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Abstract

High temperature extremes accompanied by drought have led to serious ramifications for environmental and socio-economic

systems. Thus, improving the predictability of heat-wave events is a high priority. One key to achieving this is to better under-

stand land-atmosphere interactions. Recent studies have documented a hypersensitive regime in the soil moisture-temperature

relationship when soil dries below a critical low threshold, air temperatures increase at a greater rate as soil moisture declines. In

this study, we explore the mechanisms linking low soil moisture to high air temperatures. From in-situ observations, we confirm

that the hypersensitive regime acts throughout the chain of energy processes from land to atmosphere. A simple energy-balance

model indicates that the cause of the hypersensitive regime is the dramatic drop in evaporative cooling that occurs when soil

moisture dries to the permanent wilting point, below which latent heat flux almost ceases. Precisely how a model represents the

relationship between evapotranspiration and soil moisture is found to be essential to describe the occurrence of hypersensitive

regime. Thus, we advocate that climate models should ensure a realistic representation of land-atmosphere interactions to

obtain reliable forecasts of extremes and climate projections, aiding the assessment of climate vulnerability and adaptation.
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Key points: 12 

• Hypersensitive regime acts throughout the chain of energy processes 13 from land to atmosphere 14 

• Hypersensitive regime occurs when soil moisture dries to the permanent 15 wilting point 16 

• Model's representation of evapotranspiration fundamentally governs the 17 occurrence of hypersensitive regimes. 18   19 
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Abstract 20 

 21 High temperature extremes accompanied by drought have led to serious 22 ramifications for environmental and socio-economic systems. Thus, improving 23 the predictability of heat-wave events is a high priority. One key to achieving this 24 is to better understand land-atmosphere interactions. Recent studies have 25 documented a hypersensitive regime in the soil moisture-temperature 26 relationship when soil dries below a critical low threshold, air temperatures 27 increase at a greater rate as soil moisture declines. In this study, we explore the 28 mechanisms linking low soil moisture to high air temperatures. From in-situ 29 observations, we confirm that the hypersensitive regime acts throughout the 30 chain of energy processes from land to atmosphere. A simple energy-balance 31 model indicates that the cause of the hypersensitive regime is the dramatic drop 32 in evaporative cooling that occurs when soil moisture dries to the permanent 33 wilting point, below which latent heat flux almost ceases. Precisely how a model 34 represents the relationship between evapotranspiration and soil moisture is 35 found to be essential to describe the occurrence of hypersensitive regime. Thus, 36 we advocate that climate models should ensure a realistic representation of 37 land-atmosphere interactions to obtain reliable forecasts of extremes and 38 climate projections, aiding the assessment of climate vulnerability and 39 adaptation. 40   41 
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Plain-language summaries 42 
 43 Hot temperature extremes combined with droughts have caused significant 44 problems for the environment and economies. Improving prediction of 45 heat-wave events is of utmost importance. This can be achieved by a better 46 understanding of how land conditions affect near surface atmosphere and vice 47 versa. Recent evidences have shown that when the soil becomes very dry and 48 below a certain threshold, even a slight decrease in soil moisture yields a 49 substantial increase in air temperature. However, the behind mechanism 50 remains unclear. In this study, we validate that hypersensitive regimes indeed 51 result from energy transmission from land to atmosphere by using observations. 52 Subsequently, we built a simple model to explore how air temperature correlates 53 to land wetness conditions. Our model indicates that hypersensitive regime 54 occurs when there is a dramatic drop in evaporation when soil moisture dries to 55 the permanent wilting point, below which water is no longer drawn from the soil 56 by plant roots. The diminished evaporation significantly curtails the cooling 57 effect on the atmosphere. Notably, the model's representation of evaporation 58 behavior fundamentally governs the occurrence of hypersensitive regimes. To 59 achieve reliable forecasts of climate extremes and projections, a realistic 60 depiction of land-atmosphere interactions is indispensable. 61  62  63   64 
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1. Introduction 65  66 Heatwaves have dramatic ramifications for socioeconomic, ecological, and 67 hydrologic systems (Zaitchik 2006; Coumou and Rahmstorf, 2012; Zander et al. 68 2015). The increase in frequency and intensity of heatwaves and concomitant 69 drought in recent decades calls for a better understanding of these extreme 70 events (Perkins et al. 2012; Sheridan and Lee 2018; Founda et al. 2019; Yu et al. 71 2019). Such extremes are usually driven by atmospheric conditions － in most 72 cases, there is tropospheric subsidence induced by a quasi-stationary high 73 pressure system that suppresses the likelihood of precipitation, leading to 74 unremitting hot and dry conditions near the surface (Della-Marta et al 2007; 75 Alvarez-Castroet al 2015). Certain phases of natural variability in the 76 atmosphere alter regional circulations (Sutton and Hodson 2005; 77 Perkins-Kirkpatrick et al. 2017; Horton et al. 2015; Marotzke and Forster 2015), 78 or recurrent patterns of stationary planetary waves (Petoukhov et al 2013; 79 Kornhuber et al. 2017) that can be responsible for the occurrence of these 80 abnormal synoptic conditions. Additionally, there are studies suggesting global 81 warming can also be a significant contributor (Wehrli et al 2019; Seo et al. 2020). 82 Nevertheless, it appears many regional drought/heat wave episodes cannot be 83 fully explained without considering the contribution of land-atmosphere 84 interactions, which can act to maintain or even exacerbate these abnormal hot 85 and dry conditions (Seneviratne et al. 2006, 2010; Miralles et al 2014; Vogel et al. 86 2017; Schumacher et al. 2022, Mukherjee et al. 2023). 87  88 Normally, the incoming radiation energy at the land surface is partly consumed 89 by land evaporation and vegetation transpiration that is released as latent heat 90 flux (LE) (Santanello et ai. 2018). Anomalous dry soil conditions reduce LE, 91 accompanied by enhanced sensible heat flux (H), which results in warming and 92 drying of air near the surface (Eltahir 1998; Schwingshackl et al. 2017). As 93 moisture sources such as precipitation are rare during heatwave/drought 94 episodes, a feedback loop is established within which growing deficits in soil 95 moisture content leads to even warmer air temperatures, aiding the persistence 96 and bolstering the magnitude of heatwaves (Whan et al 2015; Vogel et al 2018; 97 Erdenebat and Sato 2018; Seo et al. 2019). In addition to local land surface 98 processes, amplification of heatwaves can be induced by upwind dry land 99 conditions, where the resulting hot air is advected to downwind regions 100 exacerbating extreme temperatures (Schumacher et al. 2019). The prerequisites 101 of the phenomena mentioned above are that soil moisture variations in the 102 moisture-limited regime, when available energy is plentiful, lets LE be sensitive 103 to soil moisture variations. In contrast, in an energy-limited regime, the amount 104 of LE is controlled by available energy instead of soil moisture (Seneviratne et al. 105 2010; Budyko 1974; Koster and Milly 1997; Zeppetello et al 2019; Hsu and 106 Dirmeyer 2022).  107  108 Recent analysis with in-situ observations of land and near-surface atmospheric 109 variables over North America (Benson and Dirmeyer 2021) and Europe 110 (Dirmeyer et al. 2021) uncovered a two-step negative relationship between soil 111 moisture content (SMC) and daily air maximum temperature (TAmax). When soil 112 moisture content drops below a specific threshold, a stronger negative 113 
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relationship has been found. This occurs in a hypersensitive regime below the 114 threshold called the SMC breakpoint (SMbp), which is found to correspond 115 closely to a property of the vegetation-soil system called the wilting point (WP) 116 (Benson and Dirmeyer 2021). When SMC drops below WP, transpiration drops 117 as hydraulic pressure prevents soil water from getting into plant roots (Budyko 118 1974) and surface evaporation is limited to the meager diffusion of water vapor 119 from the soil matrix into the air, rather than phase changes of liquid water near 120 the surface. Under such conditions, land surface LE nearly vanishes and there is 121 no cooling process to offset the various warming processes. The increased 122 amount of compensating H, along with intensified upward longwave radiation 123 from hotter surfaces, are hypothesized to become major contributors to the 124 escalation of air temperatures. Accurately estimating the SMbp and 125 understanding the physics behind the hypersensitive regime are essential new 126 directions for understanding the mechanism of heatwave and improving forecast 127 skill. 128  129 The hypersensitive regime relating SMC:TAmax that has been diagnosed from 130 observations inherently yields questions: The diagnosed analysis does not 131 directly indicate the casual linkage from land to atmosphere hypothesized above. 132 Are land surface processes indeed responsible for the hypersensitive regime? If 133 so, what are the physical mechanisms inducing feedback in the hypersensitive 134 regime? In this study, we explore these questions using in-situ observations and 135 a simple model for soil evaporation and temperature based on the surface 136 energy-balance relationship. 137  138 
2. Data and breakpoint analysis 139 
 140 Hourly fields of variables are used from FLUXNET2015 (Pastorello et al. 2020). If 141 land surface processes operate in hypersensitive regimes, theoretically, the same 142 characteristics of sensitivity should be found not only for SMC:TA relationship 143 but also in the variables involving the chain of energy processing linking land 144 and atmosphere, namely via sensible heat flux (H) and surface temperate. As 145 surface radiative temperature, or “skin” temperature, is not measured at these 146 sites, the soil temperature (TS) of the topmost soil layer is used as a proxy.  147  148 Accordingly, hourly fields of soil moisture content (SMC), air temperature (TA), 149 soil temperature (TS), sensible heat flux (H), and latent heat flux (LE) are used. 150 We the take shallowest layer SMC (typically 5 to 10 cm below the surface) at 151 0900 local time for analysis to avoid the systematic measurement bias of SMC 152 with diurnal temperature fluctuations (Kapilaratne and Lu 2017). H and LE are 153 averaged between 0900 and 1200 local time, which is a critical period for 154 land-atmosphere interactions and strongly controlled by SMC. Then, breakpoint 155 analysis achieved by piecewise regression (Schwingshackl et al. 2017; Benson 156 and Dirmeyer 2021; Dirmeyer et al. 2021; Hsu and Dirmeyer 2023) is applied to 157 the data from the three warmest calendar months of the recorded period for 158 each site.   159  160 At each station and each target month from all available years, one breakpoint is 161 found by piecewise regression. The piecewise regression optimizes the best fit to 162 
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minimize the total mean square error across the data space by seeking four 163 parameters: an intersection point (breakpoint values for both SMC and its 164 predictand, i.e., TA, H, or TS), and the slopes for each side of the breakpoint. 165 These four parameters are data-driven without any prejudgment. That is, we do 166 not limit a priori the valid range of breakpoints and slopes.  167  168 We retain only the results that are considered as a detection of hypersensitive 169 regime by the following screenings: First, the sensitivity of the variable has to 170 match physical understanding － the slope on the both sides of the breakpoint 171 must be negative as soil wetness must negatively affect temperature by 172 land-atmosphere interactions. Second, the dry-side slope must be steeper than 173 the wet-side slope, so it corresponds to a hypersensitive regime. Finally, the 174 difference of the slopes across the breakpoint must pass the significant test at 175 p<0.05 level. To obtain statistical significance, degrees of freedom (DOF) are 176 firstly estimated with the sample size divided by τ+1, where τ is the one-day 177 lagged autocorrelations of the SMC timeseries consisting of the daily 0900 LT 178 values of target months catenated across available years. Then, the p-value is 179 obtained by the two sample Z-test using the adjusted DOF. The same test is 180 applied for the significance of the differences in slopes in Figure 3b. 181  182  183 
3. Hypersensitive regimes detected from in-situ observations 184 
 185 We take the site CN-Qia (26.7°N,115.°E) as an example to show the 186 hypersensitive characteristics in the SMC:TAmax relationship (Figure 1a). A SMbp 187 separates the SMC:TAmax as a negative slope on its wet side (black dots fitted by a 188 red line) and a more negative slope on its dry side (brown dots fitted by a gray 189 line). The slope of the fitted regression lines serves as an indicator for the 190 sensitivity. The slope difference across the SMbp is statistically significant with 191 p<0.01, which validates the detection of SMbp and a hypersensitive regime. The 192 same hypersensitive patterns are also seen for SMC:H and SMC:TSmax (Figure 193 1b&c). With TAmax, H, and TSmax respectively representing the land, 194 land-atmosphere interface, and atmosphere links of this land-to-atmosphere 195 process chain, these results imply the hypersensitive regime found in TAmax can 196 be attributed to land surface processes. Comparing with the SMC:LE relationship 197 (Figure 1d; SMbp is set as the value of breakpoint for SMC:TAmax), the patterns 198 hint that the hypersensitive regime happens when there is a drop in LE and 199 available energy is mostly channeled into H when soils reach a certain dryness.   200  201 The same analysis is conducted across other flux sites for the recorded three 202 warmest calendar months throughout all available years of data. Figure 2 shows 203 the available sites from FLUXNET2015. Sites with a colored triangle indicate that 204 the hypersensitive regimes are detected in all three SMC:TAmax, SMC:H, and 205 
SMC:TSmax relationships. Hypersensitive regimes are found over 37 out of 267 206 available sites, which is not a large amount. This may be mainly attributed to the 207 inherent variations across locations in soil type, land cover and climatological 208 background states. FLUXNET2015 is mainly an ecological monitoring network 209 whose tower locations are skewed toward wetter vegetated sites. Across most 210 
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sites, soils seldom get dry enough to reach an effective SMbp, no regime 211 transitions are detected.  212  213 
4. Land surface processes contribute to hypersensitive regimes 214 
 215 A statistical approach as described above raises a doubt: although hypersensitive 216 regimes are found from the land through the atmosphere, it does not necessarily 217 indicate a causal linkage between land and atmosphere. The detected 218 hypersensitive regimes found in these pairs of variables might be determined by 219 chance. We resolve this concern by two analyses: (1) If the hypersensitive 220 regimes are randomly determined, there will be a spread of the SMbp 221 determined for SMC:TAmax, SMC:H, and SMC:TSmax. Accordingly, if they are aligned 222 for three sets of analysis, SMbp must be a quantity emerging from physical 223 constraints linking these relationships. (2) If the hypersensitive regimes are 224 induced by land surface processes, the sensitivity of SMC:TSmax will be stronger 225 than that of SMC:TAmax, based on the second law of thermodynamics. As energy 226 moves from the soil to the atmosphere, a greater portion of it is lost, resulting in 227 a comparatively reduced sensitivity of the hypersensitive regime in the 228 atmosphere compared to that of the soils. That is, the dry-side slope of 229 regression for SMC:TSmax should be steeper than that of SMC:TAmax.  230 
 231 Figure 3a displays the difference of the percentile values of the SMbp between 232 
SMC:TSmax and SMC:H (x-axis) and between SMC:H and SMC:TAmax  (y-axis) for 233 each site where the hypersensitive regimes are detected in the 234 land-to-atmosphere chain. Chi-square tests are used to estimate the statistical 235 significance of these differences. For all sites, no significant difference is 236 identified, as indicated by the p-value chart (Figure 3b). Thus, the alignment of 237 
SMbp throughout the land, land-atmosphere interface, and atmosphere supports 238 the argument that SMbp emerge from consistent physical processes.    239 
 240 Figure 3c compares the magnitude of sensitivity between SMC:TAmax and 241 
SMC:TSmax at the dry side of their corresponding SMbp. In most sites, sensitivity 242 in SMC:TAmax is not stronger than in SMC:TSmax and their difference is statistically 243 significant even though a few sites show different relationships. US-ARb (35.5°N, 244 98°W) stands out from these cases, presumably related to the fact that the site 245 was burned in March 2005 in the middle of its analyzed period. Its land cover 246 type is identified as barren sparse vegetation, which is also unique among all 247 available sites. Nevertheless, the general pattern here showing a stronger 248 hypersensitive regime in the land than in the atmosphere hints that land surface 249 processes are the driver leading the exacerbated heating of surface air 250 temperature during dry soil conditions － hypersensitive regimes in TAmax 251 result from the rapid increase in H over extremely dry and warm soils. 252  253 
5. A toy energy-balance model explains the hypersensitive regimes 254  255 The last step to explain the occurrence of the hypersensitive regime is to 256 investigate why the increase in TS with drying soils becomes sharper when soil 257 wetness drops below SMbp. This would require an energy budget of soils in top 258 few centimeters. However, such an analysis is unable to be executed for most of 259 
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in-situ sites where ground heat flux is not measured. We have built a simple 260 physical model based on the surface energy balance equation for a soil layer 261 under different soil dryness conditions in moisture-limited regimes. 262  263 Our model explores the hypersensitive regime behavior of SMC:TSmax based on 264 the surface energy budget equation. The set of equations to calculate all 265 components are listed below: 266  267 

d(Cs TS)/dt = R–LE–H–G  268 (1) 269 

H = Ch (TS–TA) 270 (2) 271 

G = Cg (TS–TG) 272 (3) 273 

dTS =  TS*–TS 274 (4) 275 
 276 

 277 
R is net radiation, which is set as a constant 1000 W/m2. H stands for sensible 278 heat flux and G stands for ground heat flux. These two fluxes are described as 279 products of the thermal conductivities (Ch and Cg) and the respective 280 temperature gradients. TS, TA, and TG stand for top layer soil temperature, air 281 temperature, and ground temperature below the surface soil layer, respectively. 282 
Cs is soil heat capacity. Ch, Cg, and Cs are tunable parameters (unit: kJ K-1 kg-1). 283 They can be set as constants or as functions of SMC; however, either choice does 284 not affect the interpretation of the results and thus is not a focus here. TS* is the 285 updated state of TS. 286  287 
WP is set at SMC equal 0.09 m3m-3. LE is determined as a function of SMC and 288 input energy R based on the SMC:LE characteristic in different surface hydrology 289 models described above when SMC>WP. For BM, the linear relationship: 290  291 

LE=R (SMC–0.09) 292 (5) 293  294 For SWAP, the exponential relationship: 295  296 

LE=R (SMC–0.09)k  297 (6) 298  299 where k is a constant and must be set between 0 and 1 to mimic SMC:LE 300 characteristic in SWAP. Here, k is set arbitrarily to 0.5; its precise value does not 301 affect the pattern of TS*. 302  303 The toy model estimates TS by prescribing LE under given initial soil wetness 304 conditions. As a result, the rate of increase in TS is determined by the imbalance 305 
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in energy among net radiation (R) and heat fluxes at the land surface. With the 306 above set of equations, this toy model assumes that: (1) we perfectly know how 307 
LE reacts with SMC and the rest of the states are modeled after LE is determined. 308 (2) Surface layer soil temperature TS perfectly represents skin temperature, so H 309 is determined by air-soil temperature gradient. (3) Air temperature TA and deep 310 layer soil temperature TG are constants as they do not respond to available 311 energy as quickly as TS. In the default experiment, initial conditions for TS, TA, 312 and TG are set to 293.15K. Ch, Cg, and Cs are set to 1 kJ K-1 kg-1. TS* in Figure 4 is 313 obtained after one-hour energy input with SMC states tested at 0.01 m3m-3 314 intervals. In the extreme case experiments, Ch, Cg, and Cs are set with extremely 315 small values (1/10 times default value) or extremely large values (10 times 316 default value). 317  318  319 In this idealized test, we find that precise values of these quantities and 320 parameters are not crucial. The key factor to permit the occurrence of a 321 hypersensitive regime is the functional relationship between LE and SMC. Two 322 sets of experiments are implemented by setting LE as different functions of SMC 323 based on two different widely-used hydrologic models: the bucket model (BM) 324 (Manabe 1969; Laio et al. 2001; Porporato et al. 2001) and the Soil Water 325 Atmosphere Plant (SWAP) model (van Dam et al. 2008).  326  327 Within the BM framework, evaporation is controlled by saturation deficiency in 328 
SMC. When SMC is insufficient to meet the atmospheric demand, in this model 329 the saturated SMC, evaporation decreases linearly from a maximum value at the 330 saturated SMC to zero at a value of SMC close to WP. Based on this physical 331 moisture behavior, LE is described as a simple linear function of SMC when 332 
SMC>WP (cyan line in Figure 4a). 333  334 SWAP considers more realistic and thus complex circumstances of soil hydraulic 335 properties. Mainly, the calculation of evapotranspiration takes into account a 336 reduction of root water uptake with soil water depletion and a changing 337 hydraulic conductivity with decreasing soil water. As a result, 338 evapotranspiration decreases nonlinearly from the saturated SMC to the WP. 339 Accordingly, the relation of LE to SMC can be simplified as a power function 340 when SMC >WP (cyan line in Figure 4b).  341  342 Bold black lines display the responses of TS when prescribing an input energy of 343 1000 W/m2 after an hour under a default set of parameters describing thermal 344 conductivity for G and H and soil heat capacity. TS responses with parameters set 345 to extremely small and large values are displayed by dashed-black and 346 dotted-black lines, respectively. These experiments with tuned parameters serve 347 as sensitivity tests.  348  349 In Figure 4a, the results with LE determined by BM show that the hypersensitive 350 regime does not emerge. On the other hand, when LE is a power function of SMC, 351 hypersensitive regime occurs as LE drops dramatically and SMC dries toward the 352 WP no matter how the parameters are set. The result indicates that the 353 hypersensitive regime happens because of the exacerbated reduction in LE 354 
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(which is not characterized by the BM evaporation response curve) accompanied 355 by changes in H (orange line) and G (brown line). The hypersensitive regime 356 declines after soils dry below the WP. 357 
 358 Examining which function can outperform the linear regression to describe 359 
SMC:LE relationship is not a focus here. In fact, besides the power function, using 360 other functions, e.g., exponential model or polynomial model, that can simulate a 361 nonlinear drop in LE with SMC as presented by SWAP, also achieve a 362 hypersensitive regime. However, practically, a more complex fitting does not 363 universally outperform linear regression for SMC:LE relationship in 364 FLUXNET2015 when goodness of fit is penalized by the number of parameters 365 (not shown). Nevertheless, the inadequacy of the simple linear model to simulate 366 a hypersensitive regime arises from its failure to account for the accelerated 367 reduction in LE during soil drying. This justifies that SWAP is more realistic than 368 BM not just statistically, but phenomenologically. 369  370 
6. Discussion 371 
 372 The SMC:TAmax hypersensitive regime, characterized by a significant shift in the 373 relationship between declining soil moisture and increasing temperatures, has 374 been revealed by recent observational studies. In this study, we identify similar 375 hypersensitive relationships in SMC:H and SMC:TSmax (Figure 1&2), which 376 suggests that the exacerbated sensitivity of TAmax to dry soils results from land 377 surface processes. This conjecture is supported by the strong agreement of SMC 378 breakpoint (SMbp) values among SMC:TAmax, SMC:H, and SMC:TSmax (Figure 3a), 379 indicating that SMbp is not just a quantity randomly determined by statistical 380 analysis. This argument is further reinforced by the finding of a generally 381 stronger sensitivity in SMC:TSmax than in SMC:TAmax (Figure 3b), which suggests 382 that the hypersensitive characteristic might originate from the land and be 383 communicated to the near surface atmosphere.  384  385 The conundrum of what drives the escalation of TS under extremely dry soil 386 conditions is solved using a simple energy-balance model with different 387 parameterizations of the response of LE to SMC (Figure 4). Based on the in-situ 388 data analysis and model results, we demonstrate the causal connection from 389 declining soil moisture to high air temperatures. We show that the SMC:TAmax 390 hypersensitive regime is active due to land surface energy processes when soils 391 are drying toward the WP, leading to a dramatic drop of LE. The available energy 392 is diverted to H and G, heating the soil and air more rapidly. The tremendous 393 changes in energy partitioning during the dry down cease when SMC is below the 394 
WP.  395  396 Our results suggest that the dominance of SMC on LE variation is the key to 397 trigger the enhanced feedback between soil moisture and temperature. This is 398 linked by an exacerbated heating of dry soils that leads to a surge in release of H 399 and thus a higher daily air temperature maximum. A common linear 400 parameterization of LE as a function of SMC fails to reflect the observed TS 401 
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response to extremely dry soils. It means that climate models implementing 402 unrealistic parameterizations might underestimate high temperatures under dry 403 conditions, leading to less reliability in the projection of extremes. Therefore, we 404 advocate that numerical simulations should use a realistic parameterization to 405 represent land surface hydrology and water fluxes, especially when the extreme 406 conditions are the scope of the experiments. 407  408 Different TS responses yielded by BM and SWAP parameterizations of 409 evaporation (Figure 4) also hint at the importance of phenology on the 410 occurrence of the hypersensitive regime. The nonlinear drop of LE with drying 411 soils in Figure 4b, which is represented by the SWAP, is a result of the 412 interactions between plant transpiration and soil water (Romano et al. 2011). 413 This may call for further refinements based on land cover type of each in situ site 414 to examine how vegetation type/coverage affects the characteristics of the 415 hypersensitive regime. However, most of these sites are covered by natural 416 vegetation or crops. Rarely are direct measurements of the analyzed variables of 417 this study implemented on bare soils. In FLUXNET2015, land cover types for only 418 for 2 out of 267 sites are classified as BSV (Barren Sparse Vegetation), which 419 could stand as the control group for comparison to the vegetated sites for our 420 analysis. The limited sample size blocks our attempt to systematically separate 421 the results by land cover type. A better understanding of the role of vegetation in 422 hypersensitive regimes requires future in-situ measurements across a variety of 423 land cover types. 424  425 Figure 4b parallels the recent finding that the SMbp for SMC:TAmax is close to WP 426 (Benson and Dirmeyer 2021; Dirmeyer et al. 2021). The model results further 427 clarify that the hypersensitive regime does not correspond exactly to the 428 so-called dry soil moisture regime (SMC<WP) but begins when SMC drops close 429 to the WP, i.e., the steepest slope in TAmax is slightly above WP.  430  431 Finally, we emphasize the value of detailed descriptions of the land conditions 432 and physics in numerical simulations for forecasts and future climate projections. 433 Modeling land surface processes involves several soil parameters. We show how 434 
SMC and LE are coupled, and the exact value of WP is the most important factor 435 controlling the onset of the hypersensitive regime. When considering the energy 436 balance in soils, WP is an important threshold reinforcing abnormally high 437 temperatures. For forecasts, a better representation of SMbp accompanied by 438 reliable monitoring of soil conditions helps to better predict the level of the hot 439 extremes. Meanwhile, land use change is one of the main anthropogenic drivers 440 of climate change. Land cover spatial heterogeneity is also among the most 441 significant factors affecting hydrology (Gao et al. 2018; Fan et al. 2021), biology 442 (Atauri and Lucio 2001; Yoshioka et al. 2017), and phenology (Honnay et al. 443 2003; Zhang et al. 2019), which are all sensitive to extremes. Thus, projections of 444 extremes obtained by better representation of soil physics will address a more 445 confident assessment of climate vulnerability and adaptation. 446  447  448  449 
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 722 
Figure 1| Hypersensitive regime as detected over FLUXNET2015 site CN-Qia 723 (26.7°N,115.°E) during 2003-2005 August. Scatter plot showing the SMC 724 breakpoint (SMbp) determined by piecewise regression for daily (a) 0900 local 725 time soil moisture content SMC and daily air temperature maximum TAmax, (b) 726 
SMC and daily surface layer soil temperature maximum TSmax, and (c) SMC and 727 0900-1200 mean sensible heat flux H. SMC values below SMbp are black symbols 728 fitted by the red regression. SMC values above SMbp are brown symbols fitted by 729 the black regression. R_dry indicates the Pearson correlation between the 730 variables and Slope_dry measures the sensitivity between variables for 731 subsamples on the dry side of SMbp; likewise for R_wet and Slope_wet but for 732 subsamples on the wet side of SMbp. The p-value for statistical significance of the 733 difference between Slope_dry and Slope_wet is indicated by p_slope, calculated 734 by a two sample Z-test. Scatter plot (d) displays the relationship between SMC 735 and 0900-1200 mean latent heat flux LE; dot color is determined by its position 736 relative to SMbp from the SMC:TAmax relationship.  737  738   739 
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740 
Figure 2| Available sites provided by FLUXNET2015 and the sites where 741 hypersensitive regimes are detected. A total of 267 in situ flux tower sites are 742 provided by FLUXNET2015; locations for each are indicated by a triangle. We 743 target the month with the recorded maximum climatological air temperature and 744 its adjacent months for analysis (Note that data may not be available for all 745 months at specific sites). Sites with breakpoints detected for SMC:TAmax, 746 
SMC:TSmax, and SMC:H relationships are colored and noted in the legends. 747 Numbers in the parentheses following the site names indicate the month when 748 the hypersensitive regimes are detected. For any site, hypersensitive regimes 749 may be detected for more than one month. In these cases, we retain the result in 750 the following order: warmest month>its previous month>its next month. The 751 orientation of the triangles distinguishes different geographic regions. 752  753   754 
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768 

 769 
Figure 4| Responses of soil temperatures and heat fluxes yielded by the toy 770 energy-balance model. The toy model explores how soil temperature TS will 771 evolve at different values of soil moisture content SMC after an hour of 1000 772 W/m2 energy input in response to the budget of latent heat flux LE, sensible heat 773 flux H, and ground heat flux G. In case (a) LE is prescribed based on the bucket 774 model parameterization: LE linearly increases with wetting soils when it is above 775 the wilting point. In case (b) LE is prescribed by a power function of SMC: LE 776 nonlinearly increases with wetter soils when it is above a wilting point, in better 777 agreement with observations. TS as a function of SMC with parameters for soil 778 physics set as reasonable values, extremely small and extremely large values are 779 shown by the bold black lines, dashed lines and dotted lines, respectively. The 780 two extreme lines enclose a range of heating responses in TS in soils with 781 different physical characteristics. 782  783 


