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Abstract

Denitrification-Decomposition (DNDC) model, a mathematical construct that simulates biogeochemical processes including

carbon and nitrogen dynamics, plant growth, and microbial activity across various ecosystems. The discourse includes an

examination of the model’s developmental trajectory, with attention given to adaptations created for diverse ecosystems,

regions, specific crops, and modular configurations. We additionally delve into the validation processes of the DNDC model and

its broader applications across different fields. Despite the model’s extensive usage in previous studies, there has been a lack of

critical, comprehensive evaluation of its merits and demerits. This paper aim to address this gap, providing a thorough critique

and review of the DNDC model. In our discussion, we present a balanced overview of the DNDC model’s current strengths and

weaknesses, and offer insights into its potential future developments. The ultimate goal of this paper is twofold. Firstly, we aim

to provide guidance to researchers and practitioners who are either currently employing or considering the use of the DNDC

model. Secondly, our critique and analysis is intended to be a constructive contribution towards the model’s future refinement

and development.
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Key Points: 13 

• DNDC effectively models soil processes and gas emissions, predicts environmental 14 

and climate impacts, and adapts to diverse ecosystems. 15 

• DNDC's limitations include lower accuracy in wetlands and simplified 16 

biogeochemical assumptions. Improvements in these areas are needed. 17 

• DNDC's source code is private, hindering its verification and improvement. Its public 18 

release could enhance scientific progress.  19 
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Abstract 20 

Denitrification-Decomposition (DNDC) model, a mathematical construct that simulates 21 

biogeochemical processes including carbon and nitrogen dynamics, plant growth, and 22 

microbial activity across various ecosystems. The discourse includes an examination of the 23 

model's developmental trajectory, with attention given to adaptations created for diverse 24 

ecosystems, regions, specific crops, and modular configurations. We additionally delve into the 25 

validation processes of the DNDC model and its broader applications across different fields. 26 

Despite the model's extensive usage in previous studies, there has been a lack of critical, 27 

comprehensive evaluation of its merits and demerits. This paper aim to address this gap, 28 

providing a thorough critique and review of the DNDC model. In our discussion, we present a 29 

balanced overview of the DNDC model's current strengths and weaknesses, and offer insights 30 

into its potential future developments. The ultimate goal of this paper is twofold. Firstly, we 31 

aim to provide guidance to researchers and practitioners who are either currently employing or 32 

considering the use of the DNDC model. Secondly, our critique and analysis is intended to be a 33 

constructive contribution towards the model's future refinement and development. 34 

Plain Language Summary 35 

This paper presents a critical evaluation of the Denitrification-Decomposition (DNDC) model, 36 

which accurately simulates biogeochemical processes in ecosystems. It thoroughly explores the 37 

model's development, adaptations, validation processes, and diverse applications. The primary 38 

objectives are to address the lack of comprehensive evaluation, offer a balanced overview of its 39 

strengths and weaknesses, provide guidance to researchers and practitioners, and contribute 40 

constructively to the model's refinement and future development. 41 

1 Introduction 42 

Nitrous oxide (N2O) is one of the powerful greenhouse gases (GHG) (Gilhespy et al., 43 

2014), and agriculture is the largest anthropogenic non-CO2 emissions source, accounting for 44 

approximately 40% of total methane (CH4) emissions and 60% of N2O emissions. This 45 

accounts for 10-12% of the total anthropogenic GHG emissions (including CO2, which 46 

accounts for up to 20-35%) , and this proportion is increasing annually (Frank et al., 2019; 47 

US-EPA, 2006). Methane (CH4) is the second largest contributor to global warming, and 48 

understanding how to mitigate CH4 emissions is critical (Shaukat et al., 2022). As global 49 

climate change intensifies, developing a biogeochemical model to simulate carbon and nitrogen 50 

emissions at both regional and global scales has become a hot research topic (Del Grosso et al., 51 

2006; Giltrap et al., 2010). As early as 1998, there were more than 30 international models of 52 

biogeochemical processes (Cao & Woodward, 1998), and now there are hundreds more, often 53 

based on mathematical formulas and computer codes, which are used to simulate and predict 54 

various aspects of biogeochemical cycling in ecosystems. These models vary in complexity and 55 

accuracy, with some being very simple, containing only a few equations, while others are very 56 

complex, involving thousands of equations and parameters. The DNDC model has become one 57 

of the most widely used biogeochemical cycling models internationally for simulating carbon 58 

and nitrogen biogeochemical cycling processes at the site and regional scales in different 59 

ecosystems (C. S. Li, 2000). The reason is simple. On one hand, DNDC model combines redox 60 

potential reaction, the Gibbs equation, and other biogeochemical theories to observe, analyze, 61 
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and predict the carbon cycle of terrestrial ecosystems at a point and regional scale. It passes 62 

information with a time step of hours or days, simulating processes such as carbon and nitrogen 63 

emissions, crop yield, soil carbon sequestration, and nitrate leaching. Thus, it provides a basis 64 

for appropriate ecosystem management for local meteorology and soil quality and is widely 65 

used in research on estimating greenhouse gas emissions, dynamic changes in soil organic 66 

carbon, and soil nitrogen loss. On the other hand, the model has a simple software interface, 67 

easy-to-understand parameter settings, customizable parameters, and a wide range of 68 

applications, providing users with considerable flexibility. Therefore, it can be well applied to 69 

carbon and nitrogen cycle simulation research, addressing biogeochemical issues such as 70 

climate change (Hastings et al., 2010; Syp et al., 2012; Gilhespy et al., 2014).  71 

Since the mid-20th century, with the development of technological means and the 72 

support of fundamental scientific theories and computational technology, domestic and foreign 73 

researchers have established various models to simulate the carbon and nitrogen cycles of 74 

ecological systems at different spatial and temporal scales. Representative biogeochemical 75 

process models currently include the CENTURY, RothC, APSIM, and DNDC models, among 76 

others (C. Li et al., 1992). For example, W. N. Smith et al. (2000) used the CENTURY model to 77 

analyze soil organic carbon changes in Canadian farmland from 1970 to 2010, finding that 78 

no-tillage practices can transform farmland soil from a carbon source to a carbon sink. Afzali et 79 

al. (2019) used the RothC model to study the impact of agricultural management changes on 80 

global farmland soil organic carbon, discovering that returning straw to fields increased soil 81 

organic carbon density by 0.22-0.69 mg·hm-2 from 1961 to 2014. Beah et al. (2020) used the 82 

RothC and APSIM models to investigate grassland's effect on soil organic carbon storage in the 83 

arid region of southern Iran and the impact of nitrogen fertilizer application on corn yield, 84 

respectively. There are also other models that can be used to simulate other biogeochemical 85 

processes such as T. Luo et al. (2022) used the EPIC model to estimate soil erosion coefficients 86 

and assess predicted soil erodibility factors in karst watersheds. Y. Wang et al. (2023) 87 

employed InVEST and CASA models to analyze the spatial distribution patterns of nine 88 

ecosystem services in the Qilian Mountains from 2000 to 2018.  89 

2 Development of the DNDC Model 90 

2.1 The scientific structure of the DNDC model 91 

C. Li (2016) elaborated the detailed sub-modules and processing mechanisms of the 92 

model, as shown in Fig. 1, and discussed the scientific basis and computational processes that 93 

support the model in the book "Biogeochemistry: Science Fundamentals and Modeling 94 

Methods." 95 

The DNDC model has the capacity to model complex processes in agricultural 96 

ecosystems, estimate dynamic changes in soil carbon and nitrogen, and predict crop yield in 97 

various ecosystems. It can be combined with GIS technology for large-scale regional 98 

simulations, making it valuable for long-term fixed-point observation data integration and 99 

predictions. Its outputs include emissions of gases like carbon dioxide and methane, crop yield, 100 

soil organic carbon content, and nitrate leaching (Li et al., 1997; Li, 2000) 101 
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 102 

Fig. 1 The scientific structure of the DNDC model 103 

The first component of the DNDC model simulates the environmental driving forces 104 

within an ecosystem using various driving factors of the ecosystem's macrostructure, which 105 

form the biogeochemical field of the target ecosystem. The second component simulates the 106 

impact of the environment on microbial activity and calculates the emission of major 107 

greenhouse gas in the plant-soil system. These environmental forces in the biogeochemical 108 

field in the field of biogeochemistry follow the principles of chemical thermodynamics and 109 

reaction kinetics, determining the direction and rate of all biogeochemical and biochemical 110 

reactions in the ecosystem (C. Li, 2016).  111 

2.2 Model modification and development 112 

The DNDC (Denitrification-Decomposition) model, first developed by Changsheng Li 113 

at the University of New Hampshire, is a biogeochemical model used to simulate complex 114 

ecosystem processes such as carbon and nitrogen cycling. It comprises six sub-models that deal 115 

with soil climate, plant growth, organic matter decomposition, nitrification, denitrification,  116 

and fermentation. These sub-models exchange parameters to simulate the migration and 117 

transformation of carbon and nitrogen within ecosystems (Li, 2000; Giltrap et al., 2010). 118 

Long-term monitoring of soil organic carbon (SOC) is ideal but is often limited by the 119 

scale of the experiment, monitoring sites, and duration, making it difficult to accurately 120 

determine small-scale spatiotemporal changes (Y. Zhao et al., 2018). Furthermore, estimation 121 

of agricultural NH3 and N2O emissions traditionally relied on fixed emission factors without 122 

considering atmospheric, soil, crop, and management factors, leading to uncertainty (Yue et al., 123 
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2019; Zhan et al., 2021). Hence, process-based models like DNDC that integrate environmental 124 

factors and management practices are preferred for predicting large-scale changes in SOC 125 

dynamics and N2O and NH3 emissions (H. Li et al., 2017). 126 

The DNDC model excels in simulating the entire soil carbon and nitrogen cycle, 127 

incorporating driving factors such as air temperature, nitrogen fertilizer, precipitation, soil 128 

organic carbon, and agricultural management practices (Zhang et al., 2009; Xu et al., 2019; 129 

Zhao et al., 2020). It predicts soil conditions and gas emissions, including CO2, CH4, NH3, NO, 130 

N2O, and N2 from farmland (Li et al., 2000; Fumoto et al., 2008; Dou et al., 2014; Zhao et al., 131 

2020). With broad applications and continuous enhancements from global research, the DNDC 132 

model's functions have expanded to include tracking greenhouse gas emissions, detecting plant 133 

growth, microbial activity, soil carbon sequestration, and modeling various ecosystems such as 134 

forests, wetlands, and grasslands (Fillery et al., 1986; Rafique et al., 2011; Chen et al., 2013). 135 

The development and some modifications of the DNDC model are shown in Table 1. 136 

 137 
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Table 1 The development and modifications of the DNDC model 138 

Publications Model Version Functions 

C. Li et al. (1992)  DNDC v. 1.0-7.0 

There are three basic sub-models in the DNDC model: the soil climate/water 
heat flux sub-model, the organic carbon decomposition process sub-model, 
and the denitrification sub-model (which includes only one equation for 
nitrification when there is no crop growth) . 

C. Li et al. (1994)  DNDC v. 7.1 The initial version was improved by adding a plant growth process submodel 
and a land management use submodel. 

C. Li et al. (2000)  PnET-N-DNDC 

Integrated the models of photosynthesis, evapotranspiration, DNDC, and 
nitrification, replacing crop growth with forest growth, which can predict the 
emissions of N2O and NO in forest soils. Introduced the concept of "anaerobic 
balloon" and considered the influence of freezing and thawing on soil 
moisture. 

Li, (2000) and Li et al. 
(2000)  DNDC v. 8.0 

A new two-component model framework was developed in the 
PnET-N-DNDC model, incorporating a submodel that simulates fermentation 
processes using soil redox potential. The model integrates the anaerobic 
chamber concept along with freeze-thaw effects. 

Y. Zhang, Li, Zhou, et al. 
(2002)  Crop-DNDC 

Simulating crop growth through physiological processes under water and 
nitrogen stress, a new phenology crop submodel incorporating the initial 
version submodels (decomposition, nitrification, and denitrification) was 
introduced. 

Y. Zhang, Li, Zhou, et al. 
(2002) DNDC v. 8.2 

The new phenology crop submodel was introduced into the DNDC model as a 
replacement for the empirical crop growth submodel added in 1994. The new 
phenology crop physiological and ecological model requires more and finer 
plant growth parameters, while the simulated results are more accurate. 

Y. Zhang, Li, Trettin, et 
al. (2002) Wetland-DNDC 

To predict CO2 and CH4 emissions in wetland ecosystems, we integrated the 
PnET-N-DNDC and FLATWODS models that are suitable for such 
ecosystems. We introduced dynamic changes in water levels and modified soil 
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properties and climatic conditions. The resulting model comprises four 
submodels: hydrological conditions, soil temperature, plant growth, and soil 
carbon dynamics. 

Brown et al. (2002)  UK-DNDC Adapting the DNDC model for simulating UK ecosystems. 

C. Li, Cui, et al. (2004)  DNDC v. 8.5 Modified the concept of "anaerobic gas vesicle" by incorporating the Nernst 
equation and combining it with the Michaelis-Menten equation. 

Saggar et al. (2004)  NZ-DNDC 

Modified the model of annual crops to that of perennial grass growth, 
quantified the nitrogen input from herbivore excreta, replaced the Thorthwaite 
equation with the Priestley-Taylor equation to calculate potential soil 
evapotranspiration, and changed the order of soil water infiltration and 
drainage to simulate the N2O emission patterns from New Zealand grassland. 

C. Li, Mosier, et al. 
(2004)  DNDC-Rice 

Modified the DNDC model to make it applicable to rice paddy ecosystems. 
Further improvements were made by Rafique et al. (2011) in Indian rice 
paddies. Fumoto et al. (2008) enhanced and integrated the MACROS 
implementation. 

C. Li et al. (2005)  Forest-DNDC Integrated the PnET and DNDC models for both dryland and wetland forest 
ecosystems. 

Kiese et al. (2005)  Forest-DNDC-Tropica Modified the PnET-N-DNDC model to make it applicable to tropical 
rainforest ecosystems. 

Neufeldt et al. (2006)  EFEM-DNDC 
Coupling EFEM and DNDC v8.0 to simulate greenhouse gas emissions from 
typical livestock and production systems in Baden-Württemberg, Germany, 
using a GIS-coupled economic-ecological system model. 

C. Li et al. (2006)  DNDC v. 9.0 Introducing free ammonium kinetics and improving the leaching of 
nitrification and nitrate to optimize the accuracy of the model simulation. 

Beheydt (2006)  BE-DNDC Combining DNDC v8.3P with regional data from Belgium to calculate the 
regional framework for N2O emissions from intensive agricultural land. 

Fumoto et al. (2008)  DNDC-Rice Making the DNDC-Rice model capable of simulating rice paddies with 
different flooding regimes. 

Leip et al. (2008)  DNDC-Europe Integrating CAPRI into DNDC to assess the impact of agricultural 
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environmental policies on greenhouse gas emissions. 

Grote et al. (2009) and  
Grote et al. (2011)  Mobile-DNDC 

Linking MoiBiLE to one-dimensional ecosystem models such as DNDC to 
obtain the most suitable model combination for specific research tasks. 
MoBiLE-DNDC was adapted by Wolf et al. (2012). 

W. N. Smith et al. (2010)  DNDC v. 9.3 Improve the estimation of soil evaporation in the DNDC model. 

Kröbel et al. (2011)  DNDC-CSW 
Incorporate the CSW (Canadian spring wheat) empirical sub-model into the 
DNDC model to more accurately estimate the growth and nitrogen uptake of 
spring wheat in Canadian agricultural ecosystems. 

Y. Zhang et al. (2012)  NEST-DNDC Develop an integrated approach to quantify CH4 emissions under permafrost 
conditions and combine DNDC with NEST. 

C. Li et al. (2012)  Manure-DNDC Predict GHG and NH3 emissions from manure generated by farms, and 
modify DNDC to represent the manure lifecycle on farms. 

C. Li et al. (2012) DNDC v. 9.4 Introduce the soil NH3 algorithm developed by Manure-DNDC. 

Haas et al. (2013) Landscape-DNDC Use DNDC and Forest-DNDC as a universal soil biogeochemical module to 
simulate multiple ecosystems. 

Z. Zhao et al. (2014)  DNDC v. 9.5 

The DNDC v9.5 version is the current version, which includes optimized 
modules for crop growth simulation, hydrology, greenhouse gas 
emission-related parameters, etc., to meet the needs of greenhouse gas 
mitigation research. 

Katayanagi et al. (2017)  DNDC v. 9.5 Revised the emission factors (EFs) to consider the effects of CH4 emissions. 

Dutta et al. (2018)  DNDC v. 9.5 

The model mechanism was calibrated under two strongly contrasting soil 
textures (sandy and clay soils) . The calculation of soil temperature driven by 
soil thermal conductivity and heat capacity was improved, and the surface soil 
temperature mechanism of DNDC was improved to improve greenhouse gas 
prediction. 

Amponsah et al. (2019)  DNDC-OP 
Combine PAH degradation rates with dynamic soil, vegetation, and climate 
factors (such as soil moisture and temperature) to simulate the degradation 
dynamics of PAHs in soil at abandoned oil and gas well sites. 

Dubache et al. (2019)  DNDC v. 9.5 The regulation of soil moisture on urea hydrolysis was increased, and the 
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temperature regulation parameterization of this process was calibrated. The 
volatilization coefficient of NH3 released from soil water to the atmosphere 
above bare soil or tree canopy was redefined. The regulation of soil texture 
(expressed as clay fraction) and the regulation of wet and/or dry canopy were 
redefined, as well as the parameterization of wind speed, soil temperature, and 
moisture regulation. 

He et al. (2019)  DNDC v. 9.5 The DNDC model was modified to improve alfalfa growth simulation. 

S. Li et al. (2019)  DNDC v. 9.5 

The calculation of soil moisture was modified, and parameterization for 
temperature regulation was designed when defining the rate constant for 
ammonium bicarbonate (ABC) decomposition and NH3 release to the 
atmosphere. The regulation of texture on NH3 volatilization from soil was 
re-parameterized. An adaptation coefficient was added for an unknown 
regulatory factor that affects the volatilization of dissolved NH3. In addition, 
pedo-transfer functions (PTFs) were introduced into the model to estimate soil 
hydraulic parameters using physical and chemical properties as model inputs. 

Cui & Wang (2019)  DNDC v. 9.5 

The original DNDC model was modified to better represent rainfall-snowfall 
partitioning, snow cover, and soil freeze-thaw cycles, thereby improving soil 
temperature simulation, particularly predicting soil temperature and 
greenhouse gas emissions in cold regions with snow cover during winter. 

W. Smith et al. (2020)  DNDC v. 9.5 
The soil hydrological framework of DNDC was strengthened, including a new 
mechanized tile drainage submodel, improved water flux, root growth 
dynamics, and deeper heterogeneous soil profiles. 

 139 
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2.3 The core processes of the DNDC model are as follows. 140 

The DNDC model is composed of an input interface, a biogeochemical field, and 141 

central processes. It offers users the flexibility to provide ecological driving factors, such as 142 

meteorological data, soil parameters, crop parameters, and management strategies, for the 143 

ecosystem under consideration (Yin et al., 2020). Should there be any inconsistencies between 144 

the default parameters and the actual conditions, users are granted the ability to implement 145 

tailored adjustments within the documentation. The parameters corresponding to the target 146 

ecosystem will be utilized to form the biogeochemical field and transform the input driving 147 

factors into the propelling forces for the various sub-models housed within the model. Prior to 148 

executing calculations and simulations for carbon, nitrogen, and water in the ecosystem, the 149 

core processes establish the biogeochemical reactions. 150 

2.3.1 Climatic Conditions of Soil 151 

The DNDC model serves as a tool for simulating gas emanations from the soil, where 152 

the generation of CO2, CH4, and N2O primarily arises from microbial actions. These actions, in 153 

turn, are largely governed by the prevailing conditions within the soil environment (Yin et al., 154 

2020). The precise replication of soil climate factors, encompassing soil temperature, hydration 155 

levels, pH, redox potential (Eh), along with corresponding substrate concentrations, is of 156 

paramount importance for monitoring greenhouse gas emissions. The model meticulously 157 

computes the soil temperature for each layer, utilizing parameters like the rate of heat transfer, 158 

the specific heat capacity, and the thermal conductivity of the soil. It also maintains an 159 

equilibrium between water input and output to ascertain the moisture content within each layer. 160 

These measures ensure the model's adaptability for frigid and snow-laden environments. Cui & 161 

Wang (2019) modified the rainfall and snowfall submodules and embedded the agricultural 162 

snow model into the DNDC model to more effectively simulate the impact of rain and snow on 163 

soil temperature and moisture. Katayanagi et al. (2012) improved the modeling of soil 164 

infiltration and evapotranspiration by estimating soil moisture content in each layer every hour 165 

using the DNDC-Rice model. The water permeability (1 mm/day for a 50 cm deep soil layer) 166 

was determined by comparing soil moisture content with irrigation parameters and irrigation 167 

time, thereby establishing a dynamic water model for continuous irrigation and wet-dry 168 

alternation. Pathak et al. (2005) increased the leakage rate of certain reactive substrates in the 169 

soil, such as dissolved organic carbon (DOC) and nitrate, in the model. The optimization results 170 

of the model greatly reduced CH4 emissions at high leakage points, but had no effect on CH4 171 

emissions at low or moderate leakage points. 172 

2.3.2 Progression of Plant Development 173 

Indeed, the progression of plant growth wields a considerable impact on the fluctuations 174 

of water, carbon, and nitrogen within the soil, commanding many of the biogeochemical 175 

processes that take place therein. This is a crucial facet in guaranteeing that the DNDC model 176 

precisely replicates the oscillations of carbon and nitrogen within the interconnected cycle of 177 

soil, plant, and atmosphere (Yin et al., 2020). The architects of the model conceived a 178 

crop-specific sub-module, incorporating pertinent crop growth models to faithfully replicate 179 

the progression of crop development. To illustrate, straightforward empirical formulas, 180 
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photosynthesis and evapotranspiration processes, the agricultural emissions financial model, 181 

the northern ecosystem's soil temperature dynamics, and the annual crop simulator module of 182 

the general crop model were all skillfully integrated (Zhang et al., 2002b; Li et al., 2004b). 183 

2.3.3 Dynamics of Soil Carbon 184 

Within the DNDC model, the ecosystem's soil carbon is compartmentalized into four 185 

primary reservoirs: plant debris, microorganisms, active humus, and passive humus. Each 186 

reservoir is further subdivided into two or three sub-reservoirs, with each sub-reservoir 187 

exhibiting a distinct rate of decomposition. The rate at which organic carbon decomposes 188 

within each sub-reservoir is contingent upon a multitude of factors. These include the size of 189 

the reservoir, the soil's temperature and hydration levels, the extent of clay content within the 190 

soil, and the amount of nitrogen present in the soil, as shown in Fig 2. 191 

 192 

Fig 2 Soil carbon dynamics 193 

Plants and microorganisms harness the power of Soil Organic Carbon (SOC), playing a 194 

fundamental role in the cyclical processes of carbon and nitrogen. The agglomeration of crop 195 

detritus, animal waste, biochar, and microbial leftovers in rice soil serves as a major contributor 196 

to the soil organic carbon reservoir. External carbon contributions are apportioned among 197 

various sub-reservoirs of SOC, taking into account their inherent physical and chemical 198 

attributes, with pre-established rates dictating the pace of decomposition. The disintegration 199 

process is subject to an array of influences which include the nature of the organic substance 200 

and the granular constitution of the soil (C. Li, 2016). 201 

2.3.4 Emissions of Greenhouse Gases 202 

Various redox reactions taking place in the soil, such as decomposition, 203 

nitrification/denitrification, and methane production, contribute to the generation and 204 

consumption of soil gases like CO2, CH4, and N2O. The redox potential or Eh sets the stage for 205 

whether these reactions can occur. The model creates what is termed an "anaerobic balloon", 206 

employing the Michaelis-Menten equation. This quantifies the kinetic influence of substrate 207 

concentration on the reaction rate, thereby facilitating the thermodynamic and kinetic 208 
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computations of greenhouse gas-triggered redox reactions. Based on the modelled content of 209 

oxygen or other oxidizing agents in the soil, DNDC employs the Nernst equation to establish 210 

the total redox potential (Eh) of the soil. It then predicts the potential redox reactions based on 211 

the Eh, segregating the soil into relatively aerobic and anaerobic sections. Nitrification 212 

transpires in the aerobic sections, while denitrification ensues in the anaerobic sections. The 213 

rate of either nitrification or denitrification is computed using the Michaelis-Menten equation, 214 

which depicts microbial growth as a function of the concentration of two nutrients. 215 

3 Validation for DNDC Model 216 

Validation methods available for DNDC models include parameterization, calibration, 217 

and validation against field data. These methods require adjusting model parameters to match 218 

field data and assessing the model's ability to accurately predict greenhouse gas emissions and 219 

soil dynamics in diverse agricultural systems. Inter-model comparisons can also be utilized to 220 

evaluate the accuracy of the DNDC model compared to other models. Numerous studies have 221 

demonstrated the effectiveness of the DNDC model and its validation methods in simulating 222 

methane and nitrous oxide emissions, soil organic carbon dynamics, and crop performance in 223 

various agricultural systems. 224 

4 Application of DNDC Model 225 

The DNDC model addresses two main issues: first, the impact of extreme weather 226 

events and potential climate change on greenhouse gas emissions; second, the assessment of the 227 

emission reduction potential of various mitigation measures. The DNDC model can simulate 228 

different ecosystems at the point and regional level, respectively. 229 

4.1 Site 230 

The DNDC model simulates ecosystems at the point level by using observed data from 231 

different sites as inputs. The applications of the DNDC model in point-scale ecosystem 232 

research are presented in Table 2. 233 

4.2 Region 234 

The DNDC model can be used to simulate greenhouse gas emissions at the regional 235 

scale, as shown in Table 3. The use of the DNDC model at the regional scale is similar to other 236 

GIS data-driven models, where soil and climate parameters are identical by default, and soil 237 

and climate parameters of different "grid cells" are stored in a dedicated GIS database. 238 

Different agricultural ecosystem types can be configured with different management measures, 239 

but the agricultural ecological management measures for each grid cell are unique.240 
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Table 2 Application of the DNDC model to point locations 241 

Publications Ecosystem Simulation parameter Region 
Du et al. (2011) Alpine meadow N2O China 
Kang et al. (2020) Alpine wetland SOC China 
J. Zhang et al. (2017) Cropland Yield China 
Jarecki et al. (2018) Cropland Yield Canada 
S. Li et al. 2019) Cropland NH3 China 
Dubache et al. (2019) Cropland NH3 UK 
Abdalla et al. (2020) Cropland N2O, Yield China 
Jiang et al. (2021) Cropland N2O Canada 
Hussain Shah et al. (2021) Cropland Salinity Canada 
L. Wang et al. (2022) Cropland N2O China 
C. Wang et al. (2022) Cropland N2O China 
Abdalla et al. (2010) Farm N2O Ireland 
Y. Zhang et al. (2018) Farm Biomass China 
Q. Li et al. (2021) Farm CO2, N2O, CH4 China 
Dou et al. (2014) Field SOC USA 
Deng et al. (2016) Field N2O USA 
Wu et al. (2018) Grassland SOC China 
Schroeck et al. (2019) Grassland Reactive N Austrian 
Shah et al. (2020) Grassland N2O UK 
Z. Zhao, Cao, Sha, et al. (2020) Paddy N China 
Hwang et al. (2021) Paddy CO2, CH4 Korea 
Shaukat et al. (2022) Paddy CH4 USA 
 242 

 243 

Table 3 Application of the DNDC model to the regions 244 

Publications Ecosystem Simulation parameter Region 
C. Li et al. (1994) Cropland N2O  USA 
C. Li et al. (1996) Cropland N2O USA 
C. Li et al. (2001) Cropland N2O China 
D. Giltrap et al. (2008) Cropland N2O New 
Qiu et al. (2011) Cropland NO3 China 
Kesik et al. (2005) Forest N2O, NO Europe 
C. Li, Cui, et al. (2004) Paddy CO2, N2O, CH4 China 
Pathak et al. (2006) Paddy CO2, N2O, CH4 India 
Yu et al. (2011) Paddy N2O, CH4 China 
X. Xu et al. (2011) Paddy SOC, N2O, CH4 China 
Y. Zhang et al. (2011) Paddy CH4 China 
Z. Wang et al. (2020) Paddy N, CH4 China 
Z. Zhao, Cao, Deng, et al. (2020) Paddy N2O, CH4 China 
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4.3 Other application cases  245 

The DNDC model is crucial in informing sustainable agricultural practices and 246 

mitigating greenhouse gas emissions from agricultural systems. It has been widely tested and 247 

applied worldwide for predicting soil organic carbon dynamics, greenhouse gas fluxes, and 248 

other parameters, providing valuable insights that can help reduce emissions and promote soil 249 

health (Oreskes, 2003; Zhang et al., 2006; Giltrap et al., 2010; Smith et al., 2012; Zhang et al., 250 

2015, pp. 1981–2000), especially in simulating the nitrogen (N) dynamics of ecosystems (Li et 251 

al., 1992; Li, 2016). It also performs well in the snowy mountains (J. Luo et al., 2013) and 252 

grassy areas (W. Zhang et al., 2017) of the high-altitude permafrost region of the Tibetan 253 

Plateau.  254 

Fumoto et al. (2008) revised a biogeochemistry model to simulate methane emissions 255 

from rice paddy fields under different residue management and fertilizer regimes. The revised 256 

model accurately simulated methane emissions and showed that residue management and 257 

fertilizer application significantly impacted emissions. The study found that using the DNDC 258 

model to simulate soil organic carbon dynamics in rice fields in China significantly improved 259 

the accuracy of the simulations compared to other models (Zhang et al., 2016). Liu et al. (2020) 260 

utilized the DNDC model to simulate the ammonia volatilization process. Their findings 261 

showed that ammonia volatilization was the principal nitrogen loss pathway and also 262 

demonstrated the effectiveness of the DNDC model in accurately predicting nitrogen loss 263 

pathways in dryland agro-ecosystems. Z. Zhao, Cao, Deng, et al. (2020) used the DNDC model 264 

to simulate methane and nitrous oxide emissions from paddy fields in Shanghai, China, and 265 

evaluated the potential for mitigation strategies. The study found that the DNDC model 266 

accurately predicted the emission patterns. Z. Wang et al. (2021) estimated methane emissions 267 

from rice fields in China using the DNDC model and found that the model was effective in 268 

predicting methane emissions. Macharia et al. (2021) parameterized, calibrated, and validated 269 

the DNDC model to estimate carbon dioxide and nitrous oxide emissions as well as maize crop 270 

performance in East Africa. The study found that the DNDC model can accurately predict crop 271 

yields and greenhouse gas emissions in East African maize fields.  272 

5 Evaluation of the DNDC Model  273 

5.1 Advantages of the DNDC Model 274 

DNDC has several distinct advantages over other widely used models such as 275 

CENTURY, RothC, APSIM, EPIC, InVEST, and CASA. For example, while these models are 276 

useful for simulating biogeochemical processes, they may have shortcomings in areas such as 277 

modeling soil processes, simulating nitrogen cycling, or providing detailed assessments of land 278 

management practices. In contrast, DNDC is specifically designed to model the effects of 279 

management practices on soil processes and greenhouse gas emissions, and its ability to 280 

simulate both carbon and nitrogen cycles in soil-plant-atmosphere systems makes it a valuable 281 

tool for assessing environmental impacts and predicting climate change effects. Additionally, 282 

DNDC has been extensively validated against field data, providing a high level of confidence in 283 
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its predictions. As mentioned above for some of the DNDC use cases, the simulation accuracy 284 

for GHGs is high when the model input information is accurate. 285 

The DNDC model scalability and flexibility allow for modifications to model 286 

parameters and the addition of new ecological processes. This makes the model adaptable to 287 

various ecosystems and application scenarios. Additionally, the model's versatility in various 288 

ecosystems and application fields, including farmland, grassland, forest, and wetland, as well as 289 

agriculture, forestry, and environmental protection, provides a scientific basis and reference for 290 

ecosystem management and decision-making.  291 

5.2 Limitations of the DNDC model 292 

The DNDC model is widely used for ecosystem modeling, but it has limitations in some 293 

ecosystem types. In wetland ecosystems, the prediction accuracy of the DNDC model is lower 294 

than in other ecosystems due to simplified assumptions about soil waterlogging and plant 295 

growth. Moreover, the model lacks a detailed description of biogeochemical cycling processes, 296 

which may also affect its accuracy. When using the DNDC model in different ecosystem types, 297 

its predictive accuracy and adaptability may be limited. This is because the model's response 298 

and adaptation to geographic variability are limited. Therefore, it is necessary to carefully 299 

consider these limitations when applying the DNDC model to different ecosystems and 300 

management scenarios. Future research should focus on improving the model's accuracy and 301 

adaptability, especially in wetland ecosystems, by incorporating more detailed descriptions of 302 

biogeochemical cycling processes and improving the model's response to geographic 303 

variability. The shortcomings mentioned above, whether accuracy issues or otherwise, can be 304 

adapted by modifying the source code to adapt the model to a specific ecosystem in order to 305 

obtain more precise results. 306 

The fact that the source code of the DNDC model is not publicly available may limit the 307 

ability of researchers to verify the model's accuracy, understand its underlying processes, and 308 

make modifications or improvements. However, there may be valid reasons for not releasing 309 

the code, such as concerns about intellectual property or software security. Releasing the source 310 

code of the DNDC model can benefit scientific research by allowing for validation and 311 

improvement, promoting transparency and reproducibility, and increasing credibility and trust. 312 

Moreover, it can foster scientific progress and support informed decision-making. 313 

6 Outlook 314 

The DNDC model, despite its undeniable advantages, is not without limitations. Its 315 

precision can be significantly influenced by the quality of input data, and it may oversimplify 316 

some intricate biogeochemical processes. These factors could lead to discrepancies between the 317 

model's predictions and observed values, particularly in varied ecosystems, regions, and crops. 318 

The model's performance exhibits considerable variation across disparate geographical 319 

locations and ecosystem conditions, demonstrating the inherent difficulty of accurately 320 

representing all ecosystems with a single set of formulas. This variation underscores the critical 321 

importance of the DNDC model's source code, which researchers frequently modify to better 322 

suit specific locations. 323 
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To augment the practicality and applicability of the model, it is crucial to promote the 324 

sharing of the DNDC model's source code within the scientific community. This openness 325 

would empower independent researchers to verify the model's precision, pinpoint potential 326 

errors or shortcomings, and implement necessary adjustments or enhancements to the model. 327 

Such sharing practices foster transparency, reproducibility, and credibility, all of which are 328 

vital for the advancement of science and for making informed decisions. Ultimately, the DNDC 329 

model, with its inherent strengths and weaknesses, can see a significant improvement in its 330 

performance through a willingness to share and adapt its foundational source code. 331 
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Publications Model Version Functions 

C. Li et al. (1992)  DNDC v. 1.0-
7.0 

There are three basic sub-models in the DNDC 
model: the soil climate/water heat flux sub-model, 
the organic carbon decomposition process sub-
model, and the denitrification sub-model (which 
includes only one equation for nitrification when 
there is no crop growth) . 

C. Li et al. (1994)  DNDC v. 7.1 
The initial version was improved by adding a plant 
growth process submodel and a land management 
use submodel. 

C. Li et al. (2000)  PnET-N-DNDC 

Integrated the models of photosynthesis, 
evapotranspiration, DNDC, and nitrification, 
replacing crop growth with forest growth, which 
can predict the emissions of N2O and NO in forest 
soils. Introduced the concept of "anaerobic 
balloon" and considered the influence of freezing 
and thawing on soil moisture. 

Li, (2000) and Li 
et al. (2000)  DNDC v. 8.0 

A new two-component model framework was 
developed in the PnET-N-DNDC model, 
incorporating a submodel that simulates 
fermentation processes using soil redox potential. 
The model integrates the anaerobic chamber 
concept along with freeze-thaw effects. 

Y. Zhang, Li, 
Zhou, et al. (2002)  Crop-DNDC 

Simulating crop growth through physiological 
processes under water and nitrogen stress, a new 
phenology crop submodel incorporating the initial 
version submodels (decomposition, nitrification, 
and denitrification) was introduced. 

Y. Zhang, Li, 
Zhou, et al. (2002) DNDC v. 8.2 

The new phenology crop submodel was introduced 
into the DNDC model as a replacement for the 
empirical crop growth submodel added in 1994. 
The new phenology crop physiological and 
ecological model requires more and finer plant 
growth parameters, while the simulated results are 
more accurate. 

Y. Zhang, Li, 
Trettin, et al. 
(2002) 

Wetland-DNDC 

To predict CO2 and CH4 emissions in wetland 
ecosystems, we integrated the PnET-N-DNDC and 
FLATWODS models that are suitable for such 
ecosystems. We introduced dynamic changes in 
water levels and modified soil properties and 
climatic conditions. The resulting model comprises 
four submodels: hydrological conditions, soil 
temperature, plant growth, and soil carbon 
dynamics. 

Brown et al. 
(2002)  UK-DNDC Adapting the DNDC model for simulating UK 

ecosystems. 



C. Li, Cui, et al. 
(2004)  DNDC v. 8.5 

Modified the concept of "anaerobic gas vesicle" by 
incorporating the Nernst equation and combining it 
with the Michaelis-Menten equation. 

Saggar et al. 
(2004)  NZ-DNDC 

Modified the model of annual crops to that of 
perennial grass growth, quantified the nitrogen 
input from herbivore excreta, replaced the 
Thorthwaite equation with the Priestley-Taylor 
equation to calculate potential soil 
evapotranspiration, and changed the order of soil 
water infiltration and drainage to simulate the N2O 
emission patterns from New Zealand grassland. 

C. Li, Mosier, et al. 
(2004)  DNDC-Rice 

Modified the DNDC model to make it applicable 
to rice paddy ecosystems. Further improvements 
were made by Rafique et al. (2011) in Indian rice 
paddies. Fumoto et al. (2008) enhanced and 
integrated the MACROS implementation. 

C. Li et al. (2005)  Forest-DNDC Integrated the PnET and DNDC models for both 
dryland and wetland forest ecosystems. 

Kiese et al. (2005)  Forest-DNDC-
Tropica 

Modified the PnET-N-DNDC model to make it 
applicable to tropical rainforest ecosystems. 

Neufeldt et al. 
(2006)  EFEM-DNDC 

Coupling EFEM and DNDC v8.0 to simulate 
greenhouse gas emissions from typical livestock 
and production systems in Baden-Württemberg, 
Germany, using a GIS-coupled economic-
ecological system model. 

C. Li et al. (2006)  DNDC v. 9.0 
Introducing free ammonium kinetics and 
improving the leaching of nitrification and nitrate 
to optimize the accuracy of the model simulation. 

Beheydt (2006)  BE-DNDC 
Combining DNDC v8.3P with regional data from 
Belgium to calculate the regional framework for 
N2O emissions from intensive agricultural land. 

Fumoto et al. 
(2008)  DNDC-Rice 

Making the DNDC-Rice model capable of 
simulating rice paddies with different flooding 
regimes. 

Leip et al. (2008)  DNDC-Europe 
Integrating CAPRI into DNDC to assess the impact 
of agricultural environmental policies on 
greenhouse gas emissions. 

Grote et al. (2009) 
and  
Grote et al. (2011)  

Mobile-DNDC 

Linking MoiBiLE to one-dimensional ecosystem 
models such as DNDC to obtain the most suitable 
model combination for specific research tasks. 
MoBiLE-DNDC was adapted by Wolf et al. 
(2012). 

W. N. Smith et al. 
(2010)  DNDC v. 9.3 Improve the estimation of soil evaporation in the 

DNDC model. 
Kröbel et al. 
(2011)  DNDC-CSW Incorporate the CSW (Canadian spring wheat) 

empirical sub-model into the DNDC model to 



more accurately estimate the growth and nitrogen 
uptake of spring wheat in Canadian agricultural 
ecosystems. 

Y. Zhang et al. 
(2012)  NEST-DNDC 

Develop an integrated approach to quantify CH4 
emissions under permafrost conditions and 
combine DNDC with NEST. 

C. Li et al. (2012)  Manure-DNDC 
Predict GHG and NH3 emissions from manure 
generated by farms, and modify DNDC to 
represent the manure lifecycle on farms. 

C. Li et al. (2012) DNDC v. 9.4 Introduce the soil NH3 algorithm developed by 
Manure-DNDC. 

Haas et al. (2013) Landscape-
DNDC 

Use DNDC and Forest-DNDC as a universal soil 
biogeochemical module to simulate multiple 
ecosystems. 

Z. Zhao et al. 
(2014)  DNDC v. 9.5 

The DNDC v9.5 version is the current version, 
which includes optimized modules for crop growth 
simulation, hydrology, greenhouse gas emission-
related parameters, etc., to meet the needs of 
greenhouse gas mitigation research. 

Katayanagi et al. 
(2017)  DNDC v. 9.5 Revised the emission factors (EFs) to consider the 

effects of CH4 emissions. 

Dutta et al. (2018)  DNDC v. 9.5 

The model mechanism was calibrated under two 
strongly contrasting soil textures (sandy and clay 
soils) . The calculation of soil temperature driven 
by soil thermal conductivity and heat capacity was 
improved, and the surface soil temperature 
mechanism of DNDC was improved to improve 
greenhouse gas prediction. 

Amponsah et al. 
(2019)  DNDC-OP 

Combine PAH degradation rates with dynamic soil, 
vegetation, and climate factors (such as soil 
moisture and temperature) to simulate the 
degradation dynamics of PAHs in soil at 
abandoned oil and gas well sites. 

Dubache et al. 
(2019)  DNDC v. 9.5 

The regulation of soil moisture on urea hydrolysis 
was increased, and the temperature regulation 
parameterization of this process was calibrated. 
The volatilization coefficient of NH3 released from 
soil water to the atmosphere above bare soil or tree 
canopy was redefined. The regulation of soil 
texture (expressed as clay fraction) and the 
regulation of wet and/or dry canopy were 
redefined, as well as the parameterization of wind 
speed, soil temperature, and moisture regulation. 

He et al. (2019)  DNDC v. 9.5 The DNDC model was modified to improve alfalfa 
growth simulation. 

S. Li et al. (2019)  DNDC v. 9.5 The calculation of soil moisture was modified, and 



parameterization for temperature regulation was 
designed when defining the rate constant for 
ammonium bicarbonate (ABC) decomposition and 
NH3 release to the atmosphere. The regulation of 
texture on NH3 volatilization from soil was re-
parameterized. An adaptation coefficient was 
added for an unknown regulatory factor that affects 
the volatilization of dissolved NH3. In addition, 
pedo-transfer functions (PTFs) were introduced 
into the model to estimate soil hydraulic 
parameters using physical and chemical properties 
as model inputs. 

Cui & Wang 
(2019)  DNDC v. 9.5 

The original DNDC model was modified to better 
represent rainfall-snowfall partitioning, snow 
cover, and soil freeze-thaw cycles, thereby 
improving soil temperature simulation, particularly 
predicting soil temperature and greenhouse gas 
emissions in cold regions with snow cover during 
winter. 

W. Smith et al. 
(2020)  DNDC v. 9.5 

The soil hydrological framework of DNDC was 
strengthened, including a new mechanized tile 
drainage submodel, improved water flux, root 
growth dynamics, and deeper heterogeneous soil 
profiles. 

 



Publications Ecosystem Simulation parameter Region 
Du et al. (2011) Alpine meadow N2O China 
Kang et al. (2020) Alpine wetland SOC China 
J. Zhang et al. (2017) Cropland Yield China 
Jarecki et al. (2018) Cropland Yield Canada 
S. Li et al. 2019) Cropland NH3 China 
Dubache et al. (2019) Cropland NH3 UK 
Abdalla et al. (2020) Cropland N2O, Yield China 
Jiang et al. (2021) Cropland N2O Canada 
Hussain Shah et al. (2021) Cropland Salinity Canada 
L. Wang et al. (2022) Cropland N2O China 
C. Wang et al. (2022) Cropland N2O China 
Abdalla et al. (2010) Farm N2O Ireland 
Y. Zhang et al. (2018) Farm Biomass China 
Q. Li et al. (2021) Farm CO2, N2O, CH4 China 
Dou et al. (2014) Field SOC USA 
Deng et al. (2016) Field N2O USA 
Wu et al. (2018) Grassland SOC China 
Schroeck et al. (2019) Grassland Reactive N Austrian 
Shah et al. (2020) Grassland N2O UK 
Z. Zhao, Cao, Sha, et al. (2020) Paddy N China 
Hwang et al. (2021) Paddy CO2, CH4 Korea 
Shaukat et al. (2022) Paddy CH4 USA 
 



Publications Ecosystem Simulation parameter Region 
C. Li et al. (1994) Cropland N2O  USA 
C. Li et al. (1996) Cropland N2O USA 
C. Li et al. (2001) Cropland N2O China 
D. Giltrap et al. (2008) Cropland N2O New 

Z l dQiu et al. (2011) Cropland NO3 China 
Kesik et al. (2005) Forest N2O, NO Europe 
C. Li, Cui, et al. (2004) Paddy CO2, N2O, CH4 China 
Pathak et al. (2006) Paddy CO2, N2O, CH4 India 
Yu et al. (2011) Paddy N2O, CH4 China 
X. Xu et al. (2011) Paddy SOC, N2O, CH4 China 
Y. Zhang et al. (2011) Paddy CH4 China 
Z. Wang et al. (2020) Paddy N, CH4 China 
Z. Zhao, Cao, Deng, et al. (2020) Paddy N2O, CH4 China 
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