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Abstract

With the rising air temperature and precipitation, water and sediment flux in the Source Region of the Yangtze River have

increased significantly since 2000. Nonetheless, the response of braided river morphology to climate-driven water and sediment

flux change is still unknown. Water bodies of nine large braided rivers from 1990 to 2020 were extracted based on Google Earth

Engine platform, and impacts of climate change on activation indices of braided river morphology were quantified. The main

results are presented that a new method of braided water body extraction by combining Lowpath algorithm and Local Otsu

algorithm is firstly proposed, which reduces 59% of the root mean squared error of braiding intensity in comparison with the

Global Otsu method. The braiding intensity has a parabolic variation trend with the water area ratio, and the average sandbar

area ratio has a negative power law trend with the water area ratio. Intra-annual channel migration intensity has an obvious

temporal scale effect, which increases rapidly when the time span is less than 5 years. The warming and wetting trend led to

vegetation cover increasing significantly. With the increase of runoff, water area of each braided reach has increased in both

flood and non-flood season. Intra-annual channel migration intensity shows three different trends of increasing, weakening, and

unchanged over time. The response of migration intensity to climate warming can be classified into three patterns in the SRYR

as follows: sediment increase constrained pattern, sediment increase dominated pattern, and runoff increase dominated pattern.
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Key Points: 11 

• A new method of braided water body extraction improves accuracy of recognition  12 
• The warming and wetting trend has led to the durative activation of braided rivers since 13 

2000 14 
• Intra-annual channel migration intensity differently responds to the increase of water and 15 

sediment flux in nine braided rivers  16 
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Abstract 17 

With the rising air temperature and precipitation, water and sediment flux in the Source Region 18 
of the Yangtze River have increased significantly since 2000. Nonetheless, the response of 19 
braided river morphology to climate-driven water and sediment flux change is still unknown. 20 
Water bodies of nine large braided rivers from 1990 to 2020 were extracted based on Google 21 
Earth Engine platform, and impacts of climate change on activation indices of braided river 22 
morphology were quantified. The main results are presented that a new method of braided water 23 
body extraction by combining Lowpath algorithm and Local Otsu algorithm is firstly proposed, 24 
which reduces 59% of the root mean squared error of braiding intensity in comparison with the 25 
Global Otsu method. The braiding intensity has a parabolic variation trend with the water area 26 
ratio, and the average sandbar area ratio has a negative power law trend with the water area ratio. 27 
Intra-annual channel migration intensity has an obvious temporal scale effect, which increases 28 
rapidly when the time span is less than 5 years. The warming and wetting trend led to vegetation 29 
cover increasing significantly. With the increase of runoff, water area of each braided reach has 30 
increased in both flood and non-flood season. Intra-annual channel migration intensity shows 31 
three different trends of increasing, weakening, and unchanged over time. The response of 32 
migration intensity to climate warming can be classified into three patterns in the SRYR as 33 
follows: sediment increase constrained pattern, sediment increase dominated pattern, and runoff 34 
increase dominated pattern. 35 

1 Introduction 36 

As the highest dynamic and unpredictable river pattern, braided river is a complex system of 37 
shallow multi-threaded channel which separated by irregular sandbars. Morphodynamic 38 
processes of braided river are intensified during flood period (Lu et al., 2022; Shampa and Ali, 39 
2019). Moreover, owing to the intensive erosion and deposition of multi-threaded channel, 40 
riverbed configuration is rapidly adjusted (Li et al., 2020d; Lu et al., 2022; Shampa and Ali, 41 
2019). These changes are related to the hydrodynamic conditions of river network, non-42 
equilibrium sediment transport, local erosion and accretion, bifurcation, and confluence of 43 
branches. For instance, inundated sandbars in flood period are prone to be transversely or 44 
obliquely cut under the action of lateral hydraulic gradient between adjacent branches 45 
(Schuurman et al., 2018). Owing to the complexity and instability of this system, it is difficult to 46 
exactly predict the evolution processes of braided rivers by theoretical analysis or numerical 47 
model (Lu et al., 2022; Schuurman et al., 2018). 48 

The Source Region of the Yangtze River (SRYR) is an aggregation region of many large 49 
braided rivers, with the maximum width of channel belt reaching 3 ~ 5 km (Li et al., 2020d). 50 
This concentrated distribution of large braided rivers is very rare on the Qinghai-Tibet Plateau 51 
(QTP), in the Asian High Mountains and even the global alluvial rivers (Ashmore, 2013; Surian 52 
and Fontana, 2017). The evolution processes of braided rivers in the SRYR are highly free from 53 
the interference of human activities. Hence this region is conducive to uncover fluvial process of 54 
braided rivers driven by climate warming on the QTP. Meanwhile, braided river is an important 55 
component of aquatic ecological environment in the SRYR, which is closely related to the 56 
diversity and integrity of the alpine aquatic and terrestrial ecosystems. Large braided rivers play 57 
an irreplaceable role in maintaining fragile ecological balance, protecting biodiversity, and 58 
resisting sandstorms. These braided rivers are of great significance to hydrological cycle and 59 
ecological security of the Three-River Source region and even the entire QTP. 60 
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In recent years, some studies on braided rivers in the QTP mainly focus on morphological 61 
characteristics of braided rivers and their response to changes in hydrological regime caused by 62 
upstream dam construction (Guo et al., 2023; Li et al., 2020d; Lu et al., 2022; Shampa and Ali, 63 
2019; You et al., 2022). In the UlanBuh Desert reach of the Upper Yellow River, the water and 64 
sediment flux gradually decrease and aeolian activities were weakened after 1990, result in the 65 
weakened lateral migration ability of braided channel (Li et al., 2018). In the middle and lower 66 
Lhasa River in the southern QTP, after upstream dam construction, braided channel generally 67 
transforms into lower complexity (You et al., 2022). The previous study of braided rivers in the 68 
SRYR demonstrated that braiding intensity and valley width are the two main parameters 69 
affecting the morphological characteristics (Li et al., 2020d). The branches after flood peak were 70 
eroded deeper, and furthermore the braiding intensity was greater after the flood than that before 71 
the flood (Lu et al., 2022). In the Maqu Reach in the Source Region of Yellow River in the QTP 72 
defined as a transition state between anabranching river and braided river, displays the high 73 
stability due to its sufficient vegetation coverage (Guo et al., 2023). To sum up, previous studies 74 
on braided rivers in the QTP are mostly concentrated in a single channel reach, and fail to make 75 
full use of existing abundant remote sensing imagery to study morphological characteristics and 76 
evolution processes of braided rivers in response to climate warming. 77 

With the rise of air temperature and precipitation, hydrological condition in the SRYR was 78 
significantly altered. The water and sediment flux have shown a significant increasing trend in 79 
recent years (Deng et al., 2022; Li et al., 2020a; Luo et al., 2020; Yao, 2019), at an annual 80 
increasing rate of 1.4% and 5.9%, respectively (Li et al., 2020a). The main reason for the 81 
increase of runoff is the increase of precipitation (Luo et al., 2020). Meanwhile, the melting of 82 
glaciers and snow cover, retreating of permafrost, prolonged thawing period that caused by 83 
climate warming also promote the runoff (Allen et al., 2019; Qi et al., 2015; Sakai and Fujita, 84 
2017; Wang et al., 2009; Zhang et al., 2008). Furthermore, climate warming accelerates the 85 
melting of glaciers and permafrost, which is the main reason for the substantial increase of 86 
sediment flux in recent 30 years (Li et al., 2020a). The synchronous increases of water and 87 
sediment flux will inevitably lead to more drastic riverbed evolution of braided rivers (Ashmore, 88 
2013; Shampa and Ali, 2019; You et al., 2022), which threaten the safety of railways, trans-river 89 
bridges and other infrastructures. Meanwhile, the vegetation coverage in the SRYR also shows 90 
an increasing trend (Ji et al., 2021; Li et al., 2021c; Wang et al., 2022), which was supposed to 91 
limit the sediment production capacity and enhance riverbed resistance. Water and sediment 92 
conditions are the dominant driving forces of multi-scale morphological evolution of braided 93 
rivers, their impact degrees and activation patterns on braided rivers at the SRYR are an 94 
unsolved scientific problem. 95 

The main aim of this study is to elucidate the morphological characteristics and activation of 96 
9 large braided rivers in the SRYR in response to climate-driven water and sediment flux change 97 
over the last 30 years. This study proposes a new remotely sensing interpretation method of 98 
water body extraction for the morphological characteristics of braided rivers. Firstly, based on 99 
Google Earth Engine (GEE) platform, multi-source remote sensing images (Landsat 5/7/8 and 100 
Sentinel-2) were used for water body extraction of 9 selected braided reaches. The 101 
morphological characteristic parameters (i.e., channel count index, water area ratio, average 102 
sandbar area ratio) were calculated, and their variation were studied. Secondly, Google Earth, 103 
Landsat 7, and Sentinel-2 images were used to analyze the erosion rate of river bankline for the 104 
past 20 years. Finally, the variation trend of the intra-annual channel migration intensity of each 105 
braided reach from 1990 to 2020 was quantified. The response of migration intensity to climate 106 
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warming was analyzed in combination with the change of vegetation abundance, runoff, and 107 
sediment fluxes. The flow chart of the methodology proposed in this study is presented in Fig. 108 
S1. 109 

2 Materials and Methods 110 

2.1 Study area 111 

The Source Region of the Yangtze River (SRYR) (32° 30' ~ 35° 35' N, 90° 43' ~ 96° 45' E) 112 
is located in the hinterland of the Qinghai-Tibet Plateau (QTP), with an average elevation of 113 
4,780 m a. s. l. It is a relatively gentle and eastward sloping wave-like plain, which is not only a 114 
primary part of the Source Region of the Three Rivers (43.6% of the total area), but also an 115 
important water conservation area in the Upper Yangtze River (Changjiang River). The SRYR 116 
consists of the mainstream Tongtian River and the three main tributaries of Tuotuo, Dangqu, and 117 
Chumaer Rivers, with a catchment area of 138,200 km2 (Fig. 1). The annual runoff is 12.26 118 
billion m3, accounting for about 1.3% of the total runoff of the Yangtze River. The mean annual 119 
air temperature in the SRYR ranges from -1.7 ℃ to 5.5 ℃, and the annual rainfall ranges from 120 
200 mm to 550 mm. In terms of climate, the SRYR is located in the Naqu Goluo subhumid 121 
region and Qiangtang semi-arid region, which belong to the sub-cold zone of the QTP, and show 122 
a general trend of high temperature in the southeast and low in the northwest. Air temperature is 123 
characterized by small intra-annual temperature difference and large diurnal temperature 124 
variation, with long winter and short summer. The main land cover types in the SRYR are 125 
grassland (53%) and bare land (43%) (Yan et al., 2020). The SRYR has the most concentrated 126 
distribution of 753 glaciers on the high mountains at the edge of the river basin, with a total area 127 
of 1,276 km2, accounting for 1.0% of the SRYR area. The runoff of glacier meltwater only 128 
accounts for 9.2% of the annual runoff of the SRYR (Yang et al., 2003; Yao et al., 2022). 129 

The river network system in the SRYR originates from glacier and snow-capped mountains, 130 
with large gradient, dramatic discharge variation, underlying permafrost and large amount of 131 
coarse sand. Therefore, the dominant alluvial river type is gravel-sand braided channel (Li et al., 132 
2016, 2020d, 2020e; Yu et al., 2014). Large braided rivers are mainly distributed in the main and 133 
tributary systems such as Tuotuo, Chumaer, Buqu, and Tongtian Rivers. Unstable and 134 
unvegetated gravel or sand bars form the riverbed with extremely fragmented channel 135 
morphology. 136 

The impacts of climate warming on the morphological characteristics and activation of 137 
braided rivers were studied on selected 9 braided reaches wider than 1 km. Reaches are located 138 
in Tuotuo, Dangqu, Chumaer, Buqu, Beilu, Gaerqu Rivers, and the upper, middle and lower 139 
reaches of Tongtian River (termed as TTR_S, TTR_M, TTR_E) (Fig. 1a). Among them, the 140 
Dangqu, Buqu, and Gaerqu Reaches come from the Dangqu River Basin with dense wetlands, 141 
marsh area, better hydrothermal conditions (Fig. 5a, b) and rich vegetation cover (Fig. S16a, c). 142 
The hydrothermal condition of the Chumaer and Beilu River Basins is poor (Fig. 5a, b) with 143 
sparse vegetation cover (Fig. S16a, c) and loose soil. The land cover type in the Tuotuo River 144 
Basin is mainly alpine grassland with poor hydrothermal conditions (Fig. 5a, b). Reaches of 145 
TTR_S, TTR_M and TTR_E are restricted by valley confinement, as shown in Fig. 5a, b. The Test 146 
Reach (Fig. 1b) which is located in the TTR_E Reach, is used to evaluate the accuracy of the new 147 
Local Otsu + Lowpath water extraction method proposed in this study (Fig. 4c, d). The 148 
catchment area of each reach is shown in Fig. 1a for calculating the catchment mean annual 149 
NDVI level (Fig. S16). 150 
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covered with snow and ice. Therefore, from 1988 to 2020, cloud-free images between May and 173 
October were selected for further research (Table 1). 174 

Landsat 5/7/8 and Sentinel-2 imageries used in this study were all from the Google Earth 175 
Engine (GEE) platform (Gorelick et al., 2017). Compared with traditional image processing tools 176 
(such as ArcGIS, ENVI, Matlab) using a single computer, GEE platform has millions of servers 177 
worldwide. With the most advanced cloud computing and cloud storage capacity, GEE is 178 
enabling more efficient online image processing. Owing to the high efficiency and data 179 
availability, GEE can be used to extract water bodies at large spatiotemporal scales (Deng et al., 180 
2022; Huang et al., 2021; Li et al., 2020b). Based on GEE platform, Landsat 5/7/8 and Sentinel-2 181 
imageries were filtered and clipped, then MNDWI (Xu, 2006) and NDVI (Carlson and Ripley, 182 
1997) index were calculated. MNDWI images were downloaded, and Sentinel-2 images were 183 
resampling to 30 m spatial resolution. 184 

The meteorological data used in this paper are from the daily values of China surface data 185 
(SURF_CLI_CHN_MUL_DAY V3.0) and ERA5 data sets. Air temperature and precipitation 186 
data from four stations within the SRYR and the Zado meteorological station outside the source 187 
region (Fig. 1a) during 1957 ~ 2020 were used to calculate the interannual values of precipitation 188 
and average air temperature. The spatial distribution of air temperature and precipitation during 189 
1979 to 2020 (Fig. 5a, b) was calculated in GEE, based on monthly mean air temperature and 190 
monthly precipitation data obtained from ERA5 dataset (Dee et al., 2011). 191 

Long-term hydrological data only come from Tuotuohe (TTH) and Zhimenda (ZMD) 192 
Hydrological Stations. TTH Station controls the Tuotuo River Basin, while ZMD Station 193 
controls the whole SRYR (Fig. 1). The hydrological data of the TTH Station include daily 194 
discharge data from 1958 to 2018, which can reflect the runoff condition of the Tuotuo Reach. 195 
The data of annual water and sediment discharge at the ZMD Station were obtained from 196 
Qinghai Hydrological Bureau (1987 ~ 2014) and Bulletin of China River Sediment (2000 ~ 197 
2020). The daily runoff data of ZMD Station in 2018 are used to indirectly reflect the flow 198 
condition of TTR_S, TTR_M, and TTR_E Reaches. 199 
 200 

Table 1. Selection of remote sensing images for each reach 201 

Reach L×W (m) 
Landsat + Sentinel 

Google Earth (Landsat 7 + Sentinel-2) 

T1 T2 
Total 
pics 

Resolution
 /m 

Process Time
(per pic) /s Year Resolution/m Year Resolution /m 

Beilu 5600×1092 85 30 4.24 2010 0.30 2020 0.30 
Buqu 8400×1371 152 30 5.53 2005 0.30 2020 0.30 

Chumaer 7400×1215 95 30 5.68 2007 0.30 2020 0.30 
Dangqu 9600×1333 95 30 6.32 2000 15 (Landsat 7) 2020 10 (Sentinel-2) 
Gaerqu 8000×888 184 30 5.22 2003 0.30 2020 0.30 
TTR_E 33000×2740 116 30 19.78 2012 0.30 2020 0.30 
TTR_M 16200×2771 

 

178 30 9.87 2000 15 (Landsat 7) 2020 10 (Sentinel-2) 
TTR_S 11000×2763 108 30 7.83 2010 0.30 2020 0.30 
Tuotuo 18600×1010 245 30 9.04 2003 0.30 2020 0.30 
Note: L is the reach length, W is the average reach width. 202 

 203 
2.2.1 Analysis of meteorological and hydrological trends 204 
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The Mann-Kendall trend analysis (Kendall, 1975; Mann, 1945) and Sen-Slope (Sen, 1968) 205 
were used to analyze the significance level and variation trend of meteorological and 206 
hydrological data (air temperature, precipitation, runoff, and sediment discharge) over time. As a 207 
nonparametric method, Sen-Slope can be used to calculate the trend of univariate time series. 208 
This method is insensitive to outliers and is widely used in trend analysis of hydrometeorological 209 
data (Huang et al., 2021; Panda and Sahu, 2019). Mann-Kendall trend analysis was applied to 210 
analyze the inter-and intra-annual variation of meteorological and hydrological data during 1957 211 
~ 2020. 212 

 213 
2.2.2 The characterization of vegetation abundance for different spatial scale 214 

As the main part of terrestrial ecosystem, plants play an important role in regulating regional 215 
hydrological processes. Normalized vegetation index (NDVI), as an indicator of plant growth 216 
status and vegetation spatial coverage, is linearly positively correlated with vegetation density 217 
(Carlson and Ripley, 1997). 218 

  (1) 219 

where NIR is the near-infrared band, corresponding to B4 in Landsat 5/7, B5 in Landsat 8, and 220 
B8 in Sentinel-2. R is the red band, corresponding to B3 in Landsat 5/7 and B4 in Landsat 8 and 221 
Sentinel-2. 222 

Owing to the influence of cloud, rain, and snow, remote sensing images are manifested as 223 
low value noise in NDVI image. To eliminate such influence, the maximum value composite 224 
method (MVC) is usually used to take the maximum value in a certain period as the pixel value. 225 
The NDVI image set was calculated based on Landsat 5/7/8 remote sensing images. The MVC 226 
composite method was used to calculate the variation of NDVI values in each river basin, river 227 
channel (Fig. S16c, d), and the catchment area of each reach (Fig. 1a) (Table S5, Fig. 16) over 228 
time. Based on the inter-annual NDVI image set synthesized by MVC method (MVC-NDVI 229 
image), the Sen-Slope (Sen, 1968) was used to calculate the increase rate of annual NDVI value 230 
at each pixel (Fig. S16b), reflecting the spatial difference of NDVI value increase. All 231 
calculations of NDVI are performed in the GEE platform. 232 

The MVC-NDVI image is affected not only by growth cycle of vegetation on sandbars, cloud 233 
cover, but also by the temporal resolution of imageries, and even flood events when focusing 234 
channels. Therefore, the maximum value composite within a single year may not reflect the 235 
highest vegetation abundance, and a three-year period composition is adopted (Fig. S16c, d). In 236 
the composition of MVC-NDVI image of river channel, sandbar vegetation tends to have low 237 
value, which is comparable to the low value of clouds, could mask process need to be done in 238 
advance to eliminate such influence. Furthermore, in order to reduce the disturbance of 239 
vegetation outside the river bank, a -100 m buffer was set for the studied channel region. 240 

 241 
2.2.3 Calculation of morphological indices in braided river 242 

Based on the extracted river water body, reach-scale morphological indices were calculated. 243 
Namely, branch count index BT3 (Ashmore, 2013; Egozi and Ashmore, 2008), active water area 244 
ratio RW (Li et al., 2020d), and average sandbar area ratio 𝑅௕തതതത. 245 

  (2) 246 

where AW is the water area of the reach, and A is the channel area of the reach by visual 247 
interpretation ( channel is the area that consists of channel branches and associated bars (Limaye, 248 



manuscript submitted to Water Recoureses Research 

 

2020) ). The active water area ratio RW (Li et al., 2020d) can reflect the proportion of braided 249 
channel water area under different water stage. 250 

  (3) 251 

where n is the number of cross sections within the reach, and Ni is the number of branches on i-th 252 
cross section. BT3 is widely used to characterize the braiding intensity of braided river because of 253 
its easy calculation and clarity (Egozi and Ashmore, 2008; Li et al., 2020d; Lu et al., 2022). In 254 
general, n cross sections with a certain step length are set along the central line of the river, and 255 
cross-section was set with 200 m interval in this study. In this study, 200 m interval is good for 256 
the 10 times reach length to reduce systematic error (Egozi and Ashmore, 2008). 257 

  (3) 258 

where nbar is the number of sandbars within the reach, and 𝐴௕௔௥௜  is the area of the i-th individual 259 
sandbar. Average sandbar area ratio 𝑅௕തതതത represents the average size of all bars. 260 

Li et al. (2020d) found the parabolic relationship between BT3 and RW. Under different RW, 261 
BT3 can be represented by Eq. (5). 262 

  (4) 263 

where BT3peak is the maximum value of the fitted parabola, 𝑅ௐ∗  is the corresponding water area 264 
ratio, and a is the quadratic term coefficient. 265 
 266 
2.2.4 A new extraction method of braided river water body 267 

Water body is usually extracted, using specific algorithms or visual interpretation, based on 268 
index image (such as MNDWI) calculated from remote sensing image. Water index can be used 269 
in various ways, such as multi-index combination (Monegaglia et al., 2018), optimal index 270 
selecting by multi-index comparison (Talukdar and Pal, 2019; Worden and de Beurs, 2020), or 271 
use water indexes by priority (Deng et al., 2022; Huang et al., 2021). It is appropriate to use 272 
MNDWI (Eq. (6)) to calculate water index for water extraction of braided river (Singh et al., 273 
2015; Xu, 2006). 274 

  (5) 275 

where MIR is in the mid-infrared band, corresponding to B5 in Landsat 5/7, B6 in Landsat 8, and 276 
B11 in Sentinel-2. G is the green band, corresponding to B2 in Landsat 5/7 and B3 in Landsat 8 277 
and Sentinel-2. The calculation of MNDWI was carried out in the GEE platform. 278 

Water extraction algorithms mainly consist of threshold segmentation method (Pekel et al., 279 
2016; Singh et al., 2015; Xu, 2006) and image recognition method (Zhu et al., 2015). In river 280 
water extraction, the Global Otsu method (Otsu, 1979) was mostly used to segment index image 281 
(Deng et al., 2022; Monegaglia et al., 2018). Global Otsu method (Otsu, 1979) calculates the 282 
histogram of pixel value distribution and automatically calculates a threshold value to maximize 283 
the inter-class variance of the two types of pixels divided by the threshold value. The Global 284 
Otsu method is a non-parametric and non-supervised method, of which the threshold value will 285 
be affected by delimited range of the studied area. There is a certain drawback in water body 286 
extraction of braided river using the Global Otsu method. 287 

The use of a single threshold method (such as Global Otsu method) can underestimate the 288 
complexity of the extracted water body of braided river. A reach in the Tuotuo River was 289 
selected to analyze the transverse distribution characteristics of the MNDWI value of the braided 290 
river (Fig. 2). The red dotted line is the global Otsu threshold calculated based on MNDWI 291 
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  (6) 381 

where 𝐴஼௛௔௡ሺ భ்ሻ  and 𝐴஼௛௔௡ሺ మ்ሻ  are the river channel area (same as in Eq. (2)) of earlier and later images 382 
respectively; T1 and T2 are the years of the earlier and later images respectively; L is the reach 383 
length. In ArcGIS and Google Earth, the river boundary of two different periods was described 384 

by visual interpretation, and 𝐴஼௛௔௡ሺ మ்ሻ  and 𝐴஼௛௔௡ሺ భ்ሻ  were calculated. MR could then be obtained by 385 
dividing the reach length L and the number of separated years T2-T1. 386 

To calculate the channel area, the visual interpretation of river channel bank needs to be 387 
done. The submeter image of Google Earth has a spatial resolution of 0.3 m and can be used to 388 
accurately identify riverbanks. Google Earth submeter images are not available in some of the 389 
studied reaches (i.e., TTR_M and Dangqu River Reaches), thus the Landsat 7 and Sentinel-2 390 
images are used as alternatives. To improve the accuracy of riverbank identification, 391 
panchromatic band (15 m resolution) of Landsat 7 was used for panchromatic sharpening of its 392 
multi-spectral band, of which the spatial resolution was sharpened to 15 m. Landsat 7 images 393 
after panchromatic sharpening (15 m resolution) in 2000 and Sentinel-2 images (10 m resolution) 394 
in 2020 were selected for the visual interpretation of riverbank. The specific image selection of 395 
each reach is shown in Table 1. All the later (T2) images of the reach were shot in 2020, while 396 
the early (T1) images were shot between 2000 and 2012. 397 

In the calculation procedure of MR, it is necessary to consider the mixed pixel error. When 398 
calculating MR using Eq. (7), the visual interpretation of riverbank is conducted to compute the 399 
area of river channel. The edge is the pixel that passed by visually interpreted bank line, and the 400 
spatial bias between interpreted bank line and the true bank line is called by the mixed pixel 401 
error. The calculation method of the mixed pixel error of MR is derived as follows. 402 

There are three assumptions needed to conduct the error analysis below. (i) The deviation 403 
between the visually interpreted riverbank line and the real riverbank line is within 1 pixel, that 404 
is, pixels passed by the hand-drawn riverbank line and the real riverbank line are basically 405 
identical. (ii) The proportion of riverbed in these pixels is uniformly distributed between 0 and 1 406 
(Rowland et al., 2016). (iii) The visually interpreted bank line is close to the center of edge pixel. 407 

  (7) 408 

According to Eq. (8), the area of the river channel 𝐴஼௛௔௡ determined by visual interpretation 409 
includes the real riverbed area inside and at the edge (left bank 𝐴஻௔௡௞ሺ௟ሻ , right bank 𝐴஻௔௡௞ሺ௥ሻ ) of the 410 

channel. The real values of 𝐴஻௔௡௞ሺ௟ሻ , 𝐴஻௔௡௞ሺ௥ሻ  are unknow. Mixed pixel errors are produced when 411 

replacing 𝐴஻௔௡௞ሺ௟ሻ  and 𝐴஻௔௡௞ሺ௥ሻ  with visually interpreted riverbed area at the edge of channel 𝐴஻௔௡௞ሺ௟ሻᇱ  412 

and 𝐴஻௔௡௞ሺ௥ሻᇱ . The calculation method of the mixed pixel error on the left bank and right bank is the 413 
same. The left bank is taken here as an example to illustrate the estimation methods of the mixed 414 
pixel error. 415 

  (8) 416 

  (9) 417 

  (10) 418 
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According to Eq. (9), when the area of a single pixel is Ap, the number of pixels on the left 419 
bank is nl, and the proportion of riverbed in the i-th pixel on the left bank is 𝑋௜ሺ௟ሻ. The true 420 

distribution of riverbank is unknown (that is, the distribution of 𝑋௜ሺ௟ሻ). Based on assumption (ii) 421 

and by using the ensemble average μ of 𝑋௜ሺ௟ሻ, the real riverbed area of all edge pixels in left bank 422 
can be estimated as μnl Ap, which is basically identical to the visually interpreted riverbed area 423 𝐴஻௔௡௞ሺ௟ሻᇱ  based on assumption (c) (since μ=0.5 in this case) (Eq. (10)). The mixed pixel error is 424 

generated when replacing 𝛴𝑋௜ሺ௟ሻ/𝑛௟ with μ. Standard error 𝑆𝐸௑ሺ௟ሻ is used to estimate the deviation 425 

between the sample mean 𝛴𝑋௜ሺ௟ሻ/𝑛௟ and the ensemble average μ (Eq. (11)). 426 

  (11) 427 

According to Eq. (11), the calculation method of mixed pixel error 𝑒஻௔௡௞ሺ௟ሻ  is shown in Eq. 428 

(12). The value of 𝑒஻௔௡௞ሺ௟ሻ  is determined by the number of riverbank edge pixels and the area of a 429 
single pixel Ap. 430 

  (12) 431 

  (13) 432 

where n is the total number of pixels on the left and right banks. Likewise, assuming that the 433 

calculation of 𝐴஼௛௔௡ሺ భ்ሻ  and 𝐴஼௛௔௡ሺ మ்ሻ  of the channel area in the images of T1 and T2 are independent of 434 
each other, the mixed pixel error of MR (Eq. (7)) of the channel area change rate can be 435 
calculated according to Eq. (14). According to the theory of error propagation, we assume that 436 
the distribution of the riverbed area on the left and right banks is independent of each other. The 437 
mixed pixel error 𝑒஼௛௔௡ of 𝐴஼௛௔௡ can be added in quadrature (Eq. (13)).  438 

Visual interpretation of riverbank was done using Google Earth images and sharped Landsat 439 
7 and Sentinel-2 images, with spatial resolutions of 0.3 m, 15 m and 10 m, respectively. Except 440 
for TTR_M and Dangqu River Reaches, the rest of the reaches have Google Earth submeter 441 
imagery (0.3 m resolution) to identify the riverbank lines, of which the mixed pixel error can be 442 
ignored. The pixel size of image of TTR_M and Dangqu River Reaches is large (10 and 15 m), 443 
whose 𝑒ெೃ calculated by Eq. (14) are 0.0122 and 0.0157 m/a, accounting for only 0.8% and 444 
10.8% of MR value, respectively (Fig. 12). The results of the mixed pixel error are shown in 445 
Table S2. 446 

 447 
2.2.7 Calculation of intra-annual river migration intensity 448 

In order to reflect the intra-annual channel migration intensity of branches in a certain period 449 
of time, the reach-scale migration intensity index IMI (Intra-annual Channel Migration Intensity) 450 
was calculated based on Eq. (15). 451 

  (14) 452 

where 𝐴௘௥௢ and 𝐴௔௖௖ are the erosion and accretion area respectively, which can be obtained by 453 
subtracting earlier water segmentation image from later water segmentation image, A is the 454 
channel area. Since the morphological characteristics of braided rivers change significantly with 455 
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flow discharge (Lu et al., 2022), it is necessary to ensure that the daily discharge or water stage 456 
between the two images is similar to reduce the inundation error. Owing to the lack of enough 457 
hydrological data in different reaches, images with similar water area ratio RW in each reach were 458 
selected to calculate the migration intensity, for specific image selection and corresponding 459 
water area ratio RW, see Table S3. The value of RW corresponding to the selected images is 460 
shown in Fig. S3. It should be noted that this method using Eq. (15) does not reflect the changes 461 
in the depth of the riverbed, but Eq. (15) can reflect both the transverse and longitudinal 462 
migration. 463 

To study the variation of migration intensity IMI over different temporal scale, a base year 464 
was selected from 1987 to 1990 for each braided reach, and the relative migration intensity IMI 465 
of each subsequent year was calculated, as shown in Fig. 10. The RW of water segmentation in all 466 
reach ranges from 0.18 to 0.22 (see Fig. S3b) to reduce the inundation error, for corresponding 467 
image selection, see Table S3b. 468 

TTR_M and Tuotuo River Reaches were selected to analyze the relationship between the 469 
annual migration intensity IMI and the annual discharge. To calculate the annual migration 470 
intensity IMI, pairs of images should be selected before and after the flood season (July ~ 471 
August). For the TTR_M Reach, the time of image selection was before July 9 or after August 26 472 
(see Table S3c). For the Tuotuo River Reach, except for one image shot on 2013/08/02, the other 473 
images were shot before May 27 or after August 22 (see Table S3d). 474 

To study the temporal variation trend of the migration intensity, the multi-year average 475 
migration intensity 𝐼𝑀ூതതതതത for 3 ~ 5 years temporal scale in each reach was calculated using Eq. 476 
(16). 477 

  (15) 478 

where IMI is defined by Eq. (15), ΔT is the number of years between the time when two images 479 
are taken. In Fig. 10, the migration intensity was control by the magnitudes of water and 480 
sediment flux of that year. The multi-year average migration intensity of 3 ~ 5 years 𝐼𝑀ூതതതതത can 481 
reflect the migration intensity level of each reach within a period, so it can be used to reflect the 482 
fluctuant trend of the migration intensity over time. The RW difference among all image pairs 483 
ranges from -0.06 to 0.05 (see Fig. S3a). The migration intensity for the last 30 years was used to 484 
characterize the migration intensity level of each reach (Table S3e, Table S5, Fig. 16). 485 
2.2.8 The estimation of relationship between water area ratio and daily discharge 486 

To calculate the daily discharge Q at a given water area ratio RW in TTR_M and Tuotuo 487 
Reaches, the RW-Q relationship of TTR_M and Tuotuo River Reaches was established, 488 
respectively. The Tuotuo River Reach is valid of daily discharge data from 1988 to 1990, of 489 
which is only valid in 2018 in TTR_M Reach (ZMD Station) to indirectly reflect its flow regime, 490 
and can only use the limited images in 2018 for calculation. When establishing the RW-Q 491 
relationship in the TTR_M Reach, in order to acquire RW data as much as possible, images of 492 
whose channel was partially blocked by clouds is also taken into account. For the image partially 493 
covered by clouds, the water area in the reach can be calculated according to Eq. (17). 494 

  (16) 495 

where A1 and A1
* are the total and partial water areas in the river of the reference image 496 

respectively, and A2
* is the partial water area in the image of which the river is covered partially 497 

by clouds. A global cloudless image is selected as the reference image, and its total water area A1 498 
is extracted. For the partially blocked image of the river, the water area A2

* of the partially 499 
cloudless part is counted, and the water area A1

* of the reference image in the same part of region 500 
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is counted. The total water area A2 of the partially blocked image is calculated with Eq. (17). The 501 
calculation procedures are shown in Fig. S2. The reference image (Landsat 8, 2018/07/24) was 502 
selected, the information of other cloud-blocked images was shown in Table S4. The calculated 503 
RW-Q relationship in the TTR_M Reach was shown in Fig. 14a. This method can be used because 504 
the water body segmentation (Local Otsu + Lowpath method) in the cloudless part, is free from 505 
the effect of cloud cover in other part (Fig. S2). 506 

3 Results 507 

3.1 Spatiotemporal variation of precipitation and air temperature 508 
The precipitation and air temperature in the SRYR increase from northwest to southeast. The 509 

mean annual precipitation in the Dangqu, Beilu, Tuotuo, and Chumaer River Basins was 631.3, 510 
533.5, 565.0, and 495.8 mm, respectively. The precipitation is more distributed in the lower 511 
Tongtian River and Dangqu River Basins. The mean annual precipitation in the Chumaer River 512 
Basin is less than 500 mm. The mean annual temperature of the Dangqu, Beilu, Tuotuo, and 513 
Chumaer River Basins are -5.37, -4.70, -6.65, and -6.63 ℃, respectively. The air temperature is 514 
lower in the Tanggula Mountain in the west, Hoh Xil Mountain in the northwest and the Sediri 515 
peak in the south. The air temperature is relatively higher along the Dangqu ~ Tongtian River 516 
valley. 517 

 518 
Figure 5. The meteorological change in the SRYR. Spatial distribution of (a) precipitation and 519 
(b) air temperature and (c) their variation trends of mean annual temperature and annual 520 
precipitation from 1957 to 2020 (mark **, *** denotes the significance level of p<0.05 and 521 
p<0.01). 522 

From 1957 to 2020, the SRYR showed a warming and wetting trend, air temperature and 523 
precipitation increased significantly after 1990. The air temperature showed an overall increasing 524 
trend from 1957 to 2020, and the change rate was 0.36 ℃/10a (p=0.01). From 1960 to 2020, the 525 
decadal mean annual temperature is -1.96, -1.74, -1.77, -1.37, -0.57, and -0.10℃, and the inter-526 
decadal temperature increase is 0.22, -0.03, 0.40, 0.80, and 0.47℃, respectively. Except for the 527 
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the migration over a long temporal scale is very considerable. Compared with the base year, 642 
morphology in braided channel will change greatly after 5 years, so it is difficult to identify the 643 
trajectory of a single sandbar or branch. In this case, only the overall similarity of the plane 644 
morphology in braided channel can be observed. 645 

The Dangqu River Reach ad the south source of the SRYR may be classified as 646 
anabranching river type according to our studies. The migration intensity in Dangqu River Reach 647 
is significantly lower than that of other reaches. The IMI after 5 year is maintained between 0.10 648 
and 0.18, and it shows a monotonically increasing trend with the increase of temporal scale, 649 
which indicates a long-term inertia of the migration direction (lack of instability). Therefore, 650 
even though the braiding intensity of the Dangqu River Reach is not low (BT3peak=5.68), it is 651 
closer to the anabranching river type than to the braided river type from the viewpoint of 652 
braiding instability. 653 

 654 
 655 

3.4 Impacts of water and sediment flux change on morphological characteristics of braided 656 

river 657 

The Tuotuo and Tongtian Rivers Reaches are frequently inundated in flood season, while 658 
few inundation occurs in other reaches, even during flood season. For the Beilu, Buqu, Dangqu, 659 
Chumaer and Gaerqu River Reaches, the active water area ratio 𝑅ௐ෪  were 0.197, 0.207, 0.138, 660 
0.190, 0.255 in flood season, and 0.205, 0.182, 0.112, 0.212, 0.202 in non-flood season, 661 
respectively. Compared with non-flood season, the RW in flood season shows little variation, 662 
ranging from -0.022 to 0.053 in 𝑅ௐ෪ . The 𝑅ௐ෪  of these reaches in both flood and non-flood season 663 
are all smaller than 𝑅ௐ∗ , which means low flooding chance. For the TTR_E, TTR_M, TTR_S and 664 
Tuotuo River Reaches, the 𝑅ௐ෪  were 0.399, 0.308, 0.396 and 0.358 in flood season and 0.313, 665 
0.207, 0.258 and 0.254 in non-flood season, respectively. Compared with non-flood season, the 666 
RW in flood season increased with a relatively large amount, ranging from 0.076 to 0.138 in 𝑅ௐ෪ . 667 
The 𝑅ௐ෪  of these reaches in flood season are close to or greater than 𝑅ௐ∗ , while all less than 𝑅ௐ∗  in 668 
non-flood season, which indicates high intra-annual flow variation (frequently flooding 669 
braidplain during flood season). High flow variation is conducive to the development of braided 670 
channels (Ashmore, 2013). 671 

The water area of all reaches both in flood season and non-flood season, increased 672 
significantly after 2000, with more increment in flood season. Compared with 1990s, the 𝑅ௐ෪  in 673 
the flood season increased by about 0.016 ~ 0.192 in 2000s. Compared with 2000s, the 𝑅ௐ෪  674 
during flood season in 2010s increased by 0.018 and 0.021 in the Chumaer and Tuotuo River 675 
Reaches and decreased by 0.004 ~ 0.157 in other reaches. With little decrease in 2010s, the 𝑅ௐ෪  676 
of flood season in 2010s increased by 0.000 ~ 0.088 compared with that in 1990s. The variation 677 
of RW in non-flood season is less than that in flood season. Compared with 1990s, the 𝑅ௐ෪  of all 678 
reaches in non-flood season increased by about 0.003 ~ 0.073 during 2000s, which was only 679 
about 19 ~ 38% increment of the flood season in the corresponding period. Compared with 680 
2000s, the 𝑅ௐ෪  of non-flood season in the Beilu and Tuotuo River Reaches both increased by 681 
0.017 during 2010s, which decreased by 0.077 ~ 0.005 in other reaches. The 𝑅ௐ෪  of flood season 682 
in 2010s increased by -0.010 ~ 0.058 compared with that in 1990s. The water area increased 683 
obviously in the 2000s, despite of slightly decreasing in the 2010s, which could be the result of 684 
the generally increased runoff after 2000. 685 
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4 Discussion 847 

4.1 The advantage of the new method for extracting braided water body 848 
The Local Otsu + Lowpath method is proposed in this study to improve the recognition 849 

accuracy of braided water complexity. When the branch width of braided river is smaller than the 850 
image resolution, the small branch will only pass through one pixel in the transverse direction 851 
(reducing the MNDWI value of the pixel on average). Although the MNDWI value of this pixel is 852 
still significantly higher than that of the land area and can also be identified by visual estimation 853 
(Fig. 2), its MNDWI peak value is significantly lower than that of the wider branch pixel (Fig. 2). 854 
Therefore, the single threshold method cannot properly extract all branches (Fig. 4), which lead 855 
to underestimated braiding intensity. Using the combined method of Local Otsu method (Farrahi 856 
Moghaddam and Cheriet, 2012, 2010; Nicolaou et al., 2014) and Lowpath method (Hiatt et al., 857 
2020), the morphological complexity of braided rivers can be fully identified, which is close to 858 
the true value of visual interpretation (Fig. 4). 859 

It should be noted that this method is not necessary in all cases of braided river 860 
segmentation. For braided rivers with wide branches, such as the Yarlung Tsangpo River on the 861 
southern QTP, in which the branch width is larger than 30 m (Han et al., 2023; Shampa and Ali, 862 
2019; You et al., 2022), can simply use the Global Otsu method to extract water bodies. Small 863 
branches (<10 m) are commonly exist in braided rivers in the SRYR (Ma et al., 2021), which is 864 
suitable for the application of Local Otsu + Lowpath method. Owing to the limited resolution of 865 
remote sensing images, the complexity of braided rivers will be underestimated, and the Local 866 
Otsu + Lowpath method can identify the river information as fully as possible. 867 
4.2 Consistent characterization of morphological parameters of braided river 868 

There are well-functional relationships between dimensionless parameters of braided river 869 
morphology. The morphological characteristics of braided rivers change dramatically with the 870 
increase of water area (Li et al., 2018; Lu et al., 2022; Shampa and Ali, 2019). Braiding intensity 871 
BT3 has a good parabolic function relationship with water area ratio RW (Fig. 7) (Li et al., 2020d), 872 
which conforms to the function 𝐵்ଷሺ𝑅ௐሻ = 𝑎ሺ𝑅ௐ − 𝑅ௐ∗ ሻଶ + 𝐵்ଷ௣௘௔௞. The peak of the parabola 873 
indicates the maximum braiding intensity BT3peak that a braided river can reach, with 874 
corresponding water area ratio 𝑅ௐ∗ . 𝑅ௐ∗  is 0.29 ~ 0.40 in 9 braided rivers of the SRYR, and 875 
BT3peak is significantly positively correlated with the average channel width (Fig. 7). The average 876 
sandbar area ratio 𝑅௕തതതത in a braided channel is negatively power law correlated with RW (Fig. 8), 877 
which conforms to 𝑅௕തതതത ∝ 1/𝑅ௐఈ . The larger the exponent α, the higher the degree of 878 
fragmentation of the sandbars in the channel. The higher α may be the result of higher braiding 879 
intensity and higher the inundation chance, which means more intensively cutting of sandbars 880 
(Fig. 9). The parabolic relation of BT3-RW and the negative power law relation of 𝑅௕തതതത-RW generally 881 
exist in the braided rivers of the SRYR. The functional characteristic parameters α, 𝑅ௐ∗ , BT3peak of 882 
the fitting function BT3-RW and 𝑅௕തതതത-RW can be used to characterize the morphological 883 
characteristics of braided rivers in the reach-scale more comprehensively. 884 
4.3 Impacts of warming and wetting climate on morphological changes of braided river 885 

Located in the hinterland of the QTP, the SRYR is strongly responsive to climate warming. 886 
From 1957 to 2020, the river basin shows a consistent warming and wetting trend (Fig. 5). Air 887 
temperature and precipitation have increased significantly since 1990 and 2000 (Ahmed et al., 888 
2023; Deng et al., 2022; Ji et al., 2021; Li et al., 2013a, 2013b, 2023b). It resulted in the increase 889 
of vegetation abundance and river channels after 2000 (Fig. S16) (Ji et al., 2021), and the water 890 
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and sediment flux in the river basin increased significantly after 2000 (Fig. 6) (Ahmed et al., 891 
2022; Hu et al., 2022; Ji et al., 2021; Li et al., 2020a, 2023b; Sun et al., 2022). 892 

Climate warming lead to the receding result of permafrost (Li et al., 2013b; Wang et al., 893 
2017b; Yang et al., 2011) and the melting of glacier-snow in the SRYR (Gao et al., 2014, 2014; 894 
Li et al., 2021a; Liu et al., 2017; Wang et al., 2017a; Yang et al., 2003). The permafrost 895 
temperature of 0 ~ 20 cm soil in the SRYR increased by 0.2 ~ 0.3 ℃ from 1968 to 2008 (Li et 896 
al., 2013b), which cause permafrost to retreat. The glaciers in the SRYR are mainly distributed in 897 
the western section of the Tanggula Mountains, that is, the source of the Tuotuo, Buqu, Gaerqu 898 
and Dangqu Rivers. In recent 50 years, the glacier has retreated and thinned (Gao et al., 2014; 899 
Wang et al., 2017b; Wu et al., 2013), with 11.98% decrease in the glacier area and 25 completely 900 
disappeared glaciers from 1990 to 2015 (Wang et al., 2017a). From 1969 to 2009, the glacier 901 
area in the Tuotuo River Basin decreased by 20.83% (Gao et al., 2014; Wang et al., 2017b; Wu 902 
et al., 2013), and by 34.81% in the Buqu River Basin (Wu et al., 2013). Typical glaciers such as 903 
the Gangjiaquba Glacier (the source region of the Gaerqu River) and Jianggendigru Glacier (the 904 
source region of the Tuotuo River) retreated 4470 m and 3200 m, respectively, from 1977 to 905 
2009 (Gao et al., 2014). Climate warming causes changes in the freeze-thaw cycle and 906 
prolongation of the thawing process in the SRYR (the initial freezing date of the year is delayed 907 
by 13.5 days /10a) (Li et al., 2023a). Climate change also changes the precipitation type in the 908 
river basin, the proportion of snow in the precipitation decreases by 2.50% /10a, which mainly 909 
occurs in the area above 4500 m a. s. l. The SRYR is the main permafrost on the QTP, and the 910 
glacier, permafrost, and snow in the source region strongly respond to climate warming. 911 

The warming and wetting in the SRYR Basin led to the general growth of vegetation in the 912 
river basin and the sandbars after 2000. The NDVI value of the SRYR decreased from 1988 to 913 
2000 (Li et al., 2021c) and had an abrupt increase in 1998 (Ji et al., 2021), NDVI of the river 914 
basin increased significantly after 2000 (Fig. S16c). In recent 30 years, NDVI value has shown an 915 
overall increasing trend (Wang et al., 2022) in the SRYR, 96.9% of the area showed an 916 
increasing trend of NDVI from 1990 to 2020 (Fig. S16b), and NDVI value increased most in the 917 
southeast part. The NDVI value of sub-basins increased 0.059 ~ 0.084 from 1990 to 2020. The 918 
NDVI value of river channels change little before 2005 and increased obviously after 2006, with 919 
12.2 ~ 52.9% increment from 2006 to 2018. The spatial distribution of NDVI is consistent with 920 
the spatial distribution of hydrothermal conditions (Fig. S16a). This is because the combined 921 
effects of climate warming and permafrost change are the main causes of fluvial geomorphic 922 
changes in the alpine ecosystem in the SRYR (Li et al., 2013b). In the 2000s, NDVI values of the 923 
SRYR were positively correlated with shallow ground temperature, air temperature and 924 
precipitation, and the correlation between NDVI value and shallow ground temperature increased 925 
with depth (Yang et al., 2011; Zhao et al., 2020). Therefore, the thawing of permafrost, the 926 
shortening of the freezing time of active layer (Li et al., 2023a), and the increase of shallow 927 
ground temperature (Li et al., 2013b) are conducive to the growth of vegetation and the increase 928 
of NDVI. In the past 30 years, the improvement of hydrothermal condition is the main reason for 929 
the growth of vegetation in the river basin and river channels in the SRYR (Liu et al., 2014). 930 

The warming and wetting in the SRYR also resulted in the increase of runoff after 2000. In 931 
the past 30 years, the annual runoff in the SRYR at the ZMD Station showed a continuous 932 
decrease trend before 2005, and a significant increase trend after 2005 (Ji et al., 2021). The 933 
annual runoff increased by 36.36% and 7.49% in 2000s and 2010s, respectively (Fig. 5). Runoff 934 
in the SRYR is supplied by precipitation (34%), permafrost (49%), and meltwater from glaciers 935 
and snow (17%) (Li et al., 2020c). Precipitation, as the main supply term of surface water 936 
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resources, has the most significant contribution to runoff. Taking the Tuotuo River Basin as an 937 
example, the effects of meteorological factors on runoff is precipitation > air temperature > 938 
evaporation (Luo et al., 2020). Annual precipitation increased by 44.3 mm in the 2000s and -8.7 939 
mm in the 2010s (Fig. 5), this is the direct cause of runoff increase in the SRYR after 2000 940 
(Ahmed et al., 2023; Wu et al., 2013). At the same time, the rising temperature causes the 941 
melting of glaciers and snow cover, and the change of permafrost active layer also promotes the 942 
recharge of discharge (Qi et al., 2015; Wang et al., 2009; Zhang et al., 2008). For instance, the 943 
runoff from the glacier retreat during 1969 ~ 2009 accounted for about 3.77% of the total runoff 944 
of the Tuotuo River during this period (Wang et al., 2017b). The mean annual runoff in the Buqu 945 
River is 27.42 m3/s (Wu et al., 2013), and the glacier recharging runoff accounts for 3.68%. 946 
Runoff in the SRYR is more responsive to climate change than land cover change (Ahmed et al., 947 
2022; Wang et al., 2017b). Thus, the rising of air temperature and precipitation makes the runoff 948 
of the SRYR increase significantly after 2000. 949 

Climate warming is the main reason for the increase of sediment flux in the SRYR. 950 
Sediment flux comes from hillslope (surface flow erosion), channel erosion, and glacier erosion. 951 
The thawing permafrost caused by climate warming (Li et al., 2013b) results in the significant 952 
increase of erodible area from 1985 to 2017 in the SRYR (Li et al., 2021b). At the same time, the 953 
extension of the melting process (Li et al., 2023a) will prolongs the time that the surface can be 954 
eroded. Owing to increased runoff and surface temperature, more sediment load is transported 955 
into rivers through surface soil erosion, resulting in increased sediment flux (Li et al., 2023a). 956 

In summary, with the increase of precipitation after 2000 and continued increase of air 957 
temperature after 1990, the glacier, snow and permafrost melted, and the vegetation coverage 958 
increased after 2000 (Ji et al., 2021; Wang et al., 2022; Yang et al., 2011), and the water and 959 
sediment flux also increased after 2000 (Li et al., 2020a, 2023a). The increase of water and 960 
sediment flux in the braided river system is manifested as the increase of water area, the erosion 961 
of riverbank, and the change of the migration intensity of branches. (i) After 2000, the 962 
significantly increased runoff led to a substantial increase in the water area of each braided reach 963 
in the 2000s and 2010s, compared with that in 1990s (Fig. 11). (ii) The increase of the water and 964 
sediment flux also strengthened the erosion capability of water flow to the riverbank, which led 965 
to the universally expansion of braided channels in the past 20 years (Fig. 12). Moreover, river 966 
channel expansion mostly occurs in local riverbanks with abandoned branches or interfluves 967 
(Fig. S6 ~ S12). (iii) It is worth noting that the increase of the water and sediment flux will lead 968 
to the intensification of riverbed evolution (Li et al., 2018; Limaye, 2020; Peirce et al., 2018; 969 
Shampa and Ali, 2019; Smith et al., 1996), which will enhance the migration intensity in the 970 
channel. However, under the same impact of climate warming and wetting, vegetation 971 
abundance in the river basin and river sandbar also increased after 2000. The increase of 972 
vegetation abundance would slightly enhance the erosion resistance of riverbed, limits the 973 
increase of sediment supply and sediment transport capacity of the river basin, hence restricts the 974 
increase of migration intensity. Therefore, the intra-channel migration intensity in the braided 975 
reaches presents three different trends (Fig. 13). 976 

 977 
4.4 Three patterns of migration intensity in response to water and sediment flux change 978 

In the past 30 years, the temporal variation trend of the migration intensity in 9 braided 979 
reaches of the SRYR region can be summarized into three categories: (1) Beilu, Chumaer, 980 
Tuotuo, and Gaerqu River Reaches showed an increasing trend; (2) Dangqu, TTR_S, TTR_M and 981 
TTR_E Reaches showed no obvious trend; (3) Buqu River Reach showed a decreasing trend 982 
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The land cover in the Beilu and Chumaer River Basins is mainly bare land, and the sediment 1047 
flux increase is strongly responsive to climate warming. The inundation chance of the Beilu and 1048 
Chumaer River Reaches was not high (𝑅ௐ෪ =0.197, 0.190). The level of NDVI in the catchment 1049 
area of the Beilu River Reach was high (0.291), and the level of NDVI in the channel was low 1050 
(0.103). The NDVI level in the Chumaer River Reach channel and the catchment area were both 1051 
low (0.089 and 0.182). The migration intensity levels in the Beilu and Chumaer River Reaches 1052 
(IMI*=0.336, 0.309) were high (Fig. 16). The migration intensity of the Beilu and Chumaer 1053 
River Reaches showed an obvious increasing trend. This is because the land type in the Beilu 1054 
and Chumaer River Basins is desert soil (mainly bare land). As air temperature rises and 1055 
permafrost thaws, more sediment material in this area will be transported into rivers. Therefore, 1056 
when the precipitation increases, the sediment flux increases more and the sediment recharge is 1057 
sufficient, and the migration intensity showed an increasing trend. 1058 

The land cover and catchment area vegetation abundance of the Gaerqu River Reach are 1059 
similar to those of the Buqu River Reach, but the variation trend of migration intensity is the 1060 
opposite to that of the Buqu River Reach (Fig. 16). The vegetation levels of the catchment area 1061 
of the Buqu and Gaerqu River Reaches are identical (𝑁𝐷𝑉𝐼஼௔௧௖௛.=0.261, 0.265). The proportions 1062 
of bare land, grassland, and glacier area in Gaerqu River Basin are 40.94%, 51.83%, 5.53%, 1063 
which are 46.67%, 48.85%, 3.13% in the Buqu River Basin (Yan et al., 2020). In general, the 1064 
land cover types of the Gaerqu and Buqu River Basin are similar, but the migration intensity of 1065 
the Gaerqu River Reach increases while that of the Buqu River Reach decreases (Fig. 13). 1066 

With higher inundation chance and sediment flux, and lower sand bar vegetation abundance, 1067 
the Gaerqu River Reach showing an increasing trend of migration intensity. Compared with the 1068 
Buqu River, the water and sediment flux of the Gaerqu River (Yan et al., 2020) and the 1069 
migration intensity are both larger (Fig. 16). The Gaerqu River Reach has a substantially higher 1070 
inundation chance than the Buqu River Reach (𝑅ௐ෪ =0.255, 0.207), and the vegetation abundance 1071 
of Gaerqu River Reach channel (𝑁𝐷𝑉𝐼஼௛௔௡.=0.116) was substantially lower than that of the 1072 
Buqu River channel (𝑁𝐷𝑉𝐼஼௛௔௡.=0.156) (Fig. 16). When water and sediment flux increase, 1073 
Gaerqu River channel will be less resistant to the erosion of flow, thus result in the increase of 1074 
IMI* (Fig. 16). Meanwhile, the Wenquan River Basin in the upper basin of the Buqu River can 1075 
limit the increase of sediment flux, while the catchment area of Gaerqu River Reach is steeper, 1076 
which is conducive to sediment yield in the river basin (Fig. S17). For above reasons, the 1077 
migration intensity variation trend of the Gaerqu River Reach is dominated by increasing 1078 
sediment flux and showing opposite trend with the Buqu River Reach. 1079 

(3) Runoff Increase Dominated Pattern: This type of braided river has a large annual 1080 
inundation probability and a large increase in the water area during flood season. Owing to the 1081 
high inundation chance, the impact of sandbar vegetation growth on the migration intensity is 1082 
limited, and the migration of branches in the river is mainly affected by the discharge level. The 1083 
annual migration intensity of the TTR_M and Tuotuo River Reaches has a positive power law 1084 
correlation with the annual maximum discharge (Fig. 14a, 16d), and the runoff increase caused 1085 
by climate warming is the key factor affecting the migration intensity of these rivers. The 1086 
representative reaches are TTR_S, TTR_M, TTR_E, and Tuotuo River Reaches (Fig. 17). 1087 

The amplitude of runoff increase determines the variation trend of migration intensity. The 1088 
inundation chance of TTR_S, TTR_M, TTR_E and Tuotuo River Reaches was higher (𝑅ௐ෪ =0.396, 1089 
0.308, 0.399, 0.358). Frequent inundation resulted in low vegetation coverage on the sandbar in 1090 
the channel (𝑁𝐷𝑉𝐼஼௛௔௡.=0.067, 0.116, 0.096, 0.081) (Fig. 16). From the above analysis, the 1091 
riverbed resistance in the Tuotuo and Tongtian Rivers are affected by the growth of sandbar 1092 
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vegetation, especially in dry years. Compared with 1990-2000, the discharge in the Tuotuo River 1093 
increased significantly after 2000, with the mean annual maximum discharge increasing by 60% 1094 
and the mean annual runoff increasing by 86% (Fig. 14). The coefficient of variation (CV) of the 1095 
maximum annual discharge during 1990 ~ 2000 and after 2000 were both 0.396. Compared with 1096 
the period from 1990 to 2000, the mean annual maximum discharge of the Tongtian River 1097 
increased by 30% and the annual runoff increased by 42% after 2000, and the variation 1098 
coefficient CV of the annual maximum discharge decreased from 0.35 to 0.24. Therefore, the 1099 
migration intensity of the three Tongtian River Reaches (TTR_S, TTR_M, TTR_E) showed no 1100 
obvious change trend, while the migration intensity of the Tuotuo River Reach showed an 1101 
increasing trend after 2000 (Fig. 13). 1102 

5 Conclusions 1103 

This study extracted water bodies from 9 braided river reaches in the Source Region of the 1104 
Yangtze River on the Qinghai-Tibet Plateau during 1990 ~ 2020, based on the Google Earth 1105 
Engine platform and using Landsat 5/7/8 and Sentinel-2 series remote sensing images. The 1106 
empirical relationships of their morphology parameters were obtained and analyzed. 1107 
Furthermore, combined with the meteorological and hydrological data, the impact of the water 1108 
and sediment flux change driven by climate warming on the morphological characteristics of the 1109 
braided river were quantitatively analyzed. 1110 

(1) Combining the Lowpath algorithm and the Local Otsu algorithm, a new water extraction 1111 
method based on remote sensing images is proposed, which improves the accuracy of water 1112 
complexity recognition, i.e., reducing 59% of the root mean squared error of braiding intensity in 1113 
comparison with the Global Otsu method. This method is suitable for large braided rivers in 1114 
which the branch width is smaller than the spatial resolution of the image. 1115 

(2) Because the channel morphology of braided river changes rapidly with the increase of 1116 
water area, the braiding intensity BT3 and the water area ratio RW of braided reach show a 1117 
parabolic trend, and the average sandbar area ratio 𝑅௕ and RW show a negative power law trend. 1118 
The characteristic parameters of the fitting function, such as the parabolic peak BT3peak of BT3-RW, 1119 
are positively correlated with the mean channel width, and the power exponent of 𝑅௕-RW 1120 
function is negatively correlated with braiding intensity and inundation chance. In the parallel 1121 
comparison of braided reaches, functional parameters can more comprehensively characterize 1122 
the morphological characteristics of braided river. 1123 

(3) There is an obvious temporal scale effect on the intra-annual channel migration intensity 1124 
of braided rivers. When the time span is less than 5 years, the migration intensity increases 1125 
rapidly. However, when the time span is higher than 5 years, the migration intensity increases 1126 
slowly. Thus, it is essential to consider the temporal scale effect when analyzing the change of 1127 
the intra-annual channel migration intensity of braided river over time. 1128 

(4) The warming and wetting in the Source Region of the Yangtze River caused the increase 1129 
of water and sediment fluxes, vegetation abundance of the river basin and sandbar, and led to the 1130 
activation of braided rivers. With the increase of runoff, the active water area of each reach 1131 
increased in both flood season and non-flood season after 2000, especially in flood season, 1132 
indicating that the inundation chance of the braided rivers increased. With the increases of water 1133 
and sediment flux, the channel of each river expands generally after 2000, and the bank erosion 1134 
occurs mostly in the weak restricted bank with abandoned branch and interfluve. After 2000, the 1135 
increase of vegetation on the sandbar enhanced the erosion resistance of the riverbed. 1136 
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(5) The intra-annual channel migration intensity of braided rivers shows three trends of 1137 
increasing, weakening and unchanged over time, and their response to climate warming can be 1138 
divided into three patterns. (i) Sediment Increase Constrained Pattern (Buqu and Dangqu 1139 
Rivers): rivers with high vegetation coverage or low topography in its catchment area and low 1140 
inundation chance. The sediment flux increase caused by climate warming is limited, the 1141 
vegetation on the sandbar has sufficient time to growth, and the erosion resistance of the riverbed 1142 
is enhanced, so the migration intensity of the braided channel is weakened or maintained at a 1143 
rather low level. (ii) Sediment Increase Dominated Pattern (Beilu, Chumaer, Gaerqu Rivers): the 1144 
catchment area of braided river is characterized by loose soil and low vegetation coverage. 1145 
Although the inundation chance of the river is low, the sediment flux increase of this type of 1146 
river is strongly responsive to climate warming due to the high sediment transport rate, and the 1147 
migration intensity of the braided channel shows an increasing trend. (iii) Runoff Increase 1148 
Dominated Pattern (Tuotuo and Tongtian Rivers): for braided river with high inundation chance 1149 
and high water and sediment fluxes, the variation trend of migration intensity is mainly affected 1150 
by the increased amplitudes of water and sediment flux, showing an increasing or unchanged 1151 
trend. 1152 
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Figure Captions 1398 

Figure 1. Location of braided reaches in the SRYR. (a) Study reach of each braided river and its 1399 

catchment area, the sub-basins. The study reaches were named according to the name of the 1400 

river, in which the upper, middle and lower reaches of the Tongtian River were named TTR_S, 1401 

TTR_M and TTR_E respectively. In addition to the main stream of the Tongtian River, the rest of 1402 

the study reaches are distributed in four sub-basins, namely, Dangqu, Tuotuo, Beilu, and 1403 

Chumaer River Basins. (b) The Test Reach of TTR_E Reach was used to evaluate the accuracy of 1404 

the new Local Otsu + Lowpath method for extracting braided river water bodies. 1405 

Figure 2. Identification of braided river branches by global threshold segmentation method. 1406 

Figure 3. Water extraction for braided river with Local Otsu + Lowpath method. (a) MNDWI 1407 

image of braided river, (b) water body calculated by Local Otsu method, and (c) water body 1408 

calculated by Lowpath method, (d) water extraction results of Local Otsu + Lowpath method. 1409 

Figure 4. Comparison of water extraction results between the Local Otsu + Lowpath method and 1410 

Global Otsu method. (a) Comparison of water extraction results of the Local Otsu + Lowpath 1411 

method (b) Global Otsu method. (c) Comparison of braiding intensity BT3 extracted by the Local 1412 

Otsu + Lowpath method and Global Otsu method with BT3(Real) value interpreted by the visual 1413 

interpretation; (d) Comparison of water area ratio RW between the two methods. 1414 

Figure 5. The meteorological change in the SRYR. Spatial distribution of (a) precipitation and 1415 

(b) air temperature and (c) their variation trends of mean annual temperature and annual 1416 

precipitation from 1957 to 2020 (mark **, *** denotes the significance level of p<0.05 and 1417 

p<0.01). 1418 

Figure 6. The hydrological variation in the SRYR from 1957 to 2020. (a) annual runoff and (b) 1419 

annual sediment yield (mark *, *** denotes the significance level of p<0.10 and p<0.01). 1420 

Figure 7. The variation rule of braiding intensity. (a) Variation of BT3 with RW in the SRYR (b) 1421 

Correlation between maximum braiding intensity BT3peak and channel width W. 1422 

Figure 8. Correlation between average sandbar area ratio 𝑅௕തതതത and water area ratio RW of each 1423 

braided reach in the SRYR (mark *** denotes the significance level of p<0.001). 1424 

Figure 9. The correlation between index α, inundation chance 𝑅ௐ෪  and NDVI level of river 1425 

channel (mark * denotes the significance level of p<0.05). 1426 
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Figure 10. Relationship between migration intensity IMI and corresponding temporal scale used 1427 

for the computation of IMI. 1428 

Figure 11. Inter-decadal variation of RW in different braided reaches. (a) non-flood season (May 1429 

~ June, September ~ October), (b) flood season (July ~ August). 1430 

Figure 12. General channel expansion of braided rivers in the SRYR. (a) Channel expansion 1431 

rates of each braided reach from 2000 ~ 2012 to 2020 (b) Bank expansion of the Beilu River 1432 

Reach from 2010 to 2020. 1433 

Figure 13. Migration intensity variation trends of 9 braided river reaches in the SRYR (mark * 1434 

denotes the significance level of p<0.05). 1435 

Figure 14. Influencing factors of migration intensity in Tuotuo Reach. (a) The correlation 1436 

between annual migration intensity IMI and annual maximum discharge Qmax in Tuotuo River 1437 

Reach (b) the inter-annual changes of annual maximum discharge and annual runoff in the 1438 

Tuotuo River Reach. 1439 

Figure 15. Influencing factors of migration intensity in the Tongtian River. (a and b) The RW-Q 1440 

Relationship of TTR_M (the Middle Reach of Tongtian River) Reach and Tuotuo River Reach 1441 

(𝑅ௐᇱ  is the water area ratio of image that was partially obscured by cloud, which estimated based 1442 

on reference image in accordance with Section 2.2.7). (d) The correlation between the annual 1443 

migration intensity IMI and the annual maximum discharge Qmax, and (c) The inter-annual 1444 

variation of the annual maximum discharge Qmax and the annual runoff of the Tongtian River. 1445 

Figure 16. The migration intensity IMI* in each braided reach from 1990 to 2020, mean annual 1446 

NDVI value for channel 𝑁𝐷𝑉𝐼஼௛௔௡., mean annual NDVI value of catchment area 𝑁𝐷𝑉𝐼஼௔௧௖௛., 1447 

median water area ratio 𝑅ௐ෪  in flood season from 1990 to 2020. 1448 

Figure 17. Different response pattern of migration intensity to climate change in the SRYR. 1449 
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Table 1. Selection of remote sensing images for each reach 1451 
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Table 1 Selection of remote sensing images for each reach. 

Reach L×W (m) 

Landsat + Sentinel 
Google Earth (Landsat 7 + Sentinel-2) 

T1 T2 

Total pics 
Resolution

 /m 

Process Time

(per pic) /s 
Year Resolution/m Year Resolution /m 

Beilu 5600×1092 85 30 4.24 2010 0.30 2020 0.30 

Buqu 8400×1371 152 30 5.53 2005 0.30 2020 0.30 

Chumaer 7400×1215 95 30 5.68 2007 0.30 2020 0.30 

Dangqu 9600×1333 95 30 6.32 2000 15 (Landsat 7) 2020 10 (Sentinel-2) 

Gaerqu 8000×888 184 30 5.22 2003 0.30 2020 0.30 

TTR_E 33000×2740 116 30 19.78 2012 0.30 2020 0.30 

TTR_M 16200×2771 
 

178 30 9.87 2000 15 (Landsat 7) 2020 10 (Sentinel-2) 

TTR_S 11000×2763 108 30 7.83 2010 0.30 2020 0.30 

Tuotuo 18600×1010 245 30 9.04 2003 0.30 2020 0.30 

Note: L is the reach length, W is the average reach width. 
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