Machine Learning-based AFT Annealing Parameter r mr0 from c-axis- projected Reduced Mean Length of Partially Annealed 252 Cf-derived FTs and LA-ICP-MS-derived Chemical Composition Data

Raymond Donelick¹, Andrew J Donelick¹, Ray Donelick¹, and Cleber J Soares¹ ¹Affiliation not available

September 11, 2023

Machine Learning-based AFT Annealing Parameter r_{mr0} from c-axisprojected Reduced Mean Length of Partially Annealed ²⁵²Cf-derived FTs and LA-ICP-MS-derived Chemical Composition Data

Apatite.com Partners, LLC Viola, Idaho USA

Andrew J. Donelick¹, Ray Donelick¹, Cleber J. Soares²

adonelick@g.hmc.edu donelick@apatite.com chronuscamp@gmail.com

Abstract

AFT annealing parameter r_{mr0} relative to apatite standard B2 (Carlson et al., 1999; Ketcham et al., 1999) is re-calibrated here using a combination of natural apatite mixtures from sandstones and selected standards. The standards include well-studied DR, FC, TI, and RN-like (Ca-F-apatite end-member). A machine learning approach is used that predicts r_{mr0} based on independent chemical composition data from LA-ICP-MS.

The c-axis-projected (e.g., Donelick et al., 1999), reduced mean length of partially annealed ²⁵²Cf-derived FTs is measured and converted to r_{mr0} for each apatite grain studied. Absolute concentrations of Na, Mg, P, S, Cl, Ca, Mn, Fe, As, Sr, Y, 14 REEs, Th, U

r_{mr0} from ²⁵²Cf-derived Fission Track Lengths

Step 1. Measure mean ²⁵²Cf-derived fission track length four populations for each grain: low-angle-to c-axis + high-angle-to-c, short-length + long-length for each.

and relative concentrations of Al, Si, Sc, Br are determined for each grain by LA-ICP-MS using DR and other apatite species as matrix-matched standards (Donelick and Donelick, 2013). Of primary interest to r_{mr0} is: absolute Cl, Mn, Fe, Sr, ΣREEs, and annealing state of natural FTs (pre-annealed or not; t-T path dependence?); of secondary interest is relative Br, absolute Y, Th, U, and Pb-corrected UPb age (t-T path dependence?); of tertiary interest is everything else including the concentrations of individual REEs.

Machine learning regression techniques applied to the data include linear regression, random forests, dense neural networks, and support vector models. We compared the validation results between these regression techniques and examine the importance of each chemical composition feature as determined by the model training. The best performing model identified so far is a random forest regressor, with a 5-fold cross validation mean absolute error of 0.057 +/- 0.004 (1 σ) on r_{mr0}.

Table 1. Apatite	Sample	Apatite Description	Grains	Grains	Grains	²⁵² Cf Fission Tracks	²⁵² Cf Fission Tracks	²⁵² Cf Fission Tracks
grains analyzed			Initial Condition	Annealed Natural FTs	Unannealed Natural FTs	Initial Condition	Annealed Natural FTs	Unannealed Natural FTs
and ²³² Cf	D3	DR (Carlson et al., 1999)	pending	7	pending	0	407	0
fission tracks	TI	TI (Carlson et al., 1999)	pending	11	pending	0	519	0
	FC	FC (Carlson et al., 1999)	pending	pending	pending	0	0	0
initial length.	MM	RN-like (Carlson et al., 1999)	pending	pending	pending	0	0	0
	F5	igneous population - Minn, USA	pending	pending	pending	0	0	0
annealed 170 h	P10033_031	natural mixture - North Sea	43		29	1103		236
$ + 205^{\circ}C $	P10033_032	natural mixture - North Sea	pending		12	0		105
	P10033_033	natural mixture - North Sea	pending		14	0		92
measured per	P10033_035	natural mixture - North Sea	pending		68	0		274
	P10033_036	natural mixture - North Sea	pending		49	0		80
data type for	P10033_037	natural mixture - North Sea	pending		58	0		209
a a a a a a a a a a a a a a a a a a a	P10036_003	natural mixture - Utah, USA	pending	143	pending	0	1776	0
each sample in	P171_001	natural mixture - Utah, USA	pending	168	260	0	1541	2564
this study	P171 003	igneous population - Utah, USA	pending	26	pending	0	1558	0

252Cf fission

16-18 deg

18 mm

12 mm

13 mm

fragments

Step 2. Project all low-angle-to-c-axis + long-length mean values onto the c-axis. Totally annealed (bottom right) is measured when ²⁵²Cf fission tracks are totally annealed within 10° of c-axis. Minimum $r_{cmean} = 0.423$, $l_{a0} = 8.37 \mu m$, $l_{c0} = 8.75 \mu m$.

this study.

Samples and Methods

The samples studied are listed in **Table 1**. Apatite grains were mounted in FEP Teflon, polished to a fine finish using 0.3 um Al_2O_3 slurry, and irradiated 24 h in a vacuum (<1) torr) with fission fragment nuclei from an Eckert & Ziegler 50 μCi ²⁵²Cf foil (part number CF223010050U; Figure 1), rotated 90 degrees, and irradiated an additional 24 h. The ²⁵²Cf-derived fission tracks (incident upon and intersecting polished apatite surfaces) were etched using 5.5N HNO₃ for 20 s at 21°C (Donelick et al., 1990). For the *Initial Condition* (Table 1), the ²⁵²Cf-derived fission tracks were not heated prior to etching. All other ²⁵²Cf-derived fission tracks were partially or totally annealed in a muffle furnace for 170 h at 295°C prior to etching. Annealed apatite grains (natural fission tracks preannealed for 220.5 h at 345°C) and *Unannealed* apatite grains (natural fission tracks) untreated) were used (Table 1). Data were measured by Ray Donelick using a Nikon E600 microscope, Ludl Kinetec XY-stage, ASI Z-drive, Lumenera Infinity1 digital camera, and Apatite.com Partners' Sample_Scanner.py software. LA-ICP-MS data were collected by Ray Donelick at Washington State University Geoanalytical Laboratory using a NWR UP-213 laser (213 nm, 8 s warmup, 20 s ablation, 20 s washout, 25 µm diameter spot) and Agilent 7700 quadruple mass spectrometer (37 masses for 33 elements). Apatite UPb ages (Chew and Donelick, 2012), and chemical compositions (absolute for Na, Mg, P, S, Cl, Ca, Mn, Fe, As, Sr, Y, 14 REEs, Th, U; relative for Al, Si, Sc, Br; Donelick and Donelick, 2013; Chew et al., 2014) were calculated using Apatite.com Partners' MSData software.

Step 3. Calculate r_{mr0} values for each r_c value. Linear and non-linear models shown.

Step 4. Apply machine learning regression techniques. Shown here are results for a random forest regressor. Interesting structures in the data!

Acknowledgements

We thank our colleagues in Alaska, Alberta, and Texas.

References Cited

Carlson et al., 1999. American Mineralogist, v. 84, pp. 1213-1223 Chew and Donelick, 2012: Mineralogical Association of Canada, Short Course, v. 42, pp. 219–247 Chew et al., 2014: Geostandards and Geoanalytical Research, v. 38, pp. 23-35 Donelick and Donelick, 2013. U.S. Patent Number 8,901,485 Donelick et al., 1990: Nuclear Tracks and Radiation Measurements, v. 17, no. 3, pp. 261-265 Donelick et al., 1999. American Mineralogist, v. 84, pp. 1224-1234 Ketcham et al., 1999. American Mineralogist, v. 84, pp. 1235-1255