across Scales (Skamarock et al., 2012) GSRM. The Commu-85

nity Earth System Model (Danabasoglu et al., 2020) and the Energy Exascale Earth Sys-86

tem Model (E3SM) (Golaz et al., 2019) GCMs use microphysics schemes closely related87

to M2005, and the Simple Cloud Resolving E3SM Atmosphere Model GSRM (Caldwell88

et al., 2021) uses P3 microphysics.89

Key differences in the representation of ice processes across the four schemes are90

summarized in Text S1. The simulations have approximately 4 km horizontal grid spac-91

ing in the tropics and about 500 m vertical grid spacing between 5 and 19 km. Deep con-92

vection is permitted but somewhat under-resolved using this grid spacing (Bryan et al.,93

2003). Simulations are initialized from ERA5 reanalysis (Hersbach et al., 2020) at 00 UTC94

16 Feb. 2018. We analyze days 2-5 of the simulations (17-20 February 2018) through-95

out this study, allowing one day for model spinup, long enough for cloud statistics to equi-96

librate (Atlas et al., 2022). Simulated temperature and horizontal winds (but not hu-97

midity or clouds) are nudged to ERA5 reanalysis with a damping timescale of 24 hours.98

Simulated longwave and shortwave CREs are compared with coincident retrievals99

(overlapping the time period of the simulations) from Clouds and the Earth’s Radiant100

Energy System level 3 data (Doelling et al., 2013; NASA/LARC/SD/ASDC, 2017), re-101

ferred to hereafter as CERES. CERES has hourly temporal resolution and 1◦ x 1◦ hor-102

izontal resolution.103

Retrieved frozen water content (FWC) and effective radii (re) from the DARDAR-104

CLOUD dataset (Delanoë & Hogan, 2010) versions V2.1.0 and V3.10 (Cazenave et al.,105

2019) and the Cloudsat and CALIPSO Ice Cloud Property Product (2C-ICE) (Deng et106

al., 2015) version RF05 are used to evaluate simulated anvil cirrus macrophysics. These107

retrievals have a horizontal resolution of 1.4 km, comparable to that of the simulations.108
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The vertical resolution of DARDAR and 2C-ICE are 60 m and 240 m, respectively. Be-109

cause these retrievals are sparse in space and time and direct comparisons cannot be made110

for the simulated days, we use February data from the years 2007-2012.111

Simulated microphysics are evaluated with in situ airborne observations of ice crys-112

tal number concentration (Nice) and FWC from five campaigns, which are included in113

the ‘Microphysics Guide to Cirrus’ (Krämer, Rolf, & Spelten, 2020), as described in Krämer,114

Rolf, Spelten, Afchine, et al. (2020). Text S2-S3 and Figures S1-S3 further discuss our115

use of DARDAR, 2C-ICE and the ‘Microphysics Guide to Cirrus’.116

3 Microphysics schemes exhibit wide-ranging tropical longwave cloud117

radiative effects118

Figure 1 compares day 2-5 mean simulated CREs with CERES. Throughout this119

study, radiative fluxes are defined as positive downwards, so that negative CREs indi-120

cate energy lost from the Earth. Shortwave CRE biases (panel b) are largest and most121

scheme-dependent over the Southern Ocean, mainly due to differences in marine bound-122

ary layer clouds (Atlas et al., 2022).123

In this study, we focus on the region between the horizontal parallel lines at 20◦N124

and 20◦S, hereafter referred to as ‘the tropics’, where longwave CRE is highly sensitive125

to microphysics (panel a).126

Zonally-averaged longwave and shortwave CRE biases for each scheme are plotted127

on panels c-d. As discussed in Section 4, tropical cloud top heights (CTHs) are biased128

low in all simulations due to temperature biases around the cold point, causing longwave129

CREs to be underestimated. Shaded regions show the changes in LW CRE we get when130

we account for the CTH bias, following Text S3. The lines on the left of the shaded re-131

gions are unadjusted LW CRE biases and the lines on the right are adjusted LW CRE132

biases. Panel e shows area-weighted tropical mean CRE biases for the simulations. LW133

and SW CRE biases vary over ranges of 22 and 7.5 W m−2, respectively. While all sim-134

ulations have a bright (negative) tropical shortwave CRE bias, the sign of the longwave135

CRE bias differs between M2005 and the other schemes, both before and after the ad-136

justment. P3 has the least biased longwave CRE, and is nearly unbiased after the ad-137

justment. M2005 has the smallest total CRE bias, which it achieves through compen-138

sating LW and SW biases.139
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a) b) c) d)

Observations    Simulations
CERES    P3              M2005              Thompson              SAM1MOM

Zonally averaged cloud radiative effects (CREs) and biases

e)

Figure 1. (a-b) Zonal average top of atmosphere CREs and (c-d) their biases vs. CERES.

Horizontal parallel lines delineate the tropical analysis region (20◦S - 20◦N). Shaded regions show

the magnitude of the CTH bias correction (e) Tropical average CRE biases for (left to right)

SW, LW, adjusted LW, total, and adjusted total
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Figure 2. left: Snapshots of simulated FWP for columns with CTH ≥ 10 km on the simula-

tions’ native grid. right: Coincident snapshots of longwave CRE bias compared to CERES on a

coarsened 1◦ x 1◦ grid.

4 Variability in anvil cirrus coverage and optical properties lead to di-140

verse longwave cloud radiative effects141

Figure 2 shows coincident snapshots at an arbitrarily chosen time of simulated frozen142

water path (FWP, the sum of the cloud ice, snow and graupel water paths) for columns143

containing high cloud, on the left, and biases in simulated longwave CRE, which have144

not been adjusted to account for the CTH bias, coarsened to a 1◦ x 1◦ grid, on the right.145

Columns with high cloud have a cloud top height (CTH) exceeding 10 km, where CTH146

is defined as the highest model level with FWC (the sum of the cloud ice, snow and grau-147

pel water contents) ≥ 10−4 g m−3 (the limit of lidar detectability as discussed in Text148

S2). The fraction of columns within the mapped area that meet these criteria is listed149

in the title of each plot panel. The coarsened longwave CRE bias is sensitive to both cloud150

fraction and cloud radiative properties. Animation S1 loops through versions of Figure 2151

for each of the 96 hours of model output within days 2-5 of the simulations, showing that152

any hourly snapshot is representative of the entire four day period.153

M2005 has the largest high cloud fraction and extensive areas of negative longwave154

cloud biases, associated with deep convection (FWP > 103 g m−2) and anvil cirrus (10155

≤ FWP ≤ 103 g m−2). Thompson and SAM1MOM have positive longwave biases in156
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most areas of anvil cirrus. P3 has a mixture of positive and negative biases associated157

with anvil cirrus, and the fewest areas with large biases of either sign. Adjusting the LW158

CRE to account for the low bias in CTH reduces LW CRE biases in P3, Thompson and159

SAM1MOM and increases them in M2005 (Figure S5).160

Figure 3 statistically summarizes relationships between high cloud properties and161

longwave cloud biases, using CERES, DARDAR and 2C-ICE to provide observational162

constraints on the simulations. The CALIPSO lidar used by DARDAR and 2C-ICE has163

greater sensitivity at night, during which it can detect FWCs ≥ 10−4 g m−3 (Text S2).164

Thus, we use DARDAR and 2C-ICE data from the nighttime A-train overpass, which165

crosses the equator at approximately 1:30 AM local time. For consistency, we also sam-166

ple CERES and the simulations at night. FWCs < 10−4 g m−3 are filtered out of the167

simulations and satellite retrievals.168

In Figure 3a, we evaluate distributions of simulated FWP from columns contain-169

ing high cloud (CTH ≥ 10 km) using DARDAR and 2C-ICE. The simulations and the170

two DARDAR datasets have unimodal distributions of FWP whereas 2C-ICE has a bi-171

modal distribution. The discrepancy between DARDAR and 2C-ICE for FWPs < 30 g172

m−2, noted by Hong et al. (2016), emphasizes limitations on constraining FWP from CALIPSO173

in tropical cirrus too thin to be detected by CloudSat. Satellite retrievals from deep con-174

vective cores (FWPs ≥ 103 g m−2) are also uncertain (Delanoë & Hogan, 2010). Thus175

we focus on FWPs between 30 and 300 g m−2, the region bounded by vertical grey lines176

in Figure 3a, where the retrievals are more certain. In this thickness range, M2005 over-177

estimates cirrus coverage, and SAM1MOM, Thompson, and P3 underestimate it.178

Figure 3b shows mean longwave CRE as a function of FWP for the simulations.179

Shaded regions show the changes in LW CRE we get when we account for the CTH bias.180

The lines below the shaded region are unadjusted and the lines above the shaded region181

are adjusted. We do not show an observational comparison here because the retrieved182

FWP from DARDAR and 2C-ICE is 1D and cannot be matched with the coarsely grid-183

ded LW CRE from CERES. M2005 has the strongest longwave CRE for anvil cirrus, and184

Thompson has the weakest. Variability in longwave CRE for a fixed FWP can be caused185

by differences in cloud top temperature, which is tightly linked to CTH in the tropics.186

Figure 3c shows mean CTH as a function of FWP for the simulations and the satellite187

retrievals. CTH is biased low in all simulations, as explained later in this section. M2005188

–8–



manuscript submitted to Geophysical Research Letters

a) b) c)

e)M2005

P3 
SAM1MOM

Thompson

d)

58
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69

35

88 84
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3930

2C-ICE    DARDAR V2.1.1               DARDAR V3.10     CERES

 P3                    M2005                   Thompson                     SAM1MOM

Figure 3. Tropical nighttime: a) PDF of FWP b) Mean longwave CRE binned by FWP

c) Mean CTH binned by FWP d) Box plots with medians (black lines and numbers printed

above each box) and inter-quartile ranges of frozen hydrometeor re (for each radiatively-active

ice species and the average, calculated as described in the text). Cl. Ice is short for Cloud Ice.

e) PDF of longwave CRE for 1◦ x 1◦ boxes. Only columns with CTH ≥ 10 km and grid cells

with FWC ≥ 10−4 g m−3 are used in panels a-d. Vertical grey lines in panel a bound the region

where retrievals of FWP are most certain. In panels b and e, shaded regions show the magnitude

of the CTH bias correction, and the area under the curves represents the fraction of high cloud

columns and the fraction of 1◦ x 1◦ degree boxes with longwave CRE > 25 W m−2, respectively.

–9–



manuscript submitted to Geophysical Research Letters

has the highest CTHs for FWPs > 1 g m−2, and Thompson and SAM1MOM have the189

lowest.190

Differences between the simulations in Figure 3b could also come from differences191

in effective radii (re). Figure 3d shows box plots of re of frozen hydrometeors for the sim-192

ulations, 2C-ICE and DARDAR V3.10 (the two versions of DARDAR have similar re).193

For M2005 and Thompson, re,avg is an optical depth preserving average of the cloud ice194

and snow effective radii, re,i and re,s, which is directly comparable to satellite-retrieved195

re. For P3, there is only one frozen hydrometeor class and for SAM1MOM, only cloud196

ice is radiatively active, so the snow contribution to re is neglected.197

In M2005, the median re,avg is similar to the median re,i because cloud ice dom-198

inates the frozen hydrometeor mass. In Thompson, the median re,avg is similar to the199

median re,s because snow dominates the frozen hydrometeor mass. This causes Thomp-200

son to have an unrealistically large re,avg, which contributes to it having the weakest long-201

wave CRE in Figure 3b. All simulations have larger median re than observed, consis-202

tent with Stanford et al. (2017).203

Figure 3e shows the tail of the histogram of 1◦ x 1◦ nighttime longwave CRE for204

the simulations and CERES, which includes areas that contribute most to the tropical205

average and to differences between simulations and CERES.206

Shaded regions show the changes in LW CRE we get when we account for the CTH207

bias. The lines below the shaded region are unadjusted and the lines above the shaded208

region are adjusted. P3 does a strikingly good job at matching the observations. M2005209

has too many areas with average longwave CRE > 100 W m−2 because it has more anvil210

cirrus than DARDAR and 2C-ICE (Figure 3a). Thompson and SAM1MOM have too211

few areas with average longwave CRE > 30 W m−2, due to deficient anvil cirrus and (for212

Thompson) unrealistically large re.213

Figure 4 compares simulated vertical profiles of thermodynamic and cloud prop-214

erties with two ERA5 datasets, DARDAR and 2C-ICE. Figure 4a shows temperature215

profiles from ERA5 on 37 pressure levels and 137 model levels. In all simulations, tem-216

perature was nudged to pressure-level data (black dots), linearly interpolated to the gSAM217

model levels. The ERA5 model level data (black line) better resolves the 16-18 km layer,218
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 ERA5 Model Levels                             ERA5 Pressure Levels     
  2C-ICE         DARDAR V2.1.1                 DARDAR V3.1

a) b) c) d)

 P3                    M2005                   Thompson                     SAM1MOM

e)

Figure 4. Vertical profiles of tropical nighttime a) median temperature, b) median RHi,

c) cloud fraction (FWC ≥ 10−4 g m−3 only), d) IWC/FWC, and e) mean longwave radiative

cooling. P3 has only one ice class so IWC/FWC cannot be computed.

which includes the cold point at 17.3 km. All simulations have a warm bias in that layer219

and a cold point near 16 km instead of 17.3 km.220

Figure 4b show profiles of median relative humidity with respect to ice (RHi). SAM1MOM221

has a lower median RHi than the other simulations and ERA5, particularly above 14 km,222

possibly because it uses saturation adjustment for cloud ice, preventing RHi from ever223

exceeding 100%. The importance of representing ice supersaturation for simulated cir-224

rus properties has been noted in previous studies such as Lohmann et al. (2008). The225

other simulations have higher RHi than ERA5 near the cold point, but ERA5 may be226

biased by its internal ice microphysical modeling assumptions in the tropical tropopause227

layer, where routine observations of the very low water vapor concentration are uncer-228

tain.229

Figure 4c shows profiles of cloud fraction. For all simulations, the highest cloud tops230

are 2 km lower than observed, due to their artificially lowered cold point altitudes which231

result from nudging the model temperature to ERA5 temperature on pressure levels. Be-232

low 14.5 km, P3 agrees well with both DARDAR datasets and 2C-ICE, M2005 overes-233
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timates cloud fraction, and SAM1MOM and Thompson underestimate it. In M2005 and234

P3, cloud fraction increases monotonically up to the base of the tropical tropopause layer235

at 14 km. SAM1MOM has a nearly constant cloud fraction throughout the troposphere.236

Thompson’s peak cloud fraction is only at 10.5 km. Figure 4d, which shows the aver-237

age mass of IWC (cloud ice only) divided by FWC (cloud ice + snow + graupel), shows238

that Thompson’s FWC is dominated by snow, unlike M2005 and SAM1MOM. It is likely239

that, in Thompson, excessively efficient conversion of cloud ice to quickly falling snow240

causes the altitude of peak cloud fraction to be biased low.241

Figure 4e shows longwave radiative cooling profiles for the simulations. Through-242

out most of their depth, cirrus clouds reduce radiative cooling by absorbing upwelling243

longwave radiation. M2005 has up to 0.5 K day−1 less radiative cooling than the other244

simulations between 8 and 13 km due to its comparably large cirrus coverage. Thomp-245

son and SAM1MOM, which have the smallest cirrus coverage, correspondingly have the246

strongest longwave cooling. These results are consistent with Hu et al. (2021).247

Longwave CRE biases in the simulations can largely be explained by biases in the248

amount, the vertical structure, and the re of anvil cirrus, all of which can be estimated249

from spaceborne lidar and radar. These biases depend on the microphysics scheme; over-250

all P3 best matches remote-sensing observations.251

5 Simulated ice crystal populations lack observed variability252

As a complementary test of the microphysics schemes, we compare simulated Nice253

and FWC with in situ airborne observations from several tropical field studies, synthe-254

sized in the ‘Microphysics Guide to Cirrus’(Krämer, Rolf, Spelten, Afchine, et al., 2020)255

(see Section 2, Text S3 and Figure S3), which have been coarsened to 0.04 Hz to match256

the horizontal grid spacing of the simulations. Observations are from heights above 10257

km, and latitudes between 20◦S and 20◦N; model histograms are from high-cloud columns258

from all post-spin-up output times (day and night).259

Figure 5 shows 2D histograms of FWC and Nice for M2005, P3, Thompson and in260

situ observations. SAM1MOM is omitted because it does not predict or estimate Nice.261

Nice and FWC for M2005 and Thompson include cloud ice, graupel and snow. Vertical262

lines overlaid on the 2D histograms show limiters specified within the microphysics schemes.263

These limiters are designed to prevent algorithms within the schemes from producing264
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physically implausible results; if the limiter is frequently active, this suggests problems265

with parameterization assumptions made within the scheme and/or biases in dynamics.266

Dotted lines show limiters on total cloud ice concentration and dashed lines show lim-267

iters on the concentration of ice particles produced through deposition nucleation, which268

is the dominant mode of nucleation within the temperature range investigated here. In269

Thompson, these two limiters are the same.270

In M2005 and P3, most grid cells have values of Nice that are very close to the smaller271

of these two limiters, which are 0.3 and 0.1 cm−3, respectively. They have higher mean272

Nice than the in situ observations and lack the observed variability in Nice and depen-273

dence of Nice on FWC.274

Thompson has many grid cells with tiny FWC and Nice and a subpopulation of275

grid cells dominated by snow (a large ratio of FWC to Nice) as a result of efficiently con-276

verting most cloud ice to snow. Although P3 lacks the observed variability, its mean Nice277

is closest to the observed mean.278

6 Conclusions279

Tropical longwave cloud radiative effects (CREs) simulated by a global storm-resolving280

model are highly sensitive to ice microphysics, even when nudging is used to largely re-281

move microphysics-dynamics feedbacks. Average biases in longwave CRE vary over a 22282

W m−2 range across four simulations which differ only in their microphysical schemes,283

due to variability in cirrus amount, thickness, cloud top height, and ice crystal number284

and size. This shows the need for further improvement of ice microphysics parameter-285

izations, even in GSRMs, for which the convective forcing of cirrus clouds is much more286

realistically represented than in present-day GCMs.287

Our study illustrates some key advantages of nudging, including isolating the sen-288

sitivity of simulated clouds to microphysics and precisely diagnosing radiative biases us-289

ing coincident observations. However it also introduces a caveat, as nudging to a dataset290

that had lower vertical resolution than our model caused temperature biases around the291

cold point, which in turn caused tropical high cloud top heights to be biased low by nearly292

2 km.293

Simulations run with Thompson and SAM1MOM microphysics, which are partial294

double-moment and single-moment schemes, respectively, had weak longwave CREs. Thomp-295
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Total Cloud Ice Limiter          Deposition Nucleation Limiter

Single-particle masses/mean equivalent sphere radii for isolines (top to bottom):
1)  2 x 10-7 mg / 3.7 μm    2)  1 x 10-6 mg / 6.4 μm    3)  5 x 10-6 mg / 10.9 μm    4)  2.5 x 10-5 mg / 18.7 μm 
5)  1.3 x 10-4 mg / 31.9 μm    6)  6.3 x 10-4 mg / 54.6 μm    7)  3.1 x 10-3 mg / 93.4 μm

Figure 5. 2D histograms of FWC (y-axis, log-scale) and Nice (x-axis, log-scale). Vertical

dashed and dotted lines indicate limiters on total cloud ice number concentration and cloud ice

particles that can be formed through deposition nucleation, respectively. Diagonal dashed lines

show isolines; their corresponding single-particle masses and mean equivalent sphere radii are

listed.
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son rapidly converts cloud ice to larger snow particles, which fall quickly and reduce cir-296

rus cloud cover, and decrease the optical depth of the remaining cirrus, even though the297

snow is radiatively active. SAM1MOM’s small cirrus coverage may be related to the in-298

stantaneous sublimation of sedimenting cloud ice in subsaturated conditions, and to ne-299

glecting the radiative effects of snow.300

The other two simulations, run with M2005 and P3 microphysics, which are both301

more complex double-moment schemes, had more cirrus and agreed better with clima-302

tological satellite retrieval products from DARDAR and 2C-ICE. P3’s longwave CRE303

agrees best with coincident observations from the CERES satellite.304

Simulated ice crystal number concentrations in M2005 and P3 ubiquitously hit ar-305

bitrary limiters within the microphysics schemes. As a result, typical ice crystal num-306

ber concentrations lack the observed variability and dependence on frozen water content.307

Ice crystal concentrations hitting limiters can result from too strong ice crystal sources,308

too weak ice crystal sinks and/or errors in the resolved dynamics. As M2005 and espe-309

cially P3 are the most promising schemes, and are used in several existing GCMs and310

GSRMs, an important avenue for future work is detangling these factors to precisely di-311

agnose the cause of too high ice crystal number concentrations. It is worth considering312

that the schemes used here have been developed mainly for the purpose of simulating313

midlatitude storm systems or, in the case of M2005, Arctic mixed-phase clouds (Morrison,314

Curry, Shupe, & Zuidema, 2005). Tropical high clouds likely have different dynamical315

and microphysical drivers. For example, convectively-generated gravity waves, which are316

only partly resolved by global storm-resolving models, are an important source of small-317

scale dynamic variability in the tropics (Atlas & Bretherton, 2023). Additionally, trop-318

ical high clouds exist at very cold temperatures and may be more influenced by homo-319

geneous nucleation of aerosol, which is unrepresented in these schemes, and less influ-320

enced by heterogeneous nucleation.321

7 Open Research322

CERES(NASA/LARC/SD/ASDC, 2017), 2C-ICE R05 (https://www.cloudsat.cira323

.colostate.edu/data-products/2c-ice), DARDAR-CLOUD V2.1.0 and V3.10 (http://324

www.icare.univ-lille1.fr), and the Microphysics Guide to Cirrus (Krämer, Rolf, &325

Spelten, 2020) are publicly available online. Simulated model output cannot be made326
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available due to the experimental nature of the simulations and the large storage space327

required.328
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Text S1: Description of ice microphysics in the four different microphysics schemes

In SAM1MOM (Khairoutdinov & Randall, 2003), two prognostic variables represent all water

species: (1) total water mass mixing ratio, which combines water vapor and non-precipitating

hydrometeors and (2) the precipitating hydrometeor mass mixing ratio. Both non-precipitating

(cloud liquid and cloud ice) and precipitating (rain, snow and graupel) hydrometeors are parti-

tioned between liquid and ice phases based on temperature, and ice phase precipitating hydrome-

teor mass is further partitioned between snow and graupel based on temperature. Only cloud ice

is radiatively active. SAM1MOM partitions total water into water vapor and cloud condensate

using saturation adjustment at all temperatures, including for cloud ice. This means that cloud

ice condenses and sublimates instantaneously at ice saturation. Rain, snow and graupel number

are prescribed as functions of rain, snow and graupel mass, respectively, but cloud ice number

does not exist in the scheme.

M2005 (SAM version 3.5), which is the microphysics scheme originally described in Morrison,

Curry, and Khvorostyanov (2005) but with a rimed ice species added as in Morrison, Thompson,

and Tatarskii (2009), predicts number and mass for three frozen hydrometeor classes (cloud ice,

snow and graupel). Cloud ice and snow are both radiatively active. Thompson (Thompson

et al., 2008) (based on WRF version 3.5.1) predicts mass for three frozen hydrometeor classes

(cloud ice, snow and graupel) and number for cloud ice only. Snow number is prescribed as a

function of snow mass and temperature following Field et al. (2005). Cloud ice and snow are

both radiatively active. P3 (Morrison & Milbrandt, 2015) (SAM version and 3.5) is run with one

radiatively active ice class, for which it predicts mass, number, rime volume and rime mass.
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M2005, Thompson and P3 heterogeneously nucleate ice through deposition and immersion

freezing. M2005 also includes contact nucleation. At the temperatures and heights examined

here, deposition nucleation dominates heterogeneous nucleation.

In M2005, deposition nucleation occurs when either ice supersaturation exceeds 8% or the air

is saturated with respect to liquid and colder than −8◦C. In Thompson, it occurs when either ice

supersaturation exceeds 25% or air is saturated with respect to liquid and colder than −12◦C.

In P3, it occurs when the temperature is below −15◦C and ice supersaturation exceeds 5%. All

three schemes use the Cooper curve (Cooper, 1986) to specify the concentration of ice nucleating

particles for deposition nucleation and have limiters which specify a maximum concentration of

ice particles that can be formed by deposition nucleation. The limiters in P3, Thompson, and

M2005 are .1, .25 and .5 cm−3, respectively.

All three microphysics schemes also support homogeneous freezing of droplets and raindrops

when the air temperature is < −40◦C but do not support homogeneous freezing of aerosol.

Limiters act to restrict the total concentrations of cloud ice particles to be no larger than 2, .25

and .3 cm−3 in P3, Thompson and M2005, respectively.

Text S2: Processing of DARDAR and 2C-ICE

DARDAR and 2C-ICE both retrieve frozen water content (FWC) from Cloud-Aerosol Li-

dar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar attenuated backscatter and

CloudSat radar reflectivity. A major difference between the two retrievals is that 2C-ICE pa-

rameterizes radar reflectivity for grid cells where the cloud is too thin to be detected by the

CloudSat radar (Deng et al., 2015). Here, we compare retrievals of frozen water content (FWC)

and frozen water path (FWP) between DARDAR V3.10 and 2C-ICE to examine the impact of

3



Figure S1. Distributions of FWC from nighttime and daytime measurements separately for (top to bottom row)
all data, regions sensed by both the radar and lidar, lidar only regions, and radar only regions, for 2C-ICE (left) and
DARDAR (right).
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Figure S2. Blue, orange and green lines show the average mass fraction of a column that is sensed by the lidar only,
radar only, and both instruments, respectively, as a function of column FWP.

that difference. Because the two versions of DARDAR are more similar to each other than they

are to the 2C-ICE, we only examine the newer version of DARDAR here.

Figure S1 shows distributions of FWC from the two satellite retrievals broken up into daytime

and nighttime measurements, and, in the bottom three rows, according to which instruments the

retrieval is coming from (lidar only, radar only or both). In general, retrieved FWCs are smaller in

2C-ICE than in DARDAR. Most of this difference comes from lidar-only regions, where 2C-ICE

returns FWCs that are about one order of magnitude smaller on average than those retrieved by

DARDAR. 2C-ICE also has a more bimodal distribution than DARDAR for radar-only regions.

The two retrievals agree best for regions with both instruments.

DARDAR’s retrievals show a greater diurnal dependence, particular in the lidar-only regions,

due to the fact that the lidar is more sensitive at night. Because DARDAR has greater sensitivity

at night, we restrict our comparisons between the simulations and satellite retrievals to nighttime

measurements. Additionally, because DARDAR cannot detect FWCs < 10−4 g m−3 at night,

we filter FWCs smaller than that out of both the simulated output and the satellite retrievals

before computing FWP.
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Given that the retrievals diverge most from each other in lidar only regions, we examine

the mass fraction that comes from lidar-only regions, radar-only regions and regions with both

instruments as a function of FWP in Figure S2 (left y-axis). Distributions of FWP are overlaid

(right y-axis). For FWPs> 30 g m−2, most of the FWP comes from regions with both instruments

or with radar only. Accordingly, the two retrievals agree well within this range. For FWPs < 30

g m−2, the satellite retrievals are very different from each other and do not provide as tight a

constraint on the simulations.

Text S3: Processing of the ‘Microphysics Guide to Cirrus’

The ‘Microphysics Guide to Cirrus’ (Krämer, Rolf, Spelten, Afchine, et al., 2020; Krämer, Rolf,

& Spelten, 2020) includes quality controlled microphysics and thermodynamics observations from

24 field campaigns. Five of those campaigns measured FWC and ice crystal number concentra-

tion (Nice) at latitudes between 20◦S and 20◦N and altitudes > 10 km, including Airborne Trop-

ical TRopopause EXperiment (Jensen et al., 2017, ATTREX), Convective Transport of Active

Species in the Tropics EXperiment (Pan et al., 2017, CONTRAST), Aerosol, Cloud, Precipita-

tion, and Radiation Interactions and Dynamics of Convective Cloud Systems (Wendisch et al.,

2016, ACRIDICON), Tropical Composition, Cloud and Climate Coupling Experiment (Toon et

al., 2010, TC4), and Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection (POSIDON).

Figure S3 shows the flight tracks from all five campaigns, and lists the instruments used to

measure or compute FWC and Nice.

All data in the Microphysics Guide have a resolution of 1 Hz. Air speeds in the upper tropo-

sphere are typically 200 m s−1, so we coarsened the data to .04 Hz (or 25 seconds) so that each

data point would correspond to an approximately 5 km horizontal distance, and better match
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Ice crystal number concentration: Fast Cloud Droplet Probe (FCDP) 
and 2-Dimensional Stereo Probe (2DS)
Frozen water content: NOAA Water

Ice crystal number concentration and Frozen water content: Cloud 
Droplet Probe (CDP) and 2-Dimensional Cloud Probe (2DC)

Ice crystal number concentration and Frozen water content: New 
Ice eXpEriment-Cloud and Aerosol Particle Spectrometer (NIXE-CAPS)

Same instruments as ATTREX

Ice crystal number concentration: 2-Dimensional Stereo Probe (2DS)
Frozen water content: Closed-Path Laser Hygrometer (CPL)

Figure S3. Campaign flight tracks in magenta with white overlay indicating in-cloud data above 10 km and within
20◦N and 20◦S. Map titles include the campaign name and the number of .04 Hz data points used in parentheses. Below
each map, instruments used to measure or compute FWC and Nice are listed.
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the spatial scale of the simulated output. The numbers next to the flight campaign names in

Figure S3 are the number of in-cloud, 0.04 Hz data points that match the latitude and altitude

criteria.
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Text S4: Cloud top height bias correction

As discussed in Section 4 of the main text, and shown in Figures 3 and 4, cloud top heights

(CTHs) are biased low in all simulations due to temperature biases around the cold point inher-

ited, through nudging, from the ERA5 reanalysis data on pressure levels. We correct for this bias

by computing an average cloud top temperature (CTT) bias from the the average CTH bias and

the average CTT lapse rate in the simulations. The left column of Figure S4 shows distributions

of CTH for simulations and observations for land and ocean separately. The CTH bias in present

over both land and ocean but is slightly smaller over land. The average CTH bias is 1.85 km.

The right column of the Figure S4 shows CTT as a function of CTH. The average CTT lapse

rate is 7.6 K km−1. Multiplying the average CTH bias by the average CTT lapse rate, we get

that the average CTT bias in the simulations is 14 K. We adjust the longwave CREs for clouds

with CTH > 10 km, to account for the CTH bias, using the following equation:

Adjusted longwave CRE = longwave CRE + ε× kB × [CTT4 − (CTT − 14)4]

ε is the cirrus emissivity, which we estimate to be 0.5.

Figures S5 is a version of Figure 2 using the adjusted longwave CREs. The low CTH bias

artificially reduces the longwave CREs in the simulations, so accounting for it increases them.

This improves the longwave CRE biases in P3, Thompson and SAM1MOM, but makes them

worse in M2005. SAM1MOM and Thompson still have longwave CREs that are substantially

too low after the adjustment.
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2C-ICE    DARDAR V2.1.1               DARDAR V3.10     CERES

 P3                    M2005                   Thompson                     SAM1MOM

La
nd

O
ce

an

Mean CTH (km)
15.3 (2DC)
15.7 (V2.1.1)
15.6 (V3.10)
14.1
13.2
13.8 
13.4

Mean CTH (km)
15.6 (2DC)
15.9 (V2.1.1)
15.9 (V3.10)
14.6 
13.7 
14.3 
13.9 

Lapse rate (W m-2)
-7.7 (M2005)
-7.9 (Thompson)
-7.7 (P3)
-8.0 (SAM1MOM)

Lapse rate (W m-2)
-7.5 (M2005)
-7.7 (Thompson)
-7.5 (P3)
-7.7 (SAM1MOM)

Figure S4. Left column shows normalized distributions of cloud top height (CTH) for the observations and
simulations for land (top) and ocean (bottom) separately. Mean cloud top heights are indicated by the vertical lines and
printed on the plot. Right column shows mean cloud top temperature (CTT) as a function of height. Lines are fitted for
CTHs between 10 and 14 km to estimate CTT lapse rates, which are printed on the plots.
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Figure S5. Same as Figure 2 but using the adjusted longwave CRE

Movie S1. For each hour of output from days 2-5 of the simulations, we show left: Snapshots

of simulated frozen water path (FWP, including cloud ice, snow and graupel) for columns with

cloud top height (CTH) > 10 km on the simulations’ native grid and right: Coincident snapshots

of longwave CRE bias compared to CERES on a coarsened 1◦ x 1◦ grid. At high zenith angles,

CERES sometimes mistakes land for cloud, causing a positive (blue) bias over the land. This is

especially evident over Africa.
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